QUALIFYING EXAMINATION

HARVARD UNIVERSITY Department of Mathematics Tuesday September 18 2007 (Day 1)

1. Let $f(x) = x^4 - 7 \in \mathbb{Q}[x]$.

- (a) Show that f is irreducible in $\mathbb{Q}[x]$.
- (b) Let K be the splitting field of f over \mathbb{Q} . Find the Galois group of K/\mathbb{Q} .
- (c) How many subfields $L \subset K$ have degree 4 over \mathbb{Q} ? How many of them are Galois over \mathbb{Q} ?
- **2.** A real-valued function f defined on an interval $(a, b) \subset \mathbb{R}$ is said to be *convex* if

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$

whenever $x, y \in (a, b)$ and $\lambda \in (0, 1)$. Prove that every convex function is continuous.

3. Let $\tau_n : S^n \to S^n$ be the antipodal map, and let X be the quotient of $S^n \times S^m$ by the involution (τ_n, τ_m) —that is,

$$X = S^n \times S^m / (x, y) \sim (-x, -y) \,\forall (x, y).$$

- (a) What is the Euler characteristic of X?
- (b) Find the homology groups of X in case n = 1.
- 4. Construct a surjective conformal mapping from the pie wedge

$$A = \{ z = re^{i\theta} : \theta \in (0, \pi/4), r < 1 \}$$

to the unit disk

$$D = \{z : |z| < 1\}.$$

- 5. Let $\mathbb{P} \cong \mathbb{P}^{mn-1}$ be the projective space of nonzero $m \times n$ matrices mod scalars, and let $M_k \subset \mathbb{P}$ be the locus of matrices of rank k or less.
 - (a) Show that M_k is an irreducible algebraic subvariety of \mathbb{P} .
 - (b) Find the dimension of M_k .
 - (c) In case k = 1, find the degree of M_1 .
- 6. Compute the curvature and the torsion of the curve

$$\rho(t) = (t, t^2, t^3)$$

in \mathbb{R}^3 .

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics Wednesday September 19 2007 (Day 2)

1. Evaluate the integral

$$\int_0^\infty \frac{x^2}{x^4 + 5x^2 + 4} dx.$$

- **2.** Consider the paraboloid $S \subset \mathbb{R}^3$ given by the equation $z = x^2 + y^2$. Let g be the metric on S induced by the one on \mathbb{R}^3 .
 - (a) Write down the metric g in the coordinate system (x, y).
 - (b) Compute the Gaussian and the mean curvature of M.
- 3. Let D_5 denote the group of automorphisms of a regular pentagon. Let V be the 5 dimensional complex representation of D_5 corresponding to the action on the five edges of the pentagon. Decompose V as a sum of irreducible representations.
- 4. Consider the following three topological spaces:

 $A = \mathbb{CP}^3 \qquad B = S^2 \times S^4 \qquad \text{and} \qquad C = S^2 \vee S^4 \vee S^6$

where \mathbb{CP}^3 is complex projective 3-space, S^n is an *n*-sphere and \vee denotes connected sum.

- (a) Calculate the cohomology groups (with integer coefficients) of all three
- (b) Show that A and B are not homotopy equivalent
- (c) Show that C is not homotopy equivalent to any compact manifold
- **5.** Let \mathcal{C} be the space $\mathcal{C}[0,1]$ with the sup norm $||f||_{\infty}$, and let \mathcal{C}^1 be the space $\mathcal{C}^1[0,1]$ with the sup norm $||f||_{\infty} + ||f'||_{\infty}$. Prove that the inclusion $\mathcal{C}^1 \subset \mathcal{C}$ is a compact operator.
- **6.** Let K be a field of characteristic 0.
 - (a) Find two nonconstant rational functions $f(t), g(t) \in K(t)$ such that

$$f^2 = g^2 + 1.$$

(b) Now let n be any integer, $n \ge 3$. Show that there do not exist two nonconstant rational functions $f(t), g(t) \in K(t)$ such that

$$f^2 = g^n + 1$$

QUALIFYING EXAMINATION

HARVARD UNIVERSITY Department of Mathematics Thursday September 20 2007 (Day 3)

1. Let R be the ring

$$R = \mathbb{C}[x, y, z]/(xy - z^2).$$

Find examples of the following ideals in R:

- (a) a minimal prime ideal that is principal;
- (b) a minimal prime ideal that is not principal;
- (c) a maximal prime ideal than can be generated by two elements; and
- (d) a maximal prime ideal than can not be generated by two elements
- 2. Find the Laurent expansion

$$f(z) = \sum_{n \in \mathbb{Z}} a_n z^n$$

around 0 of the function

$$f(z) = \frac{1}{z^2 - 3z + 2}$$

- (a) valid in the open unit disc $\{z : |z| < 1\}$; and
- (b) valid in the annulus $\{z : 1 < |z| < 2\}$.
- **3.** (a) Show that any continuous map from the 2-sphere S^2 to a compact orientable 2-manifold of genus $g \ge 1$ is homotopic to a constant map.
 - (b) Recall that if $f : X \to Y$ is a map between compact, oriented *n*-manifolds, the induced map $f_* : H_n(X) \to H_n(Y)$ is multiplication by some integer *d*, called the *degree* of the map *f*. Now let *S* and *T* be compact oriented 2-manifolds of genus *g* and *h* respectively, and $f : S \to T$ a continuous map. Show that if g > h, then the degree of *f* is zero.
- 4. Let H be a (non-trivial) Hilbert space, and let $\mathcal{B}(H)$ denote the algebra of bounded linear operators on H. Recall that a linear operator $S: H \to H$ is called an adjoint to $T: H \to H$ if

$$(Tx,y) = (x,Sy) \tag{1}$$

holds for all $x, y \in H$.

(a) Prove that any $T \in \mathcal{B}(H)$ has a unique adjoint in $\mathcal{B}(H)$.

- (b) Given $T \in \mathcal{B}(H)$, let T^* denote its adjoint. Prove that $(TS)^* = S^*T^*$ for $T, S \in \mathcal{B}(H)$.
- (c) Prove that $||Tx|| = ||T^*x||$ for all $x \in H$ if and only if $TT^* = T^*T$.
- (d) Prove that if $TT^* = T^*T$ then the eigenspaces corresponding to distinct eigenvalues of T are mutually orthogonal.
- 5. Prove that every group of order p^2q , where p and q are distinct primes, is solvable.
- 6. Let $\Gamma = \{p_1, \ldots, p_5\} \subset \mathbb{P}^2$ be a collection of five points in the plane.
 - (a) What is the Hilbert polynomial of the subvariety $\Gamma \subset \mathbb{P}^2$?
 - (b) How many different Hilbert functions can Γ have? List them all.