Qualifying exam, Fall 2006, Day 1

(1) Let G_1 and G_2 be finite groups, and let V_i be a finite dimensional complex representation of G_i , for i = 1, 2. Give $V_1 \otimes_{\mathbb{C}} V_2$ the structure of a representation of the direct product $G_1 \times G_2$ by the rule

$$(g_1, g_2)(v_1 \otimes v_2) := (g_1v_1) \otimes (g_2v_2).$$

(a) Show that if V_1 and V_2 are irreducible representations of G_1 and G_2 , respectively, then $V_1 \otimes V_2$ is an irreducible representation of $G_1 \times G_2$.

(b) Show that every irreducible representation of $G_1 \times G_2$ arises in this way.

(2) Let R be the polynomial ring on 9 generators $\mathbb{C}[a_{11}, a_{21}, ..., a_{23}, a_{33}]$, and let A be a matrix

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

with values in R. Let I be the ideal in R generated by the entries of A^3 .

(a) Show that the subvariety X of \mathbb{A}^9 defined by I is irreducible.

(b) Let J be the ideal of polynomials in R that vanish identically on X. Does J equal I?

(3) Prove that for n = 1, 2, 3, ...

$$\frac{1}{2\pi} \int_0^{2\pi} \cos(n\theta - 2\sin\theta) d\theta = \sum_{k=0}^\infty \frac{(-1)^k}{k!(n+k)!}$$

Hint: consider the function $z \mapsto e^{z-1/z}$.

(4) Prove that π_1 of a topological group is abelian.

(5) Let $f: Y \to X$ be a smooth embedding of a manifold Y into a manifold X. Let X be equipped with a Riemannian metric \overline{g} with the associated Levi-Cevita connection $\overline{\nabla}$ on TX. Let $g = f^*\overline{g}$ be the induced metric on Y, with Levi-Cevita connection ∇ . For $\eta, \xi \in TY$ define

$$\Psi(\eta,\xi) = \overline{\nabla}_{(f_*\eta)}(f_*\xi) - f_*(\nabla_\eta\xi) \in TX|_Y.$$

Show that Ψ is a well-defined tensor field in $Sym^2(T^*Y) \otimes \mathcal{N}_{Y/X}$, where $\mathcal{N}_{Y/X}$ is the normal to Y in X, i.e., $\mathcal{N}_{Y/X} := TY^{\perp} \subset TX|_Y$.

(6) Let B be the unit ball in \mathbb{R}^n . Prove that the embedding $C^{k+1}(B) \to C^k(B)$ is a compact operator.

Qualifying exam, Fall 2006, Day 2

All problems are worth 10 points. Problems marked with * will give extra bonus

(1) Let R be a Noetherian commutative domain, and let M be a torsion-free R-module. (I.e., for $0 \neq r \in R$ and $0 \neq m \in M$ implies $r \cdot m \neq 0$.)

(a) Show that if R is a Dedekind domain and M is finitely generated, then M is a projective R-module.

(b) Give examples showing that M may not be projective if either R is not Dedekind or M is not finitely generated.

(2) Let X be the blow-up of \mathbb{A}^2 at 0, and let $Y \subset X$ be the exceptional divisor (i.e., the preimage of 0). Consider the line bundles $\mathcal{L}_n := \mathcal{O}_X(n \cdot Y)$ for $n \in \mathbb{Z}$. Calculate $\Gamma(X, \mathcal{L}_n)$.

(3) Does there exist a nonconstant holomorphic function f on \mathbb{C} such that f(z) is real whenever |z| = 1?

(4) Let X be the union of the unit sphere in \mathbb{R}^3 and the straight line segment connecting the south and north poles.

(a) Calculate $\pi_1(X)$.

(b*) Calculate $\pi_2(X)$, and describe $\pi_2(X)$ as a $\mathbb{Z}[\pi_1(X)]$ -module.

(5) Show that a curve in \mathbb{R}^3 lies in a plane if and only if its torsion τ vanishes identically. Identify those curves with vanishing torsion *and* constant curvature k.

(6) Let B be the unit ball in \mathbb{R}^n . Recall that if $f: B \to \mathbb{C}$ is a measurable function we define, for $0 , the <math>L^p(B)$ norm of f by

$$||f||_p = \left(\int_B |f|^p dx\right)^{1/p},$$

and the L^{∞} norm of f by

 $||f||_{\infty} = \inf \{a \ge 0 : \{x \in B : |f(x)| > a\} \text{ has Lebesgue measure } 0\}.$

The spaces $L^p(B)$ and $L^{\infty}(B)$ are the spaces of measurable functions on B with finite L^p and L^{∞} norms, respectively. Show that if $f \in L^{\infty}$ then

$$\|f\|_{\infty} = \lim_{q \to \infty} \|f\|_q.$$

Qualifying exam, Fall 2006, Day 3

All problems are worth 10 points. Problems marked with * will give extra bonus

(1) Let G be a finite $p\text{-}\mathrm{group},\,N$ a normal subgroup, Z the center of G. Prove that $Z\cap N$ is non-trivial.

(2) Let $\operatorname{Gr}(k, n)$ be the Grassmannian of k-planes in \mathbb{C}^n , and let W be a fixed dplane in \mathbb{C}^n with $k + d \ge n$. Let S_i be the subset of $\operatorname{Gr}(k, n)$, consisting of k-planes V, for which $\dim(V + W) \le n - i$.

- (a) Show that S_i is a closed subvariety of Gr(k, n).
- (b) Find the dimension of S_i .
- (c*) Show that the singular locus of S_i is contained in S_{i+1} .
- (3) Evaluate

$$\int_{-\infty}^{\infty} \frac{\sin x}{x^2 + x + 1} dx.$$

(4) Formulate the Poincaré duality theorem for orientable compact manifolds with boundary.

(5) Let G be a Lie group. Let \mathfrak{h} be a Lie subalgebra of $\mathfrak{g} \subset \text{Lie}(G)$. Show that there exists a unique Lie subgroup $H \subset G$ with $\mathfrak{h} = \text{Lie}(H)$.

(6) Let $f \in L_1(\mathbb{R})$ and $f_{\epsilon} := \epsilon^{-1} f(x/\epsilon)$. Prove that $\lim_{\epsilon \to +0} f_{\epsilon}$ exists in the space $\mathcal{D}'(\mathbb{R})$ and find it. Calculate the following limits in $\mathcal{D}'(\mathbb{R})$:

$$\lim_{\epsilon \to +0} \frac{1}{\sqrt{\epsilon}} e^{-\frac{x^2}{\epsilon}}, \quad \lim_{\epsilon \to +0} \frac{\epsilon}{x^2 + \epsilon^2}.$$