Qualifying exam, Fall 2006, Day 1

(1) Let G_{1} and G_{2} be finite groups, and let V_{i} be a finite dimensional complex representation of G_{i}, for $i=1,2$. Give $V_{1} \otimes_{\mathbb{C}} V_{2}$ the structure of a representation of the direct product $G_{1} \times G_{2}$ by the rule

$$
\left(g_{1}, g_{2}\right)\left(v_{1} \otimes v_{2}\right):=\left(g_{1} v_{1}\right) \otimes\left(g_{2} v_{2}\right)
$$

(a) Show that if V_{1} and V_{2} are irreducible representations of G_{1} and G_{2}, respectively, then $V_{1} \otimes V_{2}$ is an irreducible representation of $G_{1} \times G_{2}$.
(b) Show that every irreducible representation of $G_{1} \times G_{2}$ arises in this way.
(2) Let R be the polynomial ring on 9 generators $\mathbb{C}\left[a_{11}, a_{21}, \ldots, a_{23}, a_{33}\right]$, and let A be a matrix

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

with values in R. Let I be the ideal in R generated by the entries of A^{3}.
(a) Show that the subvariety X of \mathbb{A}^{9} defined by I is irreducible.
(b) Let J be the ideal of polynomials in R that vanish identically on X. Does J equal I ?
(3) Prove that for $n=1,2,3, \ldots$

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (n \theta-2 \sin \theta) d \theta=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(n+k)!}
$$

Hint: consider the function $z \mapsto e^{z-1 / z}$.
(4) Prove that π_{1} of a topological group is abelian.
(5) Let $f: Y \rightarrow X$ be a smooth embedding of a manifold Y into a manifold X. Let X be equipped with a Riemannian metric \bar{g} with the associated Levi-Cevita connection $\bar{\nabla}$ on $T X$. Let $g=f^{*} \bar{g}$ be the induced metric on Y, with Levi-Cevita connection ∇. For $\eta, \xi \in T Y$ define

$$
\Psi(\eta, \xi)=\bar{\nabla}_{\left(f_{*} \eta\right)}\left(f_{*} \xi\right)-\left.f_{*}\left(\nabla_{\eta} \xi\right) \in T X\right|_{Y}
$$

Show that Ψ is a well-defined tensor field in $\operatorname{Sym}^{2}\left(T^{*} Y\right) \otimes \mathcal{N}_{Y / X}$, where $\mathcal{N}_{Y / X}$ is the normal to Y in X, i.e., $\mathcal{N}_{Y / X}:=\left.T Y^{\perp} \subset T X\right|_{Y}$.
(6) Let B be the unit ball in \mathbb{R}^{n}. Prove that the embedding $C^{k+1}(B) \rightarrow C^{k}(B)$ is a compact operator.

Qualifying exam, Fall 2006, Day 2

All problems are worth 10 points. Problems marked with * will give extra bonus
(1) Let R be a Noetherian commutative domain, and let M be a torsion-free R module. (I.e., for $0 \neq r \in R$ and $0 \neq m \in M$ implies $r \cdot m \neq 0$.)
(a) Show that if R is a Dedekind domain and M is finitely generated, then M is a projective R-module.
(b) Give examples showing that M may not be projective if either R is not Dedekind or M is not finitely generated.
(2) Let X be the blow-up of \mathbb{A}^{2} at 0 , and let $Y \subset X$ be the exceptional divisor (i.e., the preimage of 0). Consider the line bundles $\mathcal{L}_{n}:=\mathcal{O}_{X}(n \cdot Y)$ for $n \in \mathbb{Z}$. Calculate $\Gamma\left(X, \mathcal{L}_{n}\right)$.
(3) Does there exist a nonconstant holomorphic function f on \mathbb{C} such that $f(z)$ is real whenever $|z|=1$?
(4) Let X be the union of the unit sphere in \mathbb{R}^{3} and the straight line segment connecting the south and north poles.
(a) Calculate $\pi_{1}(X)$.
($\left.\mathrm{b}^{*}\right)$ Calculate $\pi_{2}(X)$, and describe $\pi_{2}(X)$ as a $\mathbb{Z}\left[\pi_{1}(X)\right]$-module.
(5) Show that a curve in \mathbb{R}^{3} lies in a plane if and only if its torsion τ vanishes identically. Identify those curves with vanishing torsion and constant curvature k.
(6) Let B be the unit ball in \mathbb{R}^{n}. Recall that if $f: B \rightarrow \mathbb{C}$ is a measurable function we define, for $0<p<\infty$, the $L^{p}(B)$ norm of f by

$$
\|f\|_{p}=\left(\int_{B}|f|^{p} d x\right)^{1 / p}
$$

and the L^{∞} norm of f by

$$
\|f\|_{\infty}=\inf \{a \geq 0:\{x \in B:|f(x)|>a\} \text { has Lebesgue measure } 0\}
$$

The spaces $L^{p}(B)$ and $L^{\infty}(B)$ are the spaces of measurable functions on B with finite L^{p} and L^{∞} norms, respectively. Show that if $f \in L^{\infty}$ then

$$
\|f\|_{\infty}=\lim _{q \rightarrow \infty}\|f\|_{q}
$$

Qualifying exam, Fall 2006, Day 3

All problems are worth 10 points. Problems marked with * will give extra bonus
(1) Let G be a finite p-group, N a normal subgroup, Z the center of G. Prove that $Z \cap N$ is non-trivial.
(2) Let $\operatorname{Gr}(k, n)$ be the Grassmannian of k-planes in \mathbb{C}^{n}, and let W be a fixed d plane in \mathbb{C}^{n} with $k+d \geq n$. Let S_{i} be the subset of $\operatorname{Gr}(k, n)$, consisting of k-planes V, for which $\operatorname{dim}(V+W) \leq n-i$.
(a) Show that S_{i} is a closed subvariety of $\operatorname{Gr}(k, n)$.
(b) Find the dimension of S_{i}.
(c*) Show that the singular locus of S_{i} is contained in S_{i+1}.
(3) Evaluate

$$
\int_{-\infty}^{\infty} \frac{\sin x}{x^{2}+x+1} d x
$$

(4) Formulate the Poincaré duality theorem for orientable compact manifolds with boundary.
(5) Let G be a Lie group. Let \mathfrak{h} be a Lie subalgebra of $\mathfrak{g} \subset \operatorname{Lie}(G)$. Show that there exists a unique Lie subgroup $H \subset G$ with $\mathfrak{h}=\operatorname{Lie}(\mathrm{H})$.
(6) Let $f \in L_{1}(\mathbb{R})$ and $f_{\epsilon}:=\epsilon^{-1} f(x / \epsilon)$. Prove that $\lim _{\epsilon \rightarrow+0} f_{\epsilon}$ exists in the space $\mathcal{D}^{\prime}(\mathbb{R})$ and find it. Calculate the following limits in $\mathcal{D}^{\prime}(\mathbb{R})$:

$$
\lim _{\epsilon \rightarrow+0} \frac{1}{\sqrt{\epsilon}} e^{-\frac{x^{2}}{\epsilon}}, \quad \lim _{\epsilon \rightarrow+0} \frac{\epsilon}{x^{2}+\epsilon^{2}}
$$

