QUALIFYING EXAMINATION

Harvard University
Department of Mathematics
Tuesday September 162008 (Day 1)

1. (a) Prove that the Galois group G of the polynomial $X^{6}+3$ over \mathbb{Q} is of order 6.
(b) Show that in fact G is isomorphic to the symmetric group S_{3}.
(c) Is there a prime number p such that $X^{6}+3$ is irreducible over the finite field of order p ?
2. Evaluate the integral

$$
\int_{0}^{\infty} \frac{\sqrt{t}}{(1+t)^{2}} d t
$$

3. For $X \subset \mathbb{R}^{3}$ a smooth oriented surface, we define the Gauss map $g: X \rightarrow S^{2}$ to be the map sending each point $p \in X$ to the unit normal vector to X at p. We say that a point $p \in X$ is parabolic if the differential $d g_{p}: T_{p}(X) \rightarrow T_{g(p)}\left(S^{2}\right)$ of the map g at p is singular.
(a) Find an example of a surface X such that every point of X is parabolic.
(b) Suppose now that the locus of parabolic points is a smooth curve $C \subset X$, and that at every point $p \in C$ the tangent line $T_{p}(C) \subset T_{p}(X)$ coincides with the kernel of the map $d g_{p}$. Show that C is a planar curve, that is, each connected component lies entirely in some plane in \mathbb{R}^{3}.
4. Let $X=\left(S^{1} \times S^{1}\right) \backslash\{p\}$ be a once-punctured torus.
(a) How many connected, 3 -sheeted covering spaces $f: Y \rightarrow X$ are there?
(b) Show that for any of these covering spaces, Y is either a 3 -times punctured torus or a once-punctured surface of genus 2 .
5. Let X be a complete metric space with metric ρ. A map $f: X \rightarrow X$ is said to be contracting if for any two distinct points $x, y \in X$,

$$
\rho(f(x), f(y))<\rho(x, y) .
$$

The map f is said to be uniformly contracting if there exists a constant $c<1$ such that for any two distinct points $x, y \in X$,

$$
\rho(f(x), f(y))<c \cdot \rho(x, y) .
$$

(a) Suppose that f is uniformly contracting. Prove that there exists a unique point $x \in X$ such that $f(x)=x$.
(b) Give an example of a contracting map $f:[0, \infty) \rightarrow[0, \infty)$ such that $f(x) \neq x$ for all $x \in[0, \infty)$.
6. Let K be an algebraically closed field of characteristic other than 2 , and let $Q \subset \mathbb{P}^{3}$ be the surface defined by the equation

$$
X^{2}+Y^{2}+Z^{2}+W^{2}=0
$$

(a) Find equations of all lines $L \subset \mathbb{P}^{3}$ contained in Q.
(b) Let $\mathbb{G}=\mathbb{G}(1,3) \subset \mathbb{P}^{5}$ be the Grassmannian of lines in \mathbb{P}^{3}, and $F \subset \mathbb{G}$ the set of lines contained in Q. Show that $F \subset \mathbb{G}$ is a closed subvariety.

QUALIFYING EXAMINATION

Harvard University
Department of Mathematics
Wednesday September 172008 (Day 2)

1. (a) Show that the ring $\mathbb{Z}[i]$ is Euclidean.
(b) What are the units in $\mathbb{Z}[i]$?
(c) What are the primes in $\mathbb{Z}[i]$?
(d) Factorize $11+7 i$ into primes in $\mathbb{Z}[i]$.
2. Let $U \subset \mathbb{C}$ be the open region

$$
U=\{z:|z-1|<1 \text { and }|z-i|<1\} .
$$

Find a conformal map $f: U \rightarrow \Delta$ of U onto the unit disc $\Delta=\{z:|z|<1\}$.
3. Let n be a positive integer, A a symmetric $n \times n$ matrix and Q the quadratic form

$$
Q(x)=\sum_{1 \leq i, j \leq n} A_{i, j} x_{i} x_{j} .
$$

Define a metric on \mathbb{R}^{n} using the line element whose square is

$$
d s^{2}=e^{Q(x)} \sum_{1 \leq i \leq n} d x^{i} \otimes d x^{i}
$$

(a) Write down the differential equation satisfied by the geodesics of this metric
(b) Write down the Riemannian curvature tensor of this metric at the origin in \mathbb{R}^{n}.
4. Let H be a separable Hilbert space and $b: H \rightarrow H$ a bounded linear operator.
(a) Prove that there exists $r>0$ such that $b+r$ is invertible.
(b) Suppose that H is infinite dimensional and that b is compact. Prove that b is not invertible.
5. Let $X \subset \mathbb{P}^{n}$ be a projective variety.
(a) Define the Hilbert function $h_{X}(m)$ and the Hilbert polynomial $p_{X}(m)$ of X.
(b) What is the significance of the degree of p_{X} ? Of the coefficient of its leading term?
(c) For each m, give an example of a variety $X \subset \mathbb{P}^{n}$ such that $h_{X}(m) \neq$ $p_{X}(m)$.
6. Let $X=S^{2} \vee \mathbb{R P}^{2}$ be the wedge of the 2 -sphere and the real projective plane. (This is the space obtained from the disjoint union of the 2 -sphere and the real projective plane by the equivalence relation that identifies a given point in S^{2} with a given point in $\mathbb{R P}^{2}$, with the quotient topology.)
(a) Find the homology groups $H_{n}(X, \mathbb{Z})$ for all n.
(b) Describe the universal covering space of X.
(c) Find the fundamental group $\pi_{1}(X)$.

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Thursday January 312008 (Day 3)

1. For $z \in \mathbb{C} \backslash \mathbb{Z}$, set

$$
f(z)=\lim _{N \rightarrow \infty}\left(\sum_{n=-N}^{N} \frac{1}{z+n}\right)
$$

(a) Show that this limit exists, and that the function f defined in this way is meromorphic.
(b) Show that $f(z)=\pi \cot \pi z$.
2. Let p be an odd prime.
(a) What is the order of $G L_{2}\left(\mathbb{F}_{p}\right)$?
(b) Classify the finite groups of order p^{2}.
(c) Classify the finite groups G of order p^{3} such that every element has order p.
3. Let X and Y be compact, connected, oriented 3-manifolds, with

$$
\pi_{1}(X)=(\mathbb{Z} / 3 \mathbb{Z}) \oplus \mathbb{Z} \oplus \mathbb{Z} \quad \text { and } \quad \pi_{1}(Y)=(\mathbb{Z} / 6 \mathbb{Z}) \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}
$$

(a) Find $H_{n}(X, \mathbb{Z})$ and $H_{n}(Y, \mathbb{Z})$ for all n.
(b) Find $H_{n}(X \times Y, \mathbb{Q})$ for all n.
4. Let $\mathcal{C}_{c}^{\infty}(\mathbb{R})$ be the space of differentiable functions on \mathbb{R} with compact support, and let $L^{1}(\mathbb{R})$ be the completion of $\mathcal{C}_{c}^{\infty}(\mathbb{R})$ with respect to the L^{1} norm. Let $f \in L^{1}(\mathbb{R})$. Prove that

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{|y-x|<h}|f(y)-f(x)| d y=0
$$

for almost every x.
5. Let \mathbb{P}^{5} be the projective space of homogeneous quadratic polynomials $F(X, Y, Z)$ over \mathbb{C}, and let $\Phi \subset \mathbb{P}^{5}$ be the set of those polynomials that are products of linear factors. Similarly, let \mathbb{P}^{9} be the projective space of homogeneous cubic polynomials $F(X, Y, Z)$, and let $\Psi \subset \mathbb{P}^{9}$ be the set of those polynomials that are products of linear factors.
(a) Show that $\Phi \subset \mathbb{P}^{5}$ and $\Psi \subset \mathbb{P}^{9}$ are closed subvarieties.
(b) Find the dimensions of Φ and Ψ.
(c) Find the degrees of Φ and Ψ.
6. Realize S^{1} as the quotient $S^{1}=\mathbb{R} / 2 \pi \mathbb{Z}$, and consider the following two line bundles over S^{1} :
L is the subbundle of $S^{1} \times \mathbb{R}^{2}$ given by

$$
L=\{(\theta,(x, y)): \cos (\theta) \cdot x+\sin (\theta) \cdot y=0\} ; \text { and }
$$

M is the subbundle of $S^{1} \times \mathbb{R}^{2}$ given by

$$
M=\{(\theta,(x, y)): \cos (\theta / 2) \cdot x+\sin (\theta / 2) \cdot y=0\}
$$

(You should verify for yourself that M is well-defined.) Which of the following are trivial as vector bundles on S^{1} ?
(a) L
(b) M
(c) $L \oplus M$
(d) $M \oplus M$
(e) $M \otimes M$

