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Introduction

Morse theory studies the topology of smooth manifolds by analyzing the critical points of generic smooth
functions on them. It is one of the most fruitful tools in differential topology, and since its invention, it has
been applied to almost every area of geometry and topology from the classification of compact surfaces to
the study of infinite-dimensional manifolds in Floer theory.

The basic premise of Morse theory is to consider a Morse function on a manifold, i.e. a function with
non-degenerate critical points. A fundamental lemma is:

Lemma 0.1. Let X be a smooth manifold and f : X Ñ R a Morse function . If the interval pa, bq contains
no critical values, then the level sets f´1pcq are smooth submanifolds and are diffeomorphic for all c P pa, bq.

This is proved by flowing along a normalized negative gradient. This lemma implies that the topology of
the level sets can only change when crossing a critical value. At the critical value itself, the level set is a not
a submanifold, and is instead a singular level set.

critical points

singular level
sets

f

R

singular fiber

CP 1

Figure 1: (Left) a smooth manifold with a Morse function f . Critical points and critical values are indicated
by crosses (red). The level sets of f (top) are smooth submanifolds except at level sets containing a critical
point, which are singular level sets. (Right) a Lefschetz fibration above a region of the Riemann sphere. There
can be non-trivial monodromy around loops encircling critical points, such as the one indicated (blue).
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Lefschetz fibrations, originally due to Solomon Lefschetz, are the holomorphic analogue of Morse functions
and have proved equally fruitful in their application. Here, one takes a holomorphic function to the complex
numbers or the Riemann sphere CP 1 with non-degenerate critical points. Similar to the real case, the fibers
away from the critical values are all diffeomorphic submanifolds, and there are singular fibers above the
critical values. In the holomorphic case, however, one can ask the additional question of what happens when
considering the fibers above a path that encircles a critical value. Looping around a path that encircles a
critical value will result in a non-trivial twisting of the fiber above the base point of the loop. This action is
called the monodromy and understanding it is a central question in the study of Lefschetz fibrations.

The goal of this thesis is to give an introduction to the theory and applications of Lefschetz fibrations
in smooth topology. Lefschetz fibrations were originally developed in the context of complex algebraic
varieties, and have been a standard tool in algebraic geometry for decades. In 1995, however, a startling
theorem of Simon Donaldson proved the existence of Lefschetz fibrations on compact symplectic manifolds,
which need not have a holomorphic structure. Since then, Lefschetz fibrations and slight generalizations
of them called broken Lefschetz fibrations have been defined on arbitrary smooth 4-manifolds. In all these
cases, Lefschetz fibrations have a chance to reduce the study of the geometry and topology of compact
manifolds to the study of the monodromy around critical points, which is, in principle, a question only about
the self-diffeomorphisms of fibers.

For the majority of this exposition, the focus will be on manifolds whose real dimension is 4. There are
two main reasons for this. First, Lefschetz fibrations are an especially powerful tool in 4 dimensions. A
Lefschetz fibration will, up to the critical fibers, decompose a 4-manifold into a fiber bundle of surfaces over
another surface. Explicit understanding of (real) surfaces and their diffeomorphisms can provide significant
insight into 4-dimensional topology that is lost in higher dimensions. Second, 4-manifolds are the most
interesting case from the perspective of smooth topology. In many ways, 4-manifolds are more complicated
than either lower or higher dimensional manifolds. In low dimensions, there are simply not many possibilities
for complexity. The Geometrization conjecture and the 3-dimensional Poincaré conjecture were resolved by
G. Perelman in 2003, yielding a relatively complete understanding of 3-manifolds [6]. In dimensions strictly
greater than 4, there is more fluidity than in 4-dimensions. For example, the “Whitney Trick” allows one
to “untangle” submanifolds by moving them past each other in the extra dimensions. S. Smale used this
trick to resolve the Poincaré conjecture in dimension ě 5 in 1961 [7], showing that certain aspects of high
dimensional topology are quite tractable. The smooth Poincaré Conjecture in 4 dimensions remains open,
and symbolizes the lack of understanding in this boundary case between the simplicity of low dimensions
and the fluidity of high dimensions.

The discovery of exotic smooth structures on 4-manifolds [8] added further complexity to the study of
4-manifolds. Seiberg-Witten theory, developed in the 1980s, gave a fleeting hope that a classification of 4-
manifolds would be possible. Since then, however, many new examples of strange and exotic 4-manifolds have
been constructed, and Seiberg-Witten theory has thus far been unable to parse the complexity of 4-manifolds.
As of 2017, the study of 4-manifold topology remains a quagmire that defies understanding. Lefschetz
fibrations have been on both sides of the study of 4-manifolds, at times being used to aid understanding of
4-manifolds, while at others being used in bizarre and counter-intuitive constructions.

This thesis is divided into four chapters. Chapter 1 discusses Lefschetz fibrations in the classical setting of
complex algebraic varieties. This includes the basic definitions, the Picard-Lefschetz Theorem, which is the
essential result for understanding the monodromy of Lefschetz fibrations, and results relating the monodromy
to the topology of the manifold. Chapter 2 introduces a computational process that allows the results of
Chapter 1 to be realized concretely on specific varieties. Chapter 3 gives a survey of Donaldson’s theorem
on the existence and uniqueness of Lefschetz fibrations on compact symplectic manifolds. The majority of
this chapter is devoted to the development of “approximately-holomorphic” theory and has a rather more
geometric flavor than the other chapters. Chapter 4 discusses more recent results about generalizations of
Lefschetz fibrations on arbitrary smooth 4-manifolds, many of which are due to Robion Kirby and David
Gay.
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Chapter 1

Lefschetz Fibrations on Complex
Algebraic Varieties

1.1 Lefschetz Pencils and Fibrations

This section gives the basic definitions and constructions of Lefschetz fibrations on complex algebraic
varieties. Lefschetz fibrations in this case arise from preliminary structures called Lefschetz pencils.

The construction of Lefschetz pencils is a holomorphic analogue of a height function on a compact
smooth manifold embedded in Euclidean space. Given such a manifold M Ď RN a “height” function can be
constructed on it by choosing a vector v and taking the projection to the span Rv. It can be shown that this
projection is a Morse function for almost every v P RN . Viewed another way, choosing v specifies a smoothly
varying family of hyperplanes Ht for t P R — the planes perpendicular to v — such that

Ů

tHt “ RN and
the height function is f : M Ñ R is defined by fpxq being the unique t0 such that x P Ht0 . The intersections
M X Xt are the level sets of f and are submanifolds for all but finitely many values of t, at which there
are singular level sets. Lefschetz pencils are constructed the same way: by taking parameterized families of
complex hyperplanes or hypersurfaces and projecting to the parameter.

First, pencils are defined on projective spaces. After this, they can be defined on smooth varieties.
Throughout, let rz0; . . . ; zN s denote projective coordinates (equivalence classes under the action of Cˆ) on
CPN . Let Ppd,Nq be the projective space of homogenous degree d polynomials in N ` 1 complex variables
z0, ...., zN . These are the polynomials well-defined on CPN . Consider a degree 1 holomorphic embedding

CP 1 ÝÑ Ppd,Nq. (1.1.1)

Such an embedding results in a polynomial Prt0;t1s for each rt0; t1s P CP 1. In fact, by a choice of basis, one
may choose two polynomials P0 and P1 such that the embedding takes the form

rt0; t1s ÞÑ t0P0 ` t1P1. (1.1.2)

Definition 1.1. A pencil of degree d on CPN is a family of hypersurfaces Hrt0;t1s Ď CPN of degree d for
rt0; t1s P CP 1 where the hypersurfaces Hrt0;t1s are the zero sets of the polynomials Prt0;t1s resulting from an
embedding of the form (1.1.1).

The first fact about pencils is that for a pencil on CPN , a point either lies in exactly one of the hyperplanes
Hrt0;t1s or in all of them. More precisely, there is the following dichotomy:

Proposition 1.2. For each rz0; . . . ; zN s “ z P CPN either z P
Ş

rt0;t1s
Hrt0;t1s or there is a unique rt0; t1s

such that z P Hrt0;t1s.
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Proof. Choose polynomials P0, P1 so that the pencil is given by an embedding of the form (1.1.2). Pick an
arbitrary z P CPN . The first step is to show there is some rt0; t1s P CP 1 so that z P Hrt0;t1s. This is clear,
however, since choosing rt0; t1s “ rP1pzq;´P0pzqs gives

t0P0pzq ` t1P1pzq “ 0.

Hence z P Hrt0;t1s for these values of t0, t1.

Now, assume there are two distinct points rt0; t1s, rt
1
0; t11s P CP 1 so that z P Hrt0;t1s X Hrt10;t11s

. Then z
must solve the system of equations

#

0 “ t0P0pzq ` t1P1pxq

0 “ t10P0pzq ` t
1
1P1pxq.

For any other rs0; s1s P CP 1, there must be complex numbers a, b P C so that art0; t1s ` brt10; t1s “ rs0; s1s.
This is simply because the matrix

ˆ

t0 t10
t1 t11

˙

is non-singular, as it being singular would imply rt0; t1s “ rt
1
0; t11s, and contradicting the assumption these

were distinct. For such a choice of a, b one then has

s0P0pzq ` s1P1pzq “ aPrt0;t1spzq ` bPrt10;t11s
pzq “ 0.

Thus z P Hrs0;s1s for all rs0; s1s P CP 1. In fact, choosing rs0; s1s “ r1; 0s and r0; 1s shows that at any z in
more than a single Hrt0;t1s both P0pzq and P1pzq must vanish.

Definition 1.3. The intersection B :“
Ş

rt0;t1sPCP 1 Hrt0;t1s is called the base locus of a pencil. When the

pencil is given by two polynomials as in (1.1.2), B is the mutual vanishing locus.

Example 1.4. In the case of degree d “ 1, a pencil can be constructed by taking a codimension 2 projec-
tive space CPN´2 » A Ď CPN called the axis and letting the pencil of hyperplanes be given by all the
hyperplanes containing A, which can be parameterized by CP 1.

For a specific example, take CP 3 “ trz0; z1; z2; z3su and A “ tr0; 0; z2; z3su » CP 1. Then, for each rt0; t1s P
CP 1 let Hrt0;t1s be the hyperplane given by the embedding

rw0;w1;w2s ÞÑ rw0t0 ; w0t1 ; w1 ; w2s.

Alternatively, Hrt0;t1s is given as the zero-set of t0P0` t1P1 where P0 “ ´z1 and P1 “ z0. These hyperplanes
cover all of CP 3 and the base locus is their mutual intersection A “ tr0; 0; z2; z3su.

Now pencils may be defined on smooth complex varieties. Let X Ď CPN be a smooth variety of (complex)
dimension n. A pencil on X is the restriction of a pencil on the ambient space CPN . Thus if Hrt0;t1s is a

pencil on CPN , one obtains a codimension 1 subvariety Frt0;t1s :“ Hrt0;t1s XX for each rt0; t1s P CP 1 called
the fiber above t “ rt0; t1s, and a codimension 2 subvariety BX “ B XX, which is still called the base. A
pencil on X comes with a map f : X z B Ñ CP 1 that sends each x P X to the unique rt0; t1s such that
x P Hrt0;t1s. In fact, by the proof of Proposition 1.2 this map is rP1;´P0s so it is holomorphic.

Definition 1.5. A pencil on X is said to be a Lefschetz pencil if the following two conditions are satisfied:

• The base BX Ď X is a smooth submanifold of (complex) codimension 2.

• The map f : X z B Ñ CP 1 has non-degenerate critical points with distinct critical values.
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critical point

base

CP 1

Figure 1.1: A Lefschetz pencil above a region in CP 1. The critical values are indicated by crosses, and the
singular fibers lie above them. The base locus (isolated points in this dimension), is the intersection of the
fibers. Here, each line (green) represents a single base point that lies in all fibers simultaneously.

By a slight abuse of terminology, the map f itself is often called the Lefschetz pencil. A few things should
be noted immediately.

(I) The critical points of f occur exactly where the hyersurfaces Hrt0,t1s are not transvsere to X. This is
because a critical point occurs where the tangent space TX Ď kerpdfq “ Hrt0;t1s. Since the codimension
is 1, if TX Ę Hrt0;t1s then it is transverse. For every t P CP 1 that is not a critical value, one
has transversality and the pre-image Frt0;t1s “ X X Hrt0;t1s is a smooth submanifold of (complex)
codimension 1. It is closed as a submanifold of X, thus the fibers of f : X z B Ñ CP 1 are these closed
surfaces Frt0;t1s with the base BX removed from each, since f is not defined there.

(II) In fact, if letting A Ď X be the set of critical points with critical values fpAq:=critpfq, the restriction
f | : X z pB Y Aq Ñ CP 1 z critpfq has mutually isomorphic fibers. Moreover, by a slight extension
of Lemma 0.1 called the Ehresmann’s fibration lemma (see Lemma 1.17 below), it follows that the
restriction f | : X z pB Y Aq Ñ CP 1 z critpfq is a fiber bundle. The smooth fibers are called regular
fibers.

(III) Above each point of the finite set critpfq of critical values there are singular fibers. In fact, as will
be shown in a later section, the non-degeneracy condition implies these fibers have only simple nodal
singularities.

Understanding the topology of a Lefschetz pencil therefore requires understanding two things: the dif-
feomorphism type of the smooth fibers Frt0;t1s, and the monodromy of the fiber bundle around the isolated
points of critpfq. Section 1.3 will show that knowing these two things results in a relatively complete de-
scription of the topology of X. This issue of understanding the topology of X through the topology of fibers
and the monodromy around critical points will be a theme throughout the following sections and chapters.
We are getting ahead of ourselves, however; it should first note that the objects being studied actually exist.
In fact, just as with Morse functions, they are in abundance:

Theorem 1.6. A generic pencil is Lefshchetz.
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The proof of this theorem would be a rather long excursion into algebraic geometry, so it is omitted here
and the reader is referred to [9, 10].

One should note, however, a slight distinction from the case of smooth real-valued Morse functions.
There, a smooth function that is not Morse can always be perturbed in neighborhoods of the critical points
to become Morse. By using a partition of unity to do the perturbation locally, it can be arranged that the
function remains unchanged away from these neighborhoods. In the holomorphic setting of Lefschetz pencils,
there is no such local freedom. If one encounters a pencil that is not Lefschetz, the entire pencil must be
perturbed to make it so.

Example 1.7. Consider the smooth variety CP 2 Ď CP 3 given in projective coordinates by rz0; z1; z2; 0s. Ex-
ample 1.4 showed that the hyperplanes Hrt0;t1s “ rw0t0 ; w0t1 ; w1 ; w2s form a pencil on CP 3. Intersecting
with CP 2 results in a pencil on CP 2 with fibers

Frt0;t1s “ rw0t0 ; w0t1 ; w1s Ď CP 2

which are embedded copies of CP 1. It is relatively easy to check that this function has no critical points, hence
this pencil is trivially Lefschetz. There is a single base point at r0; 0; 1s, thus the map f : CP 2´tr0; 0; 1su Ñ
CP 1 given by fprz0 ; z1 ; z2sq :“ rz0; z1s has only regular fibers that are (embedded) complex lines with a
single point removed, hence in this case f is a fiber bundle.

Example 1.8. (Elliptic Pencils) For a slightly more interesting example, let CP 2 Ď CP 3 as before, but
choose two generic cubics C0 and C1. Consider the pencil defined by the family of cubic hypersurfaces
Hrt0;t1s “ t0C0 ` t1C1. Each fiber Hrt0;t1s X CP 2 is then a cubic hypersurface inside CP 2, i.e. they are
elliptic curves. In general, a pencil whose fibers are elliptic curves is called an elliptic pencil. Two elliptic
curves in CP 2 will have 9 points of intersection, since the both represent 3d P H2pCP 2;Zq where d is the
generator. Thus in this case the base locus B consists of nine points, and one obtains a Lefschetz pencil

f : CP 2 z t9 ptsu Ñ CP 1

rz0; z1; z2s ÞÑ rC1pzq;´C0pzqs

Unlike in the previous example, this pencil has critical points. Thus the map f is no longer a true fiber bundle
over CP 1, and instead has several singular fibers lying above isolated critical points. In fact, techniques
developed in Section 1.3 will show the number of singular fibers is exactly 12.

Example 1.9. Let C Ď CPN be a complex curve. A Lefschetz pencil on C is the same as branched cover
f : C Ñ CP 1 with only doubly ramified points. Here, the base locus of codimension 2 will generically be
disjoint from C, hence a Lefschetz pencil is defined on all of C, giving a holomorphic map f : C Ñ CP 1. The
non-degeneracy condition guarantees the critical points of f , which are the ramification points, are locally
modeled by z ÞÑ z2, hence there can be only doubly ramified points.

The Blow-up Process

It can be slightly annoying that a Lefschetz pencil comes equipped only with a map not defined on the
total space. The blow-up process will convert a Lefschetz pencil into a map on a closed manifold related
to the original space. The result of blowing-up a Lefschetz pencil will be a Lefschetz fibration, which is
defined precisely below. The blow-up process is a standard tool in algebraic geometry, and a more detailed
description can be found in many standard texts, such as [11].

Definition 1.10. Define the Modification or Blow-up X̂ of X by

X̂ “ tpx, tq | x P Htu Ď X ˆ CP 1.
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The blow-up comes with two natural projections.

X̂

CP1X

f̂π

The fiber f̂´1ptq above some t P CP 1 is Ft ˆ ttu “ tpx, tq | x P Htu » Ft. In contrast to the pencil f ,
the fibers are now entire closed surfaces, and the base locus is no longer removed from each. For the other
projection, the fiber above some x P X depends on whether or not x P BX . If x R BX there is exactly one
tx P CP 1 so that x P Htx , hence π´1pxq “ txu ˆ ttxu. If x P BX , then x P Ht for all t P CP 1 by definition,
hence the fiber is π´1pxq “ txu ˆCP 1. Intuitively, the blow-up process replaces each point of the base with
the projective space of all lines going through that point, so topologically it attaches a copy of CP 1 at each
point of B.

Proposition 1.11. If a pencil is Lefschetz, then the blow-up X̂ is a smooth manifold and has the same
dimension as X.

Proof. (Sketch) consider the subset W :“ tpx, P q | x P P´1p0qu Ď X ˆ Ppd,Nq where, recalling that
X Ď CPN , P´1p0q is the vanishing locus of the polynomial P on CPN intersected with X. W is a
codimension 1 variety, since it is cut out by a single condition. The Lefschetz pencil resulted from an
embedding L : CP 1 Ñ Ppd,Nq.

X ˆ Ppd,Nq

L Ď Ppd,NqX

πd,NπX

By definition, X̂ “ tpx, P q | px, P q PW, , P P Lu “W Xπ´1
d,N pLq. Thus X̂ is smooth exactly when πd,N |W is

transverse to L. The proof of Theorem 1.6 [9, 10], however, shows that this transversality condition, which
will be satisfied generically, is satisfied for the generic subset of pencils that are Lefschetz. Alternatively, it
could have been required in the definition of Lefschetz pencil that X̂ is smooth, and the proof and strength
of Theorem 1.6 would not change.

In general, after blowing-up, the fibers of f̂ are now closed surfaces. Before blowing-up, each fiber Ft of
f was a closed surface with the (complex) codimension 1 base removed. Blowing-up attaches a copy of CP 1

for each b P BX , and the fibers Ft become disjoint closed surfaces where for each rt0; t1s P CP 1, FtXBX has
been filled in with the points of pb, tq P X̂ for that t. Thus blowing-up turns each shared base point into a
projective line, giving one point to fill in each fiber.

Definition 1.12. The map f̂ : X̂ Ñ CP 1 that results from blowing-up a Lefschetz pencil f is called a
Lefschetz fibration.

Remark 1.13. (Blow-ups on 4-manifolds) The blow-up process has a particularly nice topological
description when dimRpXq “ 4. In this case, the base BX is a discrete set, and the fibers Ft of f are surfaces
punctured where they meet the base.

Let
τ “ tpt, vq | v P tu Ď CP 1 ˆ C2

be the tautological bundle. It comes with a projection to C2, which restricts to a diffeomorphism

Ψ : τ z tzero-sectionu » C2 ´ t0u
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with inverse given by v P C2 ÞÑ pCv, vq. At a base point b P B one can define a local diffeomorphism of τ
with a region where the blow-up took place. Let ϕ : B4 Ď C2 Ñ X be a chart centered at b. Then consider
the map defined on pImpϕq ˆ CP 1q X X̂ ÝÑ τ given by

#

px, tq ÞÑ Ψ´1 ˝ ϕ´1 ˝ projXpx, tq x R B

pb, tq ÞÑ pt, 0q P τ

This map is clearly a bijection with the unit disk bundle Dpτq Ď τ , and one can readily check that it is
smooth. Thus the blow-up process has effectively removed a B4 Ď C2 region around b whose boundary is
S3 and glued in a copy of the disk bundle Dpτq, which also has boundary S3 given by the Hopf fibration.
The new zero-section of τ is called the exceptional sphere of the blow-up. It provides another generator
in H2pX̂;Zq with self-intersection ´1 compared to H2pX;Zq.

One can also show that for a neighborhood U of r0; 0; 1s P CP 2 one has a diffeomorphism CP 2 z U » Dpτq
given by rz0; z1; z2s ÞÑ prz0; z1s, z2q, and where CP 2 is the same as CP 2 but with the orientation opposite
the standard orientation from the complex structure. To see this change of orientation is necessary, one need
only check that the bundle orientation of τ (i.e. zero-section ^ fibersq is opposite the standard orientation
on CP 2, and so this diffeomorphism is orientation-reversing. Therefore, the effect of cutting out a B4 and
gluing in Dpτq is exactly connect summing with CP 2. In summary, this gives:

Fact 1.14. If dimRpXq “ 4 with discrete base locus B “ tb1, ..., bnu, the blow-up X̂ is

X̂ » X#npCP 2q

where each connect sum is done in a neighborhood of each bi.

It can also now explicitly be seen how blowing-up makes the fibers disjoint. Given two curves C1, C2 that
intersect transversally at bi, one can embed Cj ´ tbiu for j “ 1, 2 into X̂. In X̂, the closures Cj ´ tbiu will
be disjoint, with the puncture at bi being filled in respectively by pti, 0q in the zero-section of the new copy
of τ attached at bi, where ti is the complex line tangent to Ci at the puncture. In the case of the curves
being the punctured fibers Ft, these closures are the new closed fibers of the fibration f̂ .

Example 1.7 Revisited: Blowing-up the Lefschetz pencil with a single base point in Example 1.7 gives
a Lefschetz fibration f : CP 2#CP 2 Ñ CP 1. The fibers are closed copies of CP 1, this fibration expresses
CP 2#CP 2 topologically as an S2 bundle over S2. However, it is not S2 ˆ S2, since the cup product on
cohomology differs from that of the trivial bundle.

Example 1.8 Revisited: Blowing-up the Lefschetz pencil in Example 1.8 results in Lefschetz fibration
on the total space X̂ » CP 2#9pCP 2q whose fibers are elliptic curves (including some singular ones). This
total space is the Elliptic Surface Ep1q together with an Elliptic fibration. A generalization of this
construction yields elliptic surfaces Epnq for all n ě 1. This family of surfaces has been studied extensively
within algebraic geometry, symplectic geometry, and 4-manifold topology.

One can also easily re-obtain a Lefschetz pencil from a fibration. A Lefschetz fibration resulting from
a blow-up comes with a set of distinguished sections. For each point b P BX , blowing-up at b results in a
section sb : CP 1 Ñ X̂ given by t ÞÑ pb, tq. The image is exactly the exceptional sphere obtained from the
blow-up at b. Given such a set of distinguished sections si : CP 1 Ñ X̂ quotienting by their images results in
a Lefschetz pencil. This process is called blowing-down. The relationship between Lefschetz pencils and
fibrations can therefore be summarized by the following diagram.

$

&

%

Lefschetz Fibration

f̂ : X̂ Ñ CP 1 with closed fibers
sections s1, ..., sn

,

.

-

blow-up
ðùùùùùùùùùùùñ

blow-down

$

&

%

Lefschetz Pencil
codimension 2 base BX Ď X
f : X z BX Ñ CP 1 with punctured fibers

,

.

-

(1.1.3)
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The essential topological properties of Lefschetz fibrations can be captured in dimension 4 with the
following more general definition.

Definition 1.15. On a 4-manifold X with two discrete sets A,B Ď X, a topological Lefschetz pencil
on X is a map f : X zB Ñ S2 so that f has the following local models at A,B.

• Around b P B, there are local coordinates pz1, z2q on X in which f takes the form pz1, z2q ÞÑ z1{z2.

• Around a P A there are local coordinates pz1, z2q in which f is holomorphic and has a single non-
degenerate critical point at A.

If B is empty, f is said to be a topological Lefschetz fibration.

Clearly, in this definition B plays the role of the base with the local coordinates modeling the projection
of C2 ´ t0u onto CP 1. The set A likewise plays the role of the critical locus, thus it is clear this definition
encompasses the previous one. In later chapters, however, it will be shown that there are many important
topological Lefschetz fibrations that do not arise from pencils on complex algebraic varieties.

Remark 1.16. (Affine Lefschetz Fibrations) Essentially every construction in this section applies equally
well to affine algebraic varieties by taking a Lefschetz pencil parameterized by C instead of CP 1. In fact,
the affine case is particularly simple in the case of hyperplanes because there is no base locus. For example,
given a smooth affine variety X Ď Cn, a generic linear projection pz1, ...., znq ÞÑ

ř

i aizi will be a Lefschetz
fibration with critical points wherever the planes perpendicular to

ř

i aizi coincide with the tangent spaces
of X.

1.2 Monodromy and the Picard-Lefschetz Theorem

In this section one of the main tools for studying the topology of Lefschetz fibrations is developed: the
Picard-Lefschetz theorem. As advertised in the introduction, this will describe the monodromy of the fibers
above a path that encircles a critical value. This and the remaining sections of this chapter will consider
primarily Lefschetz fibrations. For simplicity, the total space will often be denoted by X rather than X̂,
although it is understood that this X results from a blow-up as in the previous section.

First, note a fundamental result that is a slight generalization of Lemma 0.1:

Lemma 1.17. (Ehresmann Fibration Lemma) Let M,N be smooth manifolds, and f : M Ñ N a proper
submersion. Then M is fiber bundle over N with projection given by f .

To prove this, one essentially chooses a coordinate chart on N and uses the fact that the projection to
each coordinate in a Morse function. This gives a gradient flow along each coordinate, resulting in a local
trivialization above the coordinate chart.

For a Lefschetz fibration f : X Ñ CP 1 with critical points A Ď X and critical values fpAq “ critpfq, the
restriction f : X z A Ñ CP 1 z critpfq is a submersion by construction and is proper since it is the restriction
of a map between compact manifolds. Hence by the above lemma, f is a fiber bundle away from the critical
points. To simplify notation, call this bundle E and the generic fiber F . Here, the bundle may be non-trivial
because for each t1, ..., tr P critpfq a loop encircling ti (or several of the ti) can result in a non-trivial gluing
of the fibers. This non-trivial gluing is called the monodromy, which is now defined precisely. Given a loop
γ : r0, 1s Ñ CP 1 z critpfq, one may consider the pullback bundle over I “ r0, 1s. Since any fiber bundle over
the interval is trivial, there exists a trivializing diffeomorphism Γ : I ˆ F Ñ γ˚pEq.

10



I

I ˆ Fγ˚pEq

pf˚

Γ

The gluing self-diffeomorphism of the fiber F0 above the base point γp0q “ γp1q is given by

µγ :“ Γ |t1uˆF ˝ Γ |´1
t0uˆF : F0 ÝÑ F0. (1.2.1)

This self-diffeomorphism may, a priori, depend on the choice of trivialization. Recall that two diffeomor-
phisms f0, f1 are isotopic if they are smoothly homotopic through maps ft that are diffeomorphisms for
all t. Given two trivializations, Γ1,Γ2 : I ˆ F Ñ γ˚pEq, consider pΓ2q

´1 ˝ Γ1 : I ˆ F Ñ I ˆ F . By fixing
an association F » F0 and requiring both trivializations restricted to t0u ˆ F to be this, one may assume
pΓ2q

´1 ˝ Γ1 is the identity on t0u ˆ F . Then, the restriction of pΓ2q
´1 ˝ Γ1 to t1u ˆ F is plainly isotopic to

Id : t1uˆF Ñ t1uˆF via, for each t, the isotopy through the family of diffeomorphisms pΓ2q
´1 ˝Γ1ps,´q for

0 ď s ď t. This shows that Γ1|t1uˆF is isotopic to Γ2|t1uˆF hence the self-diffeomorphism (1.2.1) is uniquely
determined up to isotopy.

Definition 1.18. For a loop γ, the isotopy class rµγs of µγ : F ÞÑ F is called the monodromy of γ.

Some authors, call this map the geometric monodromy, to distinguish it from the induced map on
homology µ˚ : H˚pF ;Zq ÞÑ H˚pF ;Zq which is called the algebraic monodromy.

The monodromy also only depends on the path γ up to homotopy:

Proposition 1.19. If two paths γ0, γ1 are homotopic, then the monodromies rµγ0s and rµγ1sare the same
isotopy class.

Proof. Let Hpt, sq : I ˆ I Ñ CP1
z tt1, ..., tru be a homotopy such that Hpt, 0q “ γ0 and Hpt, 1q “ γ1. As

any fiber bundle over I ˆ I is trivial, there is a trivialization:

I ˆ I

I ˆ I ˆ FH˚pEq

pf˚

»

For each s P I there is a diffeomorphism µHps,´q : F0 » F0 as in (1.2.1). For s “ 0, 1 these diffeomorphisms
are exactly µγ0 and µγ1 , thus these diffeomorphisms for s P r0, 1s provide an isotopy between them.

Definition 1.20. The Mapping class group of a manifold S is the group (under composition)

ModpSq :“ tDiffeomorphisms f : S Ñ Su
M

smooth isotopy.

An isotopy class of maps is called a mapping class. If S has a boundary BS, then only diffeomorphisms
f : S Ñ S so that fpxq “ x for all x P BS are considered.

Proposition 1.19 and the fact that monodromy is well-defined up to isotopy shows that given a base point
˚ P CP 1 z tt1, ..., tru with fiber F˚, the monodromy descends to a map

µ : π1pCP 1 z tt1, ..., tru, ˚q ÝÑModpF˚q (1.2.2)

11



sending γ ÞÑ rµγs, and which respects composition. One should note, however, that because of the conven-
tions for composing diffeomorphisms versus homotopy classes of loops, it is actually an anti-homomorphism,
so that rαs ¨ rβs ÞÑ µβ ˝ µα. A quick application of Van-Kampen’s Theorem shows

π1pCP 1 z tt1, ..., tru, ˚q » x rγ1s, ...., rγrs
ˇ

ˇ rγ1s ¨ . . . ¨ rγrs “ Id y

where γi is a loop based at ˚ that circles once around the critical point ti. In particular, the monodromy
must satisfy the relation

rµγr s ˝ . . . ˝ rµγ1s “ rµγ1¨...¨γr s “ Id PModpF˚q. (1.2.3)

This relation can also be seen directly: monodromy must be trivial around a loop enclosing all of the critical
points, since the same loop also bounds a disk on the other side of the sphere, over which the bundle must
be trivial. This relation (1.2.3) will be crucial in relating the topology of X to the monodromy µ.

A Local Model

The next step is to prove the Picard-Lefschetz theorem (1.35) which identifies explicitly the mapping class
rµγs. The following holomorphic version of the Morse lemma gives a local model that will reduce the problem
of understanding the general monodromy to understanding a specific monodromy in local coordinates.

Lemma 1.21. (Morse Lemma) Let f : X Ñ C be a holomorphic function with z P X a non-degenerate
critical point. Then there is a holomorphic coordinate chart pz1, ..., znq centered at z in which f is given by

fpz1, ..., znq ÞÑ z2
1 ` . . .` z

2
n. (1.2.4)

Proof. By choosing preliminary coordinates, it may be assumed that X “ U Ď Cn is an open neighborhood
and z “ 0. By translation, it may further be assumed that fp0q “ 0. Thus f vanishes to second order at the
origin, and so by Taylor’s theorem there are holomorphic functions hi,jpzq so that

fpz1, ..., znq “
n
ÿ

i,j

hi,jpzqzizj .

By replacing hij and hji by their average 1
2 phij ` hjiq one may assume that the matrix of hij is symmetric.

Thus f is given by a quadratic form depending holomorphically on z, which is non-degenerate in a neigh-
borhood of the origin by assumption. It is a standard fact that for any non-degenerate quadratic form over
C, there exists a linear change of coordinates z ÞÑ Az after which it appears as the standard quadratic form
ř

i z
2
i . It is possible to check, via the proof of this fact, that the change of coordinates depends holomorphi-

cally on the functions rhijpzqs, hence one obtains a linear coordinate change Apzq for all z P U . Define new
coordinates z1 :“ Apzqz. By the inverse function theorem, this is a biholomorphism in a neighborhood of 0,
and in the z1 coordinates f has the desired form.

In particular, since the critical points of a Lefschetz fibration f : X Ñ CP 1 are non-degenerate by
definition, there exist local coordinate charts about each a P A and fpaq P critpfq so that f has the standard
form (1.2.4). The fibers of f intersect this coordinate chart as the hypersurfaces (now with boundary)

Ft X U “ tz
2
1 ` . . . z

2
n “ tu XB2n

This shows (as was promised earlier) that the singular fibers only have singularities modeled on z2
1`. . . z

2
n “ 0.

This is a nodal singularity, the simplest type of singularity that can occur in algebraic geometry.

The following coordinate change identifies the fibers Ft X U in the coordinate chart with a rather more
familiar hypersurface.

Lemma 1.22. For each t ‰ 0, the hypersurface tz2
1 ` . . . z2

n “ tu X B2n Ď Cn is diffeomorphic to the unit
disk bundle DpT˚Sn´1q.
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Proof. The map f in coordinates is a proper submersion away from 0, so the fibers are mutually diffeomorphic
by the Ehressman fibration lemma (Lemma 1.17). It therefore suffices to prove the claim for t “ 1

2 P R, for
which an explicit diffeomorphism can be written.

In real coordinates, zj “ xj ` iyj the fiber f´1p 1
2 q “ t

ř

z2
i “

1
2u is

tpx, yq P Rn ˆ Rn | |x|2 ´ |y|2 “
1

2
, x ¨ y “ 0 , |x|2 ` |y|2 ď 1u. (1.2.5)

Now define a change of coordinate by

x1 :“

d

1
1
2 ` |y|

2
¨ x y1 :“ 2y.

This is simply a scaling of both coordinates, so it is a diffeomorphism. In these new coordinates,

|x1|2 “
|x|2

1
2 ` |y|

2
“ 1 |y1|2 “ 4|y|2 ď 1

where the second equality follows from subtracting the two equation of (1.2.5), which gives 2|y|2 ď 1 ´ 1
2 .

Clearly the vectors remain orthogonal in the new variables so that in px1, y1q coordinates, the fiber is

tpx1, y1q P Rn ˆ Rn | |x1|2 “ 1 , x1 ¨ y1 “ 0 , |y1|2 ď 1u » DpT˚Sn´1q (1.2.6)

In the local coordinates, the zero-section tpx, 0q | |x|2 “ tu Ď DpT˚Sq gives an embedded sphere Sn´1
t Ď Ft

for t ě 0. As t Ñ 0, this sphere shrinks and collapses to a point. See Figure 1.2 on the next page. Note as
tÑ 0 from different directions, these embedded spheres are isotopic in B2n.

Definition 1.23. For a critical point a P A the isotopy class of Sn´1
t (as an embedded sphere) is called the

vanishing cycle of the critical point a and denoted νa. The collection tSn´1
t | t ě 0u » Bn is called the

Lefschetz thimble of the vanishing cycle.

Some authors define the vanishing cycles as homology classes in Hn´1pFt;Zq that are in the kernel of
the inclusion of the fiber ι˚ : Hn´1pFt;Zq Ñ Hn´1pX;Zq. In the total space, the sphere Sn´1

t bounds the
thimble, making in null-homologous there, so this definition captures the same idea. The isotopy class
of Sn´1

t , however, contains more information than only the homology class, so the stronger definition of
vanishing cycle is sometimes preferable. One should also note that, a priori, there is no reason that a
vanishing cycle should be non-trivial in Hn´1pFt;Zq. A vanishing cycle is said to be non-separating if it is
homologically non-trivial, and separating otherwise. The name results from the fact that for a homologically
trivial sphere, removing the neighborhood U XFt » DpT˚Sn´1q will result in a disconnected (i.e. separated)
manifold, whereas the homologically non-trivial case will leave the fiber connected.

The vanishing cycles of all the critical points a P A can be taken to all lie in a single fiber as follows.
Let ˚ P CP 1 be a base point. Draw paths δi : r0, 1s Ñ CP 1 from ˚ to each critical point ti. The vanishing
cycle νti is defined in the fibers near ti via the local coordinates, and in particular, in a fiber above δipsq for
s “ 1´ε where ε is small. Trivializing the bundle above δipr1´εsq gives a diffeomorphism of the fiber where
the vanishing cycle is defined to the fiber above ˚, so the vanishing cycle νti may be considered in the fiber
F˚. Thus, the vanishing cycle νi P F˚ contracts to a point, that is to say vanishes, when it is transported
along δi (via a trivialization for t P r0, 1´ εq and local coordinates for t P r1´ ε, 1s).

Definition 1.24. A path δi as above is called a vanishing path for the critical value ti.

A choice of a collection of vanishing paths δ1, . . . , δr determines a generating set rγ1s, . . . , rγrs of the
fundamental group π1pCP 1 z tt1, ..., tru, ˚q as follows. Take each γi to be a path that traces δi to within a
small radius of ti, then circle ti once, and returns to ˚ tracing δi the other direction. The collection of paths
rγ1s, ..., rγrs given in this way is called the generating set determined by δ1, ..., δr. See Figure 1.3.
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�1
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Figure 1.2: (Left) The vanishing cycle and thimble (blue) of a critical point in local coordinates for
dimRpXq “ 4. (Right) three vanishing cycles ν1, ν2, ν3 depicted in a generic fiber F˚. The cylindrical
neighborhood (gray) of ν1 collapses according to the local model when moving along the vanishing path δ1
(blue), resulting in the singular fiber on the right. The vanishing cycle ν2 (magenta) is a separating vanishing
cycle, and ν3 (green) is an example of a rather more complicated vanishing cycle.

δ1

δ2

γ1

γ2

Figure 1.3: Two vanishing paths δ1, δ2 (green) and the corresponding generators of the fundamental group
γ1, γ2 (blue).

Note 1.25. A priori, the collection of vanishing cycles νt1 , ..., νtr in F˚ may depend on the choice of
vanishing paths δ1, ..., δr.

Up to this point, everything that has been done is valid in any dimension. Moving forward, however,
only (real) dimension 4 will be considered, in which case the fibers are closed surfaces. As discussed in the
introduction, this is a particularly interesting case and one that can often be described more explicitly. The
reason for the latter is that the mapping class groups of high-dimensional manifolds are often hopelessly
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complicated, whereas the mapping class groups of surfaces are quite well-understood and can frequently be
given explicitly by generators and relations [12].

Mapping Class Groups and Dehn Twists

Before proving the Picard-Lefschetz Theorem, it is useful to go over a few facts about mapping class groups.
This subsection introduces Dehn Twists and their actions on branched covers. These notions will make the
description of the monodromy very simple, and will result in an easy proof of the Picard-Lefschetz theorem.

Consider the following mapping class rτ s P ModpS1 ˆ r0, 1sq. In coordinates pθ, rq on S1 ˆ r0, 1s, rτ s is
represented by τpθ, rq “ pθ ` 2πr, rq. Intuitively, this mapping class is the result of grabbing one boundary
circle and twisting it completely around once. It turns out, however, that this diffeomorphism is not isotopic
to the identity through maps that fix the boundary.

⌧ ⌧

Figure 1.4: The Dehn twist on S1 ˆ r0, 1s shown as the annulus (left) and the cylinder (right).

Definition 1.26. The mapping class rτ s is called a right-handed Dehn twist. Its inverse is called a
left-handed Dehn twist.

Although it will not be needed, it is worth noting for completeness that:

Fact 1.27. [12] The mapping class group of the cylinder is ModpS1 ˆ r0, 1sq “ xrτ sy » Z where the latter
is the free abelian group generated by rτ s.

In general, for any surface S and a simple closed curve α Ď S one can define the Dehn Twist around
α, denoted rταs as follows. Choose a tubular neighborhood U » S1 ˆ r0, 1s of α so that α “ S1 ˆ t1{2u Ď U
and let

ταpxq “

#

τpθ, rq x P U

Id x P S zU.

The Dehn Twist rταs is defined to be the mapping class of the above diffeomorphism. Note that if two
curves α0, α1 are isotopic through a family of curves αt, then as mapping classes, rτα0

s “ rτα1
s, as the family

ταt provides an isotopy between them. It therefore makes sense to consider rτrcss where rcs is an isotopy class
of simple closed curves, rather than a single such curve.

It is clear from the definition that the Dehn twists around two curves that have disjoint tubular neigh-
borhoods commute, since they fix points outside these tubular neighborhoods. Specifically, if two curves
α, β have intersection rαs ¨ rβs “ 0 in H1pS;Zq, then the Dehn twists commute, since disjoint tubular neigh-
borhoods always exist in this case. Moreover, if rαs ¨ rβs “ 0 then β is fixed by the action of rτas, as it lies
outside the tubular neighborhood. In particular, since rαs ¨ rαs “ 0 for any simple closed curve α Ď S, it is
always the case that ταpαq “ α. Any other representative of rταs applied to α results in a curve isotopic to
α. If β does intersect α then the twist τα sends β to a curve that follows its original path, but right before
it crosses a, turns and follows α along its length, crossing it half way, and coming back on the other side to
rejoin the original β after the crossing as shown in Figure 1.5. When choosing different representatives of
rταs, this curve is again well-defined up to isotopy.
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τα ˝ τγ

Figure 1.5: Curves in a surface of genus 3 under the action of τα ˝ τγ . Since the pairs are disjoint
τα ˝ τγpαq “ α, τα ˝ τγpβq “ ταpβq and likewise for γ, δ.

The action of a Dehn twist on homology is rather apparent:

Proposition 1.28. The result of a Dehn twist around α on homology is

rτapβqs “ rβs ` prαs ¨ rβsq rαs

where brackets here denote homology classes of the simple closed curves in H1pS;Zq.

Proof. Under β ÞÑ ταpβq, a segment of β that represents the generator of relative homology H1pU, BUq in
the tubular neighborhood U of α is wrapped once around α. In the whole surface S, where β represents a
non-relative class, this sends rβs ÞÑ rβs ` rαs. If β intersects α n times, then this happens independently
for n segments of β each representing the relative class in U . This process respects the orientation of the
curves, since the new loop in U inherits the orientation of β.

Example 1.29. The mapping class groupModpD2q of the disk is trivial. Given a diffeomorphism ϕ : D2 Ñ D2

there is an isotopy

Ipx, tq :“

#

p1´ tqϕ
´

x
1´t

¯

0 ď |x| ď 1´ t

x 1´ t ď |x| ď 1

to the identity through homeomorphisms. One can then argue that this can be smoothed so that the radial
derivative is smooth ([12], Chapter 2).

Example 1.30. (Mapping Class group of the punctured disk) Let S “ D2 ´ tp1, ...., pku be the
k-times punctured disk. Then ModpSq “ Bk, where Bk is the braid group on k strands. Recall that the
braid group Bk is the set of configurations of k strands in D2 ˆ I with fixed ends considered up to isotopy,
where composition is given by placing two configurations end to end. In terms of generators and relations,
the group is given by

Bk “ xσ1, . . . , σk´1 | σiσi`1σi “ σi`1σiσi`1 , σiσj “ σjσiy

where σi is the configuration in which the ith strand crosses under the i ` 1st (see Figure 1.6). The fact
that ModpSq “ Bk can now be deduced from the previous example as follows. A diffeomorphism ϕ : S Ñ S
can be extended to a diffeomorphism of D2 by some permutation of the punctured points, after which it is
isotopic to the identity via an isotopy Ipt,´q by Example 1.29 . The punctured points p1, ..., pk are moved
by this isotopy through paths Ipt, piq P D

2 ˆ I to the identity. These paths will wander around the disk
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Figure 1.6: A braid resulting from an isotopy of the disk coming from a mapping class in ModkpD
2q. During

the isotopy, the far left point passes over the one second from the left, resulting in the crossing of the two
leftmost strands (blue, purple).

for t P r0, 1s. Drawing them in D2 ˆ I associates to each mapping class a braid. See Figure 1.6. This
correspondence can be shown to be an isomorphism ([12], Chapter 9). Notice that the mapping class group
of D2 ´ tp1, ..., pku is the same as the mapping class group of D2 with k marked points. That is, the group
of diffeomorphisms of D2 permuting the marked points up to isotopy, denoted ModkpD

2q. The isomorphism
ModkpD

2q »ModpD2 ´ tp1, ..., pkuq is given by restricting to the complement of the marked points.

Definition 1.31. The image of the generators σi P Bk under the above isormorphism are called half Dehn
twists.

Thus the action of the half Dehn twist of that is the image of σi is to flip the two points pi, pi`1 passing
the right point over the left. Of course, this diffeomorphism is isotopic to the identity through an isotopy
that allows the punctures tpju to move, but not through one in which the punctures stay fixed. To see the
action of the half-twist on points near tpju, it is helpful to draw the vertical line between the punctures and
imagine it as a string lying on the disk. The action of the half-twist on the string is the effect of placing two
fingers on the punctures and rotating by 180˝, pushing the string along as you rotate. See Figure 1.7. The
diffeomorphism is compactly supported in a neighbhorhood of the two punctures.

For non-adjacent points indexed by i, j the braid that has a single crossing of the ith strand under the
jth one is the element σi,j “ σj´1 ˝ . . . ˝ σi. The image of this element under the isomorphism is a mapping
class that flips pi and pj , and is compactly supported in a stretched disk containing these two punctures.
The effect on a vertical line in this disk is the same as in the case where the points are adjacent (see Figure
1.7). Extending Definition 1.31 slightly, this element (as a mapping class) is called a half Dehn twist about
two punctures pi, pj . By a slight abuse of notation, it is denoted by rσi,js.

Recall now that a branched cover over the disk is a map p : S Ñ D2 from a surface S that is an even
covering away from finitely many points. At these finitely many points, the map must conform to the local
model z ÞÑ zn for some n. These points are called ramification points and their images are called branch
points. Generically, branched covers will have only double branch points, so that n “ 2 in the local model.
Throughout what follows, it is assumed that all branched covers are generic in this sense. Since p is a local
diffeomorphism where it is an even covering, the critical points of the map p are exactly the ramification
points.
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Figure 1.7: The image of a vertical line between two punctures under the half Dehn twists around two adjacent
(left) and non-adjacent (right) punctures. On the right, the Dehn twist is supported in the stretched disk
indicated (blue).

Definition 1.32. Let p : S Ñ D2 be a branched cover of the disk with branching points t1, . . . , tn where S is a
surface with boundary. Consider t1, ..., tn as a set of n marked pints in D2. A diffeomorphism φ : D2 Ñ D2

that permutes the marked points is said to be liftable with respect to p if there exists a diffeomorphism
φ̃ : S Ñ S fixing the boundary BS of S pointswise such that the following diagram commutes:

S

D2

S

D2

p

φ̃

φ

p

the map φ̃ is called the lift.

The following is a fundamental fact about lifts.

Lemma 1.33. If a lift of a diffeomorphism exists, then it is unique. Moreover, if φ0, and φ1 represent the
same mapping class in ModnpD

2q and φ0 is liftable, then φ1 is also liftable and the lift φ̃1 of φ1 represents
the same mapping class in ModpSq as the lift φ̃0 of φ0.

Proof. Suppose two diffeomorphisms φ̃, ψ̃ were both lifts of φ. Then ψ̃´1˝φ̃ is a deck transformation covering
the identity on D2. By the theory of covering spaces, any non-trivial deck transformation must permute the
boundary, but ψ̃, φ̃ fixes the boundary by assumption, hence ψ̃´1 ˝ φ̃ “ id and φ̃ “ ψ̃.

For the second statement, notice that by considering φ´1
1 ˝ φ0, it suffices to prove the statement in the

case that φ0 “ Id and φ1 is isotopic to it through diffeomorphisms φt preserving marked points. Since the
marked points are discrete and φt varies smoothly in t, the marked points must remain fixed throughout the
isotopy. Away from the marked points, p is an even covering. A lift φ̃1 isotopic to φ̃0 can now be constructed
as follows. For each points x P S, let φ̃tpxq be the unique lift of the path φtpppxqq beginning at x. One can
check that this defines a family of diffeomorphisms φ̃t isotopic the identity on S (which is clearly the unique
lift of the identity on D2) ending in a diffeomorphism φ̃1 that covers φ1 (see [13]).

In light of Lemma 1.33 it makes sense to consider lifts on mapping classes. That is, mapping class
rφ̃s PModpSq is the lift of a mapping class rφs PModnpD

2q if there exists a represetative of rφs whose lift is
in rφ̃s. The lemma guarantees that if such a lift exists for one representative, it exists for all and defines the
same mapping class rφ̃s PModpSq.

The second fundamental fact abut lifts is the relation between Dehn Twists and half Dehn twists that
the reader might have guessed already:
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Lemma 1.34. Let p : S Ñ D2 be a branched cover of a surface with boundary that has only double branch
points. Suppose α P S is a simple closed curve that projects to a path γ Ď D2 between two branch points pi
and pj. Then the Dehn twist rταs is the unique lift of the half Dehn twist rσi,js.

Proof. By the previous Lemma 1.33, it suffices to show the Dehn twist is a lift of the half Dehn twist, as
uniqueness then follows. To begin, the statement is proved in the case that S “ S1 ˆ r0, 1s. There is a
branched cover p : S1 ˆ r0, 1s Ñ D2 with two branch points given as follows. Let ι be rotation by 180˝

around an axis perpendicular to the r0, 1s factor that passes through the cylinder twice (see Figure 1.8). The
quotient by the action of ι gives a degree 2 branched cover of D2. The pre-image of a point in a tubular
neighborhood of BD2 is a pair of points, each in a tubular neighborhood of one of the boundary components
of S1 ˆ r0, 1s, that are taken to each other by the rotation ι. For example, in Figure 1.8, the pre-images of
the blue and green radial lines are each the two segments of the corresponding colors. Said a different way,
this is the branched cover obtained by taking two copies of D2 with two marked point, cutting along the line
between the marked points, and gluing together by associating each edge to the opposite edge in the other
copy of D2.

◆

Figure 1.8: The quotient by action of ι gives a branched cover with two critical points (red crosses). The
action associates opposite points on the cylinder (green/dashed green, blue/dashed blue).

After coming to terms with the action of ι, it is straightforward to see that τ covers a diffeomorphism
of the disk. Since the action of τ is symmetric, pairs points associated by ι are taken to pairs of points still
associated by ι, thus τ descends to a diffeomorphism of the disk. Clearly, τ flips the ramification points, hence
also the branch points. Thus the diffeomorphism τ covers must be either rσ1,2s or rσ1,2s

´1. To distinguish
amongst these, consider the line ∆ “ θ0 ˆ r0, 1s Ď S1 ˆ r0, 1s. Under the action of τ , the image pp∆q is sent
to the path that begins at the top of the disk, goes inward increasing its angular coordinate to π passing
around the branch point to the center of the disk, and then goes out by the reverse, as shown in Figure 1.9.
As in Figure 1.7, this is (up to isotopy) the action of the half Dehn twist, rather than its inverse (the inverse
passes the line pp∆q over the right branch point first). This shows the result for the case of S “ S1 ˆ r0, 1s.

◆ ◆

Figure 1.9: The branched cover of S1 ˆ r0, 1s before (left) and after (right) the action of τ . The path ∆ and
its image pp∆q are shown (blue).
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For a general surface and branched cover p : S Ñ D2 of degree n, let α be a curve whose image is a
path between two branched pi and pj . Take a neighborhood U of ppαq containing no branched points other
than pi and pj . For α to be a simple closed curve rather than a path, the branching at pi and pj must be
between the same pair of sheets. Thus p´1pUq is a single copy of the cylinder S1 ˆ r0, 1s covering the disk
as above (up to diffeomorphsim, as the branching is the same), and n ´ 2 disjoint copies of U . Restricted
to the copy of S1 ˆ r0, 1s the projection of the Dehn twist is a half Dehn twist by the above argument. On
the n´ 2 disjoint copies of U , the action of the half-twist can be lifted by diffeomorphism. This makes the
Dehn twist and the half twist commute with the projection to the disk. In the n ´ 2 copies of U (which
don’t have ramification points) this is isotopic to the identity, hence the total isotopy class is still rταs, and
so rταs is the unique lift of the half Dehn twist around pi and pj .

The Picard-Lefschetz Theorem

These facts about the mapping class group are now applied in the context of Lefschetz fibrations to prove
the Picard-Lefschetz Theorem.

Theorem 1.35. (Picard-Lefschetz) Let f : X Ñ CP 1 be a Lefschetz fibration with distinct critical values
t1, ..., tr. Choose a basepoint ˚ and let δ1, ..., δr be a collection of vanishing paths determining a collection of
vanishing cycles rν1s, ..., rνrs and a generating set rγ1s, ..., rγrs of π1pCP 1 z tt1, ..., tru, ˚q . Then the action
of the monodromy

µ : π1pCP 1 z tt1, ..., tru, ˚q ÝÑModpF˚q

is
rγis ÞÑ rτνis.

In words, the monodromy around each critical value is a (right-handed) Dehn twist around the vanishing
cycle.

Corollary 1.36. (Picard-Lefschetz Formula)The algebraic monodromy is

µ˚prβsq “ rβs ` prνis ¨ rβsqrνis

Proof. This is immediate from the theorem and Proposition 1.28.

Proof. (Picard-Lefschetz Theorem) Let ti be one of the critical points and γi the loop encircling it. Choose
coordinates neighborhood U Ď X and V Ď CP 1 around ti on which f has the standard form pz1, z2q ÞÑ

z2
1 ` z2

2 . It suffices to assume γi is the loop γiptq “
1
2e

2πit Ď C in coordinates on V , since this point may
be connected to ˚ via the vanishing path δ, and by choosing a trivialization of the bundle above δ the
monodromy and vanishing cycle can be transported back to F˚.

Thus it suffices to find the monodromy as a self-diffeomorphism of the fiber F1{2 above 1{2 P C. First,
the monodromy must be trivial outside U . To see this, observe that the restriction of f to f´1pD2

1{2q zU

(where D2
1{2 is the disk of radius 1{2) has no critical points. By the Ehressman fibration lemma (Lemma

1.17) it is therefore a fiber bundle over the disk, and so is trivial. In particular, the monodromy around the
boundary is trivial up to isotopy. By extending an isotopy of F1{2 zpF1{2 X Uq to all of F1{2 and composing
with this, it may be assumed that the monodromy is the identity outside of and on the boundary of U .

Now consider the monodromy of the restriction of the fibers to the local coordinates F̃t :“ tz2
1 ` z2

2 “
1
2e

2πitu Ď B4 around the path γi. A triviailiation of tF̃t | t P S
1u » S0 ˆ I is given explicitly as follows. For

each t, define a map ψt : F̃0 Ñ F̃t by

z1 ÞÑ z1e
iπχp|z|qt z2 “ ˘

c

1

2
´ z2

1 ÞÑ ˘

c

1

2
e2πit ´ z2

1ptq
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where χ is a smooth bump function that takes value 1 in a neighborhood of the origin and falls to 0 smoothly
by, say, 3{4. It is clear ψt is a diffeomorphism for each t, since replacing t with ´t provides an inverse. The
monodromy is, by definition, ψ1.

Now the result is deduced by observing the action on a branched cover. Project to the z1 coordinate.
This is a branched cover F̃t Ñ D2 for each t P r0, 1s. By construction, points with the same z1 coordinate are
taken to points that still have the same z1 coordinate by ψt, so ψt descends to a well-defined diffeomorphism
of the disk. Since χp|z|q “ 0 on the boundary, both ψt and the diffeomorphism of the disk are fixed on the
boundary. For all t P r0, 1s there are two branched points when z2 “ 0 so that the branched points solve

z2
1 “

1
2e

2πit and thus are given by pz1, z2q “ ˘

´

1?
2
eiπt, 0

¯

. The diffeomorphism of the disk that ψt covers

therefore rotates the branch points by a half circle, hence it must be either a half Dehn twist or its inverse
(up to isotopy of D2 ´ tp1, p2u fixing the branched points). However, the family of diffeomorphisms that ψt
covers for t P r0, 1s give an isotopy (that moves the branch points) between the two under which the branch
points undergo a half rotation counterclockwise, thus the diffeomorphism of the disk is the half Dehn twist,
not its inverse. By Lemma 1.34, it follows that the monodromy ψ1 is a Dehn twist about the simple closed
curve F̃0 X R2 “ tx2

1 ` x
2
2 “

1
2u which is the vanishing cycle.

1.3 The Topology of Lefschetz Fibrations

This section covers how to extract topological information about a manifold X from a Lefschetz fibration
f : X Ñ CP 1. It begins with a discussion of how some classical invariants of X like the Euler characteristic
can be recovered. This is followed by a discussion of how to obtain a handle-body presentation of X from a
Lefschetz fibration, just as one can be obtained from a standard Morse function. The section concludes by
stating a theorem of Kas and Matsumoto relating the topology of X to the monodromy of the fibration f ,
which is one of the most important results in the study of Lefschetz fibrations.

Classic Invariants of Lefschetz Fibrations

A few standard topological invariants and useful facts about the topology of Lefschetz fibrations can be
deduced from singular homology. To avoid a rather unilluminating detours into homological algebra, proofs
are only given for a few results in this section.

Proposition 1.37. (Euler Characteristic Formula) Let X Ď CPN be a smooth variety of (complex)
dimension n. If f : X z B Ñ CP 1 is a Lefchetz pencil with base B, generic fiber F˚, and r critical points.
Then the Euler characteristics are related by

χpXq “ 2χpF˚q ´ χpBq ` p´1qn ¨ r

χpX̂q “ 2χpF˚q ` p´1qn ¨ r,

where X̂ is the blow-up of X as in Section 1.1.

This can be deduced from long exact sequences of pairs and standard tools like excision. The full details
can be found in [14], Section 5.2.

Example 1.38. (Singular fibers in Ep1q) If one already knows the Euler characteristic χpXq, then this
formula can be used to deduce the number of critical points r, which is also the number of singular fibers.
For example, the elliptic surface Ep1q in Example 1.8, was constructed by taking X “ CP 2 Ď CP 3 with a
pencil t0P0 ` t1P1 where P0, P1 were homogenous cubic polynomials. Since the zero of a cubic represents
3x P H2pCP 2q where x is the generator, the base locus B “ P´1

0 p0q X P´1
1 p0q will consist of 9 points for

generic P0, P1. Additionally, since since the zero-set of a cubic is topologically a torus, one has χpF˚q “ 0.
From the Euler characteristic formula for X, it therefore follows that the elliptic fibration on Ep1q has exactly
r “ 12 critical points and singular fibers.
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Given a Lefschetz fibration f̂ : X̂ Ñ CP 1 (assume again dimRpXq “ 4), it is often useful to know
the genus of the generic fiber F˚. The following formula answers this question for pencils of degree 1 on
hypersurfaces in CP 3.

Proposition 1.39. (Genus Formula) If X Ď CP 3 is smooth hypersurface of degree d and f : X z B Ñ
CP 1 is a pencil of degree 1. Then the genus g of the generic fiber F˚ is given by

g “
pd´ 1qpd´ 2q

2

Proof. For a pencil of degree 1, the generic fiber is the intersection of X with a CP 2 hyperplane in CP 3.
By choosing an isomorphism of this hyperplane with CP 2 itself, it may be assumed that the intersection is
given by a curve of degree d in CP 2. It therefore suffices to prove the formula for a complex curve C Ď CP 2

of degree d. Let ι denote the inclusion map of C. There is a splitting of vector bundles

ι˚pTCP 2q “ TC ‘N

where N is the normal bundle. Taking the first chern class c1 and applying it to the fundamental class
rCs P H2pC;Zq yields

c1pι
˚TCP 2qrCs “ c1pTCqrCs ` c1pNqrCs. (1.3.1)

It is known that c1pTCP 2q “ 3x P H2pCP 2;Zq where x is the generator (see [15], Proposition 14.10). Hence,
by the naturality of pullback and because C is degree d, the left side of (1.3.1) is 3d. On the right side,
c1pTCq “ epTCq is the Euler class, so the first term is the Euler characteristic 2´2g. Likewise, c1pNq “ epNq
is the Euler class. The Euler number epNqrCs is also the number of zeroes in a generic section of the normal
bundle, i.e. the self-intersection number. But since C is of degree d, it has d2 self-intersections. Altogether,
(1.3.1) becomes

3d “ p2´ 2gq ` d2

and solving for g yields the formula.

The following result is a classic and celebrated theorem of Lefschetz himself. It is really only useful in
higher dimensions, but it is worth stating nevertheless.

Theorem 1.40. (Lefschetz Hyperplane Theorem) Suppose X Ď CPN is a smooth variety of (complex)
dimension n. Let f : X z B Ñ CP 1 be a Lefschetz pencil of degree 1 with base B. For every regular fiber
Ft, the inclusion of the closed fiber Ft YB Ď X induces an isomorphism

HkpFt YB;Zq ÝÑ HkpX;Zq

for k ă n ´ 1 and is surjective if k “ n ´ 1. In particular, the fibers of a Lefschetz fibration are always
connected if X is.

Proof. See [2] Section 1.7 or [14] Section 5.2.

Handle Attachments

It is a classic result [2] that a Morse function on a manifold gives rise to a handle-body decomposition.
This subsection describes how to obtain a handle-body decomposition from a given Lefschetz fibration
f : X Ñ CP 1.

Consider a Lefschetz fibration restricted to a disk D2 Ď CP 1. If there are no critical points in D2, then
the fibration is the trivial F˚ˆD

2. Now, one can imagine increasing the radius of the disk and seeing at what
point the diffeomorphism type of the total space changes. This is analogous to looking at the submanifolds
g´1r0, cq of a Morse function g and increasing c. In that case, Lemma 0.1 shows the topology changes only
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when c passes a critical value. In the case of a Lefschetz fibration, expanding the disk does not change
the diffeomorphism type of the pre-image provided the boundary of the disk does not cross any critical
values. This follows from the Ehresmann Fibration Lemma (Lemma 1.17). Similar to the Morse case, the
diffeomorphism type of the fibration restricted to the pre-image of a growing disk changes only when the
disk expands to include a critical point.

a��a ab b

D0
D

Figure 1.10: (Left) expanding the disk D “ r´1, 1s ˆ ra, bs to D1 “ r´1, 1s ˆ ra ´ δ, bs as in the proof of
Proposition 1.41. The new disk D1 contains the critical value ti (red cross). (Right) A 2-handle attached
along the vanishing cycle of a critical point to a fiber over the boundary BD.

The following proposition gives the precise change in the diffeomorphism type in the language of handle
attachments. Recall that an n-dimensional k-handle is a copy of Dk ˆ Dn´k attached to a framed sphere
Sk´1 Ď X.

Proposition 1.41. Let f : X Ñ CP 1 be a Lefschetz fibration. Suppose D Ď D1 are disks such that
D1 contains exactly one more critical value ti than D. Then f´1pD1q is obtained from f´1pDq (up to
diffeomorphism) by a two-handle attachment along the vanishing cycle νi of the critical point in f´1ptiq.

Notice here that νi is technically an isotopy class of embedded spheres, so attaching a two-handle requires
choosing a representative. Isotopic attaching maps, however, result in the same manifold up to diffeomor-
phism ([16], Chapter 4), hence the choice of representative of the vanishing cycle does not matter.

Proof. By a choice of local coordinates on CP 1, it may be assumed that D is a square r´1, 1s ˆ ra, bs and
D1 “ r´1, 1s ˆ ra ´ δ, bs so that the disk expands only horizontally (as in Figure 1.10, Left). Consider the
negative of the projection to the real axis fR :“ ´Repfq, which has a single critical point with critical value
´Reptiq P p´a,´a ` δq. In fact, this projection fR is a Morse function, because by Lemma 1.21 there is a
coordinate chart in which f is given by pz1, z2q ÞÑ z2

1 ` z2
2 so in real coordinates zj “ xj ` iyj the negative

real part is ´Repfq “ ´x2
1 ` y2

1 ´ x2
2 ` y2

2 , hence the critical point is non-degenerate. In terms of this
Morse function, the total spaces are f´1pDq “ f´1

R pr´b,´asq and f´1pD1q “ f´1
R r´b,´a ` δs, thus the

the latter is obtained from the former by a single k´handle attached to the descending sphere Di of the
critical point. Consider the descending sphere Di in a subcritical level set, say f´1

R p´pReptiq ` εq. Since in
the above coordinates, ´Repfq “ ´x2

1 ` y2
1 ´ x2

2 ` y2
2 , the single critical point has index 2. In fact, these

coordinates are already standard Morse coordinates for the critical point, in which the descending sphere,
Di “ tpx1, y1, x2, y2q | x

2
1 ` x

2
2 “ ε , yi “ 0u is, by definition, the vanishing cycle.
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This result is rather intuitive, since topologically, a nodal fiber is obtained from the generic fiber by
attaching a disk bounded by the vanishing cycle, and contacting it.

It is now straightforward to obtain a complete handle-body decomposition of X. Above a disk D1 without
critical points, the pre-image is the trivial bundle D2 ˆ F for the generic fiber F a surface of genus g. This
is diffeomorphic to a handle-body with a single 0-handle, 2g 1-handles, and a single 2-handle. Then one
expands the disk, adding a 2-handle each time the disk D1 expands to include another critical point. Once
all the critical points are included, the result is a handle-body X` that is a union of 0, 1, and 2-handles. The
pre-image of the complement is again a trivial bundle D2ˆF since the complementary disk does not include
any critical point. The pre-image of the complement therefore has the same handle-body decomposition as
the original D2ˆF , call it X´. The handle-body decomposition of X is obtained by gluing these two handle-
bodies along their shared boundaries, f´1pBD1q. Alternatively, by considering a negative Morse function,
X´ may be viewed as the union of the 3, 4´handles and one more 2-handle, which complete the handle-body
decomposition begun with X`.

There is one subtlety regarding framings. In dimension 4, one has to keep track of framing data for
2-handles ([16], Chapter 4). As before, let D Ď CP 1 be a disk, and consider the restriction of the fibration
to the pre-image f´1pDq. When expanding D to include one more critical point, the attaching sphere can
be taken to lie in a single fiber F˚ of BDˆF . In the local coordinates used in the proof of Proposition 1.41,
one could take F˚ to be the fiber above a ` 0i. A vanishing cycle lying in a single fiber has a canonical
framing as follows. Let ν : r0, 1s Ñ F˚ parameterize the vanishing cycle. Then there is a canonical choice
of a single normal vector given by wiptq :“ ipDνptqq P TF˚. Then, taking a second normal w2ptq along the
BD factor in the boundary BD ˆ F yields a framing ϕ : S1 ˆ D2 Ñ Npνq of the normal bundle of ν by
pt, e1, e2q ÞÑ pνptq, w1ptq, w2ptqq.

Proposition 1.42. The 2-handle for at the critical point with value ti is attached with a ´1 framing relative
to this canonical framing.

Proof. In Morse coordinates, the 2-handle is attached to the descending sphere of the critical point D “
tpx1, y1, x2, y2q | x

2
1`x

2
2 “ ε , yi “ 0u by the obvious framing of the normal bundle of S1

ε in Euclidean space.
To determine how the canonical framing differs from this one given by the Morse coordinates, it suffices
to count how many times the vector w1ptq rotates in the coordinates. In the (complex) local coordinates,
the descending sphere (which is also the vanishing cycle) is parameterized by t ÞÑ p

?
ε cosptq,

?
ε sinptqq.

The tangent vector is p´
?
ε sinptq, cosptqq. Hence w1ptq “ p´i

?
ε sinptq, i

?
ε cosptqq. One therefore sees that

the vector w1ptq rotates once (counterclockwise) for t P r0, 2πs with respect to the framing from the Morse
coordinates which is given by e1 “ pi, 0q, e2 “ p0, iq. The canonical framing given by the surface F˚ therefore
differs by 1 from the framing provided by the Morse coordinates, which is the framing of the attached handle.
A careful check of orientations shows ´1 is the correct signed framing of the handle relative to the canonical
framing given by the surface (see ([16], pgs. 292-93).

This description via handle attachments gives an easy algorithm to draw a handle-body diagram for the
4-manifold X. From there, one can employ “handle-body calculus” (also called “Kirby calculus”) to analyze
X or compare it to a handle-body diagram for another manifold X 1 to attempt to prove or disprove the two
are the same. The reader not familiar with the calculus of handle-body diagrams is referred to [16] or [17].
The reader not concerned with handle-body calculus can proceed to the next subsection.

A handle-body diagram of X can be constructed from a Lefschetz fibration f : X Ñ CP 1 as follows.
First, choose a basepoint ˚ P CP 1, viewed as C as it may be assumed that infinity is not a critical value.
Label the critical values t1, ..., tr counterclockwise, and choose a collection of vanishing paths δ1, ..., δr. As
in 1.24 and 1.25, this gives a vanishing cycle rνis in F˚ for each i “ 1, ..., r. Different choices of a set of
vanishing paths can result in different handle-bodies for X, which will necessarily be equivalent by a sequence
of “handle-body moves” ( it is a standard result, see [16], that any two handle-body diagrams for the same
manifold differ by such a sequence). The effect of different choices of sets of vanishing cycles is discussed in
greater detail in the next subsection.

To construct a handle-body for X, begin with the standard handle-body diagram for D2 ˆ F for F a
genus g surface. This includes 2g 1-handles and a single 0-framed (see [16] for conventions) 2-handle running
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over all of them, as in Figure 1.11. Given vanishing cycles ν1, ..., νn in F˚, draw the attaching circles (in
order!) starting with ν1 in the diagram as if drawing each of them in a 2-dimensional handle-body. All
these 2-handles are given a ´1 framing. See Figure 1.12. There is one final 2-handle to attach, coming from
X´ » D2ˆF . Seeing how to attach this final handle, and what framing it should have, is rather tricky and
involves keeping track of how the boundary BD ˆ F appears in the diagram after adding all the 2-handles.
By a standard result in handle-body calculus ([16], pg. 116), after attaching the 2-handles there is a unique
way to attach 3 and 4-handles.

a1

a2

a3

b1

b2

b3

a1

b1

a1 a2

b2 b2

a3

a3

b3b1 b3

a2

0

Figure 1.11: (Left) the trivial bundle D2 ˆF where F is the surface of genus 3. The 1-handles are labelled
a1, ..., b3. (Right) the corresponding handle-body diagram with the 1-handles labelled. A single 0-framed
2-handle passed over all of them.

⌫1

⌫2

⌫3

�1
�2

�3

a1

b1

a1 a2

b2 b2

a3

a3

b3b1 b3

a2

-1

-1-1

0

Figure 1.12: (Left) Expanding the fibration to include three critical points with vanishing paths δi and
vanishing cycles νi shown. (Right) each vanishing cycle adds a ´1-framed 2-handle to the diagram of Figure
1.11.
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Once the handle-body diagram is drawn, one can freely use handle moves and Reidemeister moves to
simplify it or show it is equivalent to another handle-body. One should note that choosing a rotated chart
will result in a cyclic permutation of the vanishing cycles ν1, ..., νn that will move the bottommost attaching
circle to the top. These two handle-bodies will be equivalent, though at times via an extensive sequence of
moves. It is often worthwhile, therefore, to search for an angle at which to start the indexing of the vanishing
cycles that gives a more tractable diagram.

Example 1.43. It is possible, though not very straightforward, to find the vanishing cycles for the elliptic
surface Ep1q introduced in Example 1.8 of Section 1.1. By Example 1.38, a Lefschetz fibration on Ep1q will
have 12 vanishing cycles in a generic fiber, which is diffeomorphic to a torus. The torus has two non-trivial
isotopy classes of simple closed curves as shown on the left in Figure 1.13 below. One can show that for paths
γ1, ..., γ12 the vanishing cycles alternate between the two isotopy classes. These 12 vanishing cycles result
in 12 corresponding 2-handles, each attached with a ´1 framing, giving the handle-body diagram in Figure
1.13. It is also possible to show that the final 2-handle should be attached around the original 0-framed
2-handle with a framing of ´1. These calculation are worked out in more detail in [16] (Example 8.2.11)
and [18].

-10
-1

-1

Figure 1.13: (Left) the torus with its two non-trivial isotopy classes of curves indicated (red, blue). (Right)
the handle-body diagram for the surface Ep1q. 12 2-handles alternating between the two isotopy classes are
attached with framing ´1. The extra 2-handle from the second copy of D2 ˆ T 2 is indicated in green.

Remark 1.44. Lefschetz fibration are a quite powerful tool for obtaining handle-body diagrams. In theory,
any Morse function on a 4-manifold can be used to obtain a handle-body, however it is rarely possible to
calculate the framings for complicated manifolds. For example, if one chooses Morse coordinates, the framing
information is hidden in the transition maps to nearby coordinate charts. The fact that the 2-handles in
a Lefschetz fibration are always attached with a ´1 framing makes them significantly more practical for
drawing handle-body diagrams than general Morse functions.

Relations in ModpSgq and Classification of Lefschetz Fibrations

This subsection introduces equivalence relations between collections of vanishing paths. This leads to an
important theorem of Kas and Matsumoto.

As discussed in Section 1.2, the monodromy of a Lefschetz fibration f : X Ñ CP 1 gives a (anti)-
homomorphism,

µ : π1pCP 1 z tt1, ..., tru, ˚q ÝÑModpF˚q.
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Specifying a collection of vanishing paths δ1, ..., δr determines a set of generators rγ1s, ..., rγrs for the funda-
mental group π1pCP 1 z tt1, ..., tru, ˚q which satisfy the relation rγ1s ¨ . . . ¨ rγrs “ 1. By the Picard-Lefschetz
Theorem (Theorem 1.35) there is a corresponding relation of mapping classes

rτν1s ˝ . . . ˝ rτνr s “ Id, (1.3.2)

where τνi is the Dehn twist around each vanishing cycle νi. Thus, by choosing a diffeomorphism ψ : F˚ Ñ Sg
with the standard genus g surface, a Lefschetz fibration on X and a choice of vanishing paths determine an
ordered collection of Dehn twists in ModpSgq whose product is the identity.

Conversely, given an ordered collection of Dehn twists along simple closed curves rτν1s, ..., rτνr s PModpSgq
whose product is the identity, one can construct a Lefschetz fibration with generic fiber Sg. This fibration is
constructed as follows. Begin with a trivial fibration f : D2 ˆ Sg Ñ D2 given by projection. Choose a fiber
on the boundary BD2 ˆ Sg and attach a 2-handle h1 along a simple closed curve representing the isotopy
class ν1 with a framing ´1 relative to the canonical framing determined by the fibers as in Proposition 1.42.
As before, the choice of curve within the isotopy class ν1 does not matter when considering the space up
to diffeomorphism. It is possible to extend the fibration f over the handle h1 with a single critical point in
the core of the 2-handle. This yields a new fibration with a single critical point. Up to a diffeomorphism
of the base, it may be assumed that this new fibration is also over the disk with the single critical point in
the interior. By the Picard-Lefschetz theorem, the monodromy around the boundary f´1pBDq is now rτν1s.
Now repeat the procedure, attaching a 2-handle hi along the curve νi in a boundary fiber at each successive
step. After attaching the handle hi, the monodromy around the boundary BD will be rτν1s ˝ . . . ˝ rτνis. After
all the 2-handles are attached, the result is a fibration over the disk whose monodromy around the boundary
is trivial up to isotopy by the assumption that rτν1s ¨ . . . rτνr s “ Id. The the boundary is therefore the trivial
fibration S1 ˆ Sg. A closed 4´manifold with a Lefschetz fibration over CP 1 » S2 is obtained by gluing
Sg ˆ D2 by the identity on their common boundary. In this way, a relation of Dehn Twists of the form
(1.3.2) in the mapping class group determines a 4-manifold with a Lefschetz fibration.

Two relations of the form (1.3.2) can result in the same Lefschetz fibration. This can occur in two ways
(and in combination). First, choices of the diffeomorphism ψ : F˚ Ñ Sg can differ yet yield the same fibration.
Second, different collections of vanishing paths can describe the same fibration. These two equivalences are
now described in detail.

I. (Simultaneous Conjugation)

Given an r´tuple of Dehn-twists prτν1s, . . . , rτνr sq whose product is the identity in ModpSgq and any
other mapping class rφs PModpSgq consider conjugating each Dehn twist by rφs.

prτν1s, . . . , rτνr sq ÝÑ
`

rφs ˝ rτν1s ˝ rφs
´1 , . . . , rφs ˝ rτνr s ˝ rφs

´1
˘

. (1.3.3)

This yields a new tuple whose product is still the identity. Recall that to obtain a relation in ModpSgq from
a Lefschetz fibration, a diffeomorphism ψ : F˚ Ñ Sg associating the base fiber with the standard genus g
surface had to be chosen. This choice, however, is not canonical and two different choices ψ1, ψ2 will result in
two different tuples of Dehn twists that differ by conjugation by rφs “ rψ2 ˝ψ

´1
1 s PModpSgq. The difference

in the two r-tuples here is an artifact of the choice of ψ and does not reflect anything about the topology
of X. This shows that r-tuples of Dehn twists that differ by conjugation by some φ can yield the same
Lefschetz fibration.

II. (Hurwitz Equivalence)

Given an r-tuple of Dehn-twists one may also consider the operation

prτν1s, . . . , rτνr sq ÝÑ
`

rτν1s , . . . , rτνis ˝ rτνi`1
s ˝ rτνis

´1 , rτνis , . . . , rτνr s
˘

(1.3.4)

for each i “ 1, ..., r. By inspection, it is clear the product is still the identity. Again, r-tuples of differ
by this operation can correspond to the same Lefschetz fibration. Geometrically, (1.3.4) results from the
following operation when choosing a collection of vanishing paths. Replace an adjacent pair pδi, δi`1q with
pσi,i`1pδiq, σi,i`1pδi`1qq where σi,i`1 is the half Dehn twist flipping the two points ti, ti`1 (considered up to
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δi`1

δi

γi`1

γi

σi,i`1pδi`1q

σi,i`1pδiq

γi ¨ γi`1 ¨ γ
´1
i

γi

Figure 1.14: (Left) two vanishing paths before and after the operation of applying σi,i`1. (Right) the
operation on the corresponding generators of the fundamental group.

isotopy). One then checks that the corresponding pair generators prγis, rγi`1sq in π1pCP 1 z tt1, ..., tru, ˚q is
transformed by prγis, rγi`1sq ÞÑ prγis ¨ rγi`1s ¨ rγis

´1, rγisq as in Figure 1.14 above. Since the monodromy is
an (anti) homomorphism, one sees that two choices of vanishing paths on the same Lefschetz fibration that
differ by this operation result in r-tuples of mapping classes that differ by (1.3.4).

One might suspect, since the half twists rσi,i`1s generate the mapping class group of D2 ´ tt1, ..., tru
for some disk large enough to include all the critical values, that this is the only redundancy resulting from
different choices of vanishing paths. The following theorem (which is not proved here) due to Kas and
Matsumoto, shows that, topologically, Lefschetz fibrations of genus g ě 2 are completely determined by the
r-tuple of Dehn twist up to these two operations.

Theorem 1.45 (Kas [19], Matsumoto [20]). For g ě 2, there is a 1-1 correspondence
"

4´manifolds w/ Lefschetz
fibrations of genus g

*

M

Diffeo. ðùùñ

"

r-tuples in ModpSgq
[τν1 ] ˝ . . . ˝ [τνr ] “ Id

*

M

"

Simultaneous conjugation
Hurwitz equivalence

*

On the left, two Lefschetz fibrations f : X Ñ S2 and f 1 : X 1 Ñ S2 are diffeomorphic if there exist
diffeomorphisms Φ : X Ñ X 1 and ϕ : S2 Ñ S2 so that ϕ ˝ f “ f 1 ˝ Φ. In particular, the total spaces are
diffeomorphic. A similar correspondence to 1.45 holds for Lefschetz pencils with ModpSkg q, the mapping
class group of the k-times punctured surface of genus g, in place of ModpSgq where k is the number of base
points.

This is the characterizations of Lefschetz fibrations by monodromy that was advertised at the beginning
of the chapter. It says, essentially, that one can classify the total spaces of Lefschetz fibrations up to
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diffeomorphism by knowing only the monodromy information. In principle, this reduces the study of the
topology of 4-manifolds possessing Lefschetz fibrations to the study of relations in the mapping class group
ModpSgq.

Remark 1.46. The forward direction of Theorem 1.45 is given by choosing a collection of vanishing paths
and obtaining the expression (1.3.2). The reverse direction is given by the handle-body construction described
above. One should note also that this handle-body construction can give Lefschetz fibrations that do not
obviously arise from pencils on algebraic varieties. By the genus formula, the genus of a Lefschetz fibration
resulting from a degree 1 pencil on a (degree d) hypersurface X Ď CP 3 will necessarily have genus g “
pd´1qpd´2q

2 “ 1, 3, ... . It is not a priori obvious whether a Lefschetz fibration, say of genus 2, can be obtained
from pencils on algebraic surfaces. The handle-body construction, however, gives Lefschetz fibrations with
any genus, provided relations of the form rτν1s ˝ . . . ˝ rτνr s “ Id exist in ModpSgq. These include fibrations
that do not come from pencils on algebraic varieties. In fact, several authors have given explicit relations
in ModpSgq that result in genus g Lefschetz fibrations whose total spaces admit no complex structure [21],
hence cannot arise from algebraic varieties at all! The above Theorem 1.45 therefore applies to a class
of 4-manifolds strictly larger than projective varieties. To some extent, Chapters 3 and 4 are devoted to
answering the question of which 4´manifolds admit Lefschetz fibrations.

Remark 1.47. It is not at all obvious that one cannot have a Lefschetz fibration with no critical points but
with non-trivial gluing around the equator. In fact, for g “ 0, such a fibration exists. There is a non-trivial
diffeomorphism φ : S2 Ñ S2 given by reflection through one axis. Gluing D2 ˆ S2 to itself with via an
S1 family of φ along the boundary results in a non-trivial sphere bundle, often denoted S2 ˜̂S2. One can
check that it is not diffeomorphic to S2ˆS2 by comparing the cup product structures. In fact, this was the
Lefschetz fibration obtained in Example 1.7 from blowing-up a degree 1 pencil on CP 2 at a single base-point.
Implicit in Theorem 1.45 is the assertion that any surface bundle of genus g ě 2 obtained by gluing two
copies D2 ˆ Sg along the equator is necessarily the trivial bundle.
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Chapter 2

Lefschetz Bifibrations and Vanishing
Cycles

Chapter 1 showed that given a Lefschetz fibration f̂ : X̂ Ñ CP 1, knowing the vanishing cycles associated
to each critical point is, in principle, enough to determine the total space X̂. In particular, by the Picard-
Lefschetz Theorem (1.35), the vanishing cycles of a Lefschetz fibration determine the monodromy, which
in turn, determines X̂ up to diffeomorphism by Theorem 1.45. So far, however, this is only an abstract
correspondence: given a specific smooth complex variety, it is not at all obvious how to calculate the
monodromy.

Consider, for example, the family of tom Dieck-Petrie Surfaces Xk,` Ď C3 defined by

Xk,` “

"

pxz ` 1qk ´ pyz ` 1q`

z
“ 1

*

, (2.0.1)

where pk, `q are relatively prime. These are smooth affine surfaces, and so (recall Remark 1.16) admit
Lefschetz fibrations over C. Given such a Lefschetz fibration, what is the monodromy? That is, how many
vanishing cycles does f have, and what are the vanishing cycles as simple closed curves in the generic fiber?
It is not a priori evident how to answer these questions for, say, the tom Dieck-Petrie surface X12,7. In
fact, it is not clear how to answer them even for the fibration of Ep1q in Example 1.8, which is perhaps the
simplest non-trivial Lefschetz fibration.

A method for calculating vanishing cycles allows one to realize Theorem 1.45 concretely. By the Picard-
Lefschetz Theorem, the vanishing cycles determine an explicit r-tuple of Dehn Twists in the mapping class
group of the generic fiber. This r-tuple represents the equivalence class on the right side of Theorem 1.45; it
determines the diffeomorphism type of X̂ among all 4-manifolds that posses Lefschetz fibrations of the same
genus, thereby allowing one to say definitively when X̂ is diffeomorphic to another variety with a Lefschetz
fibration. More generally, the vanishing cycles of a Lefschetz fibration give a handle-body of X̂ (as in Section
1.3), which can be compared to handle-bodies of 4-manifolds arising from different constructions.

This chapter describes a general algorithm for explicitly calculating the vanishing cycles of a Lefschetz
fibration. Given a Lefschetz fibration f on X̂, the end result of the algorithm is a list of simple closed curves
in a standard genus g surface that represent the vanishing cycles of the critical points of f . Much of the
chapter is devoted to showing in complete detail how this algorithm is realized in the case of the tom Dieck-
Petrie (3,2) surface. This chapter therefore provides a concrete, example-driven discussion complementing
the general theory described in Chapter 1.

The techniques that appear in the algorithm are also useful beyond simply identifying the diffeomorphism
type of X̂. In fact, these techniques were originally developed in the context of symplectic geometry by Paul
Seidel, Simon Donaldson, Denis Auroux, Vicente Muñoz, Francisco Presas, and others [22, 23]. Lefschetz
fibrations can be made compatible with symplectic structures, and the methods used in the algorithm can
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provide significant insight into symplectic topology. While a complete discussion of the applications of these
techniques to symplectic topology is beyond the scope of this exposition, part of the intent of this chapter is
to familiarize the reader with these useful, and slightly more advanced, techniques in the study of Lefschetz
fibrations. These techniques are often used in research articles, but are typically excluded from elementary
introductions to the subject.

This chapter considers the general case of an affine variety X Ď CN of (complex) dimension 2 equipped
with a Lefschetz fibration f : X Ñ C of degree 1. The advantage of working in this case is that one may
work in a single global coordinate chart, which greatly simplifies calculation.

Remark 2.1. In fact, the above case is sufficient to understand the case of projective varieties X Ď CPn
of (complex) dimension 2 as well. One can reduce this case to the affine case as follows. Suppose that
f : X Ñ CP 1 is a Lefschetz pencil of degree 1 given by rP1;´P0s where P0, P1 are homogenous linear
polynomials, say of the form Pi “ a0z0 ` . . . ` aNzN in homogenous coordinates rz0 ; . . . ; zN s on CPN .
In fact, by a change of coordinates, one may assume that P0 “ zN , and then, take coordinates on the
complement of the CPN´1 hyplerplane on which P0 vanishes to reduce to the case of an affine fibration.
Specifically, one restricts to a coordinate chart given by px1, . . . , xN q ÞÑ rx1 ; . . . ; xN ; 1s, in which f is
given by f “ rP1; 1s. By choosing coordinates z ÞÑ rz; 1s on CP 1 as well, one may assume f : Cn Ñ C is
given in coordinates by fpx1, . . . , xN q “ a11x1 ` . . . ` a1NxN . In this situation, there are no base points in
this coordinate chart, since any base points are necessarily contained in the hyperplane where P0 vanishes.
One can assume (possibly by perturbing the coefficients of f) that r1; 0s P CP 1 is not a critical value, so that
there are no critical points outside the coordinate chart considered. The algorithm obtains vanishing cycles
for all the critical points in the affine fiber F˚ X tP0 ‰ 0u, which can then be considered in the closed fiber

F˚ to obtain a description of the vanishing cycles of the fibration f̂ : X̂ Ñ CP 1.

Depending on the situation, one may wish to study X itself, or a blow-up of X as in the example of the
elliptic surface Ep1q regarded as a blow-up of CP 2. Even when one wishes to study X itself, however, it is
useful to use the methods of this and the previous chapter to study the blow-up first, and then understand
X as the blow-down obtained by collapsing exceptional spheres.

The idea of the algorithm is to consider the fibers of f as branched covers of C and keep track of
the branching behavior near a singular fiber. For an affine fibration f : X Ñ C the fibers are surfaces
punctured where their projectivization intersects the hyperplane at infinity; the singular fibers also have
nodal singularities. The Riemann-Hurwitz formula for a generic branched cover ρ : Σ ÞÑ C (i.e. one with
only doubly ramified points) gives :

χpΣq “ degpρqχpCq ´ p# of branch pointsq (2.0.2)

where χ denotes the Euler characteristic. A singular fiber F 1 resulting from collapsing a homologically non-
trivial vanishing cycle will have one fewer generator of H1pF

1;Zq than the regular fiber F˚, so the Euler
characteristics are related by χpF 1q “ χpF˚q ` 1. Thus, by the Riemann-Hurwitz formula

t# of branch points of singular fiberu “ t# of branch points of regular fiberu ´ 1. (2.0.3)

If one considers a family of fibers Ft with a smoothly varying family of branched covers ρt : Ft Ñ C, the
critical values will vary smoothly with t. In particular, choosing a family of fibers above a vanishing path δi
approaching a singular fiber, (2.0.3) implies that two critical points will come together to become a single
critical point in the branched cover of the singular fiber. See Figure 2.1. As will be shown in Section 1.3,
the pre-image of a path connecting these two critical points will contain a simple closed curve. As the two
branch points come together, this simple closed curve shrinks to a point. This shrinking simple closed curve
will be the vanishing cycle.
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Figure 2.1: A family of fibers Ft above a vanishing path δi (blue) equipped with branched covers ρt
(projection back). For regular fibers, ρt has six ramification points and six branch points (crosses). At t “ 1,
two branch points (red crosses) come together to become a single branch point. The pre-image of a line
between these two branch points is the vanishing cycle (blue).

Example 2.2. It is instructive to see how the above ideas are realized in the standard coordinate model at
a critical point. The standard coordinate model on B4, given by

pz1, z2q ÞÑ z2
1 ` z

2
2 ,

has a single critical point at the origin. Let δ : r0, 1s Ñ C be the vanishing path δptq “ 1´ t which, ends at
the critical value. The fiber over δptq is Ft “ tz

2
1 ` z

2
2 “ 1´ tu for t P r0, 1s. For each t P r0, 1s, the projection

ρtpz1, z2q “ z1 defines a branched cover ρt : Ft Ñ C whose ramification points satisfy z2 “ 0, so are given
by z1 “ ˘

?
1´ t. Thus for each t ą 0, ρt has two branch points, namely t “ ˘

?
1´ t P C. As t Ñ 0, the

two branch points merge into a single branch point p0, 0q P B4. For each fixed t0, the pre-image under ρt
of the line segment r´

?
1´ t0,

?
1´ t0s Ď C is the vanishing cycle of the critical point p0, 0q considered as

a subset of the fiber Ft. That is to say, the pre-image of a line connecting the two critical values of ρ0 that
come together at t “ 1 is the vanishing cycle in the fiber F0.

Note on terminology: Throughout this section, the algorithm will keep track of the data of both a
Lefschetz fibration f : X Ñ C and a family of branched covers ρ : Ft Ñ C. Recall (by Example 1.9) that
a generic branched cover (only doubly ramified points) is a specific case of a Lefschetz fibration. In the
language of Lefschetz fibrations, the ramification points are the critical points, and the branch points in C
are the critical values. Throughout this chapter, the terminology of branched covers and Lefschetz fibrations
will be used interchangeably, the former being useful to avoid confusion, while the latter at times being
useful to highlight similarities.
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2.1 Matching Cycles

The preceding ideas are now made precise. First, the idea that the pre-image of a path joining two critical
points is a simple closed curve is formalized. This is in fact not specific to surfaces, so for a moment let
dimRpXq “ n be arbitrary. Suppose that f : X Ñ C is a Lefschetz fibration with critical values t1, ..., tr.
Choose a basepoint ˚ P C that is a regular value, and let δ1, ..., δr be a collection of vanishing paths.

Definition 2.3. A path µ : r´1, 1s Ñ C such that the restrictions µ|r0,1s and µ|r´1,0s are each vanishing
paths is called a matching path. That is, if µ|r0,1s “ δi, and µ|r´1,0s “ δj for some vanishing paths δi, δj
(with δj traced in reverse).

Recall that for each t near ti, there is a vanishing cycle νi in f´1ptq. By choosing trivialization of the
bundle above δi, one may transport this vanishing cycle to the fiber above δiptq for any other t. Recall the
union of these, the Lefschetz thimble, is an embedded ball Bn, now arranged to have boundary νi » Sn´1

in the fiber F˚. A matching path results in two thimbles diffeomorphic to Bn with boundary νi, νj in F˚. If
νi “ νj as subsets of F˚, these two thimbles can be glued together to obtain an embedded sphere Σµ Ď X.
In high dimensions, one must carefully consider framings to avoid exotic spheres, though this issue is not
addressed here. It would be quite a strange coincidence if the vanishing cycles agreed exactly as sets. Instead,
if they are simply isotopic, one can alter the choice of trivialization of the bundle away from the critical
points to arrange that this isotopy is realized along the path µ so that the vanishing cycles νi, νj do agree
as sets in F˚. Choosing different trivializations to transport the vanishing cycles νi to the fiber F˚ yields an
isotopic sphere, thus Σµ is well-defined up to isotopy.

Definition 2.4. When it exists, the isotopy class rΣµs of embedded spheres is called the matching cycle
of the matching path µ.

Of course, if the two vanishing cycles νi, νj are not isotopic, then no matching cycle exists (see Figure
2.2). In the case of a branched cover, ρ : F Ñ C, the vanishing cycle is the 0-sphere that collapses at the
critical points, i.e. it is two points in different sheets of the cover meeting at a ramification point. A matching
cycle yields an isotopy class of simple closed curves. For instance, in Example 2.2, the path r´1, 1s Ď C in
the image of the branched cover ρ1 : F1 Ñ C is a matching cycle. In that example, it is obvious that the
vanishing cycles agree pointwise because they are both the entire fiber.

Figure 2.2: Lefschetz thimbles in a branched cover. On the left, the vanishing cycles (blue) agree and there
is a well-defined matching cycle. On the right, no matching cycle exists.

Now the algorithm to calculate vanishing cycles is outlined. Each step will take advantage of the idea of
matching cycles, using it to express the vanishing cycles of the fibration f : X Ñ C as matching cycles. The
algorithm consists of three steps.
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(1) Express each vanishing cycle ν1, ..., νr P F˚ as a matching cycle of some matching path in a branched
cover ρ : F˚ Ñ C.

(2) Find a collection of matching paths a1, ..., ak P C whose matching cycles form a basis of H1pF˚;Zq.

(3) Use half-twists to express the matching cycles of ν1, ..., νr in terms of the collection a1, ..., a`. Lifting
these to Dehn twists in F˚ (recall Lemma 1.34) then gives an expression for each νi in terms Dehn
twists of the basis elements in H1pF˚;Zq.

The next three sections of this chapter are devoted, one each, to describing these three steps in detail.
At the end of the description of each step, the process is carried out in the case of the (3,2) tom Dieck-Petrie
surface to elucidate how the algorithm works in practice.

2.2 Lefschetz Bifibrations

The idea of families of branched covers is made precise through the notion of Lefschetz bifibrations, which is
due to Paul Seidel [23]. Essentially, a Lefschetz bifibration is the data of a Lefschetz fibration and a Lefschetz
fibration of each fiber. These will later allow vanishing cycles to be expressed as matching cycles of certain
paths.

Definition 2.5. A Lefschetz Bifibration on a smooth affine variety X Ď CN is a pair of maps ρ, π
satisfying the following four conditions:

X ˆ
C

C
C

πρ

f

(i) π has no critical points and the composition f :“ π ˝ ρ : X Ñ C is a Lefschetz fibration on X.

(ii) Denote by Ft :“ f´1ptq and Ct :“ π´1ptq the fibers over a point t P C. The restriction

ρ|t : Ft Ñ Ct

is required to be a Lefschetz fibration. On singular fibers F 1x containing a critical point x, this means a
holomorphic map with isolated, non-degenerate critical points with values distinct from ρpxq.

(iii) The derivative Dρ P HomCpTX, ρ
˚TC2q is transverse to both the zero section and the rank 1 locus.

Hence, by counting dimensions, Dρ vanishes nowhere and the rank 1 locus is a complex curve in X,
which is denoted critpρq.

(iv) At critical points x of f the Hessian D2f restricted to kerpDρq “ Txpcritpρqq is non-degenerate.

To parse this definition, it is helpful to consider the case that dimCpXq “ 2 and π is projection onto the
first factor. In this case ρ “ pf, ρtq, where f is the fibration and ρt is a branched cover when restricted to
the fiber Ft of f . This captures the promised idea of a Lefschetz fibration with a branched cover on every
fiber. Points piiiq and pivq of Definition 2.5 have two important consequences, which are expounded upon
below.

Claim 2.5.1. The set of critical points of ρt is exactly critpρq X Ft for each t.

Claim 2.5.2. The restriction f | : critpρq Ñ C is a branched cover with only doubly ramified points, and
these occur exactly at the critical points of f : X Ñ C.
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(2.5.1) To see that critpρq X Ft contains the critical points of ρt, note that at a critical point of ρt, the
map ρ will necessarily have rank 1. The critical points of ρt therefore lie in critpρq, and by definition also lie
in Ft. The converse statement follows from Lemma 2.7 below.

Thus for each t, critpρq intersects Ft in several critical points of ρt As t P C varies, the critical points of
the branched covers ρt form “sheets” intersecting each fiber in the several critical points of ρt (see Figure
2.3). These sheets will form the branched cover in Claim 2.5.2.

(2.5.2) First, away from critical points of f , f | : critpρq Ñ C is an even covering. To show this, it suffices
to show that critpρq is transverse to the fibers. Since f must have rank 1 away from its critical points and
kerpDfq “ TFt, Df must be an isomorphism restricted to any plane transverse to TFt. Given that critpρq
is transverse to the fibers, an application of the inverse function theorem shows that f : critpρq Ñ C is local
diffeomorphism and therefore an even covering.

The statement that kerpρq “ Txpcritpρqq is transverse to the fibers is a condition on second derivative D2ρ.
In fact, one can check that the condition on the second derivative is exactly the condition that ρt : Ft Ñ Ct
have non-degenerate critical points (see [23], Lemma 15.7), which was point piiq of the definition.

Notice now that a critical point x of f necessarily lies in critpρq because at x one has ImpDρq Ď kerpDπq,
hence the image of Dρ must be rank 1. Now to ensure f | : critpρq Ñ C is a branched cover with only doubly
ramified points it suffices to show that at x, there are coordinates in which f | : critpρq Ñ C is given by
z ÞÑ z2. For this, it is enough (by the holomorphic Morse Lemma, 1.21) to show that x is a non-degenerate
critical point of f |, but this is exactly point pivq of the definition.

crit(⇢)

crit(f)

f

Figure 2.3: A Lefschetz bifibration over a region in C with the complex curve critpρq shown (green). The
restriction of f to critpρq is a branched cover, with ramification points exactly at the critical points of f .

Example 2.6. The most important example to keep in mind, and the one the algorithm will use is the
case of ρ : X Ñ C2 being a pair of Lefschetz fibrations. Let f, g : C3 Ñ C be linear projections, and let
ρ “ pf, gq and πpx, yq “ x be the projection to the first coordinate. For generic choices of f, g, one can use
standard techniques from algebraic geometry to show that conditions piq ´ pivq of Definition 2.5, which all
hold generically, hold simultaneously generically as well. In particular, this shows that Lefschetz bifibrations
exist and are in abundance.
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Around a critical point of f , the situation is locally modeled by Example 2.2.

Lemma 2.7. Let X
ρ
ÝÑ C2 π

ÝÑ C be a bifibration. If x P X is a critical point of f “ π ˝ ρ, then there exist
local coordinates pz1, ..., znq on X in which the fibration takes the form

pz1 , ... , znq
ρ
ÝÑ pz2

1 ` . . .` z
2
n , z1q

π
ÝÑ z2

1 ` . . .` z
2
n

Proof. (Sketch) since π is a submersion by assumption, one can always find local coordinates on C2, and C
in which πpw1, w2q “ w1 and ρpxq “ p0, 0q. Let ρpz1, ...., znq “ ph1, h2q in these coordinates. The remainder
of the proof is a parameterized version of the holomorphic Morse Lemma (1.21). Since Dρ has rank 1 by
assumption, one has Dh2 ‰ 0 at x. Thus the level set h´1

2 pw2q is smooth for w2 P C2 sufficiently close to
0. The lemma follows by an argument applying the holomorphic Morse Lemma to each level set of h2. See
[23], Lemma 15.9.

As promised earlier, it is straightforward to show by computing in these local coordinates that a point is
in the rank 1 locus of ρ if and only if it is a critical point of ρt. This finishes the second direction of Claim
2.5.2.

2.3 Vanishing Cycles as Matching Cycles

Lemma 2.7 enables a precise description of how two branch points merge. Let si be the critical values of
f (changing notation from the earlier ti to avoid confusion with the parameter t), and δi : r0, 1s Ñ C be
vanishing paths. Let Ft for t P r0, 1s be the fibers above δi so that F0 “ F˚ is the base fiber and F1 is
the singular fiber. The curve critpρq Ď X intersects this family along real curves which are the intersection
with each sheet of the branched cover f | : critpρq Ñ C. By Claim 2.5.2, exactly two of these sheets have a
branching point in the singular fiber F1. Since for each t, the intersection FtX critpρq is the critical points of
ρt : Ft Ñ Ct, the branched cover ρ1 : F1 Ñ C1 has one less critical point than the branched covers for t ă 1,
in agreement with the Riemann-Hurwitz formula.

One can associate a matching path to the vanishing path δi as follows. Intuitively, this is just the path
that joins the two critical values that merge at t “ 1. See Figure 2.4 on the next page. To define it precisely,
however, requires ensuring that it is unambiguous how the path should be drawn so that it doesn’t loop
around other critical values.

To formulate this precisely, let c1ptq, c2ptq be the intersection of these two sheets ramified at t “ 1 with
the fiber Ft. Since the two sheets merge at t “ 1, one has c1p1q “ c2p1q P F1. There exists a neighborhood
U Ď X of x so that once c1ptq, c2ptq enter it they do not exit it again. For t sufficiently close to 1, say bigger
than 1´η, there exists another neighborhood V Ď Ct containing the image ρtpUXFtq that contains no other
critical values. For a fixed t0 ą 1´ η there is (up to isotopy) a unique shortest path µi joining ρpc1pt0qq to
ρpc2pt0qq in V .

Definition 2.8. µi as above is called the matching path associated to the vanishing path δi.

The following proposition formalizes the main idea of the algorithm.

Proposition 2.9. For each vanishing path δi, the matching path µi associated to δi defined above has a
matching cycle. This matching cycle is the vanishing cycle of the critical point above ti.

Proof. This is essentially immediate from the local model. Choose coordinates around the critical point as
in Lemma 2.7 so that ρ, π are given by

pz1 , z2q
ρ
ÝÑ pz2

1 ` z
2
2 , z1q

π
ÝÑ z2

1 ` z
2
2 .

The situation is now exactly that of Example 2.2. Let δiptq “ 1´t P R Ď C be the vanishing path. The fibers
intersect this coordinate neighborhood in the surfaces Ft “ tz

2
1`z

2
2 “ 1´tu. The map ρt : Ft Ñ Ct “ Cˆttu
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t = 0

t = 0 t = .3

t = .6 t = .9

Figure 2.4: (Left) a depiction of the images of the critical values of ρt for several values of t P r0, 1s. The
dashed arrows (black) indicate the motion of the critical values for increasing t. Near t “ 1 it becomes
apparent that the two critical values indicated in red merge. The matching path µ (blue) joining them is
unique for t close to 1. (Right) the matching path µ traced back to t “ 0 by reversing the motion of the
critical values.

is projection to the z1 coordinate. For t close to the intersection c1ptq, c2ptq “ critpρq X Ft are the critical
points of ρt which solve z2 “ 0 and so are given by ˘

?
1´ t. For fixed t0, the path µipsq “ ˘

?
1´ s for

s P r0, t0s is a choice of matching path associated to δiptq “ 1´ t.

Both claims are now quite clear. Locally, there are only two sheets, so the path µi must be a matching
path with a well-defined matching cycle. Moreover, the pre-image of µi is the set

tpz1, z2q | z1, z2 P R , z2
1 ` z

2
2 “ 1´ tu Ď Ft

which is, by definition, the vanishing cycle νi.

Once a matching path µi corresponding to a vanishing path δi is obtained, it can be transported back
to the base fiber F˚. This is done as follows. By a choice of trivialization, one obtains a representative of
the vanishing cycle in Ft for each t as before. It may be assumed that the representative of the vanishing
cycle is disjoint from all critical points besides c1ptq, c2ptq for each t, since if this is not the case an isotopic
representative can be chosen. By projecting the vanishing cycle via ρt, one obtains a path µi,t in Ct for each
t that is disjoint from all the critical values besides ρpc1ptqq, ρpc2ptqq.

In practice, this amounts to saying that once µi,t is known for t close to one, one may trace it back to a
matching path in the cover ρ0 : F˚ Ñ C0 by following the image (up to isotopy) in Ct. This is relatively easy
when Ct “ ttuˆC, as Figure 2.4 shows, and just amounts to reversing the motion of the critical values back
to t “ 0. Repeating this for each i “ 1, .., r results in a matching path in ρ0 : F˚ Ñ C0 for each vanishing
cycle of f , which completes Step (1) of the algorithm.

In practice, Step (1) is carried out as follows. One can consider a Lefschetz bifibration given by a pair of
linear projections, as in Example 2.6. Let X Ď C3 be an affine variety cut out by the equation Gpx, y, zq “ 0.
Choose a generic linear projection f as the first fibration. This will be the composition f : X Ñ C2 Ñ C
in the definition of bifibration. The critical points of f occur where TxX is parallel to the kernel of f , thus
they solve the system of equations

#

Gpx, y, zq “ 0

dG “ C ¨ df
(2.3.1)

for some constant C P C. To ensure f is indeed a Lefschetz fibration, one checks the non-degeneracy of the
Hessian at each critical point.

37



�i
Image of ⇢0

t = 0
t = .3

t = .6
t = .9

si

t = 0

Figure 2.5: (Left) The image of f with the critical values si and vanishing paths δi indicated. Along each
vanishing path, a movie as in Figure 2.4 plays for t P r0, 1s giving a matching path. (Right) tracing these
matching paths back to t “ 0 gives a matching path for each vanishing path whose pre-image is the vanishing
cycle (two shown).

Once the critical points are determined, one draws the critical values s1, ..., sr of f in C and chooses a
collection of vanishing paths (see Figure 2.5). Generically, no two critical values will lie on the same ray
and 0 will not be a critical value, hence the vanishing paths δiptq “ tsi for t P r0, 1s usually suffice. To find
the vanishing cycle of each, one chooses a second generic projection ρ : C3 Ñ C. Restricted to the fibers
Fs the second projection is a branched cover. If f “ ax ` by ` cz is the first fibration, the coordinate z
in the level sets f can be written as z “ tsi´ax´by

c . This allows one to consider everything as functions of
x, y (if one has chosen a fibration f with the coefficient c “ 0, one of the other variables can be swapped
for z ). Let Htpx, yq “ Gpx, y, tsi´ax´byc q and ρ1tpx, yq “ ρpx, y, tsi´ax´byc q. The critical points in the fiber
Ft occur where TFt is parallel to kerpρq within the level set f´1ptsiq. Thus for each t, they are the points
px, y, tsi´ax´byc q where px, yq solve the simultaneous equations

#

Htpx, yq “ 0

dHt “ C 1t ¨ dρ
1
t

(2.3.2)

for some constant C 1t P C possibly depending on t. One must again check non-degeneracy. Then, given that
the critical points are indeed non-degenerate, one draws the critical values r1, ..., rm for t “ 0 in C. As t
varies, each traces out a path riptq in C. At t “ 1, exactly two of the paths riptq, rjptq will share an endpoint.
The matching path is the path (unique up to isotopy) joining riptq, rjptq for t close to 1 traced back to t “ 0.

Example 2.10. (A2 Milnor Fiber) Consider the A2 Milnor Fiber tx2 ` y2 ` z2 ´ 1 “ 0u Ď C3. Let
f : C3 Ñ C be projection onto the z coordinate. By (2.3.1) the critical points are the solutions of

#

x2 ` y2 ` z2 ´ 1 “ 0

2x dx` 2y dy ` 2z dz “ C dz,

which is readily solved to find two critical points p0, 0,˘1q with critical values s1 “ 1, s2 “ ´1 in C. See
Figure 2.6(a). One must check the non-degeneracy of the Hessian at each critical point to ensure this is
indeed a Lefschetz fibration, but this calculation is omitted here. Since 0 P C is not a critical value, it can
be chosen as the basepoint ˚. The base fiber is F˚ “ tx

2` y2´ 1 “ 0, z “ 0u Ď C3. Choosing two vanishing
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paths δ1ptq “ t and δ2ptq “ ´t results in vanishing cycles ν1, ν2 (see Figure 2.6(a)). Now, one wishes to find
the matching cycle associated to each δi.

Vanishing cycle ν1: Let ρpx, y, zq “ y be the second fibration. Consider first the vanishing cycle of
the vanishing path δ1ptq “ t. Along δ1, the fibers are Ft “ tx

2 ` y2 “ 1´ t2u. The critical points are given
via (2.3.2) as the solutions of

#

x2 ` y2 “ 1´ t2

2x dx` 2y dy “ Cdy,

Which is readily solved to yield two critical points p0,˘
?

1´ t2, 0q. Here, one should again check that these
critical points are non-degenerate so that ρ has only double-branching, but this is omitted here. Starting with
t “ 0, where the critical values are ˘1, one can plot the position of the critical values r1, r2 of ρt : Ft Ñ C.
One finds the two critical values approach each other along the real axis as t increases, meeting at the origin
at t “ 1 (Figure 2.6, (b),(c),(e)). Note it is a coincidence that for t “ 0 the critical values of ρ0 happen to be
the same as those of f , and this will not be the case in general. The horizontal line µ1psq “ s for s P r´1, 1s
between the critical values of ρ0 is therefore a matching path (Figure 2.6 (f)). This shows that the vanishing
cycle of the critical value s1 “ 1 of f is represented in F˚ by the lift of r´1, 1s Ď C. From Section 1.2, it is
known that F˚ » T˚S1 is the cylinder, and the lift of this path is the zero-section.

⌫1

⌫2

C

(a) (b) (c)

(d) (e) (f)

δ2 δ1

s2 s1

r2p0q r1p0q r2p.8q r1p.8q

r2p1q “ r1p1q µ1

t “ 0 t “ .8

t “ 1 matching path

Figure 2.6: (a) the image of fibration f with its critical values si and vanishing paths δi indicated. (b),
(c), (e) the image of ρt for three different times with critical points r1ptq, r2ptq indicated. (f) the resulting
matching cycle µ1. (d) the vanishing cycles ν1, ν2 in the base fiber F˚ » T˚S1.
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Vanishing cycle ν2: The process is now repeated for the second critical value s2 “ ´1 of f , with its
respective vanishing path δ2ptq “ ´t. One sees however, that the form of (2.3.2) is invariant under t ÞÑ ´t.
Thus the behavior of the image of ρt is identical along the path δ2ptq and thus ν2 is the same isotopy class
as ν1.

To summarize, the A2 Milnor Fiber with the Lefschetz fibration fpx, y, zq “ z has two critical points and
a generic fiber F˚ » T˚S1. The two vanishing cycles ν1, ν2 are both the isotopy class of the zero-section in
T˚S1. See Figure 2.6 (d).

Example 2.11. (p3, 2q tom Dieck-Petrie Surface) The previous example was computationally simple.
This example is more complicated and (2.3.2) for s P r0, 1s can only reasonably be solved numerically. Recall
from the introduction to this chapter the (3,2) tom Dieck-Petrie surface given by

X3,2 “

"

pxz ` 1q3 ´ pyz ` 1q2

z
´ 1 “ 0

*

This is an exotic affine variety (notice the constant term in the numerator cancels so there is no 1
z

term). It is of interest from the perspective of symplectic and algebraic geometry because it is a (smoothly)
contractible surface, but is not biholomorphic to C2. For an excellent exposition of this and similar surfaces
see [24]. Here, it is interesting only to demonstrate the power of these tools to find vanishing cycles in a
complicated example.

Consider the fibration f “ 20x` z. Solving (2.3.1) numerically shows this fibration has 6 critical points,
plotted in Figure 2.7 below with their vanishing paths for the basepoint ˚ “ 0.

s1

s2

s3

s6

s5

s4

Figure 2.7: The critical values and vanishing paths of the fibration f “ 20x` z.

One can check that these critical points are non-degenerate. Here, an ordering of vanishing cycles
beginning at θ “ π is chosen as it will make the pattern of matching cycles more clear. The fiber over the
basepoint 0 is

F˚ “

"

´p1´ 20x2q3 ` p1´ 20xyq2

20x
´ 1 “ 0

*

.

Choosing ρpx, yq “ ´x` 0.01y are the second fibration yields a branched cover of the base fiber, which one
can check is non-degenerate. Its image has ten critical values r1, ..., r10, eight of which are shown in the first
panel of Figure 2.8 (the two remaining critical values are far from the origin).
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t “ 0 t “ .25 t “ .5

t “ .75 t “ 1 Matching path

µ1

Figure 2.8: The images of the critical values of ρt found numerically and plotted for various values of t and
the resulting matching path plotted in the image of ρ0.

Vanishing cycle ν1. For the vanishing path ts1, consider the map ρ restricted to the fiber Ft for t P r0, 1s.
The critical values r1, ..., r8 of ρ for several values of t are shown below. The two critical values indicated by
blue arrows come together at t “ 1, and tracing a path joining them back to t “ 0 yields the matching path
shown in the sixth panel of Figure 2.8.

Repeating this for the critical values s1, ..., s6, one finds six matching paths in the image of ρ0 : F˚ Ñ C
representing the six vanishing cycles ν1, ..., ν6. The matching paths of ν1, ν2, ν3 are shown in Figure 2.9, and
matching paths of ν6, ν5, ν4 are their reflections across the real axis respectively.
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µ1 µ2

µ3

Figure 2.9: The first three matching paths µ1, µ2, µ3. The latter three µ6, µ5, µ4 are the reflections across
the real axis respectively.

2.4 Bases of Matching Cycles

This section proceeds to the second of the three steps of the algorithm. To review, the first step of the
algorithm has provided a method for expressing the vanishing cycles of a Lefschetz fibration as matching
cycles in the branched cover ρ0 : F˚ Ñ C. The remaining two steps give these matching cycles a concrete
realization by choosing an association of F˚ with a standard surface of the correct genus, and expressing the
matching cycles in terms of specified curves there. Step (2) of the algorithm obtains a collection of simple
closed curves in F˚ representing a basis of H1pF˚;Zq.

This section deals exclusively with the branched cover ρ0 : F˚ Ñ C of the base fiber. Here, using the
language of Lefschetz fibrations, vanishing cycles of the critical (ramification) points are embedded copies of
S0, and matching cycles are simple closed curves in F˚.

Definition 2.12. A basis of matching paths is a collection of matching paths µ1, ..., µm Ď C whose
matching cycles rΣ1s, . . . , rΣms form a basis of H1pF˚;Zq.

The goal is to find a basis given in this way. Let r1, ..., rm be the critical values of ρ0, and let ε1, ..., εm
be vanishing paths for them. Generically, 0 P C will a critical value so the vanishing paths εipqq “ qri for
q P r0, 1s usually suffice.

The fiber ρ´1p0q consists of p points where p “ degpρq. Traveling along each vanishing path, an S0

vanishing cycle collapses, i.e. two sheets of the branched cover come together so that there are p´ 1 points
in critical fibers. The next task is to systematically determine which two sheets are ramified at each ri.

The fiber above qri P C is a finite number of points, which will be denoted wkpqq “ pxkpqq, ykpqqq P C2

for k “ 1, . . . , p. They solve the system of equations:

#

H0px, yq “ 0

ρ10px, yq “ qri
(2.4.1)

where H0px, yq is the equation defining the fiber as in (2.3.2). Here, it is sufficient to consider the fiber as a
subset of C2 since the projection of the plane f “ ax ` by ` cz in which the fiber lies is a diffeomorphism.
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The true fiber is still given by px, y, sti´ax´byc q where Hpx, yq “ 0, but dragging the third component along
plays no role in this step. Solving the above system (usually numerically) for q P r0, 1s and each i “ 1, ...,m
yields, a pair pwk1 , wk2q in the fiber which come together at q “ 1. This pair is the S0 vanishing cycle of
each ri.

To keep track of which pairs pwk1 , wk2q come together at q “ 1 for each i, it is useful to project C2 Ñ C.
Choose a generic projection πpx, yq “ αx ` βy, and draw the values w̃kp0q :“ πpwkp0qq in the plane.
Generically, the points wk will have distinct images under π. The situation is now the same as in Section
2.3, Figure 2.4: for q P r0, 1s the values w̃kpqq move around the plane and at q “ 1 two come together.

Next, one must label each ri with its vanishing cycle. To do this systematically, introduce segments
between the points w̃ip0q forming a connected graph with vertices w̃i and exactly one edge meeting each
vertex, as in Figure 2.10. Label these segments α1, ..., αp´1. For each i “ 1, ...,m draw additional segments
βi joining the values of the two points that are the S0 vanishing cycle of ri, which one knows after solving
(2.4.1) for each i. Here, (in contrast to step (1) of the algorithm) it is not important where the two points
among the w̃k come together in relation to the others, and any βi joining the two will suffice). Next, as
described below, one expresses each βi in terms of the the collection α1, ..., αp´1 using 0-dimensional Dehn
twists.

�1

�2
�3

↵1

↵2

↵3

↵4
↵5

Figure 2.10: (Left) the points rwip0q projected to C (black) and line segments α1, ..., α5 joining them. (Right)
the vanishing cycles of r1, r2, r3 by paths β1, β2, β3 (red).

Definition 2.13. For a discrete fiber tc1, ..., cpu of a branched cover, a 0-dimensional Dehn Twist on a
pair of points pcj , c`q is the transposition tc1, ..., cj , ..., c`..., cpu ÞÑ tc1, ..., c`, ..., cj ..., cpu.

The motivation for this terminology comes from the Picard-Lefschetz Theorem 1.35. Recall the theorem
says that the monodromy around a critical value is a Dehn Twist about the vanishing cycle. When considering
a generic branched cover as Lefschetz fibration, there is a monodromy around each branching point. Since a
generic branched cover has only double branching points, the branched cover is locally modeled on z ÞÑ z2

in which case the monodromy can be shown to be a transposition. Consequently, using this local model, the
monodromy around a critical value ri of a branched cover is a a transposition of the two points in the sheets
that are ramified above ri. Definition 2.13 ensures the language of the Picard-Lefschetz Theorem applies in
this case as well.

In a slight abuse of terminology, one refers to a Dehn twist on a pair pcj , c`q as a Dehn twist about the
path α joining them, denoted τα : tc1, ..., cpu Ñ tc1, ..., cpu. This is that the combinatorics identical to the
case of Step (3) where the same situation will arise in one more dimension. Note this 0-dimensional case
τα “ τ´1

α . It is a simple combinatorial problem to express each pair of endpoints of the βi in terms of
transpositions around the chosen α1, ..., αp´1.
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↵1

↵2

↵3

↵4
↵5

⌧↵3
(↵2)

⌧↵2
(↵1)

⌧↵3
� ⌧↵2

(↵1)

�2 = ↵3

�1 = ⌧↵2
(↵1)

�3 =

⌧↵4
� ⌧↵3

(↵2)

Figure 2.11: (Left) several paths in the configuration from Figure 2.10 that result from Dehn twists around
the segments α1, ..., α5. (Right) expressing the paths β1, ..., β3 in terms of α1, ..., α5 and Dehn twists.

This gives a complete representation of the branching behavior at the critical values ri of ρ. This can
now be used to find matching paths representing homology classes for H1pF˚;Zq.

Finding Matching Paths: Return to the image of the branched cover ρ : F˚ Ñ C. Label each of
the critical points r1, ..., rm with βi expressed in terms of α1, ..., αp´1 and Dehn twists around them, as in
Figure 2.12.

Two vanishing cycles can be glued to form a matching cycle if and only if they agree as sets in the fiber
ρ´1p0q. Thus any pair of vanishing paths whose endpoints are labelled with the same expression in terms
of αi form a matching path. One must be careful here, as there is some redundancy in expressing the βi in
terms of αi. For example, for any adjacent pair αi, αi`1, one has ταipαi`1q “ ταi`1

pαiq. Drawing matching
paths joining pairs among the ri labelled with the same vanishing cycle results in matching cycles that are
simple closed curves in F˚. Homotopic matching paths result in isotopic matching cycles.

↵1

↵1

↵2

↵3

⌧↵1
(↵2)

⌧↵1
(↵2)

⌧↵1
(↵2)

⌧↵1
(↵2)

↵4

↵4

↵3

↵2

↵1

Figure 2.12: The image of ρ0 with critical values ri labelled with their vanishing cycles. Matching cycles
(blue, green) exist between critical values with the same vanishing cycle. (Right) a similar situation with
the branching above the critical points depicted. The base fiber with the segments αi labelled is boxed.
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Using Monodromy to find Matching Paths: It may be the case that there are only several, or
even no vanishing cycles that match in the base when using the radial vanishing paths. Choosing different
vanishing paths that are not homotopic in C´ tr1, .., rmu results in different vanishing paths with different
vanishing cycles, in which case new matching pairs may appear. In particular, replacing a path by itself plus
an additional loop containing a critical point changes the vanishing cycle by the monodromy around that
critical point, i.e. a Dehn Twist about the vanishing cycle. This can be used to find additional matching
paths, as is demonstrated in Figure 2.13

↵1

↵2

⌧↵2
(↵1)

↵1

↵1

↵2

↵3

⌧↵1
(↵2)

⌧↵1
(↵2)

Figure 2.13: (Left) looping a vanishing path with vanishing cycle α1 around a critical value with vanishing
cycle α2 to obtain a new vanishing path (purple) with vanishing cycle τα2

pα1q. (Right) This technique
applied to the branched cover from Figure 2.12 to give two additional matching paths.

Bases of Matching Paths: The above methods provide an abundance of matching paths. Next one
wants to choose a specific collection of matching paths whose matching cycles represent a basis of H1pF

˚;Zq.
First, it is necessary to know the rank of H1pF

˚;Zq. If the projectivization of F˚ is a smooth curve, the
genus formula applies and one find H1pF

˚;Zq has rank twice the genus. When the projectivization of F˚ is
not smooth, i.e. the intersections with the hyperplane at infinity is singular, the situation must be analyzed
more carefully.

Once the rank of H1pF
˚;Zq is known, say it is k, one must find a basis of k matching paths. This usually

involves ad hoc arguments or guessing and checking. To check if a proposed collection of k matching paths
is indeed a basis, the following strategy is useful. For any connected and simply-connected graph whose
vertices include the critical values, the surface F˚ deformation retracts onto the pre-image of the graph,
since the pre-image includes all the ramification points. Thus the lift of the graph is a 1-skeleton for the
surface, and one can check whether the proposed collection of matching cycles are a basis of H1pF

˚;Zq by
computing the simplicial homology of the 1-skeleton explicitly (see Figure 2.14 below).

↵1

↵1

↵2

↵1

↵1

↵1 ↵2

Figure 2.14: (Left) a proposed basis of matching paths. (Right) a simply-connected graph including the
proposed basis whose pre-image gives a 1-skeleton for the surface.
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Intersection Patterns: It is convenient to not only find a basis for H1pF˚;Zq, but to find one it is nice
to work with. In particular, it is convenient to choose a basis with a recognizable intersection pattern. In
most cases, a linear intersection pattern (see Figure 2.15) of the homology classes is convenient.

matching cycles

intersection point

Figure 2.15: (Left) a linear intersection pattern in a surface of genus 2 with 2 punctures. (Right) checking
the intersection of two matching paths by looking at the branching above them.

In practice, given two homology classes ra1s, ra2s that are the matching cycles of matching paths µ1, µ2

respectively, one can calculate their intersection directly. If the two paths share an endpoint, a single
transverse intersection necessarily occurs there. If two matching paths cross somewhere that is not a branch
point, one must check if the matching cycles lie in distinct sheets of the branched cover or not (see Figure
2.15).

Once a basis rΣ1s, ...., rΣks of matching cycles with a nice or identifiable intersection pattern is obtained,
there exists a diffeomorphism with the standard surface Spg of genus g with p punctures that takes this basis

to a basis with the same intersection pattern in Spg [12]. Letting φ : F˚ Ñ Skg be such a diffeomorphism gives
an identification of the base fiber with a standard surface. Of course, one could have chosen a diffeomorphism
F˚ » Skg right after obtaining expressions for the vanishing cycles of f : X Ñ C in Step (1), but under an

arbitrary diffeomorphism, the images of the matching cycles in the standard surface Skg could be anything!

Example 2.11 Revisited: Recall the (3,2) tom Dieck-Petrie surface

X3,2 “

"

pxz ` 1q3 ´ pyz ` 1q2

z
´ 1 “ 0

*

from Example 2.11. In that example, the matching cycles associated to the six vanishing cycles were calcu-
lated using a Lefschetz bifibration. The branched cover ρ : F˚ Ñ C of the base fiber had critical values as
shown below in Figure 2.16.

Continuing this example, one can use the above techniques to find a collection of matching paths whose
matching cycles form a basis of H1pF˚;Zq. Choosing a base point 0.1i for the branched cover is more
convenient in this case. The fiber above it consists of 5 points as shown on the left in Figure 2.16. These can
be connected by four segments α1, ..., α4 as shown. The straight line vanishing paths to the critical values rj
are then qrj ` p1 ´ qqi for q P r0, 1s. Solving (2.4.1) numerically for these paths yields the vanishing cycles
(of the branched cover) for the rj as labelled in Figure 2.16.

One can check this curve does not have a smooth projectivization, and instead has a singularity at its
single intersection with the hyperplane at infinity. A little algebraic geometry can be used to show the affine
curve F˚ is a genus 2 surface with 3 punctures, so that H1pF˚;Zq “ Z6.
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Base fiber

Figure 2.16: (Left) the base fiber ρ´1p´.01iq with segments α1, ..., α4 labelled. (Right) the image of ρ0 with
the vanishing cycles labelled.

Finding a Basis : It is now possible to find six matching cycles that form a basis of F˚ with a convenient
intersection pattern. These are shown in Figure 2.17(a). Four matching paths b1, b2, c, d (blue) are relatively
easy to see, being those that pair all the critical values with vanishing cycle α1.

↵

b1

b2

cd

⇠

a

b1

b2

c

d ⇠

(a) (b)

Figure 2.17: (Left) a basis of matching paths in the image of ρ0. (Right) the image of the basis under a
diffeomorphism to the standard surface S3

2 preserving the intersection pattern.

The fifth matching path a (green), passing over the top, is a matching path because it differs from the
concatenation of the two straight line paths (dashed green) by the monodromy around the two middle critical
values which is τ2

τα1
pα2q

“ Id. The sixth path ξ (magenta) is slightly harder to see but the fact that it is a

matching path follows similarly from considering monodromy. By contracting onto a 1-skeleton and checking
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the intersection above the crossing of ξ, c, one can check this basis has the intersection pattern is as shown
in Figure 2.17(b) with both ξ, d intersecting c once, and the remaining classes having a linear intersection
pattern. Thus there is a diffeomorphism with the standard surface S3

2 taking the 6 identified matching cycles
to a basis of H1pS

3
2 ;Zq with the same intersection pattern, as shown in Figure 2.17(b).

2.5 Expressions for Vanishing Cycles

The final step of the algorithm, Step (3), is to express the matching paths for the vanishing cycles of f from
Step (1) in terms of the basis found in Step (2). The method for doing this consists of two combinatorial
moves: half Dehn twists (familiar from section 1.2) and the Valentine move. These are described in general
below, after which they are demonstrated again in the example of the tom Dieck-Petrie surface X3,2.

Half Dehn Twists: Recall from Section 1.2 the action of half Dehn twists on the image of a branched
cover. An expression for a matching cycle of a matching path µi can be found by writing it as the result of
a sequence of half-twists around known matching paths.

Proposition 2.14. Let ρ : F Ñ C is a branched cover with critical values r1, ..., rm. Suppose µ0 is a
matching path with matching cycle α. Let ri, rj be two critical values joining by a matching path γ with
matching cycle c. If µ1 “ σi,jpµ0q is the matching path obtained by from µ0 by a half-twist around the two
critical values ri, rj P C. Then the matching cycle of µ1 is related to that of µ0 by

rΣµ1
s “ rτcspαq.

Proof. This proposition is immediate from Lemma 1.34: a matching cycle projects to a matching path
between to critical points, hence a Dehn twist around the matching cycle is the unique lift of the half twist
exchanging the endpoint of γ in ModpF q

a1

a2

a3

a4

⌧a2
(a1)

⌧�2
a4

� ⌧�1
a3

� ⌧�1
a2

(a1)

⌧2
a2

(a1)

(a) (b)

Figure 2.18: (Left) a simple example of a path (green) expressed using Dehn twists about the basis elements
a1, ..., a4 (blue). (Right) two more complicated examples.

This is applied as follows. One draws both the matching paths a1, ..., ak from Step (2) whose matching
cycles α1, ..., αk represent a basis of H1pF˚;Zq. One also draws the matching paths µ1, . . . , µr of the vanishing
cycles from Step (1). One can then express the matching paths µi as combinations of half twists around
the endpoints of aj . Combinatorially, this process is the same as the process by which the paths βi were
expressed in terms of the segments αj in Section 2.4. Here, however, slightly more care must be taken as
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the placement of the paths with relation to the others matters. Additionally, one no longer has τ2
α “ Id. A

few examples are shown in Figure 2.18.

If the matching path µi of a vanishing cycle can be written as a sequence of twists σajn ˝ . . . ˝σaj1 acting
on some basis path aj0 (where by an abuse of notation, the half-twist flipping the endpoints of aj is denoted
by σaj ), then successive applications of Proposition 2.14 show the vanishing cycle of µi is

rταns ˝ . . . ˝ rτα1
spαj0q.

Valentine Move: This second move has a slightly different flavor than the previous one. In certain
cases, there are vanishing paths with different endpoints that define thimbles that are isotopic in the total
space. There are case when it is possible to exchange one half of a matching path for a different vanishing
path without changing the isotopy class of the matching cycle.

ri rj

Figure 2.19: The Valentine move exchanges vanishing paths (blue, purple) without changing the vanishing
cycle. This moves gets its name from the distinctive heart-shaped pattern formed by the two vanishing
cycles.

Proposition 2.15. Suppose that two critical points ri, rj have vanishing cycles which have a single transverse
intersection. Then the thimbles defined by the two vanishing paths depicted in Figure 2.19 are isotopic, hence
when joined with any other vanishing path to form a matching path, the two resulting matching cycles are
the same (i.e. isotopic as embedded spheres).

Proof. A proof can be found in [25] and the citations therein (e.g [26]).

Example 2.11 Revisited (the last time): Here, the above two moves are applied to Example 2.11 to
express the vanishing cycles found therein in terms of the basis found in Example 2.11 Revisited. Recall
the first vanishing cycle ν1 was the matching cycle of the matching path in Figure 2.9. It is convenient, for
expressing the vanishing cycles, to momentarily introduce another homology class α as indicated in Figure
2.20. Then two Dehn twists express ν1 in terms of the basis a, b1, b2, c, d, ξ and α as shown in Figure 2.20.

Repeating a similar process to express the other vanishing cycles ν2, ..., ν6 one finds they are (the isotopy
classes of)

ν1 “ τ´1
c ˝ τ´1

d pαq ν4 “ a

ν2 “ τ´1
b2
˝ τdpcq ν5 “ τb2 ˝ τ

´1
b1
˝ τapαq

ν3 “ τ´1
b1
˝ τ´1

b2
pcq ν6 “ τ´1

d τ´1
b1
τapαq.

Thus it remains only to express the class α in terms of the basis. This can be done by the sequence of half
Dehn twists and valentine moves shown in Figure 2.21.
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c

d

↵

⌫1 = ⌧�1
c � ⌧�1

d (↵)

Figure 2.20: The matching path µ1 written as two Dehn twists applied to α.

⇠

↵

⇠

⌧�1
⇠ (↵)

paq pbq pcq

pdq peq pfq

Figure 2.21: Expressing α in terms of the other basis elements by the following operations. (b) An inverse
half Dehn twist around ξ. (c) a valentine move on the top two critical values (valid because the two vanishing
cycles have a single intersection). (d) a valentine move on the two bottom critical values. (e) an isotopy of
the path. (f) two valentine moves on both the top and bottom pairs of critical values.
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⌫3

⌫4

Figure 2.22: Two of the vanishing cycles ν3 (magenta), and ν4 (blue) drawn in the standard surface S3
2 .

The matching cycle of the matching path in the final panel of Figure 2.21 is τc ˝ τb2 ˝ τb1paq. Thus one
obtains the relation:

τ´1
ξ α “ τc ˝ τb2 ˝ τb1paq ñ α “ τξ ˝ τc ˝ τb2 ˝ τb1paq.

Hence the expressions for the vanishing cycles become :

ν1 “ τ´1
c ˝ τ´1

d ˝ τξ ˝ τc ˝ τb2 ˝ τb1paq ν4 “ a

ν2 “ τ´1
b2
˝ τdpcq ν5 “ τb2 ˝ τ

´1
b1
˝ τa ˝ τξ ˝ τc ˝ τb2 ˝ τb1paq

ν3 “ τ´1
b1
˝ τ´1

b2
pcq ν6 “ τ´1

d τ´1
b1
τa ˝ τξ ˝ τc ˝ τb2 ˝ τb1paq

By the above, the vanishing cycles of the fibration f : X3,2 Ñ C have been expressed as isotopy classes of
simple closed curves in the standard surface S3

2 . This was the promised outcome of the algorithm.
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Chapter 3

Symplectic Lefschetz Pencils

The two previous chapter have studied exclusively smooth complex varieties. The results of Chapter 1
showed that a Lefschetz fibration can provide significant insight into the topology of a variety. Among these
results, Theorem 1.45 was particularly powerful, giving the following correspondence.

"

4´manifolds w/ Lefschetz
fibrations of genus g

*

M

Diffeo. ðùùñ

"

r-tuples in ModpSgq
[τν1 ] ˝ . . . ˝ [τνr ] “ Id

*

M

"

Simultaneous conjugation
Hurwitz equivalence

*

(3.0.1)

In principle, this theorem reduced the study of the topology of total spaces of Lefschetz fibrations to the
study of the mapping class group ModpSgq, which is in general better understood than arbitrary 4-manifolds.
Chapter 2 gave a computational algorithm allowing this correspondence to be realized concretely: given a
complex algebraic variety, the algorithm computes an r-tuple of Dehn twists representing the equivalence
class to which it corresponds. Together, these tools are an enormous asset in studying the topology of
complex varieties. Complex algebraic varieties, however, comprise only a fraction of all possible 4-manifolds.
As was remarked in 1.46, the collection of 4-manifolds which possess Lefschetz fibrations has been shown to
be larger than only the complex algebraic varieites. The question now becomes: how large is it? That is to
say, which of all 4-manifolds admit the structure of a Lefschetz fibration or pencil. This and the following
chapter will provide a nearly complete answer to this question.

In 1995, Simon Donaldson expanded the class of 4-manifolds known to admit Lefschetz pencils to include
all compact symplectic manifolds. A symplectic manifold is a pair pX,ωq of a smooth manifold X and a
closed, non-degenerate 2-form ω. These manifolds are of immense importance in topology, geometry and
mathematical physics. Much could be said at this point on the motivation and techniques for studying
symplectic manifolds, but such a discussion is beyond the scope of this exposition. The reader not familiar
with symplectic geometry is referred to [27, 28, 29] for several extensive introductions.

Donaldson proved:

Theorem 3.1. (Donaldson, [30, 31]) Suppose pX,ωq is a compact symplectic manifold of dimension 2n
and that rω{2πs P H2pX;Rq is the reduction to real coefficients of an integral class. Then X admits a
topological Lefschetz pencil f : X z B Ñ CP 1 such that the fibers of f are symplectic submanifolds of X.

Here, a topological Lefschetz pencil is as in Definition 1.15. For singular fibers, “symplectic submanifold” is
taken to mean that the (non-closed) submanifold obtained by removing the critical point(s) is a symplectic
submanifold.

Definition 3.2. Topological Lefschetz pencils that are compatible with a symplectic structure in the above
sense are called symplectic Lefschetz pencils.

This theorem applies to a strictly larger class of manifolds than has been dealt with thus far. Every
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(smooth) complex variety is a symplectic manifold, but there are compact symplectic manifolds that are not
complex varieties [32]. Theorem 3.1 is interesting from two distinct perspectives:

Topologically: This theorem expands the class of 4-manifolds which can be characterized topologically via
Theorem 1.45.

Geometrically: The compatibility of the Lefschetz pencil structure with the symplectic structure has the
potential to reduce questions about symplectic geometry to questions about the monodromy of Lefschetz
pencils.

The following chapter is devoted mainly to explaining the proof of Theorem 3.1. In the final two sec-
tions, a discussion about the extent to which the second of the above points can be realized is given. Because
Donaldson’s original exposition of the theorem [30, 31] is concise, elegant, and largely self-contained, the ex-
position here is intended to complement, rather than replace, the exposition therein by providing background
and intuition for Donaldson’s arguments.

3.1 Outline of the Proof

In this section, the main ideas of the proof of Theorem 3.1 are summarized. The subsequent sections provide
details.

Recall that a Lefschetz pencil f on a complex variety could be constructed by taking homogenous poly-
nomials P0, P1 and defining f “ rP1,´P0s. In this case, the base locus was the mutual vanishing locus of
P0, P1 and the fiber above rt0; t1s P CP 1 was defined by t0P1 ` t1P0 “ 0. This is the perspective that is
generalized by Donaldson’s theorem. More generally, instead of considering two homogenous polynomials,
one can consider a pair s0, s1 of smooth sections of complex line bundle L Ñ X. Away from the mutual
vanishing set B “ tx P X | s0pxq “ s1pxq “ 0u there is a map f : X z B Ñ CP 1 defined by choosing a
trivialization U ˆ CÑ L at x and taking

fpxq :“ rs0; s1s. (3.1.1)

The projective coordinates ensure that this map does not depend on the choice of trivialization: given two
distinct trivializations of L at x, there is a transition map ϕ : U Ñ Cˆ between them, hence the values
s0pxq, s1pxq obtained via one trivialization both differ from those obtained via the second trivialization
by multiplication by ϕpxq. Consequently, the projectivized pair rs0; s1s does not depend on the choice of
trivialization, so f is well-defined.

The strategy of the proof of Theorem 3.1 is to construct a map f in this way. The resulting pencil will
be similar in spirit to those obtained in the case of complex varieties from a pair of homogenous polynomials
P0, P1. The mutual vanishing locus of s0, and s1 (still called the base) will be a (real) codimension 4
submanifold, and the fibers of f will be where s0, s1 have a fixed ratio. Locally, choosing a trivialization of
L, the fiber over rt0; t1s P CP 1 is the set on which s0t1 ´ s1t0 “ 0, again analogous to the case of varieties.

For f of the form (3.1.1) to be a symplectic Lefschetz pencil, the sections s0, s1 must satisfy several
conditions. First and not too difficult, their zero-sets must be transverse as codimension 2 submanifolds,
which ensures the base locus is a smooth (codimension 4) submanifold. A second and rather trickier condition
is required to ensure the fibers are symplectic submanifolds everywhere.

The construction of a map f “ rs0; s1s such that the fibers are symplectic submanifolds relies on the fact
that symplectic geometry is, in some sense, “close” to complex geometry. As will be made precise in Section
3.2, real subspaces of a complex vector space that are “close” to complex subspaces must be symplectic
subspaces. Applying this to the tangent bundle of a symplectic manifold (recall that the tangent bundle of
a symplectic manifold admits an almost-complex structure J : TX Ñ TX such that J2 “ ´Id, [28]) will
show that a submanifold whose tangent spaces are close to complex subspaces in TX has symplectic tangent
spaces and is therefore, by definition, a symplectic submanifold.

The fibers of f will have tangent spaces close to complex subspaces provided f is sufficiently “close” to
being holomorphic. If L Ñ X were a holomorphic vector bundle on a complex manifold, and if s0, s1 were
holomorphic sections, then f itself would be holomorphic and thus the fibers would have complex tangent
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spaces. In general, X need not be a complex manifold, but constructing sections s0, s1 that are “close”
to being holomorphic will ensure the tangent spaces of the zero-sets are close to complex subspaces. More
specifically, as will be shown in Section 3.2, f will have symplectic fibers if

|Bf | ă |Bf | (3.1.2)

where B and B are the complex linear and anti-linear parts of the differential df , which are defined precisely
in Section 3.3. In general, a function or section satisfying an estimate of the form (3.1.2) is called an
approxiately holomorphic section. Of course, in the truly holomorphic case |Bf | vanishes completely.
Estimates of this form make the notion of being “close” to holomorphic quantitative.

In order for f to satisfy (3.1.2), the two sections s0, s1 must satisfy rather stronger estimates, so that
|Bsi| ăă |Bsi| where B, B are now the complex linear and anti-linear parts of the covariant derivative with
respect to some connection on L (defined precisely in Section 3.3). The majority of the proof of Theorem 3.1
is constructing sections satisfying these stronger estimates. The construction is carried out with a fixed line
bundle L Ñ X whose first chern class c1pLq is related to rωs P H2pX;Rq. In general, however, L itself will
not necessarily have approximately holomorphic sections. Instead, the construction results in approximately
holomorphic sections of Lbk for some sufficiently large k. Specifically, two types of estimates are needed on
sections s0, s1 of Lbk:

|Bsi| ď
C
?
k

|Bsi| ą ε along Zpsiq. (3.1.3)

Together these estimates imply |Bsi| ăă |Bsi| once k is large. Sections satisfying estimates of the first
type are said to be asymptotically holomorphic, because they approach holomorphicity as k Ñ 8.
Sections satisfying estimates of the second type are said to be ε-transverse, as it is a condition similar to
transversality, but requires the derivative to be bounded below instead of simply non-zero.

The main difficulty of the proof of Theorem 3.1 is to construct sections s0, s1 that are both asymptotically
holomorphic and ε-transverse. The proof consists of three main steps:

(I) Construction of asymptotically holomorphic sections.

(II) Construction of ε-transverse sections.

(III) Modification of f “ rs0; s1s for two sections s0, s1 that are both asymptotically holomorphic and ε-
transverse. The modification makes f satisfy (3.1.2), and also guarantees the local behavior required
to be a Lefschetz pencil.

Specifically, the construction of asymptotically holomorphic sections requires piecing together local approx-
imately holomorphic sections. To construct sections that are also ε-transverse relies on an extension of
transversality techniques that includes quantitative information. Throughout the proof, the parameter k
plays an essential role. In many cases, the key point is ensuring certain quantities do not depend on k.

Remark 3.3. For the reader familiar with some algebraic geometry, it should be noted that the statement
and proof of Theorem 3.1 are closely related to the Kodaira Embedding Theorem [11]. That theorem
establishes the existence of embeddings of complex manifolds satisfying certain conditions into CPN for
large N . The approach of the standard proof is to take a line bundle L on the manifold, and show that
for sufficiently large k, the line bundle Lbk has many holomorphic sections. A map to CPN constructed
from such sections yields the embedding. Theorem 3.1 mimics this proof by showing that sufficiently high
powers of a line bundle admit sections. Donaldson’s theorem can therefore be thought of as a symplectic or
almost-complex analogue of the Kodaira Embedding Theorem.

3.2 Symplectic Submanifolds

This section makes precise the fact that sections satisfying (3.1.2) have zero sets that are symplectic subman-
ifolds. This will reduce the problem of constructing Lefschetz pencils with symplectic fibers to the problem
of producing sections satisfying the two types of estimates (3.1.3).
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The following lemma is a linear algebra fact characterizing symplectic subspaces. It will shortly be
extended an analogous statement on vector bundles. Consider Cn with the standard complex structure J
and symplectic form ω. Denote the standard real metric g by x , y and the standard hermitian metric h by
p , q “ x , y ` iω.

Lemma 3.4. Let T : Cn Ñ C be a real linear map. Decompose T as T “ A ` B where A,B are the
complex linear and anti-linear parts respectively. If |B| ă |A|, then kerpT q Ď Cn is a symplectic subspace of
dimension 2n´ 2.

Here the norm is that induced on pCnq˚bC by x , y and the standard metric on C. More explicitly, after
choosing a basis, it is the square root of the sum of the squares of the matrix entries of T .

Proof. The statement about the dimension is straightforward: if the map has rank 1 then |A| “ |B| and the
estimate cannot hold. To see this, note that if the image is a (real) line Reiθ then for any v one has e´iθAv
conjugate to e´iθBv and so |A| “ |B|. Clearly if RankpT q=0 the strict inequality similarly fails. To prove the
kernel is a symplectic subspace, consider the “Kähler Angle” of a vector subspace W of (real) codimension
2 defined as follows. The restriction of the metric gives rise to a natural volume form ΩW “ e1^ . . .^ e2n´2

where teiu form an orthonormal basis of W . Then for any i, j, one has ωpei, ejq “ xei, Jejy ď |ei||Jej | “ 1,
and hence |ωn´1pe1 ^ . . .^ e2n´2q| ď pn´ 1q! since it is a sum of exactly pn´ 1q! terms that are products of
ω applied to basis vectors, so are less than 1. Therefore 1

pn´1q!ω
n´1 is a multiple tΩW for some t P r´1, 1s.

The Kähler angle is defined by

cospθW q :“

1
pn´1q!ω

n´1
ˇ

ˇ

W

ΩW
.

W is a symplectic subspace by definition exactly when 1
pn´1q!ω

n´1 is a volume form on W oriented positively

with respect to ΩW , so the symplectic subspaces are those for which the right side is strictly positive. The
same holds for subspaces of any even dimension 2k replacing n´1 by k. To complete the lemma, it therefore
suffices to show that |B| ă |A| implies cospθkerT q ą 0.

Notice that a subspace is symplectic if and only if its orthogonal complement with respect to the metric g is
symplectic. This reduces the problem to the case of subspaces of (real) dimension 2 by considering the adjoint
of T . Let a, b : CÑ Cn be the adjoints of A,B respectively. Clearly, the norm of the matrices is unchanged
by transposition so |A| “ |a| and likewise for B. Taking the adjoint also respects the decomposition into
complex linear and anti-linear parts, hence kerpT qK “ ImpTT q “ Impa` bq. The image is the space spanned
by the images of 1, i. By slight abuse of notation, denote ap1q, bp1q by just a, b. Then

TT p1q “ a` b TT piq “ Ja´ Jb

where the second expressions follows since a, b are complex linear and anti-linear respectively. Now simply
compute cospθkerpT qKq writing both volumes in terms of T p1q ^ T piq.

ωpa` b, Ja´ Jbq “ ωpa, Jaq ´ ωpb, Jbq ` ωpb, Jaq ´ ωpa, Jbq

“ |a|2 ´ |b|2

as ωp , J q “ x , y. Likewise, becuase ΩImpTT q “
a

det |g|T p1q ^ T piq where g is the restricted metric, one
has

Ωpa` b, Ja´ Jbq “ |a` b|2|Ja´ Jb|2 ´ xa` b, Ja´ Jby2

“ p|a|2 ` |b|2q2 ´ 4|pa, bq|2

where the second equality follows from the expression for the hermitian metric in term of ω and g. In
particular Ωpa` b, Ja´ Jbq is positive, so if |A| ą |B| then

cospθkerpT qq “ cospθkerpT qKq “
ω
ˇ

ˇ

W

ΩW
“
|A|2 ´ |B|2

Ω
ą 0.
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Now the above lemma is extended to the case of vector bundles. First a little set-up is required, after which
the statement for vector bundles is essentially immediate. Let pX,ωq be a compact symplectic manifold.
Choose a compatible almost-complex structure J : TX Ñ TX, and consider the metric g “ ωp´, J´q. A
triple pω, J, gq related in this way is called a compatible triple. Additionally, let L Ñ X be a complex
line bundle, endowed with a hermitian metric h. The almost-complex structure J makes TX into a complex
vector bundle, hence at a point x, it makes sense to consider the complex linear and anti-linear parts of a
linear map T : TxX Ñ V for a complex vector space V .

In particular, one can apply this to the derivative ∇s : TxX Ñ Lx along the zero-set of s. Recall that
along the zero-set, the derivative of a section is canonically defined without choosing a connection. To see
this, note that for p0, vq P L the tangent space of the total space of the bundle splits canonically as

Tpx,0qL “ TxX ‘ Lx

since the image of TxX under the zero-section provides a canonical horizontal subspace. Said a different
way, a choice of connection ∇ gives a covariant derivative ∇s “ pd ` Aqs in a local trivialization, where A
is a matrix-value 1-form, and along the zero-set ∇s “ ds is independent of A hence does not depend on the
choice of connection. This shows the derivative is well-defined along the zero-section. At each point on the
zero-set, one therefore has complex linear and anti-linear parts Bs, and Bs of ∇s.

Theorem 3.5. Suppose that s : X Ñ L is a section such that along the zero-set Zpsq of s

|Bs| ă |Bs|. (3.2.1)

T Zpsq is a symplectic submanifold. Here, the norm is the one induced on HompTxX,Lxq » T˚xX b Lx by
the metrics on X and L

Proof. At each x P Zpsq, consider the composition ∇s : TxX Ñ TxX ‘ Lx Ñ Lx. The condition that Zpsq
is a submanifold is a local, and is the condition that at each x, this composition has full rank. In this case,
the tangent space of Zpsq is the kernel of ∇s. For each x, choose bases of TxX and Lx so that pω, J, gq and
h are standard in these bases. The theorem then follows by applying Lemma 3.4 to ∇s in these bases, as at
x, (3.2.1) is exactly the assumption of the lemma.

Corollary 3.6. If L “ C is the trivial bundle (i.e. s is a complex valued function) then (3.2.1) implies that
every level-set of s is symplectic submanifold.

Proof. The fact that this holds for the zero-section of s is a specific case of Theorem 3.5. Since the estimate
(3.2.1) depends only on the derivative, the same conclusion follows for s shifted by a constant.

Theorem 3.5 reduces the proof of Theorem 3.1 to the construction of sections s0, s1 satisfying sufficient
asymptotically holomorphic and ε-transversality estimates. More specifically, recall step (III) from the
outline of the proof in Section 3.1. A slightly more rigorous statement is:

Theorem 3.7. Suppose s
pkq
0 , s

pkq
1 are sequences of sections so that s

pkq
i is a section of Lbk for all k. Suppose

additionally that these sequences satisfy suitable asymptotically holomorphic and ε-transversality estimates.
Let F be the C-valued function defined on X zZps0q by F “ s1{s0. Then for sufficiently large k, f “ rs0; s1s

can be modified so that it satisfies i) f is a topological Lefschetz pencil, and ii) F is approximately holomorphic
except at its critical points.

The precise meaning of “suitable asymptotically holomorphic and ε-transversality estimates” is given by
Definition 3.15 below. Even without the precise definition, however, one concludes:

Claim 3.7.1. Provided sequences as in the hypothesis of Theorem 3.7 exist, Theorem 3.7 implies Theorem
3.1.
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Proof. Asymptotically holomorphic sections that are also ε-transverse satisfy (3.2.1) for sufficiently large k
since |Bsi| ă

C
ε
?
k
|Bs|. If f is modified as in the conclusion of Theorem 3.7, then the fibers, Zps0q and the

level sets of F : X z pZps0q Y critpfqq, are all symplectic submanifolds by Theorem 3.5 and Corollary 3.6. f
is therefore, by definition, a symplectic Lefschetz pencil.

3.3 Asymptotically Holomorphic Sections

The next three sections are devoted, one each, to explaining the three steps in the proof of Theorem 3.1.
This and the next section formulate more precisely and show the existence of asymptotically holomorphic
and ε-transverse sections as in the hypothesis of Theorem 3.7. Section 3.5 addresses the proof of Theorem
3.7, thereby completing Theorem 3.1. In all these sections, all results are due to [30, 31] and [33]. In many
cases, the precise details of estimates are omitted and can be found in these references.

Here and throughout the subsequent sections, fix a compact symplectic manifold pX,ωq of dimension
2n with a compatible almost-complex structure J , and a compatible metric g1. Additionally, fix a complex
line bundle L Ñ X with a hermitian metric h such that the first chern class c1pLq is the integral lift of
rω{2πs P H2pX;Rq (such a line bundle always exists, see for instance [34]). L can be endowed with a
connection ∇ that has curvature ´iω. For each positive integer k the line bundle Lbk (denoted from here
on simply by Lk), possesses an induced connection with curvature ´ikω.

Throughout, it is convenient to introduce the family of scaled metrics gk “ kg1 on X so that pkω, J, gkq
is a compatible triple for each k. Distances measured in the gk metric on X are larger by a factor of k1{2

than when measured in the g1 metric. The convention is taken that the Cr norm of a section spkq of Lk

means the Cr norm where the derivatives are taken using the connection induced on pT˚Xqbi bR L
k for

i ď r by ∇ and the Levi-Civitas connection of gk, and where the norms are measured with respect to the
metrics induced by gk and h.

The covariant derivate ∇s of a section can be decomposed into its complex linear and anti-linear parts
with respect to J so that ∇s “ BJs ` BJs. The definition of these operators is now given precisely. In
the simplest case where ∇ is a connection on a vector bundle L on Cn with the standard almost-complex
structure J0, the covariant derivative ∇s of a section s could be split into the complex linear and anti-linear
covariant parts in the standard way at each point. That is, in coordinates where ∇ “ d ` A for some
matrix-valued 1-form A, the complex linear and anti-linear derivatives are defined as

BJ0s “ Bs`A
1,0s BJ0s “ Bs`A

0,1s

respectively, where B, B are the complex linear and anti-linear parts of df : TxCn Ñ C and A1,0pzq, A0,1pzq
are the complex linear and anti-linear parts of Apzq. This can be phrased more invariantly as follows: there
is a splitting T˚Cn bC “ Ω1,0 ‘Ω0,1 where Ω1,0,Ω0,1 are the spaces of J0-linear and anti-linear forms with
projections π1,0 and π0,1 to them respectively. Then BJ0s “ π1,0 ˝∇s, and BJ0s “ π0,1 ˝∇s. In the case
of a manifold X with an almost-complex structure J , the construction is analogous, except the projections
now vary pointwise: for each x P X there is a splitting TxX bR C “ Ω1,0

x ‘Ω0,1
x with projections π1,0

J , π0,1
J

to the J-linear and anti-linear components. The complex linear and anti-linear parts of ∇ are then defined,
in general, as

BJpsq “ π1,0
J ˝ ∇s BJpsq “ π0,1

J ˝ ∇s. (3.3.1)

Definition 3.8. A sequence of sections sk of Lk is said to be asymptotically holomorphic if there exists
a constant C P R so that

||sk||C3pXq ď C ||BJsk||C2pXq ď Ck´1{2 (3.3.2)

holds for all k sufficiently large.

The existence of asymptotically holomorphic sequences is rather trivial: one can just multiply each sk
by a constant ck until the bounds are satisfied. The point here, however, is to construct sequences that can
later be modified to also be ε-transverse. Here, asymptotically holomorphic sequences of a specific form that
will allow them to be modified to be ε-transverse are constructed. The construction is done first locally then
globally, and the modification to be ε-transverse is carried out in Section 3.4.
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The Local Construction

Lemma 3.9. There exists sequences of local asymptotically holomorphic sections of Lk, supported in neigh-
borhoods of size Opk´1{3q.

The fundamental tool that will be used to produce these sequence is scaling by factors of k. The local
sections at each point will have the simple local model of a Gaussian, i.e. e´|x|

2

.

First, consider the case of k “ 1. At each p P X, let χp : B2n Ñ X be a Darboux coordinate chart
so that in these coordinates ω is given by the standard form i

2

řn
j“1 dzjdzj . By a parameterized version of

Darboux theorem, these coordinate charts can be taken to vary smoothly with the point p. Moreover, by
composing with a complex linear transformation, it can be assumed that the almost-complex structure is
the standard one at the origin for each p. The pullback bundle χ˚p pLq is trivial, and there is a preferred
trivialization given by parallel transporting out from the origin. In this trivialization, the connection matrix
is A “ 1

4

řn
j“1 zjdzj ´ zjdzj (see [30] Page 674).

The local model used to construct asymptotically holomorphic sequences is

fpzq “ e´|z|
2
{4

In the standard complex structure J0 in these coordinates, the complex linear and anti-linear covariant
derivatives BJ0 , BJ0 are as above and fpzq is truly holomorphic (locally) since

BJ0pe
´|z|2{4q “ Bf `A0,1f “

1

4

˜

n
ÿ

j“1

zjdzj ´
n
ÿ

j“1

zjdzj

¸

e´|z|
2
{4 “ 0. (3.3.3)

Here, however, one wishes to construct sections that are holomorphic in the fixed almost complex structure
J , rather than the complex structure J0 given by the local coordinates. Since J “ J0 at the origin, the above
section will fail to be J-holomorphic by an amount that is Op|z|q. Therefore, scaling the section to be more
localized at the origin will make it closer to being J-holomorphic in the sense that BJ will be small and will
lead to a local estimate as in Definition 3.8.

Lemma 3.10. The following estimates hold for f (in the norms induced by the standard metric in coordi-
nates).

|BJpfq| ď C|z|2e´|z|
2
{4

|∇XBJpfq| ď Cp|z| ` |z|2 ` |z|3qe´|z|
2
{4

where ∇X is the Levi-Civitas connection of g1 on X.

Proof. Note that the difference of the projections π0,1
J ´ π0,1 as in the definition of BJ vanishes at the origin

so is Op|z|q, and therefore bounded by C|z| for some constant C. The constant C can be taken to be uniform
over all p P X, hence:

BJpfq “ π0,1 ˝∇f ` pπ0,1
J ´ π0,1q ˝∇f ď 0` C|z|

˜

n
ÿ

j“1

zjdzj ` zjdzj `A

¸

e´|z|
2
{4 ď C|z|2e´|z|

2
{4.

The derivative estimate follows by differentiating and noting that the Christoffel symbols of∇X are uniformly
bounded on X.

Now consider the effect of scaling by k. Scale the metric on both the manifold and in coordinates by k
to obtain a new chart χp,k. Up to isometry, one may consider χp,k as a chart χp,k : k1{2B2n Ñ X on the
scaled ball with the standard metric. The image in X remains the same, but its diameter is larger by k1{2

when measured in gk . Consider the local section

fkpzq “ e´|z|
2
{4
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on this new chart. Although the function has the same form as the original, it is now considered on the
scaled ball, so on X the Gaussian is steeper by a factor of k. Since in this new chart χ˚p,kpkωq “ ω0 is the

standard form, this chart with the trivial C bundle provides a connection-preserving trivialization of Lk.

In the new chart χp,k, the almost complex structure is also scaled, so that Jpzq “ Jpk1{2z̃q where z̃ is the

original χp coordinate. Thus the projections to the J- and anti-linear parts are also scaled, so π0,1
J ´ π0,1 is

Opk´1{2|z|q in the scaled chart, and the same calculation as Lemma 3.10 yields:

|BJpfkq| ď Ck´1{2 |z|2e´|z|
2
{4 (3.3.4)

|∇XBJpfkq| ď Ck´1{2 p|z| ` |z|2 ` |z|3qe´|z|
2
{4 (3.3.5)

Finally, one wishes to convert these estimates to ones of local sections on X. First, this requires the
introduction of a bump function so that the sections are compactly supported on X. Second, this requires
converting the estimatess to ones in terms of the distance and metric measured on X (notice the left hand
side in the above is still measured in the standard metric in the local coordinates). For the first point, let βk

be a smooth bump function on k1{2B2n such that βkpzq “ 1 for z P k1{6

2 B2n and βk is compactly supported

in k1{6B2n. Then define a new section σk,ppzq to be βk ¨ fkpzq, where fk is center at p P X. Since βk can be
taken so that |∇βk| “ Opk´1{6q, one can check by the product rule that estimates identical to (3.3.4) and
(3.3.5) hold for σk,p as well.

For the second point, recall that in the chart χp, g1 is the standard metric at the origin, since ω, J are
standard there, hence gk is also standard at the origin in the chart χk,p. Thus the difference between the
pullback metric and the standard metric in coordinates is Op|z|q and one has |g0 ´ g

˚
1 | ď C|z| in χp, and by

scaling |g0´ g
˚
k | ď Ck´1{2|z| on k1{2B2n in χk,p. Then, letting dkpp, qq be the distance on X induced by the

metric gk one has

|dkpp, qq
2 ´ |z|2| ď

ˆ
γptq“tz

|g0 ´ g
˚
k |dt ď Ck´1{2|z| ¨ |z|2. (3.3.6)

Since the support of σk,ppzq is Opk´1{3q, for k sufficiently large one has Ck´1{2|z| ă 1{4, and thus both
|z|2{5 ď d2

kpp, qq{4 and d2
kpp, qq{5 ď |z|

2{4.

Using this, one can show that in terms of the invariant quantities on X, (3.3.4) and (3.3.5) yield

|σk,ppqq| ď e´d
2
kpp,qq{5

|BJσk,ppqq| ď Ck´1{2d2
kpp, qqe

´d2kpp,qq{5

|∇XBJσk,p| ď Ck´1{2pdkpp, qq ` d
2
kpp, qq ` d

3
kpp, qqqe

´dkpp,qq{5.

In fact, repeating the entire process taking more derivatives only introduces extra factors of |z| which
result in the same estimates with higher powers of dkpp, qq.

Lemma 3.11. The local sections σk,p satisfy:

||σk,ppqq||C3pXq ď Ce´dkpp,qq{5 ||BJσk,ppqq||C2pXq ď Ck´1{2
`

dkpp, qq ` . . .` d
`
kpp, q

˘

e´dkpp,qq{5

for some ` ď 5.

The Global Construction

Now the sections σk,p are added together into globally asymptotically holomorphic sections. These sections
are constructed by summing over the local sections σp,k. Let tψmu be a fixed (finite) collection of charts
covering X such that

1

2
|x´ y| ď d1pψpxq, ψpyqq ď 2|x´ y|. (3.3.7)
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For each k, consider the lattice Λpkq :“ 1
2k1{2

`

n
2

˘1{2
pZn ‘ iZnq Ď Cn. Let tpiu be the collection of the

images of the lattice under tψmu for all m together so that pi are roughly a lattice covering X. The balls
of radius 1

2k
´1{2 around the lattice points cover Cn by the choice spacing of Λpkq, and by (3.3.7) the balls

of dk radius 1 cover X once k is sufficiently large. Let Npkq be the total number of points pi in the lattice,
which is Opknq. Define a global section of Lk by

skpqq :“

Npkq
ÿ

i“1

wi σi,kpqq (3.3.8)

where wi P C has |wi| ď 1 and σpi,k “ σi,k. The following proposition will be used to show any sequence of
sections constructed in this way asymptotically holomorphic.

Proposition 3.12. With pi and Npkq as above and q P X fixed, given any r ě 0 then for k sufficiently large
there is a constant C independent of k such that

Npkq
ÿ

i“1

dkppi, qq
r e´d

2
kppi,qq ď C.

Proof. (Sketch) Recalling the definitions of dkppi, qq and ekppi, qq, the above sum roughly has the form

ÿ

ψm

ÿ

iPΛpkq

|xi ´ y|
re|xi´y|

2
{5

for fixed y, but there are finitely many ψm and the latter sum is bounded above (independently of k) by´
|x´ y|re|x´y|

2
{5dx which converges for all r.

Using Proposition 3.12, one has

Proposition 3.13. A sequence of sections sk constructed as in (3.3.8) is asymptotically holomorphic.

Proof. By Lemma 3.11, one has

||BJpskq||C2 ď

Npkq
ÿ

i“1

|wi| |BJpσi,kq|k ď Ck´1{2
Npkq
ÿ

i“1

`

dkppi, qq ` . . .` d
`
kppi, qq

˘

e´d
2
kppi,qq ď Ck´1{2

by applying Proposition 3.12 for each r “ 1, . . . `. The other bound follows identically.

3.4 Quantitative Transversality

This section discusses ε-transversality of section of Lk. These sections will be constructed by extending
standard transversality techniques that will allow the careful choice of the coefficients wi in sk “

ř

wiσi,k.
A main result discussed in this section, due also to Donaldson, is a quantitative version of Sard’s theorem
that is interesting in its own right.

Definition 3.14. Let U Ď Cn be open. A map f : U Ñ Cm with m ď n is said to be ε-transverse to w P Cm
over U if at all points z P U with |fpzq ´ w| ă ε, the derivative Dfz is surjective and satisfies |Dfz| ě ε.

An equivalent statement holds for sections of bundles with a connection ∇: a section s is said to be
ε-transverse to 0 if at all points with |s| ă ε, then |∇s| ě ε. A crucial observation is that ε-transversality
is preserved under C1-closeness. That is, if s is ε-transverse to 0, and s1 is another section (function) with
||s´ s1||C1 ă δ, then s1 is ε´ δ-transverse to 0.

The precise restatement of the condition “appropriate asymptotically holomorphic and ε-transversality
estimates” that appeared in the statement of Theorem 3.7 can now be given.
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Definition 3.15. Fix an ω-compatible almost-complex structure J . Let LkpJ,C, εq be the set of pairs of
sections of Lk satisfying the following conditions.

(I) s0, s1 are asymptotically holomorphic with respect to J with (3.3.2) holding for the constant C.

(II) s0 is ε-transverse to 0 as a section of Lk.

(III) ps0, s1q is ε-transverse to 0 as a section of Lk ‘ Lk.

(IV) The complex linear derivative BF of F “ s1{s0 is ε-transverse to 0 over X z Zps0q.

Proposition 3.16. For a fixed ω-compatible almost-complex structure J , and for sufficiently large k, there
exist constants C, ε so that LkpJ,C, εq is non-empty.

To construct sections in LkpJ,C, εq, one begins with a section sk “
ř

i wiσi,k, which by the content of
the previous section already satisfies (I), and modifies the coefficients wi in stages so that at each stage the
ε-transversality condition is satisfied on a larger subset of X. Consider the case of condition (II) first. Recall
the pi were the points around which σi,k were centered. These cover X in an approximate lattice, and there
are more of them for each k. The key point of the proof is that ε-transversality can be achieved by modifying
the coefficients wi in a finite number of stages that is independent of k. The following proposition gives a
crucial partition of the pi used throughout the remainder of the proof.

Lemma 3.17. Given D ą 0 there is a number NpDq independent of k so that tpiu can be partitioned into
NpDq subsets I1, ...., INpDq such that

dkppi, pjq ě D pi, pj P Iα

for all α. In fact, NpDq can be chosen to satisfy NpDq ď CD2n for some constant C independent of k.

Proof. As in Proposition 3.12, the number of charts ψm is fixed independent of k, so it suffices to partition
the lattice in the image of each chart ψm separately. Within each chart, let DΛpkq be D times the lattice
Λpkq. Then partition Λpkq by taking equivalence classes in Λpkq{DΛpkq, of which there are D2n. Since there
are finitely many charts tψmu the total number is bounded by CD2n for some C independent of k.

The tool that will allow a careful choice of wi is Donaldson’s quantitative extension of Sard’s Theorem:

Theorem 3.18. (Donaldson, [31]) Suppose f is a holomorphic map from the unit ball in Cn to the unit
ball in Cm where m ď n, and let 0 ă η ă 1{2 and 0 ă γ ă 1. For any w P Cm, there exists a p P N so that
the set

Upf, η, w, εq :“ tw1 P Bηpwq | f is ε-transverse to w1 over
1

2
B2nu

for ε “ ηQppηq where Qppηq “
1

logp 1η q
p has a connected component whose measure is at least γ times the

measure of Bηpwq.

The classical Sard’s theorem states that the derivative must be non-zero on a set of full measure. This
theorem extends the result to say that for small ε ą 0 the derivative must be greater than ε on a set of large
measure. Of course, if in the statement of the theorem one demands transversality hold over a larger portion
γ of the ball, the resulting p will increase, hence ε will decrease. The proof of Proposition 3.16 only relies on
the existence of a single point in Bηpwq where ε-transversality holds, but the full result is interesting in its
own right. A full proof of the theorem is not given here. For a complete proof see [31]. Briefly, the proof uses
the fact that holomorphic functions are well-approximated by polynomials, and then exploits the geometry
of the zero-sets of complex polynomials.

Now the modification of sk is carried out in stages, applying Theorem 3.18 at each stage. The process
will have NpDq stages in total. At each stage α for α “ 1, ..., NpDq, the section sk is modified so that
sk becomes ε-transverse to 0 over Iα. It must also be modified in such a way that the transversality over
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I1, ..., Iα´1 is not disrupted. Since there are finitely many stages (independent of k), at each stage α k, may
be increased and ε ą 0 may be decreased.

To describe the modification required at each stage α, is convenient to introduces the function fi,k on
the balls Bi of dk radius 1 around pi so that sk “ fi,kσi,k. Thus modifying fi,k to fi,k ´ β is equivalent to
modifying the coefficient wi ÞÑ wi ´ β.

By the product rule, one has
∇sk “ ∇fi,kσi,k ` fi,k∇σi,k.

Using this, one can show f must satisfy similar bounds to sk, i.e. ||f ||C1pBiq ď C, ||Bf ||C1pBiq “ Opk´1{2q.
Moreover, using also the fact that σi,k is uniformly bounded below on the balls Bi of unit gk radius, one can
show that sk is ε-transverse to 0 over Bi if and only if fi,k is Cε-transverse to 0 for some C. It therefore
suffices to choose the coefficients wi so that fi,k is ε-transverse to 0 over Bi for all i at once, since Bi cover
X by the discussion preceding Proposition 3.12.

Proceeding by induction, assume that the coefficients have already been modified so that sk is εα´1-

transverse over Iα´1 ( I0 “ H can be taken as the base case). Denote by sα´1
k “

ř

i w
pα´1q
i σi,k the section

obtained after the first α ´ 1 modifications, and let f
pα´1q
i,k be the corresponding function as defined above.

Stage α of the modification is now performed as follows:

(1) There exists a δα ą 0 such that if |w
pαq
i ´ w

pα´1q
i | ă δα then

||f
pαq
i,k ´ f

pα´1q
i,k ||C1pBiq ď

1

2
εα´1.

In fact, there is a constant C ą 1 (independent of k, εα´1) so that δα “
εα
C works. Consequently, if the

coefficients w
pαq
i are chosen with δα of w

pα´1q
i , the functions f

pαq
i,k are still 1

2εα-transverse to 0 over Bi
for i P I1 Y . . .Y Iα´1.

(2) By the elliptic theory of the B operator, f
pα´1q
i,k can be well approximated by a holomorphic function.

In particular, there exists a holomorphic function hi,k so that the elliptic estimate:

||f
pα´1q
i,k ´ hi,k||C1prBiq ď C̃||Bf

pα´1q
i,k ||C1pBiq ď C̃k´1{2

holds.

(3) Apply Theorem 18 (with m “ 1) to the holomorphic function hi,k (scaled so that it is a map between
unit balls), and conclude there exists a vi with |vi| ă δα so that hi,k is δαQppδαq-transverse to 0 over
Bi. Equivalently, hi,k ´ vi is δαQppδαq-transverse to 0 over Bi.

(4) By (2), once k is sufficiently large that C̃k´1{2 ă 1
2δαQppδαq, then pf

pα´1q
i,k ´viq is 1

2δαQppδαq-transverse

to 0 over Bi. By increasing p, it can be assumed that pf
pα´1q
i,k ´ viq is 2εα´1Qppεα´1q-transverse to 0

over Bi. That is, increase p until 2εα´1Qppεα´1q with the new p is less than 1
2δαQppδαq with the old

p.

(5) Now the careful partitioning of tpiu into I1, ..., INpdq comes into play. Because σi,k falls off like e´d
2
kppi,qq

away from pi, modifying wi by an amount less than δα results in a change in fj,k on the order of δαe
´D2

{5

for j ‰ i because distinct points of Iα are separated by at least D. More precisely, if

w
pαq
j “

#

w
pα´1q
j if j ‰ i

w
pα´1q
i ´ vi if j P Iα

then for all i ‰ j one has

||f
pαq
i,k ´ pf

pα´1q
i,k ´ viq||C1pBjq ď Cδαe

´pD´2q2{5 ď Cεα´1e
´pD´2q2{5.
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(6) Consequently, provided the right hand side satisfies

Cεα´1e
´pD´2q2{5 ď εα´1Qppεα´1q (3.4.1)

then f
pαq
i,k is εα :“ εα´1Qppεα´1q-transverse to 0 over Bi for all i P Iα. It therefore suffices to show

that for D sufficiently large, (3.4) is satisfied for each α “ 1, ..., NpDq, which is a question only about
the sequence of real numbers εα. By choice of δα in (1), the section sαk is εα-transverse to 0 over all
Bi for i P I1 Y . . .Y Iα´1 as well, hence over all I1 Y . . .Y Iα. At the end of the induction, one obtains
a section sk that ε-transverse to 0 everyone on X where ε :“ εNpDqQppεNpDqq for the largest p used.
This completes the construction of sections satisfying (I) and (II) of Definition 3.15.

For conditions (III) and (IV) of Definition 3.15 the argument is essentially identical, except more param-
eters must be kept track of. For (IV), since BF has n components, it must be modified in all components at
once. Suppose s0, s1 satisfy conditions (I) and (II). Let

σπ,i “ πσi,k

where π “
ř

` π`z` is a linear functional on Cn. Without choosing coordinates π should be thought of as an
element of T˚X b Lk. Then consider perturbing s1 by σπi,i for some vector π at each i so that in total

F “
ÿ

i

s1 ` σπ,i
s0

.

Here, the vectors πi P Cn play the role that vi P C did in the the modification of sk “
ř

i wiσi,k. One then
proceeds by repeating steps (1)-(6), now applying Theorem 3.18 with m “ n to find a vector πi so that
the addition of πi in the definition of F achieves transversality over Bi. One can check, moreover, that this
process can be done without disrupting the ε-transversality of s1 itself. Condition (III) is again similar, but
Theorem 3.18 is applied with m “ 2. This completes the outline of the proof of Proposition 3.16.

3.5 Constructing Pencils

This section brings together the previous sections by giving a proof of Theorem 3.7, thereby completing the
proof of Theorem 3.1. Theorem 3.7 can now be stated as:

Theorem 7: Suppose s
pkq
0 , s

pkq
1 are sequences of sections in LkpC, J, εq for some fixed ω-compatible almost

complex structure J and fixed constant C, ε. Then for sufficiently large k, f “ rs
pkq
0 ; s

pkq
1 s can be modified so

that it satisfies i) f is a topological Lefschetz pencil, and ii) F is approximately holomorphic except at its
critical points.

Since s0 is asymptotically holomorphic and ε-transvsere, the zero set Zps0q is a symplectic submanifold
for k sufficiently large. As in Claim 3.7.1, in order to modify f “ rs0; s1s to be a symplectic Lefschetz pencil,
it therefore suffices to modify F on X z Zps0q. Two local modifications are required: first, it is necessary to
modify F so that |BJF | ă |BJF | everywhere and has non-degenerate critical points (with local holomorphic
coordinates), second F must be modified in the neighborhood of base points so that the local model in the
definition of topological Lefschetz pencil is satisfied.

For the first modification, the idea is to show that the problem region where |BJF | ď |BJF | is localized
around the critical points of F , and a modification can be performed in small neighborhoods of these points
to resolve this. Thus let Γ Ď X z Zps0q be the set on which |BJF | ď |BJF |.

Lemma 3.19. There exists a constant η so that if k is sufficiently large, Γ is contained in the region
Ωη “ tx P X | |s0| ą ηu.

To show this, one computes the derivate of F and shows that if both s1, s0 are small, then the transver-
sality condition (II) on the pair ps0, s1q as a section of Lk ‘ Lk from Theorem 3.7 is violated, if s0 is small
but s1 is large, then the transversality condition (I) on s0 alone is violated.

63



By Lemma 3.19, Γ is bounded away from Zps0q, and it is defined by a closed condition, hence it is a
compact subset of X zZps0q. Now denote by critpF q the set of critical points, which by the transversality
condition |∇XBJF | ą ε are isolated. Since critpF q is automatically contained in Γ, it must therefore be a
finite set.

Lemma 3.20. There exists a constant ρ0 independent of k so that for sufficiently large k the balls of radius
ρ0 centered on points of critpF q are disjoint and contained in Ωη{2. Moreover, for any ρ ď ρ0, after increasing
k sufficiently, the set Γ is contained in the union of the balls of radius ρ centered at the point of critpF q.

Proof. (Sketch) This lemma follows essentially from the implicit function theorem. If x is a point of Γ, then
|BJF | ď |BJF | ď Ck´1{2. Thus if k increases, |BJF | Ñ 0. The transversality condition on |∇XBJF | ą ε
ensures that the derivative of BJF is invertible and bounded away from 0. By the inverse function thoerem,
BF is therefore a local diffeomorphism. One can check, by keeping track of constants in the standard proof of
the inverse function theorem, that the local diffeomorphism must be defined on a neighborhood sufficiently
large to contain a point p P critpF q i.e. there is a p such that BJF “ 0 near x. Increasing k further decreases
BJF , and the point must get closer to x. By choosing k sufficiently large, one can therefore ensures that
each point x P Γ is within ρ of a point of critpF q, completing the lemma.

At each p P critpF q, one has the decomposition ∇pBJF q “ BXpBJF q ` BXpBJF q. The first term is the
complex linear part of the Hessian, i.e. a complex quadratic form on TpX which will now be denoted by
H. In local coordinates centered at p, H can be written H “

ř

α,β Hαβzαzβ . Here, it can be shown that H
must be non-degenerate as a complex form, since the transversality condition on ∇XBF requires H and the
anti-linear part part together by non-degenerate as a real form. One then takes a bump function βp centered
at p that is 1 on the ball of radius ρ{2 and compactly supported in the ball of radius ρ. Let w1 “ F ppq ` δ,
and consider

F̃ :“ βppw
1 `Hpzqq ` p1´ βpqF pzq

Lemma 3.21. For ρ sufficiently small, k sufficiently large, and δ sufficiently small compared to ρ, then on
the ball of radius ρ, F̃ has a single critical point at p with local coordinates pz1, ..., znq ÞÑ

ř

i z
2
i and satisfies

|BJ F̃ | ă |BJ F̃ | away from p.

Proof. This is essentially just a calculation. See [31], Lemma 10.

The modification of Lemma 3.21 is local, so can be applied separately for each p P critpF q to obtain
a new map with isolated critical points conforming to the desired local model and |BJ F̃ | ď |BJ F̃ | satisfied
everywhere. Since these modifications are supported away from Zpsq, the extension of this map to one
f̃ : X z B Ñ CP 1 is still smooth. The only remaining issue is a local modification around points b P B that
ensures the local model pz1, ..., znq Ñ z1{z2 is satisfied there. The details of this final step are essentially
linear algebra and are omitted here. Briefly, the proof of this amounts to linear algebra conditions on the
symplectic form on the subbundle TB Ď TX. These conditions are achieved by maps arbitrarily close to f ,
so a modification of f can be achieved without disrupting the open condition that the tangent spaces of the
fibers are symplectic. This completes the proof of Theorem 3.7, hence of Theorem 3.1.

3.6 The Converse Result

In this section, the following converse of Donaldson Theorem 3.1, originally due to Gompf, is proved:

Theorem 3.22. (Gompf, [35]) Suppose that X is a 4-manifold equipped with a topological Lefschetz
fibration f : X Ñ S2. Let rF˚s P H2pX;Zq be the fundamental class of the generic fiber of f . If
rF˚s ‰ 0 P H2pX;Zq, then X admits a symplectic structure. An analogous statement holds for Lefschetz
pencils, but the homological constraint is automatically satisfied.

This theorem has important consequences for studying symplectic geometry through Lefschetz pencils.
First, it is a purely topological criterion for the existence of a symplectic structure on a 4-manifold, a
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question usually in the realm of differential geometry. Second, this result suggests that, in spirit, the data
of a symplectic structure and a Lefschetz fibration are equivalent. Using this, symplectic manifolds could,
in principle, be classified completely in terms of Lefschetz pencils, and thereby in terms of monodromy in
ModpF˚q. This is investigated in greater detail in Section 3.7. First, for completeness, a sketch of the proof
of Theorem 3.22 is given. For the detailed proof, there reader is referred to ([16] Theorem 10.2.18).

Proof. The proof relies on the construction of two separate 2-forms. A “vertical” form ωV that will be non-
degenerate on the fibers, and a “horizontal” form ωH will be non-degenerate in the horizontal directions.
Taking

ω “ ωV ` ωH

will complete the proof. First, the vertical form is constructed.

Lemma 3.23. There exists a closed, non-degenerate 2-form η P H2pX;Rq so that
´
F
η ą 0 for all fibers F .

This follows immediately from the assumption that rF0s ‰ 0: let η be the Poincaré dual of rF0s. The
statement that the above integral is non-zero is exactly the conclusion of Poincaré duality. Notice that the
singular fibers represent the same homology class as the regular ones, thus the evaluation there remains
non-zero (integration taken over the non-closed surface with the critical points removed).

Next, the 2-form η is modified so that it is symplectic along the fibers (it is not, a priori, non-vanishing
on them). This modification will be ωV .

First, take a symplectic form ωy on the fiber f´1pyq for each y P S2. In a neighborhood of the singularities,
take the restriction of the standard form on C2 in the coordinates in which f has the form pz1, z2q ÞÑ z2

1`z
2
2 .

Around each y, there is a neighborhood Uy such that Wy “ f´1pUyq retracts onto the fiber f´1pyq. One
obtains a local form ξy on each Wy that is the pullback of ωy under this retraction. Take a finite subcover of
the cover provided by the Uy, indexed by i “ 1, ..., n. By scaling, it can be assumed that rξyi |Fyi s “ rη|Fyi s
for all yi, hence the difference vanishes in cohomology and so is exact. Let θi be so that dθi “ η ´ ξyi on
Wyi . Then, for a partition of unity ψi subordinate to Uyi on S2, one takes

ωV “ η ` d

˜

ÿ

i

pψi ˝ fqθi

¸

.

Now define the horizontal form ωH “ f˚pωS2q for ωS2 the volume form on the sphere. The following
lemma then completes the proof.

Lemma 3.24. The form ω :“ ωV ` CωH is a a symplectic form for sufficiently large C P N.

Clearly, the form is closed since d commutes with pullbacks thus it is the sum of two closed forms. One then
checks non-degeneracy in both the horizontal and fiber directions.

For the case of Lefschetz pencils, one blows up the initial pencil, keeping track of the information of
the exceptional spheres which appear as sections on the fibration. One then repeats the proof and shows
that by increasing C even more, these sections are symplectic submanifolds and the blow-down process can
be done preserving the symplectic structure. In this case, each fiber intersects all the exceptional spheres
non-trivially, hence it cannot be homologically trivial.

In fact, the proof can be extended to show:

Theorem 3.25. (Gompf, [35]) The symplectic form ω is canonical up to isotopy, i.e. any two variations
on the construction result in symplectic forms connected by a path ωt of symplectic forms. It is canonical in
the sense that if f : X z B Ñ S2 is a symplectic Lefschetz pencil, applying Theorem 3.22 to the topological
Lefschetz pencil underlying f reproduces the same form ω up to isotopy. Moreover, if f, f 1 : X Ñ S2 are a
pair of equivalent Lefschetz fibrations (in the sense of Theorem 1.45), then applying Theorem 3.22 results in
isotopic symplectic forms.
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3.7 Asymptotic Uniqueness

Combined into a single statement, Theorem 3.1 and Theorem 3.22 yield:

Theorem 3.26 (Donaldson, Gompf). Suppose X is a closed 4-manifold. Then X admits a symplectic
structure if and only if it admits a topological Lefschetz pencil.

As mentioned in the previous section, this result already hints that Lefschetz pencils could be used to
give a classification of symplectic 4-manifolds in terms of the monodromy of their Lefschetz pencils. This
section describes how such a classification could be formulated, and identifies some of the challenges arising
in carrying out such a classification scheme. In particular, this involves precisely formulating a uniqueness
statement for Lefschetz pencils constructed as in the proof of Theorem 3.1.

The notion of equivalence between different Lefschetz pencils on the same symplectic manifold is rather
technical. This is because it is difficult to compare Lefschetz pencils constructed from approximately holo-
morphic sections s0, s1 of Lk for different k. For a fixed pX,ωq, let LkpJ,C, εq be as in Definition 3.15. The
proof of Theorem 3.1 showed that for sufficiently large k, this set is non-empty, and for each pair the map
f “ rs0; s1s can be modified so that it is a symplectic Lefschetz pencil.

First, one has the following notion of equivalence between topologically Lefschetz pencils.

Definition 3.27. Two topological Lefschetz pencils f0 : X zB0 Ñ S2 and f1 : X z B1 Ñ S2 are said to be
isotopic if there exist smooth isotopies Ft : X ˆ I Ñ X and φt : S2 ˆ I Ñ S2 such that:

• Both F0 : X Ñ X, and φ0 : S2 Ñ S2 are the identity map.

• F1pB0q “ B1

• One has f1 ˝ F1 “ f0 ˝ φ1 as a map X z B1 Ñ S2.

In particular, two isotopic Lefschetz pencils have the same genus since F1 takes fibers to fibers, and
by Theorem 1.45 yield the same collection of Dehn twists in ModpSpg q up to simultaneous conjugation and
Hurwitz equivalence (using Theorem 1.45 for pencils rather than fibrations).

The following result gives a uniqueness statement for Lefschetz pencils constructed as in the proof of
Theorem 3.1, up to isotopy.

Theorem 3.28. Asymptotic Uniqueness (Donaldson, [31]) Let ε, C be fixed and let J, J 1 be a pair
of almost-complex structure on pX,ωq. Suppose that ki Ñ 8 is an increasing sequence of integers and that
for each i, there are symplectic Lefschetz pencils fi, f

1
i resulting from from modifying pairs of approximately-

holomorphic sections in Lk1pJ,C, εq,Lk1pJ 1, C, εq respectively. Then for sufficiently large i, the pencils fi
and f 1i are isotopic.

This uniqueness statement shows the construction in Theorem 3.1 was, in some sense, canonical, but
is quite difficult to work with in practice because it does not provide a description of when two individual
Lefschetz pencils are isotopic. Instead, one must consider pencils as part of a sequence of pencils for the
increasing parameter k.

Despite this difficulty, the uniqueness theorem 3.28 can be used to give a rough idea of a correspondence
between symplectic 4-manifolds and data in the mapping class group. The following discussion is meant to
be an intuitive description of this correspondence. For a more technical description, the reader is referred
to [36]. Ideally, one could hope to prove a correspondence, in the spirit of Theorem 1.45, that gives an
equivalence

"

pX,ωq
compact

*

M

„ ðùùñ

"

monodromy
data

*

M

„ (3.7.1)
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for two suitable notions of equivalence of the two structures. Here, symplectic manifolds are assumed to
have the property, as in the hypotheses of Theorem 3.1, that the cohomology class rω{2πs P H2pX;Rq is the
reduction of an integral class. The integral lift of ω{2π is denoted hω P H

2pX;Zq. The appropriate notion
of equivalence of triples pX,ω, hωq is symplectic isotopy. That is,

pX,ω, hωq „ pX
1, ω1, h1ωq

if there exists a diffeomorphism f : X Ñ X 1 such that f˚pω1q is a symplectic form on X which is connected to
ω through a smooth isotopy ωt of symplectic forms. In particular a topological Lefschetz pencil f : X Ñ S2

determines a canonical triple pX,ω, hωq up to this equivalence since the form constructed was unique up to
isotopy Theorem 3.25. Moreover, if two topological Lefschetz pencils are isotopic as in Definition 3.27, then
they determine isotopic symplectic forms (they are isotopic through the forms ωt constructed by applying
Theorem 3.25 to the isotopy of pencils ft :“ φt ˝ f0 ˝ F

´1
t ).

Now, an appropriate notion of equivalence of monodromy data is required. To each pX,ω, hωq one may
associate an r-tuple of Dehn twists whose product is the identity in ModpSpg q by considering a Lefschetz
pencil. Here, ModpSpg q is the mapping class group of the p-times punctured surface of genus g, where p is
the number of points of the base locus. In light of Theorem 1.45 and its accompanying discussion, these
tuples of Dehn twists should be considered up to simultaneous conjugation and Hurwitz equivalence. One
must, however, also introduce an equivalence relation between this monodromy tuple and monodromy tuples
that result from Lefschetz pencils built with different k, from which one obtains r1-tuples of Dehn twists in

ModpSp
1

g1 q for r1, g1, p1 not equal to r, g, p. It is therefore necessary to see how replacing a Lefschetz pencil
obtained form a pair in LkpJ,C, εq with a pencil obtained for a higher value of the parameter k affects the
monodromy. Auroux and Katzarkov gave a topological operation that is equivalent to doubling k, resulting
in a formula for the new monodromy.

Theorem 3.29. (Auroux, Katzarkov, [37]) There exists a stabilization operation on Lefschetz pencils
on a 4-manifold X. The stabilization of a Lefschetz pencil f of genus g with p base points and r critical
points is a Lefschetz pencil of genus g1 “ 2g ` p ´ 1 with p1 “ 4p base points and r1 “ 4pg ` r ´ 1q critical
points. The stabilization of f is denote Sqpfq.

There is an explicit formula for the monodromy of Sqpfq in terms of the monodromy of f , though the
details are not necessary here [37]. Most importantly, this stabilization gives a topological realization of
increasing the parameter k in the construction of symplectic Lefschetz pencils.

Theorem 3.30. (Auroux, Katzarkov, [37]) Let f : pX,ωq Ñ S2 be a symplectic Lefschetz pencil obtained
from a pair of approximately holomorphic sections in LkpJ,C, εq. Once k is sufficiently large, the monodromy
of a pencil obtained from a pair in L2kpJ,C, εq is the monodromy of Sqpfq (modulo simultaneous conjugation
and Hurwitz equivalence).

This operation can be used to define an equivalence relation between monodromies that makes the
equivalence in (3.7.1) precise. Let Dg,p,r be the set of r-tuples of Dehn twists whose product is the identity
in ModpSpg q, considered up to simultaneous conjugation and Hurwitz equivalence. There is a map

Sq : Dg,p,r ÝÑ Dg1,p1,r1 (3.7.2)

where g1, p1, r1 are as in Theorem 3.29 that takes an r-tuple (which is necessarily the monodromy of some
pencil by the discussion in Section 1.3) to the r1-tuple that is the monodromy of the stabilized pencil.

The total situation is now the following. For a triple pX,ω, hωq, let f be a Lefschetz pencil (with g, p, r
as before) constructed from a pair of approximately holomorphic sections in LkpJ,C, εq for k “ 2R for
some R P N. Let ΨR P Dg,p,r be the r-tuple that is the monodromy of f . One then obtains a sequence
of Lefschetz pencils f ` for ` ě R, obtained from pairs of sections in L2`pJ,C, εq. By Theorem 3.30, these
have monodromies Ψ` “ Sqp`´RqpΨRq P Dĝ,p̂,r̂ where ĝ, p̂, r̂ are related to g, p, r by iterating the relations in
Theorem 3.29. The stabilization process clearly does not alter the Euler characteristic χ “ r ´ 2p2g ´ 2q of
total space of the Lefschetz pencil (as the total space is unchanged). The initial value of p, which depends
on k and the homology class of the fiber, is related to the cohomology class hω.
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Theorem 3.31. (Donaldson, Auroux, Katzarkov, Gompf, et al. [36]) Let Xχ,h “ tpX,ω, hωqu be
equivalence classes of compact symplectic 4-manifolds up to symplectic isotopy of Euler characteristic χ and
hω “ h. Let Cχ,p0 be the direct limit of the system of maps of sets (3.7.2) where the initial set has p0 “ ϕphωq
for some fixed function ϕ : H2pX;Zq Ñ Z . There is an inclusion

Lef : Xχ,h ÝÑ Cχ,p0

that associates to each pX,ω, hωq (the image in the direct limit of) the monodromy Ψf for a symplectic
Lefschetz pencil f constructed from a pair of section in LkpJ,C, εq for sufficiently large k.

Proof. Suppose that pM,ω, hωq and pM 1, ω1, hωq are not equivalent. If X is not diffeomorphic to X 1, then the
monodromies of assoicated pencils cannot agree by Theorem 1.45, hence they are taken to different elements
by Lef . In the case that X “ X 1 but ω ‰ ω1, suppose, proceeding by contradiction, that they are mapped
to the same. Then there exists a pair of symplectic Lefschetz fibrations f, f 1 on them constructed as in the
proof of Theorem 3.1 with k “ 2` for sufficiently large enough ` that have the same monodromy tuple in
Cg,p,r for some g, p, r. Theorem 3.25 ensures that the two symplectic forms, which are the symplectic forms
canonically associated to X from the two Lefschetz fibrations, are isotopic. For the details involving how p0

should relate to the cohomology class hω via the function ϕ, see [36].

It is expected, however, that a stronger statement is true:

Conjecture 3.32. The map
Lef : Xχ,h ÝÑ Cχ,p0

is a bijection.

This conjecture contains the added assertion that every topological Lefschetz pencil onX must necessarily
arise as the element of a sequence constructed via Theorem 3.1. It is not at all obvious that this is the case.

The potential of Theorem 3.31 and Conjecture 3.32, should it be true, are significant. These results have
reduced the question of the existence of symplectic structures on compact 4-manifolds to questions of pure
topology. These results, however, also have significant limitations. First of all, the form of the uniqueness
statement (Theorem 3.28) that necessitated the direct limit leaves the object Cχ,p0 rather intractable. Second,
although the question of the existence of symplectic structures has been reduced to pure topology, it is not
at all straightforward topology. For high genus surfaces with many punctures, the mapping class group
is an extremely complicated object, many aspects of which are still not well-understood. It is suspected,
therefore, that significant new insight will be needed if this route is to truly deliver a classification of compact,
symplectic 4-manifolds [36].

Even though a complete classification of compact symplectic manifolds using these ideas has remained
elusive, Donaldson’s theorem has had far-reaching consequences throughout symplectic and contact geometry
and smooth topology (as will be seen in the next chapter). In the few years after Donaldson’s theorem, these
techniques were applied to give many useful constructions of symplectic invariants. The approximately
holomorphic techniques developed in the proof were also extended to the odd-dimensional case of contact
manifolds, where they were employed to prove many analogous results [38]. Most recently, Lefschetz fibrations
have provided enormous insight and computational power in the study of the Homological Mirror Symmetry
conjecture [26, 39, 40, 25]. In this last case especially, Lefschetz fibrations continue to produce deep and
surprising results in symplectic geometry and their implications appear to be far from being exhausted.
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Chapter 4

Broken Fibrations and Morse
2-functions

The existence of Lefschetz fibrations (pencils) on symplectic manifolds naturally led to the question of
existence on first near-symplectic and then smooth manifolds. In these two cases, allowing only ordinary
“Lefschetz singularities” is insufficient to guarantee the existence of a fibration, as if such a fibration existed,
the total space would necessarily be symplectic by Theorem 3.22. It was discovered that considering new
types of singularities allows some of the results of the previous chapters to be generalized to arbitrary
smooth 4-manifolds. In particular, one must allow fibrations with “round singularities” whose critical locus
can include an embedded 1-manifold, i.e. a union of disjoint circles. The existence and essentialness of such
singularities therefore provides an obstruction to the total space being a symplectic manifold. In a similar
way, (recall Remark 1.46) the number and monodromy of Lefschetz critical points can provide obstructions
to the total space being a complex manifold. The question of existence of a Lefschetz fibration on smooth
manifolds, and of the number and type of singularities that appear in such a fibration is therefore a question
intrinsically linked to the topology and geometry of the manifold. In the last several decades, this link
has been exploited to construct many interesting manifolds using Lefschetz Fibrations including ones with
exotic smooth structures [41], and whose total space has no complex structure [21]. Much work has also
been done, with varying success, to use Lefschetz fibrations to define invariants and show these invariants
are independent of the fibration structure, hence depend only on the underlying manifolds.

This chapter is concerned mostly with the existence and uniqueness results of Lefschetz fibrations on
smooth manifolds. Sections 4.1 and 4.2 of this chapter provide background and sketch a proof of the existence
result. Section 4.3 develops Morse 2-functions, and Section 4.4 uses these to formulate the uniqueness result.
The final section describes trisections of 4-manifolds, which are an example of a new potential source of
invariants constructed from broken fibrations and Morse 2-functions.

4.1 The Near-Symplectic Case

Throughout this chapter let X (or X4) denote a smooth, closed, orientable 4-manifold. Recall that a 4-
manifold X is near-symplectic if it posses a closed 2-form ω such that ω2 ě 0, and the set on which ω2 “ 0
is an embedded submanifold of dimension 1. The existence of Lefschetz pencils structure on near-symplectic
manifolds was shown by Auroux, Donaldson, and Katzarkov, using an extension of the approximately-
holomorphic techniques from the previous chapter. This result constitutes an important intermediate step,
both logically and historically, between the development of Lefschetz fibration structures on symplectic
manifolds and on smooth manifolds. Here, however, the results are only mentioned briefly and the reader is
referred to [42] for the details.

The Lefschetz pencil structure in this case will be slightly weaker than that in the symplectic case.
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Clearly if the Lefschetz pencil here satisfied the same hypotheses as the symplectic case, Gompf’s Theorem
3.22 would show the total space were truly symplectic rather than only near-symplectic. The Lefschetz
pencils in the near-symplectic case will be called singular or broken Lefschetz pencils, and will include
a second type of singularity besides the standard Lefschetz singularities modeled on pz1, z2q ÞÑ z2

1 ` z
2
2 .

Definition 4.1. A map f : X Ñ S2 has round or quadratic singularities along a 1-dimensional sub-
manifold L if around each point of L there are local coordinates pt, x1, x2, x3q in which f is locally modeled
by

pt, x1, x2, x3q ÞÑ pt, x2
1 ˘ x

2
2 ´ x

2
3q.

The two main theorems of [42] are extensions of Theorem 3.1 and its converse, Theorem 3.22:

Theorem 4.2. (Auroux, Donaldson, Katzarkov) Let pX,ωq be a near-symplectic 4-manifold so that ω2

vanishes along an embedded 1-manifold L Ď X. Then there exists a map f : X Ñ S2 such that f has round
singularities along L and is a Lefschetz pencil on X z L whose fibers are symplectic submanifolds away from
their singular points.

Theorem 4.3. (Auroux, Donaldson, Katzarkov) Let X be a 4-manifold equipped with a map f : X Ñ S2

such that f has round singularities along a embedded 1-manifold L Ď X and f : X z LÑ S2 is a Lefschetz
pencil. Suppose that there is a class h P H2pX;Zq such that hpΣq ą 0 for every component Σ of every fiber
of f . Then there exists a near-symplectic form ω on X that vanishes along L such that the fibers of f are
symplectic submanifolds away from their singular points.

The proof of Theorem 4.2 is long and quite technical, but the main idea is rather intuitive. Briefly, it
is as follows. Given pX,ωq, the construction of Chapter 3 can be repeated almost word for word to obtain
a Lefschetz pencil away from a tubular neighborhood of L. On a tubular neighborhood S1 ˆ B3 of L, a
theorem of Ko Honda [43] shows that there exists the following local model for the symplectic form. On
B3 ˆ R consider

Ω “ dQ^ dt` ˚pdQ^ dtq

where Qpx1, x2, x3q “ x2
1 ´

1
2 px

2
2 ` x2

3q, and ˚ is the Hodge star in the standard metric. Quotienting by
translation along R yields a model form Ω on B3 ˆ S1. Quotienting by both translation and changes of
sign in the B3 coordinates yields a similar model. The result of Honda shows that L always has a tubular
neighborhood where the near-symplectic form has one of these local models. It is not hard to show in these
models that Ω2 “ p4x2

1 ` x
2
2 ` x

2
3q dx1 ^ . . .^ dt vanishes exactly along p0, tq.

These local models around the vanishing set L of ω come equipped with the projection to p´1, 1qˆS1 given
by pQpx1, x2, x3q, tq. Thus one can see that round singularities are defined exactly to be the singularities
occurring in this local model. Now there are have two pieces of a Lefschetz pencil: one on a tubular
neighborhood νL of the vanishing set of ω given in the local model, and one on X z νL. The content of the
proof of Theorem 4.2 is essentially showing that these two pieces can be patched together. This involves, for
example, controlling the behavior of approximately holomorphic sections near the boundary.

4.2 Broken Lefschetz Fibrations

The results of Auroux, Donaldson, and Katzarkov naturally lead to the question of what types of fibrations
exist for arbitrary (closed) smooth 4-manifolds. The investigation of the near-symplectic case demonstrates
that for an arbitrary 4-manifold one cannot hope to find a fibration structure without allowing round singu-
larities. One can hope, however, that passing from near-symplectic manifolds to arbitrary smooth manifolds
does not require the addition of even more types of singularities. This turns out to be true. The existence
of such fibrations can already be deduced for a large class of smooth manifolds. In particular, if X4 is a
manifold with a class ras P H2pX4;Zq having self intersection ras ¨ ras ą 0, then the result for a blow-up of
X4 can be deduced from Theorem 4.2 as follows. For such an X4, Hodge theory guarantees the existence of
a near symplectic form [44]. Choose such a form, apply the theorem to obtain a Lefschetz pencil structure,
then forget the form, and blow-up the pencil to obtain a fibration. In this section, Lefschetz fibrations with
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round singularities on smooth manifolds are investigated without homological restrictions or reference to the
symplectic, near-symplectic, and approximately-holomorphic techniques used thus far.

One may consider fibrations of the following type. Recall that at each point of a smooth map f : X Ñ Y
one can consider the rank of Df , which for maps to S2 is 0,1, or 2. The rank k locus of f is the set on which
Df has rank k.

Definition 4.4. A Broken Lefschetz Fibration (BLF) on a smooth 4-manifold X4 is a map f : X4 Ñ S2

whose singular set satisfies the following:

• The rank 1 locus of f is an embedded 1-manifold (i.e. a link) L Ď X4 whose image fpLq Ď S2 is
also an embedded 1-manifold, and at points of L there exist local coordinates in which f takes the form
pt, x, y, zq ÞÑ pt, ˘x2 ˘ y2 ˘ z2q.

• f : X4 z LÑ S2 is a Lefschetz fibration, i.e. the rank 0 locus of f is a discrete set A Ď X4 and around
each point of A there exist coordinates in which f takes the form pz1, z2q ÞÑ z2

1 ` z
2
2 .

Notice that at a point of L in coordinates of the above form, the rank 1 locus is pt, 0, 0, 0q Ñ pt, 0q. Thus
along the rank 1 locus, f looks locally like a 1-parameter family of 3-dimensional critical points in Morse
coordinates. In a slight abuse of terminology, both LY A Ď X4 and fpLY Aq Ď S2 are called the critical
locus of f , denoted critpfq. A single component of the link L will be referred to as a “round singularity”.
An isolated critical point, which in the previous chapters was the only type of singularity, will now be referred
to as a Lefschetz singularity.

Away from the critical locus, all points of S2 are regular values hence the fibers are compact surfaces. A
broken fibration is said to be fiber-connected if all the fibers are connected, and indefinite if each point of
L is modeled on an indefinite (index 1 or 2) Morse singularity times an interval, i.e. the chart in Definition
4.4 takes the form pt, x, y, zq ÞÑ pt, x2 ˘ y2 ´ z2q.

Consider, for a moment, the local behavior when crossing the critical locus at an indefinite round
singularity. There are local coordinates in which the map f around the rank 1 locus takes the form
fpt, x, y, zq “ pt, x2 ` y2 ´ z2q as a map B4 Ñ D2.

crit(f) crit(f)

Figure 4.1: The genus of the fiber changing when crossing the critical locus both in the local model (left)
and globally (right).
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In these coordinates the horizontal axis pt, 0q is the critical locus. In the upper half-plane the fiber in B4

is the hyperboloid x2 ` y2 ´ z2 “ c (Figure 4.1 top left). Moving down, the fiber over pt, 0q is the singular
hyperboloid that is two cones put end to end. In the lower half plane the fiber in B4 is x2 ` y2 ´ z2 “ ´c
which is a union of two disks (Figure 4.1 bottom left). When one considers a region in S2 intersecting the
critical locus as on the right, the B4 Ď X4 in the total space intersects each fiber in an open submanifold
(with boundary) that is diffeomorphic to the fiber in the local model. Thus as one crosses the critical locus
in S2, the waist of a cylinder in the fiber of genus g ` 1 (Figure 4.1 top right) contracts to a single point in
a singular fiber above the critical locus, and then separates into two disks on the other side of the critical
locus (Figure 4.1 bottom right). Thus the effect of crossing an indefinite round singularity is to
change the genus of the fiber by one. If f is locally modeled on an index 2 critical point, the direction
of the increasing genus is reversed.

Note 4.5. One should notice that a round-singularity has no well-defined index. If there exists a coordinate
chart in which the fibration is given by an interval times a standard Morse critical point index k, given by
pt, x, y, zq Ñ pt, fpx, y, zqq then composing the chart with the diffeomorphism of the plane px, yq ÞÑ px,´yq
changes f to ´f , giving a new chart in which the fibration is given by an interval times a standard index
4 ´ k critical point. This change of coordinates flips the coordinate box on the left in Figure 4.1 upside
down, making the Morse function f valued on the y-axis turn into ´f . Thus the index of a round singularity
changes depending on which side one approaches it from. One can, however, refer to the index of critical
points once a local coordinate chart is chosen, which specifies a single direction as“up”. Crossing in direction
of increasing genus, a round singularity is always an index 1 critical point, and crossing in the direction of
decreasing genus it is index 2. Although the index is not well-defined, it can still be said a round-singularity
is of index 0/3 (definite) or of index 1/2 (indefinite).

Examples

In some cases Broken Lefschetz fibrations can be constructed explicitly. The simplest example is constructed
by gluing together three pieces. The three pieces are two caps X` » S2 ˆD2 and X´ » T 2 ˆD2, and a
middle piece W » C ˆ S1 where C is the standard cobordism between T 2 and S2 which can be visualized
as a solid torus with a ball removed (Figure 4.2(a)). W comes equipped with a projection to the annulus
given by px, θq ÞÑ pfpxq, θq where f : C Ñ r0, 1s is a Morse function on the cobordism C with a single critical
point. A fibration can be built by gluing the two boundary components of W to the boundaries of X`, X´

respectively.

X+

X�

W crit(f)

(a) (b)

Figure 4.2: (a) the standard cobordism between T 2 and S2. (b) a fibration obtained from gluing X` with
its projection to the disk as the northern hemisphere, X´ over the southern hemisphere, and W over the
annular region containing the equator. Gluing data must be chosen to glue along the latitudes indicated in
red.

The gluing data required are two maps S1 Ñ DiffpS2q and S1 Ñ DiffpT 2q that glue the fibers above
the two circles where disks are glued to the annulus. Of course, the three pieces above and gluing data (up
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to isotopy) specifies a 4-manifold uniquely (up to diffeomorphism), as does an analogous construction with
multiple annular regions and gluing data. The trick is to know what manifold has been constructed.

Example 4.6. (Trivial Gluings) The simplest example is that when the gluing data is trivial. Even in
this simplest possible case, it is quite tricky to identify the 4-manifold, which was originally done in [42].
The first step is to identify X´ Yid W with a known space. The space turns out to be S1 ˆ S3 z L where
L Ď θ0 ˆ tS

3u is an unknot in S3 for a fixed value of θ. To see this, consider S3 Ñ D2 the projection onto
a plane in R4. Here, the fiber above each point of the interior is a circle, and the fibers above the boundary
are single points. It is helpful to visualize composing with the projection of the outer annulus to its circle, to
create a new representation of S3 over the disk with fiber S1 in the interior and fiber D2 on the boundary.
Taking the product with S1 obtains S1 ˆ S3 projected to the disk with fiber T 2 in the interior and a solid
torus on the boundary.

Let θ be a coordinate for the S1 component, and L be an unknot projecting to the boundary that is
transverse to fibers and whose value in the S1 component is fixed at some θ0. L intersects each solid torus
fiber above the boundary in a single point. Removing a tubular neighborhood of L thus removes a ball
from each solid torus, leaving the fibers above the boundary as the standard cobordism C. Extending the
projection outward radially by the Morse function f on the cobordism C re-obtains the original abstract
fibration X´ YidW .

L
(a) (b)

Figure 4.3: (a) A visualization of S1 ˆ S3 projected to the disk. Fibers in the interior are tori and fibers
on the boundary are solid tori. In both, the “vertical” circle of the tori are the first factor in S1 ˆ S3. The
knot L (blue) is constant in the S1 factor and projects to the boundary BD2. (b) the space after removing
a tubular neighborhood of L.

To obtain a closed 4-manifold, one glues S2 ˆD2 to the tubular neighborhood of L along their common
boundary S1ˆS2. To see the resulting manifold, consider the decomposition S4 “ pS1ˆB3qYid pD

2ˆS2q.
Gluing S1ˆB3 to the boundary of X´YidW and D2ˆS2 to the boundary of X` realizes S4 as a “bridge”
between the two pieces, hence the effect of the gluing is connect summing and one concludes the total space
where all gluing data is trivial is pS1 ˆ S3q#pS2 ˆ S2q [42].

Example 4.7. (DAK 4-sphere) If a non-trivial gluing is used, one can obtain the much more familiar
manifold S4. This presentation of the sphere is originally due to Donaldson, Auroux, and Katzarkov.
Consider the gluing map of T 2 ˆ S1 to itself that twists once around one of the loops of T 2. In coordinates,
ps, tq on T 2 and ϕ on S1 the map is given by ps, t, ϕq ÞÑ ps, t` ϕ,ϕq.

To see the resulting total space, one repeats the construction of X´ YW with a new gluing map. The
gluing is chosen to rotate once around the coordinate of the S1 factor of S1 ˆ S3. Rotating the boundary
T 2 of the solid torus once while circling around the disk, however, is the same as rotating the knot L that
was removed. Thus with the new gluing, L twists once around the S1 factor as it goes around the boundary
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of the disk. L then intersects the S3 factor once for each θ P S1, so the effect of removing the tubular
neighborhood of L is now to remove a ball from tθuˆS3 for each θ P S1. The resulting total space is S1ˆB3

with a broken fibration over the disk. Gluing this to X` by the identity map on the common boundary
S1 ˆ S2 is exactly the decomposition S4 » pS1 ˆB3q Yid pS

2 ˆD2q.

Example 4.8. (Broken Fibrations on M ˆS1) The above presentation of S1ˆB3 as a broken fibration
over the disk allows one to easily give a broken fibration on M ˆ S1 for any closed 3-manifold M . Let
f : M Ñ r0, 1s be a Morse function on M and define a fibration to the annulus by px, θq ÞÑ pfpxq, θq. A
round singularities appears in the annulus for each critical point of f . See Figure 4.4 (a).

For ε sufficiently small that there are no critical points within ε of the absolute maximum and minimum
of f , the preimages f´1r0, εq and f´1p1 ´ ε, 1s are diffeomorphic to B3. Thus the pre-images of tubular
neighborhoods of the boundary circles of the annulus are diffeomorphic to S1 ˆ B3. Removing these pre-
images and gluing in the fibration of S1ˆB3 (that was one of the two pieces used to make S4 in the previous
example) over the disk results in a broken fibration over S2. In this case, a parameterized version of the
Morse Lemma can be used to obtain the coordinate charts in the definition.

f

M

S1 ⇥ B3

S1 ⇥ B3

S1 ⇥ f�1(", 1 � ")

(a) (b)

Figure 4.4: (a) a broken fibration of M ˆ S1 over the annulus with round singularities indicated (green).
(b) a broken fibration of M ˆS1 over the sphere with the fibers in different regions indicated. Disks around
the north and south poles are the fibration on S1 ˆB3. The middle region has a round singularity for each
critical point of f (green), and the fibers can be surfaces of higher genus.

Example 4.9. (Definite Singularities) Definite singularities in a broken fibration, i.e. ones whose index
in coordinates is 0 or 3, can be rather cumbersome. In particular, they can result is disconnected fibers, and
region of S2 where the fiber is empty. Consider, for a simple example, a three manifold M “M1 \M2 that
has two connected components each of which is a closed 3-manifold. Let f : M Ñ R be a Morse function
so that f´1r0, 1s “ M1 and f´1r2, 3s “ M2. Consider the same construction as the previous example (4.8)
giving a broken fibration of M ˆ S1 over S2. In this case, a region around the equator has two round
singularities of index 0/3. Along a longitude, these are the maximum on M1 and the minimum on M2 (or
the reverse in the opposite direction). Along annular regions of increasing latitudes, the fiber is first S2, then
it is empty, then it is again S2. In particular, there is an annular region with the empty fiber, after which an
index 0 critical point begins a new component of the manifold. To avoid situations like this, the condition of
being fiber connected and having only indefinite (index 1/2) round singularities is often imposed on broken
fibrations.
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Handle Attachments

In Section 1.3 a method to obtain a handle-body decomposition from a Lefschetz fibrations was described.
In that case, the construction began with the trivial bundle Sg ˆ D2 of the genus g surface over the disk,
and each time the base was expanded to include another Lefschetz singularity, the total space changed
by attaching a 2-handle to the vanishing cycle. In the case of broken fibrations, the change to the total
space when expanding a fibration to include a round singularity can be described in terms of “round handle
attachments”.

Definition 4.10. A round k-handle on an n-manifold X is a copy of S1 ˆ pDk ˆDpn´1q´kq attached via
a gluing map S1 ˆ BpDk ˆDpn´1q´kq Ñ BX.

Thus a round k-handle looks like the product of S1 with a k-handle of one dimension lower. Expanding a
Lefschetz fibration to include a round singularity changes the total space by adding a round handle. To see
this, take a broken fibration over a disk, and consider extending it by attaching a fibration f : X Ñ S1ˆr0, 1s
over the annulus which contains a single round singularity at S1 ˆ 1{2. For now, say the inner boundary of
the annulus is the lower genus fiber Fg. For each fixed t P S1, the pre-image of the ray pt, rq for r P r0, 1s
is a cobordism Ct between Fg and the high-genus fiber Fg`1. The restriction of the fibration to the r-
coordinate is a Morse function f |t : Ct Ñ r0, 1s and has a single (index 1) critical point at r “ 1{2. In
fact, restricting the coordinate chart around the round singularity in which the fibration takes the form
fpt, x, y, zq “ pt, x2 ` y2 ´ z2q to fixed t gives Morse coordinates on the cobordism. By standard Morse
theory, the cobordism Ct is constructed from the product Fg ˆ r0, 1s by attaching a 3-dimensional 1-handle
to a pair of points in the the fiber above r “ 1{2 ´ ε for some small ε. This occurs for all t P S1, thus the
total effect is to add a round 1-handle attached to a pair of knots pK1,K2q each of which is a section of the
fibration over S1, i.e. each is transverse to fibers and wraps once around the annulus. The knots pK1,K2q

intersect each cobordism Ct in the descending sphere of the single critical point of f |t. The story is the same
for a round singularity of index 2 (moving outwards) on the annulus: a round 2-handle is attached to the S1

family of descending spheres. A round 2-handle, however, is just an upside-down round 1-handle, so most
of the time it is only necessary to consider round 1-handles.

round 1-handle

K1

K2

Figure 4.5: A round 1-handle attached to the boundary of a broken fibration along a pair of knotsK1,K2 (red,
green). Along each perpendicular ray, a 3-dimensional 1-handle is attached in the fiber to the intersection
of the fiber with K1,K2, which is the descending sphere of the Morse function f |t.
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Round handle attachments can also be expressed in terms of standard handle attachments. Attaching
a round 1-handle is equivalent to attaching a single 4-dimensional 1-handle and a single 4-dimensional two
handle. They are attached as follows: first, specify a point on each of pK1,K2q and attaches a one handle
to these two points making a “bridge” between the two knots, as in Figure 4.6(b). One then attaches the
two handle so that the attaching sphere travels around both K1 and K2 passing over the bridge twice to go
between them. One must remember, however, that the two knots may twist around each other as they go
around, which specifies a framing for the two handle.

K1

K2

X
X

(a) (b)

Figure 4.6: (a) Attaching a round 1-handle to a pair of knots K1,K2 (red, green). (b) the result of (a) is the
same as attaching a 1-handle bridging the two knots and a single 2-handle running along both (magenta).

.

The Existence Theorem

The existence of broken Lefschetz fibrations on closed orientable 4-manifolds was originally proved by Kirby
and Gay [45], and later strengthened by Lekili [46].

Theorem 4.11. (Kirby, Gay, Lekili) Every closed, oriented 4-manifold admits a broken Lefschetz fibra-
tion.

The approach of Kirby and Gay was to construct a broken Lefschetz fibration on a handle-body presen-
tation of a 4-manifold. Briefly, their proof goes as follows.

Let X be a compact 4-manifold, and consider a handle-body decomposition. Let Xp1q be the union of
B4 and the 1-handles of X. This 1 handle-body, which is diffeomorphic to Sg ˆD2 for some surface Sg of
genus g, can be given a Lefschetz fibration over the disk by the projection. One can show that, in general,
a broken Lefschetz fibration can be extended over an attached round 1-handle. Recall the above discussion
that a round 1-handle can be thought of as a pair of a 1-handle and a 2-handle. The trick is to perform all
2-handle attachments as part of such a pair. Suppose, then, that H is a 2-handle attached to BXp1q along
a framed knot L. To write H as part of a round handle pair, introduce a canceling 1-2 handle pair near L
where the two handle of the pair is attached in a fiber with a framing ´1 relative to the fiber (recall the
discussion preceding Proposition 1.42). Push L over the 1-handle of the canceling pair so that an arc of L
comes out the other side, as in Figure 4.7(b). The result is the same as attaching a round handle along the
pair of knots that are L and an unknot nearby, and then attaching the two handle from the canceling pair,
as in Figure 4.7(c). The fibration can be extended over the round 1-handle with a round singularity, and
over the ´1-framed 2-handle with a standard Lefschetz singularity. Introducing a canceling pair of critical
points for every 2-handle thus allows one to perform each 2-handle attachment as part of a round 1-handle
pair.
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L

cancelling pair

L

round 1-handle

2-handle

L

(a) (b)

(c)

Figure 4.7: (a) attaching a cancelling pair near the knot L (blue). (b) pushing L over the 1-handle of the
cancelling pair. (c) the same handle attachments with L now the 2-handle of a round handle pair (blue,
green). The remaining 2-handle (magenta) runs over the 1-handle of the round handle pair.

Similar to Xp1q, there is a fibration over the disk of the handle-body consisting of the union of the 3
and 4-handle of X. These two handle-bodies can be glued along their boundaries to give a complete broken
Lefschetz fibration. The details of the proof in many places involves keeping track of the structure of an open
book decomposition on the boundary in which the handle attachments occur, and extending this structure
over those attachments. For the gluing of the two pieces along their boundaries, some there are subtleties
about contact structures on the boundaries that come into play.

Remark 4.12. One should note that Theorem 4.11, in contrast to the existence theorems for symplectic
and near-symplectic manifolds, guarantees the existence of a true fibration on X4, rather than a pencil.

Remark 4.13. The original theorem of Kirby and Gay in fact proves the existence of fibrations allow-
ing“achiral Lefschetz singularities” which are isolated critical points locally modelled on pz1, z2q ÞÑ z2

1 ` z
2
2 .

Thus they consider “broken achiral Lefschetz fibrations” allowing all three types of singularities. It was
later proved by Lekili [46] that achiral singularities can be transformed into round and (chiral) Lefschetz
singularities by a certain homotopy, thus reducing to the case of (chiral) broken Lefschetz fibrations. An
alternative existence proof by Akbulut and Karakurt [47] constructs BLFs on handle-bodies similar to the
approach of Kirby and Gay but eliminates the need for achiral singularities from the start.

4.3 Morse 2-functions

Given the above existence theorem for broken Lefschetz fibrations, it is natural to ask when two such
fibrations describe the same 4-manifold. Ideally, one would have a correspondence akin to that of Theorem
1.45 giving a correspondence between diffeomorphism classes of 4-manifolds and broken Lefschetz fibrations
up to some equivalence. The uniqueness theorem in the next section, due also to Kirby and Gay [48], will
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give a result of this form, though not as strong as Theorem 1.45. It turns out that a new but related type of
map X4 Ñ S2 called a Morse 2-function provides the most natural formulation of the uniqueness theorem.
This section, therefore, serves as a primer on Morse 2-functions.

Example 4.8 in the previous section and the local model for round singularities in the definition of broken
fibration (Definition 4.4) suggest that considering broken fibrations as local 1-parameter families of Morse
functions is a useful perspective. This perspective is already implicitly present in the work of Auroux,
Donaldson, and Katzarkov [42], and Kirby and Gay [45], but was first truly exploited by Lekili when
considering homotopies of broken Fibrations [46] to remove achiral singularities. Williams [49] extended this
result to prove a first uniqueness theorem for broken fibrations. Building on the work of Lekili and Williams,
Kirby and Gay isolated the idea of fibrations that are locally families of Morse function, dubbing them Morse
2-functions [48]. Thus Morse 2-function are historically dependent on Lefschetz fibrations, but not logically
so since they are defined and studied completely in terms of classical Morse theory and singularity theory
that have been well-known for decades. With the language of Morse 2-functions, Kirby and Gay were able
to elegantly phrase and strengthen the uniqueness theorem of Williams.

First, it is necessary to recall some known results about homotopies of Morse functions.

Theorem 4.14. (Cerf) Let f1, f2 : X4 Ñ r0, 1s be two Morse functions with distinct critical values
whose gradient flows with respect to a fixed metric g are Morse-Smale. Then there exists a homotopy
ft : X4 ˆ r0, 1s Ñ r0, 1s between them such that ft is Morse with distinct critical values and whose
gradient flow with respect to g is Morse-Smale at all but finitely many times ti P r0, 1s. Moreover, at these
times ti P r0, 1s, only the following behaviors can occur:

• (Birth-death) A canceling pair of critical points is born or cancels resulting in a non-Morse function
with a single degenerate critical point at t “ ti.

• (Crossing) Two distinct critical values cross, resulting in a Morse function with non-distinct critical
values at t “ ti.

• (Handle-slide) A flow-line between two critical points of the same index appears at t “ ti, resulting in
a Morse function whose gradient flow is not Morse-Smale.

In the third point, such a value ti results in a handle-slide of the handles of the critical points in question
(see [16] Chapter 4-5 for a detailed exposition of handle-slides). The action of such a homotopy can be
conveniently visualized by plotting the critical values as a function of t, as shown in Figure 4.8. Such
a picture is known as a Cerf Graphic. In the graphic, births and deaths appear as left or right cusps
respectively, and crossings appear as crossings. Handle-slides must be labelled specifically in the graphic, as
no behavior on critical values indicates when one has occurred.

1

1

2

2

1

2

2

2

t

ft(x)

Figure 4.8: A Cerf graphic with critical values (green) labelled with their indices. The horizontal axis is the
parameter t, and the vertical axis is the value of the Morse function.
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It is helpful to think of this theorem as being a “transversality condition” within the space of smooth
functions C8pXq. It is well-known that Morse function (with Morse-Smale gradient flows and distinct critical
values) form an open, dense set of C8pXq. One can imagine the subset on which these are not satisfied
as a codimension 1 subset of C8pXq. This statement is deliberately left imprecise, as it is only meant to
provide intuition. A homotopy ft is just a path r0, 1s Ñ C8pXq and the above theorem asserts that it can
be chosen transverse to this codimension 1 subset, so that it intersects only at finitely many points. This
picture moreover suggests that in fact a generic path should satisfy the conditions of Theorem 4.14, and this
can be formulated and proved rigorously (although the proof is omitted here).

Theorem 4.15. Given two Morse functions f0, f1 as in Theorem 4.14, there is an open and dense subset of
the space of paths tgt : I Ñ C8pXq | g0 “ f0 , g1 “ f1u whose endpoints are f1, f2 such that the conclusion
of Theorem 4.14 holds.

Definition 4.16. A homotopy for which the conclusion of Theorem 4.14 holds is called a generic homotopy
of Morse functions.

Now, Morse 2-functions can be defined precisely. Intuitively, these are functions to surfaces that look
locally like generic homotopies of Morse functions.

Definition 4.17. A Morse 2-function is a smooth map f : X4 Ñ Σ for some surface Σ (possibly with
boundary) such that the following to conditions hold.

• Df P HompTX4, f˚TΣ2q is tranvsere to the rank 0 and 1 loci, thus by counting dimensions the rank
1 locus is an embedded 1-manifold in X4 and the rank 0 locus is empty.

• At each point p P Σ there is a coordinate neighborhood U » I ˆ I such that f´1pUq » I ˆM3 for
a 3-manifold M3 and in these coordinates f takes the form pt, xq ÞÑ pt, ftpxqq where ft is a generic
homotopy of Morse functions on M3.

As in the case of broken fibrations, the rank one locus (and its image in Σ) is called the critical locus and
denote critpfq. In contrast to broken Lefschetz fibrations, although the critical locus is still embedded in X,
the image in Σ need not be. In general, it will be a complicated tangle of immersed circles with cusps and
crossings. Most often, Morse 2-functions to Σ “ S2 are considered, but at times it is also useful to consider
the cases of Σ “ D2 or I ˆ I.

crit(f)

X4

Figure 4.9: A Morse 2-function to S2 with the critical locus shown (green).

The behavior when crossing the critical locus in the case of Morse 2-function is rather more complicated
than in the case of broken fibrations. As in that case, the components of the critical locus do not have
a well-defined index, but the index is still well-defined after specifying a normal direction. The adjectives
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fiber-connected and indefinite apply to Morse 2-functions as well, meaning the fibers are all connected and
the critical locus is absent of index 0/3 components respectively. In each region enclosed by the critical
locus, the fiber is a fixed closed surface. If a Morse 2-function is fiber-connected, the fiber in each region can
be specified by a labelling of the genus. Across each indefinite component of the critical locus, the genus
changes by one. More specifically, an indefinite Morse 2-function has the following local behaviors near
cusps, crossings, and embedded regions of the critical locus.

(Embedded regions) Near a point x P critpfq that is neither a cusp nor crossing, there is a local
coordinate chart, as in the definition, so that f is modeled by a generic homotopy of Morse function pt, xq ÞÑ
pt, ftpxqq where ftpxq has a single critical point. By a parameterized version of the Morse Lemma, one can
show there is a coordinate chart in which f takes the form pt, x1, x2, x3q ÞÑ pt, x2

1 ˘ x2
2 ´ x2

3q. The local
behavior near x is therefore identical to the case of a Broken Lefschetz fibration: the genus changes by
exactly 1 when crossing critpfq. Crossing critpfq in the direction from which the critical locus appears as
index 1 always increases the genus. In this direction, the higher genus fiber is obtained from the lower genus
one by attaching a 1-handle to a pair of points; in the opposite direction the lower genus fiber is obtained
by collapsing a simple closed curve in the fiber. In a coordinate chart pt, xq ÞÑ pt, ftpxqq, this pair of points
and simple closed curve are the ascending and descending spheres ft respectively. By a slight abuse of
terminology, the simple closed curve that collapses is called the vanishing cycle at x. See Figure 4.10(a).

(Cusp regions) Near a point x P critpfq where a cusp occurs, there are local coordinates in which f
looks like a generic homotopy of Morse functions with a birth-death occurring. Standard singularity theory
[48] can be used to show this guarantees the existence of local coordinates in which f takes the form:

pt, x1, x2, x3q ÞÑ pt, x2
1 ` x

3
2 ˘ pt´ t0qx2 ´ x

2
3q.

Locally, the cusp appears as a pair of index 1 and 2 components of crit(f) that meet and annhilate. Because
moving into the region enclosed by the cusp must be an index 1 crossing for exactly one of these components,
the region inside the cusp is always the region of higher genus. Near the cusp, there are two distinct vanishing
cycles for the two components of critpfq. In a local Cerf graphic pt, xq ÞÑ pt, ftpxqq, these are the ascending
sphere of the index 1 critical point and the descending sphere of the index 2 critical point of the canceling
pair. The two vanishing cycles therefore have a single transverse intersection (see Figure 4.10(b)), as this
must be the case for the ascending and descending spheres of a canceling pair.

vanishing cycle

g = 1

g = 2

crit(f)

1

2

2

2

vanishing cycles

g = 2

g = 1
crit(f)

g = 2 g = 2

g = 1

g = 3

2

2

2

crit(f)

(a) Embedded Region (b) Cusp Region (c) Crossing Region

Figure 4.10: The behavior in the three types of regions of the critical locus (green). The genus in each region
is labelled. Crossing the critical locus in an index 2 direction decreases the genus by collapsing a vanishing
cycle. Vanishing cycles collapse when moving out of high genus region along arrows of the same color.
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(Crossing regions) Near a point x P critpfq that is a crossing, a neighborhood in S2 is separated into
four quadrants. One can check the several possible combinations the indices of the two components of critpfq
that cross to show that at each crossing the four quadrants have genus g, g ` 1, g ` 1 and g ` 2, with the
lowest and highest genus regions being opposite. Moving out from the highest genus region, the vanishing
cycles toward the two sides of the crossing need not agree. See Figure 4.10(c).

There is an important subtlety regarding vanishing cycles. Since a Morse 2-function is locally a generic
homotopy of Morse functions, handle slides can occur at various isolated points in critpfq throughout S2.
The effect of a handle slide is to alter the descending sphere (vanishing cycle) of a critical point by sliding
over another (see [16] Chapter 4-5). Since in a Cerf graphic, nothing about the behavior of the critical values
can indicate when a handle-slide has occurred, there is no indication from critpfq Ď S2 when a handle-slide
occurs either. It is therefore false, for example, that the vanishing cycle exiting a region at one point must
be the same as the vanishing cycle exiting at a nearby point, even if no cusps or crossings occur in between.

Examples

Example 4.18. Any broken fibration with no Lefschetz singularities is automatically a Morse 2-function.
In particular, Examples 4.6-4.8 from Section 4.2 are all as such. A standard Lefschetz fibration, however, is
a broken fibration but not a Morse 2-function since the rank 0 locus is non-empty.

Example 4.19. (More 2-functions on Cobordisms) A cobordism X between two three-manifolds
M1,M2 admits a Morse 2-function to the square I ˆ I. Suppose for a second, the cobordism were trivial
I ˆM . Then one could take a generic homotopy of Morse function ft : M Ñ I and define f : I ˆM Ñ I ˆ I
by fpt, xq “ pt, ftpxqq so that critical locus of f appears in I ˆ I as the Cerf graphic of ft. The case where
X is a non-trivial cobordism is similar, except the Cerf graphic will have vertical tangencies. In general, if
one has a Morse 2-function f on some 4-manifold to I ˆ I, it is possible to check by computing derivatives
in the local model guaranteed by the definition, that the projection π ˝ f to the horizontal coordinate is
itself a Morse function, and the critical points occur exactly at the vertical tangencies (see Figure 4.11).
One can therefore construct a Morse 2-function on a Cobordism X as follows. Take g : X Ñ r0, 1s a Morse
function. This will be the horizontal. Each fiber Mt :“ g´1ptq is a 3-manifold. Let ft : Mt Ñ I be a Morse
function on the fiber. It is possible to extend the family ft to the singular fibers to obtain a smooth function
f : X Ñ I ˆ I such that the projection to the horizontal is π ˝ f “ g and f “ ft on each level set Mt. The
result is that the critical locus of f in I ˆ I looks like a Cerf graphic for values of t in between the critical
values of g, with a vertical tangency appearing at each such critical value, as shown in Figure 4.11.

t

ft(x)

Figure 4.11: The image of a Morse 2-function f : X Ñ I ˆ I as in Example 4.19. The vertical tangencies,
which are the critical values of the projection π ˝ f , are indicated (red).

Example 4.20. Similar to the case of Cobordisms, a Morse 2-function on an arbitrary 4-manifold X4 to
S2 can be constructed from the data of a Morse function on X4 and a Morse function on every level set.
Roughly, this process goes as follows (see [50] for the details). First, a Morse 2-function to the plane is
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constructed, then it is corrected to one to S2. Let g : X4 Ñ r0, 1s be a Morse function with ordered critical
values, say t1, ..., tm. This copy of the interval will be the x-axis in the plane. The fiber g´1p0q is just a
point, and projects to the leftmost point in Figure 4.12(a). For t P r0, tmq the fiber g´1ptq is a copy of S3,
and can be given a Morse function with exactly 2 critical values. Passing an index 1 critical value ti changes
the fiber of g by attaching a 4-dimensional 1-handle, and the fiber becomes S1 ˆ S2, which can be given a
Morse function with a single critical point of each index 0,1,2,3. As in the case of cobordisms, the critical
point of g appears as a vertical tangency. Continuing this process, one obtains a Morse 2-function of the 1
handle-body of g as in Figure 4.12(a) with one vertical tangency for each index 1 critical point of g.

1-handles

0-handle

1
0

1

1
0

1

1

2

1-handles

0-handle

2-handle

1
0

1

1

2

1-handles 2-handles 3-handles

0-handle 4-handle

Cerf
graphic

(a) (b) (c)

Figure 4.12: The construction of a Morse 2-function to the plane as in Example 4.20. (a) shows the critical
locus of f on the 1 handle-body. In (b), a single 2-handle is attached. In (c), all the 2-handles have been
attached and the 3 and 4 handle-body in joined on the right.

The next step is to extend the Morse functions on the fibers over the index 2 critical points of g. Attaching
a 4-dimensional 2-handle is the same as attaching an interval times a 3-dimensional 2-handle. Thus the 2-
handle attachments can be made in this way, and the projection extended over them in a small rectangular
offshoot as in Figure 4.12(b). The one subtlety here is that one wants the attaching cirlce to lie in a surface
that is a level-set of the vertical Morse function on the rightmost fiber. In the surface the attaching circle
may a priori have self-crossings, but this can be avoided by introducing a canceling 1-2 handle pair for each
index 2 critical point of g. These canceling pairs appear as arcs with left cusps in Figure 4.12(b). Once all
the 2-handles are attached, one obtains a Morse 2-function on the 2-handle-body whose boundary g´1pt1q
has a fixed Morse function, h1. Then, the same construction as for the 1-handles can be applied to ´g to
obtain Morse 2-function on the 3 and 4 handle-body of X, whose boundary g´1pt1q has a Morse 2-function
h2. By choosing a generic homotopy between the Morse functions h1, h2 on g´1pt1q , the two pieces can be
joined be a Cerf graphic as in Figure 4.12(c). This gives a Morse 2-function to the plane. To correct this to
a Morse 2-function to S2, notice the outermost ring of the critical locus is index 0 moving in (since the fiber
is empty in the outer region of the plane), hence as in Example 4.8, an S1 ˆ B3 neighborhood of the outer
ring can be removed and replaced with the broken fibration of S1ˆB3 over the disk used Examples 4.7 and
4.8. This results in a Morse 2-function to the 2-sphere.

Remark 4.21. It is interesting to note there is a clear similarity between the definition of a Morse 2-function
and that of a Lefschetz bifibration. One difference is that a Lefschetz bifibration f : X Ñ C2 as formulated
in Chapter 2 has a second projection of the base to a copy of C, giving a “preferred” direction in along the
fibers of this second projection. This was also present in Example 4.20 when the base was simply the disk,
as the horizontal projection was a normal Morse function. By either requiring a Morse 2-function to come
with a second map π : S2 Ñ r0, 1s so that the composition π ˝ f : X4 Ñ r0, 1s is also Morse, or removing the
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second map π from the definition of Lefschetz bifibration would allow one to formulate a slight variant on
these two structures so that the definitions are identical, up to replacing “smooth” with “holomorphic”.

Remark 4.22. It is at first, perhaps, tempting to think that a diagram of S2 decorated with an immersed
link containing only cusps and crossings and with each region labelled with a genus for the fiber above that
region specifies a 4-manifold. This is false, and would be akin to a manifold being specified by drawing the
interval r0, 1s marked with the critical points of a Morse function. In both cases, gluing data is required. In
order to reconstruct a closed 4-manifold from the critical locus of a Morse 2-function, one must specify both
a genus and gluing data across the boundary of each region. Even then, it is not the case every collection
of such data specifies a 4-manifold. The question of what data is needed to reconstruct a closed 4-manifold
from the critical locus of a Morse 2-function is answered completely in [51].

4.4 Uniqueness of Broken Lefschetz Fibrations

This section combines the two previous sections to formulate the existence theorem for broken fibrations in
terms of Morse 2-functions. This result is rather more complicated than Theorem 1.45, which can be thought
of as a uniqueness theorem for standard Lefschetz fibrations, for the following reason. When considering two
different broken fibrations that might have the same total space, the critical loci can look very different in
S2, making it not obvious when two are “the same”. This problem was hardly present in the case of true
Lefschetz fibrations, since isolated points in S2 can always be rearranged by isotopy. Thus up to an isotopy
of S2 any two true Lefschetz fibrations with the same number of critical points have effectively the same
critical locus. In contrast, two broken Lefschetz fibrations can have the same number of components of the
critical locus in X4, but different arrangements of the components that are not isotopic through embedded
links in S2. It is therefore necessary to consider homotopies of broken Lefschetz fibrations that re-arrange
the critical locus through functions whose critical locus is not embedded. This naturally leads to Morse
2-functions.

The structure of a Morse 2-function also appears naturally from Lefschetz singularities when considering
homotopies of broken fibrations. Lefschetz singularities, while stable under complex perturbations, degener-
ate into a Morse 2-function configuration under real perturbations. Consider the following perturbation of
the local model for a Lefschetz singularity:

fspz1, z2q “ z2
1 ` z

2
2 ` sRepz1q.

Or in real coordinates z1 “ x` iy, z2 “ z ` iw,

fs “ px
2 ´ y2 ` z2 ´ w2 ` sx, 2xy ` 2zwq.

For s “ 0 the critical locus is the isolated Lefschetz singularity. For s ą 1, the critical locus degenerates into
a circle which projects to a 3-cusped curve as shown in Figure 4.13. To see this, note the differential is

Dfs “

ˆ

2x` s ´2y 2z ´2w
2y 2x 2w 2z

˙

.

For s ą 0 the differential has rank 1 only where both w “ z “ 0 and the determinant of the first block
vanishes, i.e. where 4x2 ` 4y2 ` 2xs “ 0. The solution set can be parameterized by θ as p´ s

4 p1 `

cospθqq, s4 sinpθq, 0, 0q. The critical locus in S2 is therefore parameterized by p s
2

16
p1`cos θq2

2 ´ s2 sin2 θ
16 ´ s2

4 p1`

cos θqq,´ s2

8 sin θp1 ` cos θqq which is the 3-cusped curve in Figure 4.13. It is possible to show, that this
three-cusped curve is stable under real perturbations.
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s ! 1

crit(f1)
Lefschetz singularity

Figure 4.13: Perturbing a Lefschetz singularity.

Akin to the definition of generic homotopies of Morse function, one can define a homotopy of Morse
2-functions to be one that looks locally like a 2-parameter family of Morse functions.

Definition 4.23. Given two Morse 2-functions f1, f2 : X4 Ñ S2, a homotopy of Morse 2-functions is
a homotopy fs : X4 Ñ S2 so for each point p P S2 there exists a neighborhood U » I ˆ I around p so that
f´1pUq » I ˆM3 for some 3-manifold M and in coordinates the homotopy is given by

pt, xq ÞÑ pt, ft,spxqq (4.4.1)

where ft for t P r0, 1s is a generic homotopy of Morse functions for all but finitely many s.

A homotopy of Morse 2-functions is therefore locally just a 2-parameter family of Morse function. One
can visualize such a homotopy as a “movie” of Cerf graphics. As s evolves from 0 to 1, the Cerf graphic for
f0,t evolves into one for f1,t. Each Cerf graphic has a finite number of cusps, crossings, and handle slides.
If the two have different numbers of these events, then there must be values of s at which cusps, crossings,
or handle slides appear. These are the values of s0 at which the family fs0,t is not a generic homotopy of
Morse functions.

The following is an extension of Cerf’s theorem to the 2-parameter case.

Theorem 4.24. (Cerf) Let f0,t and f1,t be generic homotopies of Morse functions on a closed manifold
M . There is an open dense subset of tgs,t : I ˆ I Ñ C8pXq | g0,t “ f0,t and g1,t “ f1,tu such that for all but
finitely many si P r0, 1s, the gs,t is a generic homotopy of Morse functions for t P r0, 1s. Moreover, at these
finitely many values of si only following six events (and their reverses) may occur (shown in Figure 4.14).

• (Reidemeister 2 Crossing) Two components of the critical locus that are disjoint at s “ 0 meet at si
and have two crossings for s ą si.

• (Reidemeister 3 Crossing) A component of the critical locus moves past a crossing of two other com-
ponents, passing through it at exactly s “ si.

• (Legendrian Reidemeister 1 Crossing) A cusp pushes across a component of the critical locus, touching
it at exactly s “ si.

• (Merge) Two canceling components of the critical locus come together at s “ si, pinching into two
cusps for s ą si.

• (Eye Birth/Death) Two new canceling components of the critical locus are born for s ą si.

• (Swallowtail Birth/Death) Two canceling components are born at s “ si. For s ą si one of the pair
goes on to cancel an existing component.
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Reidemeister 2 Crossing

Reidemeister 3 Crossing

Leg. Reidemeister 1 Crossing

Merge

Eye

Swallowtail

Figure 4.14: The six ways a two-parameter homotopy fs,t can fail to be a generic homotopy for some value
si P r0, 1s. For each event, Cerf graphics of fs,t are shown for fixed s ă si, s “ si and s ą si. The first three
moves are named because they mimic the Reidemeister moves of knot theory.

Once again, it is helpful to image this theorem as a transversality condition in C8pXq. One can imagine
the complement of the Morse functions (with Morse-Smale gradient flows and distinct critical values) as a
codimension 1 subset of C8pXq. Again, this statement is deliberately left imprecise, and only serves to
provide intuition. Within this codimension 1 set, there is a higher codimension 2 set of functions that , that
are “more” non-Morse. For example, functions with three critical points having the same critical value. With
a 1-parameter family of Morse functions, these points are avoided generically. With a 2-parameter family
this is no longer the case, and these higher codimension singularities occur at points ps, tq that prevent gs,t
from being a generic homotopy of Morse functions for every fixed s.

Definition 4.25. A 2-parameter family of Morse 2-functions as in Theorem 4.24 is said to be generic
2-parameter homotopy of Morse functions. Thus a homotopy of Morse 2-functions as in Definition
4.23 is locally a generic 2-parameter homotopy of Morse functions.

The following theorem is a uniqueness theorem for Morse 2-functions, which will be used momentarily to
formulate the uniqueness theorem for broken Lefchetz fibrations.

Theorem 4.26. (Kirby-Gay) Let f0, f1 : X4 Ñ S2 be Morse 2-functions. If f0, f1 are in the same
homotopy class, then there exists a homotopy of Morse 2-functions between them. If f0, f1 are both indefinite
and fiber connected, then it can be arranged that ft is indefinite and fiber connected for each t. In particular,
the critical locus evolves by a sequence of the moves listed in Theorem 4.24.

The full proof is given in [48]. While the proof involves nothing more than carefully considering homo-
topies of Morse functions and the singularities that appear therein, there are many details that must be
addressed. Roughly the proof is carried out as follows. First, the theorem is proved locally on IˆM3 with a
Morse 2-function that is globally pt, ftpxqq for ft a generic homotopy of Morse functions on M . In that case,
a homotopy of Morse 2-functions exists by Theorem 4.24, and in fact a generic homotopy will be as such.
The difficult lies in the second statement, which requires eliminating the definite critical points at each t.
Once the local result is proved, a local to global argument is used to prove the result for Morse 2-functions
on S2.
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When considering this in the context of broken Lefschetz fibrations, this gives an analogous uniqueness
result. In the case of a broken fibration, a small perturbation will immediately cause the broken fibration
to degenerate into a Morse 2-function as in Figure 4.13, after which the above theorem will apply. The
existence and uniqueness theorems for broken fibrations are summarized in the following theorem.

Theorem 4.27. (Existence and Uniqueness of Broken Lefschetz Fibrations) Let rf s P rX4 : S2s

be a smooth homotopy class of maps. Then rf s can be realized as an indefinite, fiber-connected broken
Lefschetz fibration. Moreover, for any two broken Lefschetz fibrations f0, f1 P rf s there is a smooth homotopy
ft : X4 ˆ r0, 1s Ñ S2 between them that is a Morse 2-function for all but finitely many values t P r0, 1s (two
of which are the endpoints). In particular, after Lefschetz singularities are perturbed as in Figure 4.13, the
critical loci critpf0q, and critpf1q differ by a sequence of the moves listed in Theorem 4.24.

Note the existence statement here asserts the existence of a broken fibration in every homotopy class.
This stronger assertion actually follows from the proof of Theorem 4.11, as was first pointed out by Williams
in [49]

Theorem 4.27 combines the strongest results on the existence and uniqueness of Lefschetz fibrations
known to date in the most general possible case. For several years, research focused on obtaining these
results. Now the focus has shifted towards the ultimate goal of using these results to study invariants of
smooth 4-manifolds. As mentioned in the introduction to this chapter, several invariants have already been
formulated using broken Lefschetz fibrations. Most notably, Tim Perutz introduced invariants of broken
fibrations in [52, 53] which he conjectures are the Seiberg-Witten invariants of the underlying 4-manifold.
Research in this area continues, using broken Lefschetz fibrations and Morse 2-functions to study invariants
of 4-manifolds and to define new invariants altogether. It is hoped that, in the coming years, these ideas will
provide new insight into the topology of 4-manifolds.

4.5 Trisections

This section describes a new potential source of 4-manifold invariants resulting from Morse 2-functions.
This potential source is a method of decomposing a 4-manifold into three diffeomorphic pieces. These
decompositions, which are akin to 3-dimensional Heegaard splittings, are called trisections. It is hoped that
they will provide new invariants of smooth 4-manifolds, although so far none have been found definitively.
In a larger context, trisections provide an example of how broken Lefschetz fibrations and Morse 2-functions
can be applied to study the topology of 4-manifolds. The idea of trisections as they appear in this section
is a recent development due mainly to Rob Kirby and David Gay [54].

Heegaard Splittings of 3-manifolds

It will be informative to briefly review the notion of Heegaard splittings on 3-manifolds, since trisections
are a quite direct generalization to the 4-dimensional case. For a more detailed explanation of Heegaard
splittings, the reader is referred to [55]. As always, all manifolds in this section are closed and oriented.

Definition 4.28. A Heegaard Splitting of a 3-manifold M is a decomposition M “M1 YΣ M2 into two
submanifolds such that

Mi » 6
kpS1 ˆD2q

is a solid genus k handle-body, and the two share a common boundary surface Σ » #kpS1 ˆ S1q, called the
Heegaard surface of the splitting.

Choosing diffeomorphisms ψi : Mi Ñ 6kpS1 ˆ D2q allows one to express M (up to diffeomorphism) as
two genus k handle-bodies glued along their boundary. That is, a Heegaard splitting gives a decomposition

M » 6kpS1 ˆD2q Yϕ 6
kpS1 ˆD2q

where the gluing map is ϕ “ ψ´1
2 ˝ ψ1|BM1

. As with all gluings, isotopic gluing maps result in diffeomorphic
manifolds.
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Example 4.29. The 3-sphere S1 has a Heegaard splitting

S3 » pS1 ˆD2q Yϕ pS
1 ˆD2q

where ϕ : T 2 Ñ T 2 is (up to isotopy) the diffeomorphism that flips the generators of H1pT 2;Zq. To see
this, consider S3 Ď R4 and project to an R2 plane. The image is the unit disk D2 in the plane. The fibers
over the interior points of D2 are circles and the fibers over the boundary are points. Composing with the
projection S1ˆr1{2, 1s Ñ S1ˆt1{2u on the outer annulus gives a presentation of the 3-sphere above the disk
D2

1{2 of radius 1{2 whose fibers above the interior are circles, and whose fibers above the boundary are solid

disks. Thus the pre-images of both BD2
1{2 and the interior are solid tori. These two solid tori are glued along

their boundary, and together form S3. This is called the “standard splitting” of S3. It can be visualized in
S3 “ R3 Y t8u by taking a solid torus encircling the z-axis, and tube passing through the center of it, that
connects at 8 to form a solid torus.

join at 1

Figure 4.15: A visualization of the standard Heegaard splitting of S3 into two solid tori. One encircles the
vertical axis, the other traces the vertical axis and passes through 8, hence includes everything outside a
compact neighborhood of the origin.

The existence of Heegaard splittings on 3-manifolds is essentially immediate from Morse theory:

Theorem 4.30. Let M be a closed, oriented 3-manifold. Then M admits a Heegaard splitting.

Proof. Let f : M Ñ r0, 1s be a Morse function ordered so that the index 1 critical values fall in (0,1/2), and
the index 2 critical values fall in (1/2,1). Say k is the number of index 1 critical points. f´1r0, 1{2s is a solid
genus k handle-body with boundary f´1p1{2q » Σk. Considering f upside-down, f´1r1{2, 1s is also a solid
handle-body, and must be of the same genus since the boundary is the same. A solid genus k handle-body is
6kpS1ˆD2q up to diffeomorphism, thus M1 “ f´1r0, 1{2s and M2 “ f´1r1{2, 1s provide a Heegaard splitting
of M .

In general, a Heegaard splitting can be visualized by drawing simple closed curves in a genus k surface.
Since M is obtained by attaching 2 and 3-handles to 6kpS1 ˆ D2q, and there is no choice involved in
attaching the capping 3-handle, it suffices to specify the descending spheres of the 2-handles, which will be
simple closed curves in the boundary of the 0 and 1 handle-body. Given such a collection of curves, the gluing
diffeomorphism with the upside-down handle-body containing the 2 and 3-handles is then given by taking the
ascending spheres of the upside-down handle-body to these descending spheres. Thus a drawing of a genus
k with k simple closed curves marked as descending spheres specifies a Heegaard splitting. See Figure 4.16.
A diagram of a genus k surface with a collection of k simple closed curves specifying a Heegaard splitting in
this way is called a Heegaard diagram. Note however, that a Heegaard splitting is not uniquely described
by a diagram: two Heegaard diagrams describe the same splitting if and only if they differ by handle slides
and diffeomorphisms of the surface that rearrange the simple closed curves.

There is another equivalence under which two Heegaard diagrams determine the same 3-manifold. A given
3-manifold admits Heegaard splitting of different genus. Suppose that in the proof of Theorem 4.30, a different
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a1 a2

b2b1

2 and 3-handles

0 and 1-handles

ak
ak�1

bk�1

bk

Figure 4.16: A Heegaard splitting on a surface of high genus. The ascending spheres a1, ..., ak (red) of the 2
and 3 handle-body are taken to the specified descending spheres b1, ..., bk (blue) of the 0 and 1 handle-body.
The bottom surface with the blue curves is the Heegaard diagram.

Morse function had been chosen that had an additional pair of canceling critical points. The manifold, of
course, does not change, but the genus of the splitting increases by one since there is an additional critical
point of each index. Geometrically, the introduction of such a canceling pair of critical points corresponds to
connect summing with S3 with the genus-1 splitting describes above. The corresponding Heegaard diagrams
are also connect summed with the standard splitting of S3 from Example 4.29. This process of introducing
a canceling pair of critical points to increase the genus of the splitting is called stabilization.

Example 4.31. The following example will be important for trisections. There is a natural splitting of
#kpS1 ˆ S2q. One simply takes 6kpS1 ˆD2q and glues by the identity map. Thus for each cross-sectional
disk tptu ˆD2 the gluing attaches another disk to the boundary of the first, so the result is tptu ˆ S2. This
decomposition can be stabilized to obtain a decomposition of genus g for any g ě k.

k copies g � k copies

Figure 4.17: The Heegaard diagram for the splitting of #kpS1ˆS2q of genus g. On the left, k simple closed
curve are glued by the identity map, and on the right, g´ k copies of the standard splitting of S3 are joined
by connect sum.
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It turns out that stabilization is the only redundancy in describing 3-manifold by Heegaard splitting.
This is made precise by the following theorem.

Theorem 4.32. (Existence and Uniqueness of Heegaard Splittings) There is a 1-1 correspondence

tclosed oriented 3-manifoldsu
M

Diffeo.
„
ÐÑ tHeegaard Splittingsu

M

Stabilization.

Of course, a similar correspondence holds for Heegaard diagrams when one also quotients out by handle
slides and diffeomorphisms of the surface. A complete proof of this result is given in [55].

Trisections of 4-manifolds

Consider for a moment trying to repeat the above construction of Heegaard splittings for a closed, oriented
4-manifold X. Let f : X Ñ r0, 1s be a Morse function with a single 0 and 4-handle. Unlike in the three-
dimensional case, X does not easily split into two diffeomorphic pieces. Since a handle-body of X now has
1-handles, 2-handles, and 3-handles, the two handles will have to be divided between the two pieces and
there is no reason in general this should be able to be done in such a way that the two pieces are the same.

One can achieve an analogous splitting, however, by allowing three pieces. Let Zk » 6
kpS1 ˆ B3q. Let

BZ » #kpS1 ˆ S2q » Y `k,g Y Y
´
k,g be the standard genus g Heegaard splitting of the boundary from Example

4.31.

Definition 4.33. A (g,k)-trisection of a 4-manifold X is a decomposition X “ X1 YX2 YX3 such that

• There are diffeomorphisms ϕi : Xi
„
Ñ Zk for i “ 1, 2, 3.

• ϕipXi XXi`1q » Y ´k,g and ϕipXi XXi´1q » Y `k,g where indices are taken mod 3.

• ϕipXi XXi`1 XXi`2q » Σg is the Heegaard surface of the splitting BZi » Y ´k,g Y Y
`
k,g for i “ 1, 2, 3.

The three pieces of a trisection can be visualized as fitting together like a disk divided into three equal
sectors (see Figure 4.18). Each sector has a boundary represented by two radii. The radial boundary of Xi

bordering Xi`1 represents a piece of the boundary sent by ϕi to Y ´k,g, and the radial boundary bordering

Xi´1 is sent to Y `k,g. The three pieces intersect in a surface of genus g which lies in the center.

The pieces are glued together along their boundaries as subsets of X. Alternative, viewing each piece
as an abstract copy of Zk via ϕi, one can think of the three copies of Zk glued along their boundaries by
certain gluing maps. On each Zk, a piece of the boundary is glued to a piece of each of the other two copies.
Specifically, Y ´k,g of the ith copy is glued to Y `k,g of the next copy pi`1qst copy by the map Ψi,i`1 “ ϕ´1

i`1 ˝ϕi,

and Y `k,g of the ith copy likewise glued to the pi ´ 1qst copy. Thus, as in the case of Heegaard splittings, a

trisection can be given by specifying three maps Ψi,i`1 : Y ´k,g Ñ Y `k,g. One should note when constructing
trisections this way, however, that not all choices of gluing maps will result in a closed 4-manifold. For
example, it is necessary for the composition Ψi,i`1 ˝ Ψi`1,i`2 ˝ Ψi2,i to be isotopic to the identity when
restricted to the triple intersection Σg.

Example 4.34. There is a simple (0,0)-trisection of S4. It is constructed as follows. Consider S4 Ď R5 and
choose a projection to R2. The image is the unit disk in the plane. Above each point px1, x2q P R2 the pre-
images is tpx1, ..., x5q | x

2
3` ...`x

2
5 “ 1´px2

1`x
2
2qu » S2. Above the boundary points tpx1, x2q | x

2
1`x

2
2 “ 1u

the pre-image is a single point px1, x2, 0, 0, 0q. Divide the disk into three equal segments that meet in the
center. The pre-image of each sector is diffeomorphic to 60pS1 ˆB3q » B4. The pre-image of the boundary
of each sector is a copy of S3 with the trivial Heegaard splitting B3 YS2 B3 given by the pre-images of the
radial lines glued by the fiber above the origin, which is a copy of S2.
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Figure 4.18: A depiction of how the three pieces of a trisection fit together.

Trisections on 4-manifolds can be constructed from Morse 2-functions, just as Heegaard splitting can be
constructed from normal Morse functions on 3-manifolds. The projection of S4 to the disk in the above
example is a Morse 2-function. The construction for a general 4-manifold is essentially the same as for S4:
one takes a Morse 2-function to the disk, and the pre-images of three equal sectors provide the three pieces
of the trisection.

Theorem 4.35. (Existence of Trisections, [54]) Let X be a closed, oriented 4-manifold. Then X admits
a (g,k)-trisection for some g, k.

Proof. Choose a Morse 2-function f : X Ñ D2 to the disk whose critical locus is as in Figure 4.19. Specifi-
cally, f should have the following three properties. (1) There is a single definite fold on the boundary of the
disk. (2) The critical locus is a series of co-centric circles of index 1 moving in, except in three rectangular
regions where arbitrary crossings (but not cusps) are allowed. (3) When D2 is divided into three sectors,
there is at most one cusp per component of critpfq per sector. Such a Morse 2-function can be constructed
by a slight variation on the construction in Example 4.20 (see [54, 50] for the details).

Figure 4.19: The desired critical locus configuration for f : X Ñ D2. The rectangular boxes can contain
arbitrary crossings. The dots denote some arbitrary number of components of critpfq.
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Given an f with the desired configuration of critpfq the pre-image of each sector i “ 1, 2, 3 is diffeomorphic
to 6kipS1 ˆ B3q where ki is the number of components of the critical locus with no cusp in sector i. This
can be seen as follows. By an isotopy, it may be assumed that the sector is a half disk with a straight
vertical boundary. The projection to the horizontal axis is a Morse function with a single critical point at
each vertical tangency. Each component without a cusp, of which there are ki, results in a single critical
point of index 1 from its leftmost point which is a vertical tangency. Components with cusps are just pairs
of canceling critical points, and have no vertical tangencies so do not affect the total space. In addition, it
can be arranged that the crossings in the boxed regions also have no vertical tangencies, hence the crossings
do not affect the total space either. Therefore, the pre-image of each sector is a diffeomorphic copy of a
handle-body with exactly ki 1-handles, which is 6kipS1 ˆB3q.

A priori, the three numbers ki can differ. To remedy this, one can introduce an “eye” in the center of the
disk as in Figure 4.20. The eye configuration is familiar as one of the non-generic behaviors from Theorem
4.24. It is the result of introducing a canceling pair of critical points that annihilates immediately. When
introducing an eye, it may be arranged by rotating that sector i receives no cusps, while the other two each
receive on of the eye’s two cusps. The effect is to increase the number of components without cusps in
sector i by 1, thereby increasing ki while keeping ki`1 and ki`2 fixed. This process can be repeated until
k “ k1 “ k2 “ k3, in which case the three sectors all have pre-image 6kpS1 ˆB3q as desired.

(a) (b)

Figure 4.20: Introducing an eye to the critical locus of a Morse 2-function.

There is an easy analogue of the stabilization process for trisections. Given a Morse 2-function to the
disk, one may always add three eyes in the center so that each second receives three new components two
of which have cusps. Since each is a homotopy of a cancelling pair of critical points, the total space is
unchanged. This operation gives each sector receives one new component without a cusp, the effect is to
increase k by 1. This process is called a trisection stabilization. As in the case of Heegaard splittings on
3-manifolds, these stabilizations are the only redundancy in describing 4-manifolds with trisections.

Theorem 4.36. (Kirby, Gay [54, 56]) There is a 1-1 correspondence

tclosed oriented 4-manifoldsu
M

Diffeo.
„
ÐÑ tTrisectionsu

M

Stabilization.

Example 4.37. (Trisection Invariants) By the above theorem, the structure of a trisection is, in some
sense, itself an invariant of smooth 4-manifolds. Trisections can also be used to define other invariants of
4-manifolds. One method is to consider the Heegaard diagrams of the three Heegaard splittings in the central
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Heegaard surface Σg. Thus the surface is decorated with three collections of curves pγ1, γ2, γ3q giving the
three Heegaard splittings of BXi.

(1) Considering the pairwise intersection pattern of these collections of curves gives three g ˆ g matrices,
which are an invariant of the four-manifold up to stabilization which direct sums each standard 3ˆ 3
blocks.

(2) The vector space H1pΣg;Rq is symplectic vector space under the intersection pairing. It has three
Lagrangian subspaces L1, L2, L3 corresponding to the 3 collections of curves each being the kernel of
the map induced on homology by the inclusion Fg Ñ BXi for i “ 1, 2, 3. It has been shown that the
Maslov index of this triple of Lagrangians is the signature of the 4-manifold [54].

Many additional methods of obtaining invariants from trisections are likely possible. So far, however, no
invariants of trisections have been shown to contain anything more than simple homological data.

Example 4.38. (How not to solve the smooth 4-dimensional Poincaré Conjecture [57]) Trisections
can be combined with the standard Van-Kampen theorem to obtain a purely group-theoretical statement of
the smooth 4-dimensional Poincaré Conjecture [56]. Let

S0 » π1pΣg, ˚q Hg “ xc1, ..., cgy » π1p#
gpS1 ˆB2q, ˚q Gk “ xd1, ...., dky » π1pXi, ˚q

be the fundamental groups of the central Heegaard surface, BXi, and Xi respectively. The fundamental group
of the surface is π1pΣg, ˚q “ xa1, b1, ...., ag, bg |rai, bis “ 0y, the others are free groups. A trisection gives a
commutative cube of inclusions, to which one can apply the Van-Kampen theorem to obtain a commutative
cube of the corresponding fundamental groups. Each map is surjective and each face is a pushout square.

Gk π1pX, ˚q

Hg Gk

Hg Gk

S0 Hg

Definition 4.39. A (g,k)-Group trisection of a group G is a commutative cube of groups as above with
G “ π1pX, ˚q and the groups S0, Hg, Gk as above. Each homomorphism is required to be surjective and each
face a pushout square.

There is a standard p3, 1q-group trisection of the trivial group, which can be described simply in terms
of generators [56]. A group stabilization is to take the free product with the (3,1)-trisection of the trivial
group. One can show that the effect of a trisection stabilization on X results in a group stabilization of
the fundamental groups, thus there is a 1-1 correspondence between group trisections up to isomorphism
and stabilization and 4-manifold trisections up to diffeomorphism and stabilization. Applying this in case of
π1pX, ˚q “ 0 results in the following statement.

Proposition 4.40. The following two statements are equivalent:

(I) Any any compact, connected, orientable 4-manifold with trivial fundamental group is diffeomorphic to
S4.

(II) Any group trisection of the trivial group is stably equivalent to the trivial trisection of the trivial group.

Statement (I) is of course the smooth 4-dimensional Poincaré conjecture, while (II) is a statement only
about groups. Though as David Gay has pointed out in the talk after which this example was named,
statement (II) seems rather more intractable than the conjecture itself.
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