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“Having thus refreshed ourselves in the oasis of a proof, we now turn again into the desert of definitions.”

— Th. Brocker & K. Janich, Introduction to Differential Topology [21]

“The introduction of the cipher 0 or the group concept was general nonsense too...”

— Alexander Grothendieck, correspondence with Ronald Brown
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1 Introduction

This paper aims to exposit certain structures present within the complex cohomology of quasi-projective

varieties over C, and to give generalizations of Saito to families of such varieties.

An algebraic variety over C is the set of common zeroes of a set of (multivariate) polynomials with

complex coefficients—it naturally has a geometric structure, and indeed, apart from a lower-dimensional

locus of singularity, it is a smooth complex manifold. The structure of such a variety in general is hard

to understand. Thus, we examine linear invariants of the variety, called cohomology; these invariants are

functorial, meaning that a map between two varieties induces a map on cohomology. In many of the simpler

cases under consideration here, the cohomology has a decomposition into smaller functorial invariants, called

the Hodge decomposition.

These invariants reflect many of the important properties of the variety, so it is natural to want to find

similar invariants in a more general setting. For example, one might want to find such invariants for families

of varieties, parametrized by another space (one might example the varieties as changing over time, for

instance). The goal here is to analyze and exposit some of these more general invariants.

We now make this goal more precise. Let (M, I) be an almost complex manifold, where I : TM → TM is

the endomorphism of the tangent bundle inducing the almost complex structure, that is, an endomorphism

satisfying I2 = −1. Let h be a Hermitian metric on M (that is, a Hermitian metric on each tangent space,

with respect to the complex structure induced by I, that varies smoothly along M). Then call

ω = − Im(h) ∈ Ω1,1
M,C ∩ Ω2

M,R

the associated Kähler form to h. We say that h is a Kähler metric if I is integrable (that is, M has a complex

structure) and ω is a closed 2-form, that is,

dω = 0.

M is a Kähler manifold if it admits a Kähler metric. [18]

Among the most important examples of compact Kähler manifolds are smooth projective varieties; that

these are Kähler follows from the fact that Pn(C) is Kähler.

Let M be a compact Kähler manifold. Then the Hodge decomposition theorem states that

Hk(M,C) '
⊕
p+q=k

Hp,q

2



canonically, where Hp,q ' Hq,p canonically and Hp,q ' Hq(M,Ωp,0M ) canonically; that is, Hp,q is the (p, q)

Dolbeault cohomology and thus the decomposition is functorial. This decomposition is thus an invariant of

the complex structure, not the Kähler structure.

In the case that M is a (possibly noncompact) complex quasiprojective variety, a Hodge structure cannot

necessarily be defined; instead, one resorts to using a mixed Hodge structure, which, loosely speaking, consists

of two filtrations W and F on the cohomology of M , such that F induces a Hodge structure on each of the

components of the graded module associated to W . Deligne showed that the cohomology of a complex

variety admits a mixed Hodge structure in general. [2-7]

Now consider the case of a family of compact Kähler varieties parametrized by some smooth base space

B; that is, a proper holomorphic submersion f : E → B such that the variety corresponding to the point

b ∈ B is given by f−1(B); we assume the fibers are smooth and connected. One may consider a variation

of Hodge structure on B to be a particular locally free sheaf of C-vector spaces whose fibers are given by

Hn(f−1(b),C); viewed as a functor, this is the n-th derived functor of f∗ applied to the constant sheaf C

over E, and admits a Hodge decomposition in the obvious way—that is, it may be filtered by sub-bundles

in a way analogous to the Hodge decomposition of the cohomology of a Kähler manifold.

But what if the family is not smooth—more precisely, what if we have a dense open subset U of B

parametrizing a family of smooth compact Kähler manifolds, but if for points x ∈ B \U we have that f−1(x)

is singular? Is there structure analogous to the one above?

The answer is yes—in fact, one may define a variation of mixed Hodge structure in this case, which

follows in the one-dimensional case from work of Schmid [1]. Saito [14] generalized this work in his theory

of Mixed Hodge Modules, which to each smooth complex variety associates an abelian category of “mixed

Hodge modules.” Given a map f : X → Y of smooth complex varieties, there exist functors f∗, f∗, f!, f
!

between the associated derived categories, satisfying the required adjointness properties and relationships

via Verdier duality. In the case above, the mixed Hodge structure on B is given by i∗(H), where i : U → B

is the natural inclusion and and H is the variation of Hodge structure on U . [12-15]

This goal of this thesis was initially to compute the functors f∗, f∗, f!, f
! in the case that B is one-

dimensional and U is dense and open in B; as all the constructions are local, it suffices to do this for B

the open unit disc in C and U the punctured disc. As the prerequisites for such a computation are very

high we do not quite reach this goal—instead, we exposit the basic structures and prerequisites necessary to

approach this work.

For an analogous but less technical approach to this problem, see Durfee [20].
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2 Review of Hodge Theory

2.1 De Rham and Dolbeault Cohomology

Let ManC be the category of smooth manifolds with complex structure, with morphisms given by holomorphic

maps. For M a smooth manifold with complex structure, let TM = T1,0
M ⊕ T0,1

M be the tangent bundle. Let

Ωp(M) be the sheaf of holomorphic p-forms on M (that is, holomorphic sections of the complex vector bundle∧p(T1,0
M )∗⊗

R
C), and for p, q ≥ 0, let Ωp,q(M) be the sheaf of complex differential forms of degree (p, q) (that

is, smooth sections of the complex vector bundle
∧p(T1,0

M )∗ ⊗
∧q(T0,1

M )∗ ⊗
R

C). Let Λk(M) be the sheaf of

smooth k-forms on M , that is, smooth sections of
∧k(TM )∗ ⊗

R
C. Note that as

k∧
(TM )∗ '

k∧
(T1,0
M ⊕ T0,1

M )∗ '
⊕
p+q=k

p∧
(T1,0
M )∗ ⊗

q∧
(T1,0
M )∗

we have that

Λk(M) '
⊕
p+q=k

Ωp,q(M).

Let Λ•(M) be the chain complex given by the exterior derivative d, that is,

Λ•(M) : · · · −→ Λk−1(M) d−→ Λk(M) d−→ Λk+1(M) −→ · · ·

where Λk(M) = 0 for k < 0. The Poincaré Lemma [22] asserts that this sequence is exact away from degree

zero and that the kernel of d0 : Λ0(M)→ Λ1(M) is the constant sheaf C; as Λk is a fine (and thus acyclic)

sheaf for all k, this implies de Rham’s theorem:

Theorem 1 (de Rham’s theorem). There exists a natural isomorphism

Hk(M,C) ' Hk
DR(M),

where Hk
DR(M) is defined as Hk(Γ(M,Λ•(M))).

Note that

d(Ωp,q(M)) ⊂ Ωp+1,q(M)⊕ Ωp,q+1(M)

so we may write d = ∂ + ∂, where ∂ : Ωp,q(M) → Ωp+1,q(M) and ∂ : Ωp,q(M) → Ωp,q+1(M). As d ◦ d = 0
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we have that ∂2 = ∂
2

= ∂∂ + ∂∂ = 0. These relations imply that the diagram Ω•,•(M) given by

...

��

...

��

...

��
· · · // Ωp−1,q−1(M) ∂ //

∂

��

Ωp−1,q ∂ //

∂

��

Ωp−1,q+1 //

∂

��

· · ·

· · · // Ωp,q−1(M) ∂ //

∂

��

Ωp,q
∂ //

∂

��

Ωp,q+1 //

∂

��

· · ·

· · · // Ωp+1,q−1(M)

��

∂ // Ωp+1,q

��

∂ // Ωp+1,q+1 //

��

· · ·

...
...

...

is a bicomplex, with associated total complex

Tot(Ω•,•(M)) ' Λ•(M). (1)

We let Ωp,•(M) and Ω•,q(M) denote the rows and columns of this diagram, respectively.

The Dolbeault Lemma [18] states that the rows Ωp,• are exact as sequences of sheaves, away from degree

zero, where the kernel of ∂ : Ωp,0(M) → Ωp,1(M) is Ωp(M), the sheaf of holomorphic p-forms on M . This

implies that Ωp,•(M) is a fine resolution of Ωp(M) (as the notation suggests), giving Dolbeault’s theorem:

Theorem 2 (Dolbeault’s theorem). There exists a natural isomorphism

Hq(M,Ωp(M)) ' Hp,q(M,C)

where Hp,q(M,C) is defined as Hq(Γ(M,Ωp,•(M))).

More generally, given any holomorphic vector bundle E over M with sheaf of holomorphic sections E, let

Ωp,q(E) be the sheaf of smooth sections of the vector bundle E ⊗ Ωp,q. Then the sequence

Ω0,•(E) : · · · → Ω0,q−1(E) id⊗∂−→ Ω0,q(E) id⊗∂−→ Ω0,q+1(E)→ · · ·

is a fine resolution of E, and thus we have
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Theorem 3 (Vector Bundle Dolbeault theorem). There exists a natural isomorphism

Hk(Γ(M,Ω0,•(E))) ' Hk(M,E).

Taking E to be Ωp(M) gives the original version of Dolbeault’s theorem.

In view of de Rham’s theorem and Dolbeault’s theorem as well as identity (1), there are several natural

questions to ask. Let Iq : ManC → VectC be the contravariant functor sending a complex manifold M to

Im(Γ(d) : Γ(M,Λq−1(M))→ Γ(M,Λq(M)));

this is a functor as the exterior derivative commutes with the pullback. Let Kq : ManC → VectC be the

contravariant functor sending a complex manifold M to

Ker(Γ(d) : Γ(M,Λq(M))→ Γ(M,Λq+1(M))).

Similarly, let Ip,q : ManC → VectC be the functor sending M to

Im(Γ(∂) : Γ(M,Ωp,q−1(M))→ Γ(M,Ωp,q(M)))

and let Kp,q : ManC → VectC be the functor sending M to

Ker(Γ(∂) : Γ(M,Ωp,q(M))→ Γ(M,Ωp,q+1(M))).

As before, these functors are contravariant and send a morphism f : M → N to the pullback f∗.

Then we have short exact sequences of functors

0→ Iq → Kq → Hq
DR → 0 (2)

0→ Ip,q → Kp,q →Hp,q(−,C)→ 0 (3)

We may ask:

Do these short exact sequences split canonically?

In view of theorem 3, we may ask a similar question for the cohomology of any holomorphic vector bundle
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over M . The answer to all these questions is yes, in some generality; here we answer it for compact Hermitian

manifolds. Furthermore, in view of the spectral sequence of the double complex Ω•,• and identity (1), we

may ask:

Is there a simple statement of the relationship between Hp,q(M,C) and Hk
DR(M)?

This latter question has an answer in the case of Kähler manifolds.

2.2 The Hodge Theorem

2.2.1 A Model Case

We will first turn our attention to the first question—that is, to the splitting of the sequences (2) and (3).

Before we do so, we will motivate the solution with an analysis of a model case with a finite-dimensional

complex.

Lemma 1. Let V be a finite dimensional inner product space and ∆ : V → V a self-adjoint operator. Then

there is a natural (orthogonal) decomposition

V ' Ker(∆)⊕ Im(∆).

Proof. By dimension-counting, it suffices to show that Ker(∆) ⊥ Im(∆). Consider v ∈ Im(∆), v = ∆w.

Then we have for u ∈ Ker(∆) that

(v, u) = (∆w, u) = (w,∆u) = 0

completing the proof.

Now, consider the following model situation:

Theorem 4. Let

U
d ))

V
d ))

d∗ii Wd∗ii

be a sequence of finite dimensional inner product spaces such that d2 = 0 and d is formally adjoint to d∗ in

the sense that

(dv, w) = (v, d∗w)
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for v ∈ U,w ∈ V or v ∈ V,w ∈W . Let ∆ : V → V equal dd∗ + d∗d and let H = Ker(∆). Then

H ' Ker(d) ∩Ker(d∗)

and V has a natural orthogonal decomposition as

V ' H ⊕ Im(d)⊕ Im(d∗)

with orthogonal decompositions

Ker(d) ' H ⊕ Im(d)

and

Ker(d∗) ' H ⊕ Im(d∗).

Thus, there are natural isomorphisms

H ' Ker(d)/ Im(d) ' Ker(d∗)/ Im(d∗).

Proof. We first show that H ' Ker(d) ∩ Ker(d∗). Clearly H ⊂ Ker(d) ∩ Ker(d∗). For the other inclusion,

consider v ∈ H, that is, ∆v = 0. Then we have

0 = (∆v, v) = (dd∗v, v) + (d∗dv, v) = (d∗v, d∗v) + (dv, dv)

which, as desired, implies that d∗v = dv = 0 by the non-degeneracy of the inner product.

Now ∆ is clearly self-adjoint, so by the Lemma, there is an orthogonal decomposition

V ' H ⊕ Im(∆).

So to show that V ' H ⊕ Im(d)⊕ Im(d∗) it suffices to show that

Im(∆) ' Im(d)⊕ Im(d∗).
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Indeed, it is clear that Im(∆) ⊂ Im(d) + Im(d∗); furthermore,

(dα, d∗β) = (d2α, β) = 0

so Im(d) ⊥ Im(d∗). So we need only show that Im(d) ⊕ Im(d∗) ⊂ Im(∆). But Im(d) ⊕ Im(d∗) ⊥ H as for

v ∈ H we have

(dα+ d∗β, v) = (α, d∗v) + (β, dv) = 0

so we must have that Im(d)⊕ Im(d∗) ⊂ Im(∆), as Im(∆) is the orthogonal complement of H by the Lemma.

The rest of the proof follows by noting that Im(d∗) ⊥ Ker(d) as for v ∈ Ker(d) we have

(v, d∗α) = (dv, α) = 0

and that H ⊕ Im(d) ⊂ Ker(d) trivially, so we have

H ⊕ Im(d) ⊂ Ker(d) ⊂ Im(d∗)⊥ = H ⊕ Im(d)

and thus H ⊕ Im(d) ' Ker(d). The statement Ker(d∗) ' H ⊕ Im(d∗) follows identically.

Now, for a compact Hermitian manifold, Γ(M,Λq(M)) and Γ(M,Ωp,q(M)) are inner product spaces. To

see this, note that if V and W are inner product spaces, V ⊗W naturally has the structure of an inner

product space—furthermore, if V is oriented, an inner product on V induces a natural inner product on its

wedge powers. So we have Hermitian products (−,−)x on the fibers Λq(M)x,Ωp,q(M)x; these give an inner

product on global sections η, ω via

(η, ω)M =
∫
M

(η, ω)x ·VolM .

where VolM is the volume form.

Given the analysis above, this inner product suggests that we may be able to answer our question by

constructing formal adjoints d∗, (resp. ∂
∗
) to the differential d, (resp. ∂), in the sense that

(dα, β)M = (α, d∗β)M and (∂α, β)M = (α, ∂
∗
β)M

as long as we can deal with the fact that Γ(M,Λq(M)),Γ(M,Ωp,q(M)) are infinite-dimensional.
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2.2.2 The Hodge Star, d∗, and ∂
∗

Before we define these formal adjoints, we need some preliminaries. Let V be an oriented n-dimensional real

vector space with an inner product (−,−) : V ⊗ V → R. Then the inner product induces an isomorphism

V ' V ∗

and thus an isomorphism
k∧

(V ) '
k∧

(V ∗) '
k∧

(V )∗.

Furthermore, the orientation on V induces a natural isomorphism

n∧
(V ) ' R

and thus the wedge product

∧ :
k∧

(V )⊗
n−k∧

(V )→
n∧

(V ) ' R

is a perfect pairing, inducing an isomorphism

n−k∧
(V ) '

k∧
(V )∗.

Composing isomorphisms
k∧

(V ) '
k∧

(V )∗ '
n−k∧

(V )

gives an isomorphism which we denote ∗ :
∧k(V ) '

∧n−k(V )—that is, the Hodge star. Easy computation

[18] gives that

∗2 = (−1)k(n−k)

and that

α ∧ ∗β = (α, β)ω

where the inner inner product on
∧k(V ) is induced by the inner product on V , and ω is the orientation

n-form.

In the cases we are working with, V will have a complex structure I : V → V with I2 = −1 preserved by
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the inner product, giving V a natural orientation; ∗ will induce an isomorphism

k∧
(V )⊗

R
C '

n−k∧
(V )⊗

R
C

which by abuse of notation we will denote by ∗ as well.

If M is a compact Hermitian manifold with complex dimension n, then applying ∗ on the level of fibers

gives isomorphisms

Λk(M) ' Λ2n−k(M)

and

Ωp,q(M) ' Ωn−p,n−q(M).

Again, we will abuse notation and call these maps ∗. We observe that α ∧ ∗β = (α, β)x VolM , and thus

(α, β)M =
∫
M

α ∧ ∗β.

Now, we have by Stokes’ Theorem that for α ∈ Λk(M), β ∈ Λk+1(M),

0 =
∫
M

d(α ∧ ∗β) =
∫
M

dα ∧ ∗β + (−1)k
∫
M

α ∧ d∗β = (dα, β) + (α, (−1)k ∗−1 d ∗ β).

So we may set d∗ : Λk+1(M)→ Λk(M) equal to (−1)k+1 ∗−1 d∗. A similar argument gives ∂
∗

= − ∗ ∂∗. We

let

∆d = dd∗ + d∗d and ∆∂ = ∂ ∂
∗

+ ∂
∗
∂.

Given a Hermitian vector bundle E with sheaf of holomorphic sections E we may let ∆E : Ω0,•(E)→ Ω0,•(E)

be given by ∆∂ ⊗ id. Then we have the Hodge Theorem:

Theorem 5. Let Hk(M) ⊂ Λk(M) be the kernel of ∆d, and let H0,q(E) ⊂ Ω0,q(M) be the kernel of ∆E;

in particular, let Hp,q(M) = H0,q(Ωp). We refer to these spaces as spaces of “harmonic forms.” Then the

operators ∆E ,∆d are elliptic, and there are natural isomorphisms

Hk(−) ' Hk
DR(−)

and

Hp,q(−) ' Hp,q(−,C),
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as well as a canonical isomorphism

H0,q(E) ' Hq(M,E).

Composing with the natural inclusions Hk(−) ↪→ Λk(M), etc. give that the sequences (2), (3), as well as the

coresponding sequences for E, split naturally.

Proof. (Sketch) The proof is analogous to that of theorem 4, after one shows that the operators ∆E ,∆d are

elliptic, and applies the following theorem on elliptic operators:

If P : E → F is an elliptic operator on a compact manifold with E,F of equal rank and equipped with

metrics. Then ker(P ) ⊂ C∞(E) is finite dimensional, P (C∞(E)) ⊂ C∞(F ) is closed of finite codimension,

and

C∞(E) ' ker(P )⊕ P ∗(C∞(F ))

orthogonally in the L2 metric. [18]

Then the isomorphism are given by the inclusion of harmonic forms into the kernel of d.

As expected, this theorem has important consequences, most notably the following difficult theorem on

the sheaf cohomology of holomorphic vector bundles:

Corollary 1. The de Rham and Dolbeault cohomology groups, and indeed the sheaf cohomology groups of

the sheaf of holomorphic forms for any holomorphic vector bundle over a compact Hermitian manifold, are

finite dimensional.

Proof. This follows immediately from the theorem on elliptic operators cited above.

2.3 Kähler Manifolds

So we have answered our first significant question above—the latter we will answer in the case of Kähler

manifolds, an important class of complex manifolds which include complex projective space PnC and smooth

complex projective varieties.

Let M be a Hermitian manifold with Hermitian form h. Let

ω = − Im(h);

one may check that this is naturally an element of Ω1,1(M)∩Λ2(M)R. We say that M is a Kähler manifold

if ω is a closed form. Note that any Kähler form is a symplectic form—that is, all Kähler manifolds
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are symplectic. Furthermore, note that any complex submanifold of a Kähler manifold is Kähler, as the

submanifold inherits by restriction the Hermitian form and associated Kähler form.

Example 1. The standard Hermitian metric on Cn induces a Kähler structure.

Example 2. Any Hermitian metric on a Riemann surface induces a Kähler structure.

Proof. The Kähler form is of degree 2—as a Riemann surface is a manifold of real dimension 2, this form is

automatically closed.

Example 3. Any complex torus is Kähler.

Proof. Let T = Cn/Γ be a complex torus, where Γ is a discrete, full-rank subgroup of the additive group

Cn. Then the standard Hermitian structure (with constant coefficients) on Cn is clearly Γ-invariant and

thus induces a Kähler structure on T .

Example 4. Let V be a finite-dimensional complex vector space. Then P(V ), viewed as a complex manifold,

is Kähler. Furthermore, any smooth complex submanifold of PnC is Kähler. In particular, smooth projective

varieties over C, when viewed as manifolds, are Kähler.

Proof. See [18, pgs. 76-77].

The last point of this example—that smooth projective varieties over C are Kähler—explains the impor-

tance of the Kähler property to mathematicians. Indeed, the property has several remarkable consequences.

2.3.1 Hodge Decomposition and Lefschetz Theorems

The first of these consequences answers our question:

Is there a simple statement of the relationship between Hp,q(M,C) and Hk
DR(M)?

Let L : Λk(M) → Λk+2(M) be the operator sending α → ω ∧ α, where ω is the Kähler form; let K be its

formal adjoint with respect to the inner product (−,−)M , that is, K = (−1)k ∗L∗ (by similar arguments to

our other adjoint constructions). Let H : Λk(M)→ Λk(M) be the operator given by [L,K] where [−,−] is

the commutator.

Proposition 1. The operators L,K,H induce a representation of sl2 on Λ•(M), which descends to a repre-

sentation on H∗DR(M). Furthermore, the action of H on Λk(M) and thus Hk
DR(M) is simply multiplication

by (k − n); that is, Hk
DR(M) is the weightspace of degree k − n.
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Proof. See [18, pg. 145]. The reference does not identify the action as an sl2 representation, but it is clear

by inspection.

In particular, if M has complex dimension n, then by the representation theory of sl2 we immediately

have the following:

Corollary 2 (Hard Lefschetz Theorem). If k ≤ n, the map Ln−k : Hk
DR(M) → H2n−k

DR (M) is an isomor-

phism.

Corollary 3 (Lefschetz Decomposition). Let

Hk
prim(M) := ker(Ln−k+1 : Hk

DR(M)→ H2n−k+2
DR (M)).

We call this the primitive part of the cohomology of M . Then we have that

Hm
DR(M) =

bm/2c⊕
k=0

LkHm−2k
prim (M).

Note that this decomposition allows one to reconstruct the de Rham cohomology of M from its primitive

part.

Proposition 2. We have

[K, ∂] = −i∂∗, [K, ∂] = i∂
∗
.

Proof. The two propositions are equivalent by taking conjugates; for a proof of the first, see [18, pgs. 139-

141].

Corollary 4.

∆d = 2∆∂ = 2∆∂ .

Proof. Note first that by proposition 2 above,

∂∗∂ = i[K, ∂]∂ = iK∂
2 − i∂K∂ = −i∂K∂ = −∂(i[K, ∂]) = −∂∂∗.
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But then writing ∂
∗

as −i[K, ∂], we have

∆d = (∂ + ∂)(∂∗ − i[K, ∂]) + (∂∗ − i[K, ∂])(∂ + ∂)

= ∂∂∗ + ∂∂∗ + i∂∂K − i∂K∂ + ∂∗∂ + ∂∗∂ − iK∂∂ + i∂K∂

= ∂∂∗ + ∂∗∂ + i∂∂K − i∂K∂ − iK∂∂ + i∂K∂

= ∂∂∗ + ∂∗∂ + ∂(i[K, ∂]) + i([K, ∂])∂

= 2(∂∂∗ + ∂∗∂)

= 2∆∂

The other identity follows analogously.

Corollary 5 (Hodge Decomposition). There is a canonical isomorphism

Hk
DR(M) '

⊕
p+q=k

Hp,q(M,C).

Furthermore,

Hp,q(M,C) ' Hq,p(M,C).

as subspaces of Hk
DR(M).

The Hodge decomposition descends to an analogous decomposition on the primitive part of the cohomology.

Proof. This is immediate—we have that a form is d-harmonic if and only if it is ∂-harmonic.

We may now examine a couple of sample applications

Corollary 6. If X is Kähler, then dimH2k+1(X,C) is even.

Proof. We have that

dimH2k+1(X,C) =
∑

p+q=2k+1

dimHp,q(X)

=
∑

p+q=2k+1,p<q

dimHp,q(X) + dimHp,q(X)

=
∑

p+q=2k+1,p<q

2 dimHp,q(X)

which is clearly even.
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Example 5 (Not all compact complex manifolds are Kähler). Let Z act on C2 − {0} via multiplication by

2n. Then the quotient space H of C2 − {0} by this action, is compact and is not Kähler.

Proof. To see compactness, consider a cover {Ui} of H, which we may lift to a cover of C2 − {0} by taking

preimages through the quotient map. Then select a finite subset covering {(z1, z2) | |1 ≤ |z2
1 + |z2|2 ≤ 2}

which exists by compactness of this region—as this region’s orbit is all of C2 − {0}, this finite subset gives

a finite cover of H.

But now note that C2−{0} is simply connected and locally homeomorphic to H, and thus is the universal

covering space of H; as H is the quotient by Z acting properly discontinuously, the fundamental group of

π1(H) is Z. But then by the Hurewicz theorem, H1(H,Z) = Z, and thus H1(H,C) = H1(H,Z) ⊗
Z

C is

one-dimensional. But then H cannot be Kähler by Corollary 6 for X = H, k = 0.

Example 6 (Computing the Dolbeault Cohomology of projective space). Let V be a complex vector space

of complex dimension n. Then we claim that

Hp,q(P(V ),C) ' 0

for p 6= q, or p+ q > 2n and

Hp,p(P(V ),C) ' C

for p < n.

Proof. It is well known that the cohomology ring H∗(P(V ),C) = C[t]/tn+1 where t is of degree 2. In

particular, dimH2k(P(V ),C) = 1 for k < n and dimH2k+1(P(V ),C) = 0 for all k. As P(V ) is Kähler, we

have the Hodge decomposition

Hm(P(V ),C) =
⊕

p+q=m

Hp,q(P(V ),C).

In particular, we have for p 6= q, with p + q odd, Hp,q(P(V ),C) must be zero immediately. For p + q even,

we have dimHp,q(P(V ),C) = dimHq,p(P(V ),C) and thus

2 dimHp,q(P(V ),C) ≤ dimHp+q(P(V ),C) = 1
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so Hp,q(P(V ),C) = 0. Combining this information with

1 = dimH2k(P(V ),C) =
∑

p+q=2k

dimHp,q(P(V ),C)

gives dimHk,k(P(V ),C) = 1 and completes the proof.

Remark 1. The Hodge decomposition is independent of the Kähler structure. Indeed it is dependent only

on ∆d,∆∂ , both of which depend only on the complex structure.

3 Mixed Hodge Structure and Variations of Structure

Let us abstract the situation of the Hodge decomposition somewhat, and then extend it to a more general

case. Our motivation here and in the next chapter is to define a structure on cohomology that exists for a

family f : E → B of complex varieties over a (smooth) base; that is, f is a proper holomorphic submersion.

In particular, while the generic fiber should be smooth, the locus of points of B whose fibers are singular

may form a non-empty proper subvariety of B.

3.1 Hodge Structure

Consider first the case where B is a point and E is Kähler. Then we have the integral cohomology of E,

given by Hk(E,Z), and the Hodge decomposition above gives structure to Hk(E,C) ' Hk(E,Z)⊗
Z

C.

In general, we may let A be a finitely generated free Abelian group embedded in a real vector space VR,

and let VC = VR ⊗
R

C. The data of a Hodge structure of degree n on (A, VR, VC) is a collection {V p,q} and a

decomposition

VC '
⊕
p+q=n

V p,q

with

V p,q ' V q,p.

Another point of view will become important in the sequel. Let

F pV =
⊕
s≥p

V s,n−s

be a decreasing filtration of VC.
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Then we have that

V p,q = F pV ∩ F qV ,

so the filtration determines the Hodge decomposition. Furthermore, for all p we have

VC = F pV ⊕ Fn−p+1V .

Indeed, it is easy to see that any filtration satisfying this last property induces a Hodge structure on A.

Let V ′ be a Hodge structure on A′, of degree m. Note that Hom(V, V ′) inherits a natural Hodge structure

of degree m − n; s ∈ Hom(V, V ′) is of type p, q if s(V s,r) ⊂ V ′
s+p,r+q for all s, r. As a special case V ∗ has

a natural Hodge structure of degree −n, where we let V ′ = C with the trivial Hodge structure of degree

0. Through the isomorphism V ⊗ V ′ ' Hom(V ∗, V ′), tensor products obtain a natural Hodge structure of

degree n+m.

Furthermore, Hodge structures naturally form a category; a morphism V → V ′ of type (r, r) is a linear

map V → V ′ defined over Q (relative to the natural inclusions A → V,A′ → V ′) which is of type (r, r)

relative to the Hodge structure on Hom(V, V ′); a morphism of Hodge structures is a morphism of type (0, 0).

3.1.1 Polarized Hodge Structures

There is some additional structure on the cohomology of a Kähler manifold which is not contained in its

Hodge decomposition—as we noted above, the Hodge decomposition is independent of the Kähler struc-

ture. However, the Kähler structure does induce further structure on the cohomology. Indeed, there is a

polarization on the Hodge structure of the cohomology of a Kähler manifold.

We say a Hodge structure VC =
⊕

p+q=n V
p,q is polarized by Q if Q is a bilinear form on V defined over

Q (relative to A). We require that Q be symmetric if n is even, skew if n is odd, that V p,q be perpendicular

to V p
′,q′ unless p = p′, q = q′, and we require that ip−qQ(v, v) > 0 if v ∈ V p,q is nonzero.

To see this structure on a Kähler manifold, we note that the Hodge structure on H∗DR(M) induces a

Hodge structure on the primitive part of the cohomology—for α, β ∈ Hk
prim(M) with k ≤ dimC(M) we have

that

Q(α, β) =
∫
M

ωn−k ∧ α ∧ β

satisfies the desired properties.

Remark 2. We have here defined rational morphisms and polarizations; similarly, we may consider integral
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morphisms and polarizations, which are defined over Z relative to the lattice A ⊂ V , rather than over Q.

3.2 Mixed Hodge Structure

Unfortunately, Hodge theory does not suffice for algebra-geometric applications, as a Hodge structure does

not exist for the cohomology of non-compact (quasi-projective), possibly singular varieties over C. A theorem

of Deligne gives an extension of the Hodge decomposition for this situation.

A mixed Hodge structure on a finitely generated free Abelian group A ⊂ VR consists of an increasing

filtration

0 = W0 ⊂W1 ⊂ · · · ⊂Wm−1 ⊂Wm ⊂Wm+1 ⊂ · · · ⊂ V

on VC = VR ⊗
R

C and a decreasing filtration

V ⊃ · · · ⊃ F p−1 ⊃ F p ⊃ F p+1 ⊃ · · · ⊃ F0 = 0

such that the filtration F ∗ induces a Hodge structure on Grm(W∗) := Wm/Wm1 of weight m, via

F p(Grm(W∗)) := (Wm ∩ F p)/(Wm−1 ∩ F p).

The filtration W∗ is referred to as the weight filtration, and the filtration F ∗ is the Hodge filtration.

Note that the Hodge structure is a special case of mixed Hodge structure, where Wm = V and Wi = 0

for i < m. Furthermore, if H∗DR(M) is the de Rham cohomology of a Kähler manifold, then setting

Wi =
⊕
j≤i

Hj
DR(M)

and

F p =
⊕
p′≥p

Hp,q(M)

gives a mixed Hodge structure on H∗DR(M).

A morphism of mixed Hodge structures is, as before, a linear map f : V → V ′ defined over Q relative to

the lattices within V, V ′ such that the weight and Hodge filtrations are preserved, e.g. f(Wm) ⊂ W ′m and

f(F p) ⊂ F ′p.

Remark 3. One may check that the category of mixed Hodge structures with morphisms given by morphisms
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of mixed Hodge structures is an Abelian category. [7]

The importance of mixed Hodge structures stems initially from the following theorem of Deligne:

Theorem 6. Let X be a quasiprojective variety over C. Then H∗(X) has a functorial mixed Hodge structure.

[2-7]

3.3 Variations of Structure

We now consider the more general case of a family of varieties. Consider a proper holomorphic submersion

f : E → B with smooth connected fibers, where E,B are complex manifolds. Assume E is embedded in PnC for

some n (fix such an embedding), but is not necessarily closed. Then for each b ∈ B, Xb := f−1(b) is a complex,

connected projective manifold. We wish to consider the sheaves Rmf∗(C), where here C is the constant C-

valued sheaf on E. In the case that B is just a point, this is the Abelian group Hk(E,C) ' Hk
DR(E), in

which we have a (mixed) Hodge decomposition. We claim that we find a similar decomposition in the general

case.

One may check that this sheaf is the sheaf of flat sections of a flat complex vector bundle Hm over B

(this follows by considering the map f as giving a C∞ vector bundle over S, and considering the cohomology

on local trivializations).

Again considering local trivializations, one finds that the map L defined for Kähler manifolds extends to

a map of vector bundles Hm → Hm+2; as before, we may set P k to be the kernel of Ln−k+1 ⊂ Hk (where

n = dimC(M)), the Hodge theorem applied to local trivializations gives a polarized Hodge structure F p on

P k (by which we mean a bilinear form inducing a polarized Hodge structure on each fiber).

A technical condition, important for arguments about this sort of situation, is that

∇O(F p) ⊂ O(F p−1 ⊗ T ∗)

where ∇ is the flat connection on P k. This is referred to as Griffiths transversality.

We may abstract this case to a general definition. A variation of Hodge structure on the base B, of

weight m, consists of a flat complex vector bundle H over B which is the complexification of a real bundle

with an embedded flat lattice bundle A; a flat bilinear form defined over Q skew if m is odd and symmetric

otherwise; and a descending filtration of H given by (F p) satisfying

∇O(F p) ⊂ O(F p−1 ⊗ T ∗).
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Furthermore, the (F p) must define a Hodge structure of weight m on each fiber of H, which is polarized by

Q.

Of course, one may define an analogous variation of mixed Hodge structure, as well as morphisms of such

variations; these definitions are entirely analogous to those in the previous two sections, so we omit them.

3.4 The Period Mapping

There is another important viewpoint on variations of Hodge structure [1], which we will examine in more

detail—in particular, we may consider variations of Hodge structure to be pullbacks of a universal bundle

over a classifying space for Hodge structures. In this section we elucidate the construction of this classifying

space, and the correspondence between certain maps into the classifying space and variations of Hodge

structure.

We consider Hodge structures (V,A, {V p,q}) of degree n, satisfying dim(V p,q) = hp,q for fixed integers

hp,q (with
∑
hp,q = dimC(V ), hp,q = hq,p, and hp,q = 0 if p+ q 6= n). The set of all decreasing filtrations F p

of V with dimF p =
∑
j≥p h

j,n−j is a complex projective variety.

To see this, consider a product of Grassmannians

∏
p

G(
∑
j≥p

hj,n−j , V ).

Then a tuple of points (F i) is a filtration (e.g. · · · ⊃ F i ⊃ F i+1 ⊃ · · · ) etc. if and only if it is in the vanishing

locus of each of the map Mi+1 → V ⊗O/Mi where Mi is the canonical vector bundle over G(
∑
j≥i h

j,n−j , V )

and the map is induced by the natural inclusion Mi+1 → V ⊗O. It is easy to see that GLC(V ) acts transitively

and holomorphically on the variety of filtrations, so it is a nonsingular complex projective variety, denoted

F̂. Now those filtrations satisfying V = F pV ⊕Fn−p+1V for all p form an open subset of this variety (in the

Hausdorff topology), as two subspace intersecting non-trivially is a closed condition; denote this complex

manifold by F. This space classifies Hodge structures with dimV p,q = hp,q.

One may fix a non-degenerate bilinear form S, skew if n is odd and symmetric of n is even, and construct

a similar classifying space for Hodge structures polarized by this form. These spaces have the advantage that

they are homogeneous spaces for certain Lie groups. In particular, let D̂ ⊂ F̂ be the set of filtrations such

that S(F p, Fn−p+1) = 0; this is a subvariety. Let D ⊂ D̂ be the subset of filtrations satisfying the other

condition of polarization, that is, ip−qS(v, v) > 0 for v ∈ Hp,q, v 6= 0. It is easy to see that D ⊂ F.

Fix A a lattice in a real vector space VR with complexificaiton VC; we wish to classify Hodge structures
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on (A, VR, VC). Now let GC be the subgroup of GLC(VC) preserving S, and GR the subgroup of GLR(VR)

preserving S. We have that GC acts transitively on D̂ and GR acts transitively on D, so we have that D̂,D

are homogeneous spaces for GC, GR.

Let GZ be the subset of GR consisting of elements g with gA = A. It is not hard to see that the action

of GZ on D is properly discontinuous, so for any discrete subgroup of GZ, the quotient of D by Γ, denoted

Γ/D, gives a complex analytic variety.

Now we define a subbundle of the tangent bundle to D̂, Th(D̂), by saying that a vector v in the tangent

bundle at x is in Th(D̂) if, viewed as an endomorphism of VC, it sends F p(x) into F p−1(x), where these

are the members of the filtrations at the point x, for all p. By restricting to D, this defines an analogous

subbundle for D. We say a map into D, D̂ is horizontal if its differential takes values in Th(D̂), Th(D).

Now consider a variation of Hodge structures H over M . Pulling back to a bundle over the universal

cover M̃ of M , we have that as M̃ is simply connected, we get a trivial bundle H ′×M̃ where H ′ is a complex

vector space. Furthermore, the filtration of H pulls back to a filtration of H ′ × M̃ , such that the filtration

induces a Hodge structure on each fiber. If H was polarized, we may pull back the polarization form to

a form on H ′, polarizing each fiber, so we have a horizontal map M̃ → D sending a point to the Hodge

structure on H ′ over that point.

Realizing H as a quotient of H ′ × M̃ by an action of π1(M), we have that π1 acts on H ′ preserving the

lattice, and thus maps into GZ. Let its image by Γ. Then we have a map M → Γ/D, which locally lifts to

the map M̃ → D, and is holomorphic. This is the “period mapping” of Griffiths.

Note that D has a natural filtered trivial bundle H with the fiber over a point p ∈ D given by the Hodge

stucture at that point. Pulling back this bundle through the map M̃ → D gives exactly the trivial bundle

H ′ × M̃ with the filtration above—this is the sense in which this natural bundle H is universal.

4 Mixed Hodge Modules

We now consider a further generalization of this situation, due to Morihiko Saito [12-15, 17]. This chapter

assumes familiarity with the definitions of DX -modules and perverse sheaves [17].

4.1 Hodge Modules

Let X be a smooth complex projective variety. We say that an increasing filtration F p of a DX -module is

good if it respects the action of DX and if GrF (M) is coherent as a Gr(DX) module (relative to the standard
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filtration on DX). We say that a filtered DX -module is holonomic if the degree of the Hilbert polynomial

of M (its dimension) is equal to the dimension of X as a complex variety. Equivalently, we say that it is

holonomic if, viewed as an object of the derived category D(M) has cohomology concentrated in dimension

0 (where D is the Verdier dual functor).

Let MFh(DX) be the category of holonomic DX -modules with a good filtration, with morphisms given

by morphisms of filtered DX -modules. If k is a field, we may let kX be the constant k-valued sheaf over X,

and Perv(kX) the category of perverse sheaves over kX . There is a functor

DR : DX −mod→ CX −mod

given by tensoring with OX over DX ; this induces a functor

DR : MFh(DX)→ Perv(CX).

Furthermore, there is a functor

−⊗
Q

C : Perv(QX)→ Perv(CX).

One may check that both of these functors are fully faithful. Let MFh(DX ,Q) be the pushout category

MFh(DX) ×
Perv(CX)

Perv(QX).

That is, the objects are triples ((M,F p), L, α), where (M,F p) ∈ MFh(DX), L ∈ Perv(QX), and α is an

isomorphism DR(M) ' C ⊗
Q
L, and morphisms are pairs of morphisms compatible with α—that is, (f, f ′)

such that the diagram

DR(M) α //

DR(f)

��

C⊗
Q
L

C⊗
Q
f ′

��

DR(M ′) α′ // C⊗
Q
L′

commutes.

LetMFh(DX ,Q)str be the full subcategory ofMFh(DX ,Q) consisting of direct sums of objects ((M,F ), L, α)

of MFh(DX ,Q) such that no sub-object or quotient object has support strictly smaller than that of

((M,F ), L, α) (which we identify with the support of M or L).

Now we inductively define the category MH(X,n) of Hodge modules over X of weight n, where X is
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a smooth complex algebraic variety. It is the full subcategory of MFh(DX ,Q)str satisfying the following

conditions.

• If ((M,F ),K, α) is supported on a point {x}, then it is the direct image of a rational Hodge structure

of weight n (A, V, (V p,q)) through the inclusion ix : x → X, where the direct image is viewed as

acting on DX -modules and perverse sheaves, and the Hodge structure is thought of as a member of

MFh(Dx,Q)str. In particular, the category of Hodge modules of weight n over a point is exactly the

category of rational Hodge structures of weight n.

• For all Zariski open U ⊂ X and t a non-constant holomorphic function on U , an object M of MH(X,n),

if, not supported on t−1(0), must satisfy that the k-th graded component of ψt((M,F ),K), φt,1((M,F ),K)

with respect to the weight filtration are Hodge modules of weight k with support on t−1(0), where

ψt, φt,1 are defined in [12-15] and the weight filtration is defined in [17]. (The definitions are extremely

technical, so we omit them.)

As before, we may require that these objects be polarizable, in which case we denote the category by

MH(X,n)(p).

The important thing to note is that polarizable variations of Hodge structure are naturally Hodge mod-

ules; indeed, we have that

Theorem 7. Let X be a smooth complex variety of dimension dX and H, (F p) a variation of Hodge structure

of weight n on X. Then there is a connection ∇ on H ⊗
Q

OX such that

(((H ⊗
Q

OX ,∇), (F−p)), H[dX ])

is a Hodge module of weight n+ dX .

4.2 Mixed Hodge Modules

We now continue the road to generalization. Following Peters and Steenbrink [17], we give an axiomatic

definition of a Mixed Hodge module, which generalizes the concept of a variation of mixed Hodge structure.

Let MHW (X)(p) be the category of polarizable W -filtered Hodge modules—that is, objects are W -

filtered elements ((M,F ), L,W ) of MFh(X,QX) such that GrWi ((M,F ), L) is an element of MH(X, i)(p)

for all i. Then there is a full Abelian subcategory of MHW (X)(p) satisfying the following conditions.

24



• Let Db(MHM(X)) be the derived category of bounded complexes in MHM(X), and let Db
cs(X; Q)

be the derived category of sheaves of vector spaces over Q whose cohomology sheaves are constructible.

Then there is a faithful functor

ratX : DbMHM(X)→ Db
cs(X; Q)

sending MHM(X) to Perv(X; Q), the category of perverse sheaves of Q-vector spaces.

• There is a faithful functor

DmodX : DbMHM(X)→ Db
coh(DX),

where Db
coh(DX) is the derived category of DX -complexes with coherent cohomology.

• Let DRX : Db
coh(DX) → Db

cs(X; C) be the functor − ⊗DX
OX ; then we ask that ratX(−) ⊗ C is

naturally isomoprhic to DRX ◦DmodX .

• The category of mixed Hodge modules on a point is naturally isomorphic to the category of graded

polarizable rational mixed Hodge structures, as defined above; ratX in this case sends a mixed Hodge

structure to its rational vector space.

• Applying the functor GrWi commutes with the cohomology functor Hj .

• The Verdier dualtiy functor DX on Db
cs(X; Q) lifts to a functor DX : MHM(X) → MHM(X) com-

muting with ratX .

• If f : X → Y is a morphism of varieties, there are functors f∗, f! : DbMHM(X)→ DbMHM(Y ), f∗, f ! :

DbMHM(Y )→ DbMHM(X) satisfying the usual properties with regard to adjointness and DX , and

commuting with ratX in the sense that they lift the corresponding functors in Db
cs(X; Q).

• If GrWi Hj(M•) is zero for all i− j > n, then the same is true for f!M
•, f∗M•.

• If GrWi Hj(M•) is zero for all i− j < n, then the same is true for f !M•, f∗M
•.

Again, variations of mixed Hodge structure are naturally mixed Hodge modules.

These axioms reveal the importance of this generalization—we may now use the four operations f∗, f∗, f!, f
!

of Grothendieck to analyze Hodge structures. That is, we have the full functorial power analogous to sheaf

theory at our disposal.

However, we still lack the tools to analyze variations of structure.
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5 Schmid’s Nilpotent Orbit Theorem and SL2-Orbit Theorems

5.1 Motivation and Setup

We take the point of view of section 3.4. Fix a real vector space VR containing a lattice A, and let VC be its

complexification. Let n be an integer, S be a non-degenerate skew (resp. symmetric) bilinear form if n is odd

(resp. even), and let D be the classifying space of Hodge structures of degree n on (A, VR, VC) polarized by

S. Let Γ ⊂ GZ be a subgroup and Φ : M → Γ/D a map from a complex manifold M which is holomorphic

and lifts locally to horizontal maps M̃ → D, where M̃ is the universal cover of M . Furthermore, we assume

M is Zariski open in a reduced analytic space M̄ .

We wish to analyze the possibility of extending Φ to a (possibly singular map) on the ambient space

in which M resides. In particular, we consider the case where M̄ − M is codimension 1. By work of

Hironaka, we may assume M̄ −M has only normal crossings. As everything is local, we may thus assume

that M ' (B − 0)l ×Bk−l and M̄ ' Bk, where B is the unit disk in C.

We only consider the case where M,M̄ are one-dimensional, e.g. by passing to the local situation

M ' B − 0 and M̄ ' B. For the generalized situation, see [1]. Then the universal covering space of M is

the upper half plane U := {z ∈ C | Im(z) > 0} via the map z 7→ e2πiz. The fundamental group π1(M) = Z

acts on U via transation, e.g. the generator acts via the deck transformation z 7→ z + 1. By the properties

of the universal covering space, a locally liftable map Φ : M → Γ/D lifts to a map Φ̃ : U → D such that the

diagram

U
Φ̃ //

��

D

��
M

Φ // Γ/D

commutes.

5.2 Nilpotent Orbit Theorem

Now again by the properties of covering spaces, there is an element γ of Γ ⊂ GZ, not necessarily unique,

such that Φ̃(z + 1) = γ ◦ Φ̃(z). Fix such a γ; we will refer to it as the monodromy transformation of Φ;

to compute such an example of such a γ in this case, one may simply consider the image of a generator of

π1(M) in GZ. A lemma of Borel gives that all the eigenvalues of γ are roots of unity.

Now we use the Jordan decomposition theorem to write γ = γsγu, where γs is semisimple and γu is
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unipotent. As all the eigenvalues of γ are roots of unity, γs has finite order m. Let

N = log(γu) =
1
m

log(γm).

as an element of the Lie algebra of GR (whose complexification is the Lie algebra of GC). To see that N

exists, we may write

N =
∑
k≥1

(−1)k+1 1
k

(γu − 1)k

which is a finite sum as γu is unipotent. Now remembering that GC acts on D̂ and that D ⊂ D̂, we may

define a map Ψ̃ : U → D̂, by

Ψ̃(z) = exp(−mzN) · Φ̃(mz)

which satisfies

Ψ̃(z + 1/m) = exp(−mzN)γ−1
u γ · Φ̃(mz) = γs · Ψ̃(z)

and thus

Ψ̃(z + 1) = Ψ̃(z).

Thus Ψ̃ induces a map Ψ : M → D̂.

The nilpotent orbit theorem gives data on this new map:

Theorem 8 (Nilpotent Orbit Theorem, One-Variable ). The mapping Ψ has a holomorphic continuation to

B. Let a = Ψ(0) ∈ D̂. Then a is a fixed point of γs, and there exists α, β ≥ 0 such that Im(z) > α implies

exp(zN) · a ∈ D, and

d(exp(zN) · a, Φ̃(z)) ≤ (Im z)βe−2πm−1 Im(z)

where d is a GR-invariant Riemannian metric on D. Furthermore, z 7→ exp(zN) ·a is a horizontal map into

D̂. [1]

In particular, this shows that for Im(z) large (that is, for points in U which are map to points close to

the puncture of M), the map Φ̃(z) is close to a special kind of map, that is, exp(zN) · a—which also maps

horizontally into D in some neighborhood of the puncture.
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5.3 SL2-Orbit Theorem

We wish to analyze these special maps. First, note that the Lie algebra g of GC has a Hodge structure.

Indeed, picking a point of D, the Hodge structure on this point induces a Hodge structure on Hom(VC, VC);

by restriction, this induces a Hodge structure of weight 0 on g, which we will denote {gp,−p}.

Now assume we are in the situation of the Nilpotent Orbit Theorem—that is, we have a point a ∈ D̂

α ≥ 0, and N nilpotent in the Lie algebra of GR such that z 7→ exp(zN) · a is horizontal as a map into D̂

and, for Im(z) > α, has image in D.

Essentially, the idea here is to analyze the case where D is the upper half plane, in which case GR =

SL(2,R) and D̂ is the Riemann sphere P1.

Indeed, let L be the stabilizer in SL(2,C) of the point i ∈ P1 = C ∪ {∞}; then viewing SL(2,R) ⊂

SL(2,C), we have that the orbit of i is the upper half plane U . Let D be a classifying space for Hodge

structures with base point x; then a homomorphism

ψ : SL(2,C)→ GC

sending L into the stabilizer of x in GC, gives a holomorphic, equivariant map

ψ̃ : P1 → D̂

via ψ̃(g · i) = ψ(g) · x.

Now let

Z =

0 −i

i 0

 , X+ =
1
2

= i 1

1 i

 , X− =
1
2

i 1

1 −i


span sl(2,C); then letting the span of X+, Z,X− have degrees (−1, 1), (0, 0), and (1,−1) respectively, we

give sl(2,C) a Hodge structure of degree 0 relative to the real vector space sl(2,R). The SL2-orbit theorem

states the following:

Theorem 9 (SL2-orbit theorem). Let D, D̂ be a classifying spaces for Hodge structures on (A, VR, VC)

polarized by S as in section 3.4. Consider a ∈ D̂ α ≥ 0, and N nilpotent in the Lie algebra of GR such that

z 7→ exp(zN) · a is horizontal as a map into D̂ and, for Im(z) > α, has image in D. Then there exist

1. A homomorphism ψ : SL(2,C)→ GC.

2. A neighborhood W of ∞ ∈ P1 and a holomorphic map g : W → GC

28



such that

1. exp(zN) · a = g(−iz)ψ̃(z) for z ∈W − {∞};

2. ψ(SL(2,R)) ⊂ GR, and ψ̃(U) ⊂ D, where U is the upper half plane in P1;

3. dψ : sl(2,C)→ gC is a map of Hodge stuctures of degree (0, 0);

4. g(y) ∈ GR for iy ∈W ∩ iR;

5. Ad g(∞)−1(N) is equal to

dψ

0 1

0 0

 ;

6. For iy ∈W ∩ iR, let

h(y) = g(y) exp

−1
2

log y · dψ

−1 0

0 1


 .

Then

h(y)−1 d

dy
h(y) ∈ (g1,−1 ⊕ g−1,1) ∩ gR.

7. The endomorphism of VC given by

T = dψ

−1 0

0 1


operates semi-simply and has integral eigenvalues. Furthermore, writing the power series expansions

of g(z), g(z)−1 about z =∞ as

g(z) = g(∞)(1 +
∑
i≥1

giz
−i), g(z)−1 = g(∞)−1(1 +

∑
i≥1

fiz
−i)

we have that fn, gn map the l-eigenspace of T into the linear span of the k-eigenspaces for k ≤ l+n−1.

Furthermore, by altering the base point of D if necessary, one may choose g, ψ such that g(∞) = 1 and

N = dψ

0 1

0 0

 ;

then we have

(Ad(N))n+1gn = 0, (ad(N))n+1fn = 0.
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Essentially, the idea is to take an arbitrary classifying space for Hodge structures, and to consider a part

of it as the image of a classifying space given by the upper half plane.
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