QUALIFYING EXAMINATION

Harvard University
Department of Mathematics
Tuesday September 182007 (Day 1)

1. Let $f(x)=x^{4}-7 \in \mathbb{Q}[x]$.
(a) Show that f is irreducible in $\mathbb{Q}[x]$.
(b) Let K be the splitting field of f over \mathbb{Q}. Find the Galois group of K / \mathbb{Q}.
(c) How many subfields $L \subset K$ have degree 4 over \mathbb{Q} ? How many of them are Galois over \mathbb{Q} ?
2. A real-valued function f defined on an interval $(a, b) \subset \mathbb{R}$ is said to be convex if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

whenever $x, y \in(a, b)$ and $\lambda \in(0,1)$. Prove that every convex function is continuous.
3. Let $\tau_{n}: S^{n} \rightarrow S^{n}$ be the antipodal map, and let X be the quotient of $S^{n} \times S^{m}$ bythe involution $\left(\tau_{n}, \tau_{m}\right)$-that is,

$$
X=S^{n} \times S^{m} /(x, y) \sim(-x,-y) \forall(x, y)
$$

(a) What is the Euler characteristic of X ?
(b) Find the homology groups of X in case $n=1$.
4. Construct a surjective conformal mapping from the pie wedge

$$
A=\left\{z=r e^{i \theta}: \theta \in(0, \pi / 4), r<1\right\}
$$

to the unit disk

$$
D=\{z:|z|<1\} .
$$

5. Let $\mathbb{P} \cong \mathbb{P}^{m n-1}$ be the projective space of nonzero $m \times n$ matrices mod scalars, and let $M_{k} \subset \mathbb{P}$ be the locus of matrices of rank k or less.
(a) Show that M_{k} is an irreducible algebraic subvariety of \mathbb{P}.
(b) Find the dimension of M_{k}.
(c) In case $k=1$, find the degree of M_{1}.
6. Compute the curvature and the torsion of the curve

$$
\rho(t)=\left(t, t^{2}, t^{3}\right)
$$

in \mathbb{R}^{3}.

QUALIFYING EXAMINATION

Harvard University
Department of Mathematics
Wednesday September 192007 (Day 2)

1. Evaluate the integral

$$
\int_{0}^{\infty} \frac{x^{2}}{x^{4}+5 x^{2}+4} d x .
$$

2. Consider the paraboloid $S \subset \mathbb{R}^{3}$ given by the equation $z=x^{2}+y^{2}$. Let g be the metric on S induced by the one on \mathbb{R}^{3}.
(a) Write down the metric g in the coordinate system (x, y).
(b) Compute the Gaussian and the mean curvature of M.
3. Let D_{5} denote the group of automorphisms of a regular pentagon. Let V be the 5 dimensional complex representation of D_{5} corresponding to the action on the five edges of the pentagon. Decompose V as a sum of irreducible representations.
4. Consider the following three topological spaces:

$$
A=\mathbb{C P}^{3} \quad B=S^{2} \times S^{4} \quad \text { and } \quad C=S^{2} \vee S^{4} \vee S^{6}
$$

where $\mathbb{C P}^{3}$ is complex projective 3 -space, S^{n} is an n-sphere and \vee denotes connected sum.
(a) Calculate the cohomology groups (with integer coefficients) of all three
(b) Show that A and B are not homotopy equivalent
(c) Show that C is not homotopy equivalent to any compact manifold
5. Let \mathcal{C} be the space $\mathcal{C}[0,1]$ with the sup norm $\|f\|_{\infty}$, and let \mathcal{C}^{1} be the space $\mathcal{C}^{1}[0,1]$ with the sup norm $\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$. Prove that the inclusion $\mathcal{C}^{1} \subset \mathcal{C}$ is a compact operator.
6. Let K be a field of characteristic 0 .
(a) Find two nonconstant rational functions $f(t), g(t) \in K(t)$ such that

$$
f^{2}=g^{2}+1 .
$$

(b) Now let n be any integer, $n \geq 3$. Show that there do not exist two nonconstant rational functions $f(t), g(t) \in K(t)$ such that

$$
f^{2}=g^{n}+1 .
$$

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Thursday September 202007 (Day 3)

1. Let R be the ring

$$
R=\mathbb{C}[x, y, z] /\left(x y-z^{2}\right) .
$$

Find examples of the following ideals in R :
(a) a minimal prime ideal that is principal;
(b) a minimal prime ideal that is not principal;
(c) a maximal prime ideal than can be generated by two elements; and
(d) a maximal prime ideal than can not be generated by two elements
2. Find the Laurent expansion

$$
f(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{n}
$$

around 0 of the function

$$
f(z)=\frac{1}{z^{2}-3 z+2}
$$

(a) valid in the open unit disc $\{z:|z|<1\}$; and
(b) valid in the annulus $\{z: 1<|z|<2\}$.
3. (a) Show that any continuous map from the 2 -sphere S^{2} to a compact orientable 2-manifold of genus $g \geq 1$ is homotopic to a constant map.
(b) Recall that if $f: X \rightarrow Y$ is a map between compact, oriented n manifolds, the induced map $f_{*}: H_{n}(X) \rightarrow H_{n}(Y)$ is multiplication by some integer d, called the degree of the map f. Now let S and T be compact oriented 2-manifolds of genus g and h respectively, and $f: S \rightarrow T$ a continuous map. Show that if $g>h$, then the degree of f is zero.
4. Let H be a (non-trivial) Hilbert space, and let $\mathcal{B}(H)$ denote the algebra of bounded linear operators on H. Recall that a linear operator $S: H \rightarrow H$ is called an adjoint to $T: H \rightarrow H$ if

$$
\begin{equation*}
(T x, y)=(x, S y) \tag{1}
\end{equation*}
$$

holds for all $x, y \in H$.
(a) Prove that any $T \in \mathcal{B}(H)$ has a unique adjoint in $\mathcal{B}(H)$.
(b) Given $T \in \mathcal{B}(H)$, let T^{*} denote its adjoint. Prove that $(T S)^{*}=S^{*} T^{*}$ for $T, S \in \mathcal{B}(H)$.
(c) Prove that $\|T x\|=\left\|T^{*} x\right\|$ for all $x \in H$ if and only if $T T^{*}=T^{*} T$.
(d) Prove that if $T T^{*}=T^{*} T$ then the eigenspaces corresponding to distinct eigenvalues of T are mutually orthogonal.
5. Prove that every group of order $p^{2} q$, where p and q are distinct primes, is solvable.
6. Let $\Gamma=\left\{p_{1}, \ldots, p_{5}\right\} \subset \mathbb{P}^{2}$ be a collection of five points in the plane.
(a) What is the Hilbert polynomial of the subvariety $\Gamma \subset \mathbb{P}^{2}$?
(b) How many different Hilbert functions can Γ have? List them all.

