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Abstract

The goal of this thesis is to introduce some of the major ideas behind extended topological
quantum field theories with an emphasis on explicit examples and calculations. The statement
of the Cobordism Hypothesis is explained and immediately used to classify framed and oriented
extended 2 dimensional topological quantum field theories. The passage from framed theories
to oriented theories is equivalent to giving homotopy fixed points of an SO(n) action on the
space of field theories. This thesis then constructs extended 2 dimensional Dijkgraaf-Witten
theory (also called finite gauge theory) as an example of a 2 dimensional extended field theory
by assigning invariants at the level of points and extending up. Finally, it is concluded that
Dijkgraaf-Witten theory is the only example of an extended framed 2 dimensional topological
quantum field theory by showing that any field theory is equivalent to Dijkgraaf-Witen theory
for some cyclic group.
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0 Introduction

0.1 Motivation

In the last few decades, there has been considerable research interest in the subject of topological
quantum field theories. After Atiyah’s axiomitization of these topological field theories in his 1989
paper “Topological quantum field theories” [1], there has been much interest in classifying field
theories, developing new ones calculating interesting manifold invariants, and finding physical mod-
els of such field theories. From a pratical perspective, topological quantum field theories describe
systems capable of performing quantum computation. To date, the best candidate system to be
described by a topological quantum field theory is the ν = 5/2 fractional quantum hall effect -
a 3 dimensional field theory [2]. Heuristically the quasiparticles of this system are described by
tiny tubes representing the movement of the particles through time; one would use this system to
perform quantum computations by studying the braiding of these tubes in a system. The quantum
amplitude of that time evolution would depend only on the regular isotopy type of the link; in other
words, a small perturbation in the path of the particle will not change the quantum amplitude
as long as the perturbation does not affect the way the tubes cross. In this system, the different
isotopy types of links would correspond to different logic gates in computation. The benefit to such
a “topological” model of quantum computing is that computation is not affected by the inevitable
small amounts of “noise” leaking into all real-world systems. Because the paths of the particles only
matter up to isotopy, a local perturbation of the path will not change the way these paths braid
meaning that as long as the particles were “far enough apart” to begin with, the perturbed paths
will still compute the same logic gate. Therefore, the real practical benefit to topological quantum
computing is the ability to compute even when the system is not perfectly insulated [3].

From a more mathematical perspective, topological field theories are interesting because they
are tools to systematically organize and produce topological invariants. Already, 3 dimensional field
theories have been used to organize knot invariants and polynomials [4]. The subject of this thesis
however, will mostly be 2 dimensional field theories: in particular, we produce a complete classifi-
cation of all 2 dimensional field theories by calculating the necessary and sufficient pieces of data
required to define a 2 dimensional field theory. We will see that these field theories nicely translate
geometric conditions to algebraic conditions with the result that 2 dimensional field theories are
essentially special kinds of algebras over a field.

These geometric conditions, of course, are inspired by the physics of topological field theories.
The spatial dimension is typically described by M , an n dimensional manifold without boundary
with bordisms of n-manifolds describing the evolution of this system. If there is a bordism ∅ →M
then this bordism selects the vacuum state of M . If ∂M = ∅, then Z(M) is the vacuum expectation
value [5]. In general, one can ask how the quantum system evolves over a period of time t ∈ I.
An important aspect of topological field theories is that the quantum amplitude for time evolution
is invariant under diffeomorphism - therefore, we can take the cylinder M × I to represent the
“identity map.” On the other hand, the quantum nature of the system allows for “quantum fusion”
and “quantum splitting,” the amplitudes for which are described by bordisms M → N . All of this
data can be reorganized in a coherent manner using the language of categories and functors:

Definition An “n+1 dimensional topological quantum field theory” (or “topological field theory”)
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is a symmetric monoidal functor Z : Cob(n)→ Vect(k).

This formalism is precisely what Aityah described in [1]. In particular, the class of topological
quantum field theories forms a category itself with morphisms being the natural transformations.
It is sensible then, to ask if this category is equivalent to another category, or at least if there is a
way to produce a list of distinct equivalence classes of field theories. This sort of classification is
precisely what this thesis achieves in dimension 2.

0.2 Monoidal Categories

The basic language with which to formulate topological field theories is that of monoidal categories
and functors. We will give a brief overview of the relevant definitions and concepts in this section
leaving the details to MacLane [6].

Definition A “monoid” is a set S equipped with an associative operation ◦ : S ×S → S such that
there is a distinguished element 1 satisfying the property that s ◦ 1 = 1 ◦ s for all s ∈ S.

Monoids are perhaps some of the most natural objects in mathematics. Take, for example, the
natural numbers. One can add two natural numbers, and the number 0 doesn’t change what it is
added to.

Example A slightly more complex example of a monoid is the set of all homeomorphism classes
of compact oriented surfaces. The monoidal operation is the connected sum: given two manifolds
M and N , pick two small open sets homeomorphic to the open disc D2 on M and N and form
M#N = (M \D2) ∪∂D2 (N \D2). Intuitively, the picture is to cut two small discs out of M and
N and glue the two surfaces together at their new boundary. Since S2 \D2 = cl(D2), the closure
of D2, taking any manifold M and forming its connected sum with S2 will produce a manifold
homeomorphic to M . This example is in fact no different from the natural numbers N since if Mg

is the unique homeomorphism class of a closed genus g oriented surface, Mg#Mh = Mg+h. Both
this monoid and the natural numbers N happen to be commutative but this is not always the case.

In a similar vein, certain categories will admit constructions such as the direct sum or tensor product
which will “feel” monoidal. This idea is formalized in the definition for monoidal categories:

Definition A “monoidal category” is a category C equipped with a bi-functor (functorial in both
variables)⊗ : C×C → C such that⊗ is associative up to natural isomorphisms that satisfy “coherence
conditions” (for sake of brevity, it means that every commutative diagram that one would want to
commute does) and there is a distinguished object 1 ∈ C such that 1 ⊗ X = X ⊗ 1 = X for all
X ∈ C. The category is said to be “symmetric monoidal” if there is further a natural isomorphism
A⊗B → B⊗A which squares to the identity map and is compatible with the coherence maps of C.

Example The category of modules over a commutative ring R is a monoidal category with either ⊕
or ⊗ as its monoidal operation. In the first case, the unit is the trivial module 0, in the second case,
the unit is the free R-module R. Both these operations turn R-Mod into a symmetric monoidal
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category. If the ring R is not commutative, however, then the category of R-R bimodules is still a
monoidal category under ⊗, but this operation is no longer symmetric.

The symmetric monoidal category that this thesis will primarily be concerned with is the cobordism
category Cob(n).

Definition Two n dimensional manifolds M and N are said to be “cobordant” if there is an n+ 1
dimensional manifold B with boundary ∂B = M

∐
N . The manifold B is called a “bordism.”

The “cobordism category” Cob(n) is the category that has diffeomorphism classes of n dimensional
compact oriented manifolds as objects, and bordisms between manifolds are morphisms. More
explicitly, B : M → N is a morphism if ∂B = M̄

∐
N where M̄ is M with the opposite orientation.

Composition of bordisms B : L → M and B′ : M → N is given by gluing B to B′ along M . The
cobordism category can be made into a symmetric monoidal category with the disjoint union as its
monoidal operation and the empty set (considered as an n manifold) is the unit.

Notice that the category Cob(n) exhibits an unusually high amount of duality: given an n + 1
dimensional manifold B, any partition of its boundary pieces into two disjoint sets gives a new
morphism. For example, consider the circle S1 ∈ Cob(1). The cylinder S1× I can be thought of as
three different bordisms: B : S1 → S1, B : ∅ → S̄1

∐
S1, and B : S1

∐
S̄1 → ∅. It turns out this

flexibility in Cob(n) will be instrumental in studying the cobordism category.

Definition A “strict monoidal functor” between two monoidal categories (C,⊗C) and (D,⊗D) is a
functor F : C → D such that there are equalities F (X ⊗C Y ) = F (X) ⊗D F (Y ). The functor F is
said to be symmetric if C and D are symmetric monoidal categories.

Example Consider the symmetric monoidal category of CW-complexes with the monoidal opera-
tion being the wedge product. Then homology Hn is a symmetric monoidal functor to the category
of abelian groups with direct sum as the monoidal operation. More generally, if R is a commutative
ring, then Hn(−;R) is a symmetric monoidal functor with values in R-modules.

1 Low Dimensional Topological Quantum Field Theories

Definition An “n + 1 dimensional topological quantum field theory” is a strict monoidal functor
Z : Cob(n)→ Vect(k) where Vect(k) is the category of vector spaces over a field k (in practice we
will take k = C) [7].

More concretely, this means to each compact n-manifold without boundary M we assign Z(M), a
k-vector space, and to each cobordism F : M → N we assign a linear map Z(F ) : Z(M)→ Z(N).
Recall that a morphism in the cobordism category is just an oriented manifold F such that ∂F =
M̄

∐
N . In particular, given a n+ 1 manifold F without boundary, we can regard F as a morphism

F : ∅ → ∅ which means applying Z gives Z(F ) : k → k. Since all maps of this form must be scalar
multiplication, we can think of Z(F ) as giving an element in k. Indeed, one already sees that given
an n+ 1 dimensional topological quantum field theory, one can produce invariants of oriented n+ 1
manifolds M by evaluating Z(M).
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Figure 1: The composition evM
∐

1M ◦ 1M
∐
coevM .

Already mentioned earlier was how maps in Cob(n) can be interpreted in quite a few different
ways. In particular, suppose one is given an n + 1 manifold B such that ∂B = M̄

∐
N . Then one

can think of B as any of the following:

1. B : M → N

2. B : M̄
∐
N → ∅

3. B : ∅ → N
∐
M̄

Letting B = M × [0, 1] gives three maps: interpreted in the case of (1), B : M →M is the identity
map; interpreted as (2), B : M̄

∐
M → ∅ gives evaluation; interpreted as (3), B : ∅ → M

∐
M̄

gives the coevaluation map. This flexibility gives us a powerful tool in studying properties of the
invariants that arise from a topological quantum field theory.

Proposition 1.1. Let M be an oriented n-manifold and Z an n + 1 dimensional topological field
theory. Then Z(M̄) = Z(M)∨ where ∨ indicates taking the dual vector space.

Proof. Consider the composition:

M
1M

∐
coevM−→ M

∐
M̄

∐
M

evM
∐

1M−→ M

If one were to draw a picture corresponding to this composition of bordisms, it would look similar
to figure 1. One can see that the composite n + 1 manifold looks much like a S-shaped cylinder
on M . Therefore, one can simply stretch this cylinder out and see it is clearly diffeomorphic
to M × [0, 1] hence the composition is the identity. This means that the induced linear map
Z((evM

∐
1M ) ◦ (1M

∐
coevM )) must be the identity map on Z(M). This condition is in fact very

strong and generalizations of this condition will return later to control the behavior of topological
quantum field theories (see example 2.3). Now, the claim is that evM : Z(M)⊗Z(M̄)→ k induces
a perfect pairing between Z(M) and Z(M̄). Suppose that evM is degenerate; this means that there
is a w 6= 0 such that for v(x,w) = 0 for all x ∈ Z(M). Looking at the image of w gives:

w 6= 0 7→ 1⊗ w 7→ (w′ ⊗ x)⊗ w = w′ ⊗ (x⊗ w) 7→ w′ ⊗ v(x,w) = 0
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Therefore, this map cannot possibly compose to the identity and one gets that v(x,w) = 0 for all
x implies w = 0. Therefore, v is non-degenerate and induces a perfect pairing which means Z(M)
is finite dimensional and Z(M̄) = Z(M)∨. �

1.1 Classificaion of Topological Quantum Field Theories in 1 dimension

Suppose Z : Cob(0)→ Vect(k) is a topological quantum field theory. These theories are quite easy
to define since the category Cob(0) only consists of two objects (and their disjoint unions): the
positively and negatively oriented point denoted + and − respectively. By theorem 1.1, we see that
Z(+) = Z(−)∨ so these vector spaces must be finite dimensional. Since in general any oriented 0
manifold is just a set of positively oriented points and a set of negatively oriented points, working out
the morphisms from a single point to a single point will determine the entire topological quantum
field theory (notice there is no bordism from a single point to two points; such a bordism would look
like a Y shape which is not a 1-manifold at junction point). Any bordism B between two points
+ and − is essentially just a cylinder and therefore is the identity map on Z(+). Equivalently, it
also gives the coevaluation map k → Z(−)⊗Z(+) and evaluation Z(+)⊗Z(−)→ k. Importantly,
all of these maps are determined by the choice of Z(+). If B is a 1-manifold without boundary,
then B must be diffeomorphic to disjoint unions of S1. Therefore, it suffices to calculate the value
of Z(S1). To do this, we break up S1 into two half-circles connecting − to +. Then Z(S1) is
just the composition ev ◦ coev; since Z(+) is a finite dimensional vector space, the evaluation and
coevaluation maps are easy to explicitly describe.

Lemma 1.2. If V is a finite dimensional vector space, then there is a canonical isomorphism
V ∨ ⊗ V → hom(V, V ).

Proof. We define the map V ∨ ⊗ V → hom(V, V ) to be the following: (v∨i , vj) 7→ (vk 7→ (v∨i vk)vj).
Since V is finite dimensional, dim(hom(V, V )) = dim(V ∨ ⊗ V ) = dim(V )2. Now, pick a basis {vi}
of V ; we automatically are given a dual basis {v∨i } of V ∨. Then (v∨i vk)vj is equal to vj whenever
i = k and 0 everywhere else. These maps clearly form a basis for hom(V, V ) therefore the map has
maximal rank and is an isomorphism. �

Now, the coevaluation map can be described as coev(r) = r1V for r ∈ k and 1V the identity map
in hom(V, V ). Dually, the evaluation map is ev(T ) = tr(T ) for some T ∈ hom(V, V ). Therefore, the
image of 1 under the composition is tr(1V ) = dim(V ). Therefore, the data of a topological quantum
field theory reduces to choosing a finite dimensional vector space V and Z(S1) = dim(V ).

1.2 Classification of Topological Quantum Field Theories in 2 dimensions

Topological quantum field theories in 2 dimensions are only slightly more complicated than their 1
dimensional counterparts. This is largely because the category Cob(1) remains an easily describable
category: the objects are compact oriented 1 dimensional manifolds which are just disjoint unions of
circles. Therefore, the object assigned to Z(

∐
i∈I S

1) is controlled by the finite dimensional vector
space V = Z(S1). A bordism B :

∐
i∈I S

1 →
∐
j∈J S

1 is just a “generalized pair of pants” - a pair of
pants with one waist hole for each i ∈ I and one leg hole for each j ∈ J . Since both I and J are finite
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Figure 2: The “pair of pants.”

Figure 3: The commutativity of multiplication.

sets, as required by compactness, one can break such a bordism down into a composition of bordisms
going from one circle to two circles of vice versa (figure 2). Therefore, one only has to consider what
objects to assign to Z(S1) and what the bordism Z(S1

∐
S1) → Z(S1) looks like. In particular,

since Z(S1
∐
S1) = V ⊗V , one has a multiplication map Z(S1

∐
S1) = V ⊗V µ−→ V = Z(S1). By

drawing out the relevant “pants” diagrams, one can see that µ must be commutative and associative
(figures 3 and 4). Now, consider the closed disc D as an oriented 2-manifold with boundary. One
can view D in two ways: D : ∅ → S1 and D : S1 → ∅. At first this may seem disconcerting
because we do not seem to be tracking the orientation of S1. This is in fact okay because there is
a diffeomorphism S1 → S̄1 (for example, taking (x, y) ∈ R2 to (x,−y)). The first interpretation of
D gives the “unit” map u : k → V and the second interpretation of D gives the counit or “trace”
map tr : V → k. Indeed, u(1) is the unit of the multiplication map µ since the corresponding
composition of bordisms is diffeomorphic to the identity map on S1. Now, if one multiplies then
takes trace, the corresponding diagram is a half torus. This can be seen as the evaluation map evS1

and gives a bilinear form V ⊗ V µ→ V
tr→ k. Moreover, we checked earlier that this bilinear form

gives a non-degenerate pairing. These commutative algebras with non-degenerate bilinear forms are
familiar objects in mathematics:

Definition A “Frobenius algebra” is an associative unital algebra A over k and a non-degenerate
bilinear form T : A×A→ k.

9



Figure 4: The associativity of multiplication.

Therefore one sees that given a 2 dimensional topological quantum field theory, one can construct
a finite dimensional commutative frobenius algebra A. Conversely, suppose we are given such a
Frobenius algebra: we may extract a functor Z : Cob(1)→ Vect(k) as follows:

1. The object Z(S1) is just the underlying finite dimensional vector space of A

2. The generating pair of pants diagram B : S1
∐
S1 → S1 is given by the multiplication map

µ : A⊗A→ A

3. The unit map is just u(1) = 1A and the counit tr(v) is just given by T (x, y) for any xy = v

As a result, one has the following equivalence

Theorem 1.3. (Classification of 2 dimensional topological quantum field theories) There is a
bijection

Fun⊗(Cob(1),Vect(k))
∼−→ CFrob(k)

between equivalence classes of symmetric monoidal functors from Cob(1) to Vect(k) and isomor-
phism classes of commutative finite dimensional Frobenius algebras [7][8].

Now one might wonder if there is some 2 manifold Σ that calculates dim(A) just as we had
in 1 dimension. In 1 dimension, the construction was to take coevaluation and then evaluation
so we try the same thing again: the resulting manifold Σ is the torus. The coevaluation map
takes 1 ∈ k 7→ 1A ∈ End(A). Therefore, tr(1A) = dim(A). If we look at what element we have
immediately prior to taking trace, we have a way of selecting an element ωA = µ(coev(1)). In [9],
Abrams shows this element to be of the form:

ωA =
∑
i

eie
∨
i

where e∨i is the dual basis to ei. This distinguished “characteristic” has many interesting properties:

Theorem 1.4. For a commutative Frobenius algebra A, the following hold:
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1. A is an Artinian ring (it satisfies the descending chain condition on ideals).

2. If B is another commutative Frobenius algebra, then ωA⊕B = ωA ⊕ ωB.

3. The minimal ideal of A that intersects all other ideals of A is (ωA).

4. ωA is a unit if and only if A is semisimple.

5. A closed genus g surface Mg computes Z(Mg) = tr(ωg).

(See [8] and [9]).

1.3 A Look Towards Extended Topological Quantum Field Theories

While topological quantum field theories are described nicely as symmetric monoidal functors Z ∈
Fun⊗(Cob(n),Vect(k)), these functors require increasingly more information to define for larger
n. In the case of n = 0, 1, the manifolds were easy to describe and therefore these theories were
controlled by a relatively small amount of data. One potential remedy for this increasing complexity
is if one were able to build higher dimensional manifolds out of lower dimensional ones. For example,
a cylinder S1×I might be viewed as the identity bordism S1 → S1 and then the boundary S1 might
be viewed as an endomorphism of a point. Heuristically, one can think of this as enhancing the
categorical structure of Cob(n): the objects are points, morphisms are bordisms between points,
and “2-morphisms” are bordisms between bordisms of points and so on. If we then require the
functor Z to assign invariants to manifolds and morphisms of higher codimension, one can hope
that the functor Z might satisfy more rigid constraints allowing them to be easier to construct
or classify. In fact, we’ve already seen one example of a topological field theory which was truly
easy to describe: the 1 dimensional theories. In this case, one completely formally obtains duality
conditions on the point - namely that the evaluation and coevaluation satisfy a pairing. Using a
diagram in Cob(0) we concluded that the theory was determined by evaluating Z(+) and that the
resulting vector space had to be finite dimensional with Z(−) = Z(+)∨, a kind of dualizability
condition. These ideas are formalized in the study of “extended topological quantum field theories”
which roughly speaking, are theories that assign invariants to manifolds of dimension less than n.
In the best case scenario, if the theory can be “extended down to points,” then one can guess that
Z(+) might control a large amount of the theory and that only a select special class of objects might
be assigned to Z(+). In fact, this best case scenario is true: if one has a fully extended topological
quantum field theory, then it is completely determined by Z(+) and one can write down formal
categorical conditions that Z(+) must satisfy. The main difficulty is that as we include more and
more dimensions, these categorical duality conditions become increasingly complex. However, the
extended 2 dimensional case still remains a tractable problem and it is easy to identify exactly what
kinds of objects correspond to extended 2 dimensional theories. Before proceeding to classify the
extended 2 dimensional theories, one must make rigorous exactly what kinds of “higher categories”
Cob(n) and Vect(k) should be replaced with.
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2 Higher Categories

If one of the major points of interests of topological quantum field theory is its use in identifying
interesting invariants of manifolds, one major flaw is the inability to calculate these invariants
using smaller pieces of the manifold. Since an n + 1 dimensional topological quantum field theory
does not give invariants of manifolds of dimension less than n − 1, in general, one is not able to
calculate invariants for smaller objects and combinatorially glue them together. For example, if
one triangulates an n+ 1 dimensional manifold M , there is no procedure to obtain Z(M) from the
simplicial data of points, edges, faces, etc.

Ideally, one can enrich the domain of our functor Z so that Z accepts manifolds of arbitrary
dimension less than n as an argument while producing invariants in a sensible way. Furthermore,
it turns out that if such an “extension” of Z exists, the parameters required to define Z become
highly constrained ultimately allowing for a classification theorem. As such, we will now devote
some time into understanding how to enrich the source and target categories of Z. Throughout this
chapter, we will mostly follow Lurie’s exposition in [7].

2.1 Strict 2-Categories

Before jumping into the theory of n-categories, it is instructive to first look at what one expects out
of a theory of higher categories in the simplest case. Recall that one of our goals was to be able to
have Z produce invariants of manifolds of all dimensions. Therefore, whatever our source category
is, it in some sense should have many “tiers” of structure with each tier mimetic of Cob(n) for some
n. With this in mind, we can attempt our first definition of a 2-category.

Definition A “strict 2-category” C consists of the data:

1. A class of objects Ob(C).

2. For any two objects x and y, a category MapsC(x, y) (we will omit the subscript when the
category is clear from context).

3. For each object x, a distinguished object 1x ∈Maps(x, x) called the identity map.

4. A bifunctor called “composition” ◦ : Maps(x, y)×Maps(y, z)→ Maps(x, z) such that com-
posing with 1x on the left and right does not change the morphism

5. The composition bifunctor is strictly associative

Definition A “functor between 2-categories” F : C → D is a rule assigning each object of C an
object of D given any x, y ∈ C, a functor F : MapsC(x, y)→MapsD(Fx, Fy) such that composition
and identities are respected.

Now, recall that for any given object x in an arbitrary category, one can always form the endomor-
phism monoid End(x). Elements in this monoid are just endomorphisms of x and the multiplicative
structure is simply composition of endomorphisms. In the case of higher categories, one would
expect that there is a similar, “categorified” version of End(x):

12



Proposition 2.1. Let C be a 2-category and x ∈ C. Then the category ΩxC = MapsC(x, x) is a
monoidal category.

The notation here is inspired from topology where given a distinguished basepoint x in a topo-
logical space X, one can form the loop space ΩxX of loops based at x. The analogy between
topological spaces and higher categories will be elaborated on in section 2.2.

Proof. The proof of this proposition is essentially a review of the definition of a 2-category. To begin,
one already knows that ΩxC is a category. Now, the monoidal bifunctor ◦ : ΩxC × ΩxC → ΩxC is
just the composition of morphisms. Associativity follows from the strict associativity of 2-categories
and the unit of composition is just 1x. �

Conversely, given any monoidal category D, one can “deloop” the category into a strict 2-
category:

Proposition 2.2. Let D be a monoidal category. Define the category BD as follows: there is one
object of BD which we will call the basepoint ∗ and MapsBD(∗, ∗) = D. Then BD is a strict
2-category called the “one-object delooping of D.”

Proof. The proof for this proposition is in the same spirit as above; since there is only one object ∗,
there is only one mapping category Maps(∗, ∗) = D which is given to us by hypothesis. Therefore
the only remaining thing to check is strict associativity. However, since ∗ is the only object in BD,
strict associativity reduces to associativity in D which is given to us since D was monoidal. Finally,
the unit of the monoidal structure is just the unit of D now treated as the morphism 1∗. �

Later on, these constructions will make an apperance again in order to generalize notions of
“dualizability.”

We now examine some basic examples of 2-categories:

Example Let k be a field. The 2-category Vect2(k) of k-linear categories has:

1. Objects are cocomplete categories enriched over Vect(k).

2. 1-morphisms are cocontinuous k-linear functors.

3. 2-morphisms between two functors F and G are natural transformations from F to G.

4. Composition of maps is just composition of functors.

5. The unit of composition is the identity functor 1C .

Notice that given any unital k-algebra A, one can form a k-linear category by looking at left or
right modules over A. Since module categories are cocomplete and complete, we will later only look
at objects in Vect2(k) that arise as module categories as cocontinuous functors between module
categories are easy to describe. This 2-category is referred to as Alg2(k) (see section 3.2).
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Example When attempting to define a higher cobordism category in a similar way, one might
run into problems. For example, a naive definition for Cob2(1), the 2-category of bordisms of
1-dimensional manifolds might be

1. Objects are oriented points.

2. Given two points p and q, Maps(p, q) is the category of 1-manifolds with boundary p
∐
q and

bordisms between them; in other words, given two bordsisms M1 : p→ q and M2 : p→ q, a 2-
bordism B : M1 →M2 is a manifold with corners such that ∂B = M1

∐
p,qM2 is a 1-manifold

with corners at p and q.

3. Composition of bordisms is given by gluing bordsism along the boundary.

4. The units of composition are cylinders.

While this definition sounds appropriate at first, there is a problem with the way composition is
defined in this category: in particular, consider the task of gluing to manifolds M1 and M2 along
a boundary manifold X; there is no “single” manifold that “is” the gluing of M1 and M2 along X.
Instead, the gluing is only defined up to unique isomorphism by the following universal property:

Definition Let M1 and M2 be manifolds each with X as a boundary component. If M is a third
manifold equipped with maps M1 →M and M2 →M such that there is a commutative diagram

X //

��

M1

��
M2

//M

then M is said to be the “gluing of M1 and M2 along X” if the diagram is a pushout square; in
other words, for any other manifold N equipped with maps M1 → N and M2 → N which agree on
X, there is a unique map M → N making the diagram commute

X //

��

M1

��

��

M2
//

((

M

!!
N

Any manifold M satisfying this property is well defined up to unique isomorphism.

Therefore the problem with composition of morphisms is that the notion of “strictly associative”
must be loosened to some notion of “associative up to isomorphism.” This introduces a new problem:
suppose one wishes to compose two 2-morphisms in Cob2(1). If we want to make sense of having
this composition “up to isomorphism,” then we would need to have maps between 2-morphisms as
well; i.e. we would need to introduce 3-morphisms. Then this same problem might arise at when
composing 3-morphisms requiring us to add higher morphisms ad infinitum. Therefore, in order to
formally solve this problem, one should get the sense that there are morphisms of all degrees, but
all of them past a certain finite degree only keep track of isomorphisms. This leads us to our brief
discussion on (∞, n)-categories.
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2.2 A Short Aside on (∞, n)-Categories

A full exposition on the theory of (∞, n)-categories is unfortunately outside the scope of this thesis.
This section only aims to sketch the motivating principles of the theory of higher categories without
doing much to formalize the intuition. If interested in a rigorous treatment of the subject, the reader
is again referred to [7]. The goal of this section is to provide an intuitive feel for (∞, n)-categories
and to explain how these objects might help solve the “associativity up to coherent isomorphisms”
problem in the previous section. To begin, we examine one of the most natural places where higher
categories arise:

Example Let X be a suitably good topological space. For each natural number n ≥ 0, define a
category called the fundamental n-groupoid of X written Π≤nX:

1. Objects are the points of X.

2. 1-morphisms are paths in X.

3. 2-morphsims are homotopies of 1-morphisms.

4. n-morphisms are homotopies of n− 1-morphisms.

Notice that π0X is just the isomorphism classes of Π≤1X and that π1(X,x) = AutΠ≤1X(x)). This
construction is kind of a primordial example of an n-category; however, there is a special feature
of this n-category: since paths are invertible (by running t ∈ [0, 1] backwards) and homotopies
are equivalence relations, every morphism in this n-category is invertible. Categories in which all
morphisms are invertible are called “groupoids.”

Now, one would like some sort of notion for when Π≤nX captures all of the homotopy-theoretic
data for X:

Definition A topological space Y is called a “homotopy n-type” if πk(Y ) = 0 for all k > n.
Given any space X, one can construct a homotopy n-type Y with the same homotopy groups as
X up to dimension n; furthermore, the (weak) homotopy type of Y is uniquely determined in this
construction.

As one would expect, if X → Y is a weak equivalence of homotopy n-types, then there is an
induced equivalence of categories Π≤nX → Π≤nY . In general, however, homotopy groups exist
in all dimensions; it is actually rather rare to encounter spaces with only finitely many non-zero
homotopy groups. With this in mind, it would be appropriate to think of an arbitrary good
topological space X (for example, a simplicial set) as a homotopy ∞-type. Then, if f : X → Y is a
map of topological spaces that induces equivalences Π≤nX → Π≤nY for all n, f is a weak homotopy
equivalence.

Therefore, one can imagine creating a category Π≤∞X which is an ∞-groupoid that contains
all of the homotopy-theoretic data of X. In fact, there should be an equivalence

Topological Spaces up to Weak Equivalence→∞-groupoids
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The fact that∞-groupoids are combinatorial structures that keep track of homotopy-theoretic data
suggests the following definition for an ∞-groupod:

Definition A “(∞, 0)-category” or “∞-groupoid” is a Kan complex.

Recall that if X is a topological space, there is a functor S called the “total simplicial complex”
taking X to a Kan complex SX. Since Kan complexes are the fibrant objects in the model category
of simplicial sets, after passing to homotopy theory, these Kan complexes give (weak) homotopy
types. Having defined (∞, 0)-categories, one might try to define (∞, n)-categories inductively.

Definition An “(∞, n)-category” is a category enriched over (∞, n − 1)-categories. Heuristically,
an (∞, n)-category has m-morphisms for all natural numbers m such that if f is an m morphism
with m > n then f is invertible.

This inductive definition actually does give the correct definition for (∞, n)-categories but one must
be careful with what “enriched” means. Again, trying to mimic strict associativity in ordinary
category at all levels in an ∞-category can raise issues like in the case of the extended cobordism
category. Essentially, the issue boils down to the following: if X is a topological space such that
precomposing with the Hopf fibration gives a nontrivial map π2X → π3X, then the homotopy
3-type of X cannot be modelled as a strict category; if it were strict, it turns out the groupoid
modelling it would correspond to an infinite loop space which should not be the case. See [10] for
example.

Because (∞, n)-categories are able to keep track of morphisms of all degrees, these∞-categories
are perfect candidates for providing a way of tracking the higher isomorphisms in Cob2(1). There-
fore, one should think of Cob2(1) as an (∞, 2)-category. Having defined higher categories, we can
state the definition for a fully extended topological quantum field theory.

Definition Let C be a symmetric monoidal (∞, n+1)-category. A (fully) extended n+1-dimensional
topological quantum field theory is a symmetric monoidal functor

Z : Cobn+1(n)→ C

Here, the category on the left is the higher analogue of the category Cob2(1) which has points
as objects, bordisms of points as 1-morphisms, bordisms of bordisms as 2-morphisms up to n-
morphisms. Then the remaining infinite tiers of maps are used to track coherence data of structural
isomorphisms. Since the rest of this thesis mainly concerns itself with the case n = 2 for which we
may do without a developed theory of ∞-categories, we will not say more on this.

2.3 Dualizability in Higher Categories

Recall that when classifying 1 dimensional topological quantum field theories, one must assign a
vector space V = Z(+) to a positively oriented point +. Then the duality between the positively
oriented point and the negatively oriented point produced a perfect pairing between V and V ∨

inducing an isomorphism V ∼= (V ∨)∨ which implies dim(V ) is finite. In general, if we wish to
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produce an extended topological quantum field theory, there will be some sort of generalized duality
condition which comes from the duality of the point objects in the higher cobordism category. The
higher dimension the topological quantum field theory, the stronger the duality conditions. We
now introduce the higher dualizability constraints that Z(+) must satisfy for extended topological
quantum field theories.

Definition Let C be a 2-category. If f : X → Y and g : Y → X are two 1-morphisms, then
a 2-morphism u : 1X → g ◦ f is said to be the unit of adjunction if there exists a 2-morphism
v : f ◦ g → 1Y such that the following two compositions are the identity 2-morphisms:

f = f ◦ 1X
1f×u−→ f ◦ g ◦ f

v×1f−→ 1Y ◦ f = f

g = 1X ◦ g
u×1g−→ g ◦ f ◦ g 1g×v−→ g ◦ 1Y = g

In this situation, one says that f is the left adjoint of g and X is the dual of Y . If every 1-morphism
in C admits both a left and right adjoint, then C is said to “have adjoints.”

Now suppose C is just any ordinary monoidal category then C is said to “have duals” if BC has
adjoints.

Example Consider the monoidal category Vect(k) with the operation ⊗k. We can deloop this
category into BVect(k) and ask when a vector space (now considered as a 1-morphism) has adjoints.
In particular, if V : ∗ → ∗ is dualizable, one must provide W : ∗ → ∗ along with units of adjunction
v : V ⊗W → k and u : k →W ⊗ V such that the following 2-morphisms compose to the identity:

V = V ⊗ k 1V ×u−→ V ⊗W ⊗ V v×1V−→ k ⊗ V = V

W = k ⊗W u×1W−→ W ⊗ V ⊗W 1W×v−→ W ⊗ k = W

At this point, the example should appear familiar as it is identical to the proof of proposition 1.1.
As before, v : V ⊗W → k induces a perfect pairing between V and W . From this, one sees that
adjunction generalizes the duality exhibited in the case of non-extended topological quantum field
theory (in other words, this is the correct notion of dualizability one layer down in the theory).

Definition An object X in a symmetric monoidal n-category C is said to be dualizable if X has
adjoints considered as a 1-morphism in Bho1C where ho1C is the ordinary category whose objects
are the objects of C with morphisms isomorphism classes of 1-morphisms in C. The category ho1C
is called the “homotopy category” of C.

While we have not rigorously defined exactly what “symmetric monoidal n-category” means, in
practice this will not be much of an issue since the primary case considered is the category Alg2(k)
which has a intuitively clear tensor product: given two k-algebras A and B one can form the tensor
product A⊗kB. Now, suppose one had a bimodule BMA. We need a way to produce a B⊗C-A⊗C
bimodule: to do this consider the module M ⊗k C. Define the following actions:

(b⊗ c)(m⊗ c′) = (bm⊗ cc′)
(m⊗ c′)(a⊗ c) = (ma⊗ c′c)
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This turns M ⊗k C into the required morphism A ⊗ C → B ⊗ C. This is the approach taken by,
for example, Schommer-Pries in [11].

In general, to define the adjunction in higher n-categories (for n > 2), one has to do a little more
work. Since this thesis will not use anything higher than a 2-category, we will not go into detail, but
the general idea is to form a 2-category which only keeps track of 1-morphisms and isomorphism
classes of 2-morphisms and then study adjunction in this 2-category. Then one iteratively applies
this construction to all the mapping categories until all the morphism levels of the category are
exhausted

Definition Let C be a symmetric monoidal 2-category. Then there is a subcategory called the sub-
category of “fully dualizable objects” whose objects consist only of objects in C that are dualizable
and the only 1-morphisms between objects are invertible morphisms that have both left and right
adjoints. Objects in this category are said to be “fully dualizable.”

Theorem 2.3. Let C be as above, then an object X is fully dualizable if and only if the object X
admits a dual X∨ and the evaluation morphism ev : X ⊗X∨ → 1 has both left and right adjoints.

Proof. The proof for this theorem can be found in [7] section 4.2. The important point which we
will take away is the factorization of the right and left adjoints of evaluation as

evRX = (S ⊗ 1X∨) ◦ coevX
evLX = (T ⊗ 1X∨) ◦ coevX

It turns out that S and T are inverse isomorphisms are adjoints to one another; in fact, S can be
described as the Serre automorphism (constructed in section 3.1). This factorization will become
useful as it will allow for the explicit construction of the Serre automorphism and will later give a
“trace map” on fully dualizable objects. �

This notion of fully dualizable will be of utmost importance when studying extended topological
quantum field theories; as it turns out, the condition that an object be fully dualizable is highly
stringent. In the next chapter, we will formulate the “Cobordism Hypothesis” which will make
apparent the importance of understanding fully dualizable objects and we will also calculate what
the fully dualizable objects are in the category we earlier described as Alg2(k).

3 The Cobordism Hypothesis and the Classification of Extended
2D Topological Quantum Field Theories

3.1 The Cobordism Hypothesis

The Cobordism Hypothesis is the main tool with which to study fully extended topological quantum
field theories.

Theorem 3.1. The Cobordism Hypothesis Let C be a symmetric monoidal (∞, n+1)-category and
Cobfr(n) the (∞, n + 1)-category of framed bordisms. Then there is an ∞-groupoid Cfd obtained
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by taking only the fully dualizable elements of C and only considering the invertible morphisms with
both left and right adjoints. The evaluation Z 7→ Z(∗) of Z at a point ∗ determines an equivalence
of categories

Fun⊗(Cobfr(n), C) ∼−→ Cfd

Proof. The proof for the Cobordism Hypothesis is far out of the scope of this thesis. Roughly
speaking, the idea is to show that the category Cobfr(n) is “freely generated by the point.” As in
the case with other free objects, morphisms (in this case functors) out of the freely generated object
are determined by what the it does on the generator, the point ∗. For more details, the interested
reader is referred to [7] for the general case and [11] for the 2 dimensional case. �

One observation is that in the past, we only required the manifolds to be oriented whereas now we
want a framing. It turns out, however, that given a framed manifold M , one can specify additional
data to reduce the condition down to only requiring M to be equipped with an orientation.

Definition Let V be an n-dimensional real vector space. Recall that a “framing” ξ of V is an
ordered basis (v1, · · · vn) of V . In other words, a frame is a choice of isomorphism ξ : Rn → V .

Clearly, if one has two framings ξ and ξ′, one can write an invertible linear transformation A ∈
GLn(R) which carries the basis ξ onto ξ′. Therefore, if Fr(V ) denotes the set of framings of V ,
there is a right action Fr(V )×GLn(R)→ Fr(V ) by (ξ, A) 7→ ξA.

Definition An “orientation” of V is an equivalence class of framings where two framings ξ and ξ′

are considered equivalent if the transformation A taking ξ to ξ′ has positive determinant.

Now suppose one were more restrictive: if V has an inner product, then one can ask that the frame ξ
is orthonormal. In this case, instead of the full GLn(R) acting on Fr(V ), one only has the orthogonal
group O(n) acting by isometries. If we were to restrict our attention to these orthonormal frames,
then two frames determine the same orientation if and only if they differ by an element of SO(2).

Definition Let E be a vector bundle of rank n over a manifold M . An “orthonormal frame” ξ is
a choice of frame ξx of the fiber Ex over a point x such that these choices vary smoothly as x varies
on M . A framing of M is an orthonormal frame of the tangent bundle TM . Since over each point,
a framing ξx is just a trivialization of the fiber Ex, a framing of M is a trivialization of TM .

If Fr(M) is the collection of orthonormal framings of M , one sees that again there is a right action
Fr(M) × O(n) → Fr(M) where n = dim(M). This right action is just the action of O(n) on the
frame ξx over each point x ∈M .

Definition If G ⊆ O(n) is a subgroup, a “G-structure” on M is an equivalence class of bundles [ξ]
where two bundles ξ and ξ′ are equivalent if there is an element g ∈ G such that gξ = ξ′.

Example We quickly look at 3 subgroups of O(n) that provide familiar G-structures:
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1. If G is the trivial group {1}, then a G-structure is an orthonormal frame ξ.

2. If G is the entire group O(n), then since O(n) acts transitively on the set of orthonormal
frames, a G-structure is no additional data at all.

3. If G is SO(n), the connected component of the identity, then an SO(n)-structure is a smooth
choice of orientation on the fiber of each point which is an orientation on M .

Therefore, one sees that the framed bordism case is actually more general than the oriented bordism
case. There is in fact a way to pass from framed bordisms to oriented bordisms.

Definition There is an action of O(n) on the category Fun⊗(Cobfr(n), C) by gZ(M) = Z(g(M))
where g ∈ O(n) is acting on the framing ξ of M .

Since by the cobordism hypothesis, there is a categorical equivalence

Fun⊗(Cobfr(n), C) ∼→ Cfd

one also gets an action of O(n) on Cfd. Furthermore, since Cfd is an ∞-groupoid, we can consider
it as uniquely determining a homotopy type X such that Cfd ' Π≤∞X.

Theorem 3.2. If G ⊆ O(n) is a subgroup and CobG(n) is the category of bordisms with G-structure
(for manifolds of dimension less than n, one looks at framings of the stablized tangent bundle
TM ⊕ Rn−dim(M)). Then there is a categorical equivalence

Fun⊗(CobG(n), C) ∼→ (Cfd)hG

Where the category on the right denotes the homotopy fixed points of Cfd.

Proof. Again, the reader is referred to [7] for a proof. �

In particular, the category of oriented extended 2 dimensional topological quantum field theories
with values in C is equivalent to (Cfd)hSO(2). We now describe this action of SO(2):

Definition The unit interval [0, 1] can be interpreted as the identity bordism. In order for this to
be a framed bordism in Cobfr(1), one must pick a framing of T [0, 1]⊕R such that the framings at 0
and 1 are the same (say equal to the standard framing of R2). This set actually has a composition
operation by gluing intervals together: [0, 1] ∪ [1, 2] = [0, 2] ' [0, 1] with the framings at the end
points identified. In fact, the set of all such framings up to homotopy can be identified by how many
times the framing twists as x ranges over the interval. In other words, the set of these framings
forms a π1(SO(2))-torsor where an integer z induces an additional z twists on the framing of [0, 1].
Since SO(2) acts on itself, one can choose the left invariant framing of S1 to be the identity element
to obtain an isomorphism with π1(SO(2)). Now, suppose one were given an arbitrary g ∈ SO(n).
If there is a path p connecting 1 ∈ SO(2) to g, then one can always trivialize the framing along this
path as long as it represents 0 ∈ π1(SO(2)). However, if one looks at the action of the generator
γ ∈ π1(SO(2)), the framing cannot be trivialized and therefore γ gives a nontrivial automorphism
on the point +. This nontrivial automorphism is called the “Serre automorphism” and is denoted
S.
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Theorem 3.3. If Cfd is the space of fully dualizable objects for a 2-category C, an invertible 2-
morphism identifying the Serre automorphism of a point x with the identity map at x is equivalent
to giving x the structure of a SO(2) homotopy fixed point.

Before proving this, we briefly recall a fundamental result of obstruction theory:

Theorem 3.4. Let B be a simply connected CW complex, X → E → B be a fibration and suppose
σn : Bn → E is a section on the n-skeleton of B. If Dn+1 is an n + 1-cell of B, then σn|∂Bn+1 :
Sn → E. Projecting this down to B takes the image to Dn+1 so σn(Sn) really lies in the fiber X.
Hence for each n+ 1 cell, σn defines an element in πnX. Since formal linear combinations of n+ 1
cells precisely give cellular cochains, this data specifies a cochain Cn+1(B, πnX). This cochain is
actually a cocycle and σn extends to Bn+1 precisely when this cocycle is 0 ∈ Hn+1(B, πnX) [12].

We can now prove theorem 3.3 using this tool:

Proof. Giving an SO(2) homotopy fixed point on X = Cfd is the same thing as a section of the
Borel fibration X → E = (X × ESO(2))/SO(2) → BSO(2) = CP∞. The space CP∞ has a nice
filtration:

∗ = CP0 ⊂ CP1 ⊂ CP2 · · ·

with CP∞ =
⋃
nCPn. At each step of this filtration, one can ask how to glue down cells onto CPn−1

to get CPn. Since H∗CP∞ = Z[x] the one generator in degree 2, there is only one cell in each even
dimension; this disc D2n then is glued to CPn−1 by the Hopf fibration S2n−1 → CPn−1.

Now suppose we understand sections σn−1 on CPn−1. Since π1CP∞ = 0, obstruction theory
tells us that we can extend the section over the unique cell in dimension 2n of CPn if and only if
σn−1 : S2n−1 = ∂D2n → X is nullhomotopic as an element of π2n−1X. In general, this problem
is not easily approachable, but in this specific case the lifting problem is rather simplified. In
dimension 0, we can always lift the basepoint ∗ ∈ CP∞ to some point x ∈ X. The SO(2) action
then draws out a loop σ0 : S1 → X and it is precisely this loop that must vanish in π1X in order to
extend this section. Then, the next condition that must be satisfied is a nullhomotopy condition in
π3X. But this comes for free: since X is the space of fully dualizable objects in a 2-category, there
are no morphisms of degree higher than 2 so πmX = 0 for all m ≥ 2 (in other words, since Cfd is a
2-groupoid, it comes as Π≤2X for a homotopy 2-type X). Therefore, as long as the section defines a
nullhomotopic loop in π1X, we can immediately lift σ0 to all of CP∞. Since this loop σ0 : S1 → X
is precisely the loop drawn out by the action of SO(2), we know that the loop corresponds to the
Serre automorphism S : x → x. Therefore, a nullhomotopy is precisely an invertible 2-morphism
trivializing S ' 1x. �

3.2 Criteria for Full Dualizability

In this section, we will derive a set of necessary and sufficient conditions for an object to be dualizable
in Alg2(k).

Definition Recall that the 2-category of “algebras bimodules and intertwiners” Alg2(k) has unital
k-algebras as objects. Given two algebras R and S, and the mapping category of 1-morphisms

21



MapsAlg2(k)(R,S) is the category of cocontinuous functors fromR-Mod to S-Mod. The 2-morphsims
are natural transformations of functors.

As mentioned earlier, cocontinuous functors between module categories are actually easy to describe:
the Eilenberg-Watts theorem is precisely the tool which we will use to describe these functors:

Theorem 3.5. Eilenberg-Watts Theorem Let R and S be arbitrary rings with unit. Then there
is an equivalence of categories between the category of S-R bimodules and the functor category of
cocontinuous functors from left R-modules to left S-modules.

S-Mod-R
∼−→ Funcocontk (R-Mod, S-Mod)

by taking the module SMR to SMR⊗R [13] [14] [15].

Therefore, Alg2(k) has the equivalent formulation of having the mapping categoryMapsAlg2(k)(R,S)
be the category of S-R bimodules with linear maps as 2-morphisms. Thus, Alg2(k) is commonly
called “the 2-category of algebras, bimodules and intertinwers:”

Proposition 3.6. Every algebra A ∈ Alg2(k) has a dual.

Proof. We first begin by describing the one object delooping of the homotopy category: Bho1Alg2(k)
has a unique object ∗ and 1-morphisms Map(∗, ∗) algebras over k with bimodules as 2-morphisms.
Any algebra gives a map A : ∗ → ∗ and so asking for a dual is providing an algebra A∨ : ∗ → ∗ such
that there is a unit of adjunction u : k → A∨ ⊗ A and v : A ⊗ A∨ → k. The claim is that we can
set A∨ to be the opposite algebra Ao (the algebra has the same underlying elements as A but with
multiplication from right to left) and the unit and counit maps are A⊗AoA and AA⊗Ao respectively.
Then the adjunction condition reduces to showing that the following composition is identity:

A = A⊗ k A⊗A−→ A⊗Ao ⊗A A⊗A−→ k ⊗A = A

In other words, one must show that (A ⊗ A) ⊗A⊗Ao⊗A (A ⊗ A) ∼= A as an A-A bimodule. To do
this, it is helpful to label all of the rings and the actions. We will do this with numerical subscripts:

A0
0A1⊗2A3−→ A1 ⊗Ao2 ⊗A3

1A2⊗3A4

−→ A4

Therefore, we wish to show that there is an isomorphism

0A1 ⊗2 A3 ⊗A1⊗A2⊗A3 1A2 ⊗3 A4 → 0A4

Once we write down the action of the ground ring, it becomes apparent that there are not many
choices of a morphism that are multilinear: in particular, we see that if we require the rings with a
right subscript to be adjacent to a ring with the same subscript on the left, we are forced to make
the morphism (w ⊗ x⊗ y ⊗ z) 7→ wyxz.

We first show that this map is indeed multilinear:

1. The map is clearly A0 linear on the left and A4 linear on the right
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2. Suppose a1 ∈ A1. Then a1(w⊗ x⊗ y⊗ z) = (wa1⊗ x⊗ y⊗ z) = (w⊗ x⊗ a1y⊗ z) 7→ wa1yxz
which is multilinear

3. A similarly trivial calculation shows that the map is multilinear with respect to the actions
of A2 and A3.

Now, this map is clearly surjective as (a⊗1⊗1⊗1) 7→ a for any a ∈ A. Now, suppose (w⊗x⊗y⊗z) 7→
0 ∈ A. Then this means wyxz = 0 in A. So take the each of the elements w, x, y, z and interpreting
them as actions of A on 1, we can pull all the terms to the first term in the tensor product and get
(w⊗ x⊗ z ⊗ y) = (wyxz ⊗ 1⊗ 1⊗ 1) and since the first term is 0 in A, the tensor product is 0 and
we see that the map is injective and hence an isomorphism. Therefore, any algebra is dualizable
with Ao as its dual. �

Proposition 3.7. Let A and B be two unital k-algebras. Say F is a functor from left A-modules
to left B-modules of the form F = BMA⊗A (−) where BMA is a B-A bimodule. Then this map has
a left adjoint if and only if M is a finitely generated and projective as an A-module.

Proof. If there is a left adjoint to this functor, we also know it must be cocontinuous and so the
Eilenberg-Watts theorem tells us the functor is of the form ANB ⊗B (−). Therefore, by tensor-hom
adjunction, BMA ⊗A (−) = homA(ANB,−) since they are both right adjoints of ANB ⊗B (−). We
will show that ANB has the conditions required and conclude that BMA must also have the same
conditions. First we argue that ANB must be projective: suppose we have a surjection AX � AY
and a map AN → AY . We must show there is a lift:

AX

����
AN //

∃
<<

AY

This is equivalent to checking that the map AX � AY induces a surjection homA(AN,AX) →
homA(AN,AY ). However, we know that hom(AN,−) = MA ⊗ (−) so this is equivalent to showing
that BMA⊗X → BMA⊗Y is a surjection. This is automatic since tensoring is right exact, therefore
we know that N is projective. It remains to show that N is finitely generated; suppose the converse:
write BNA as the union of finitely generated submodules

ANB =
⋃
α

Nα

where each Nα is an A-B bimodule. Consider the identity element 1 ∈ homA(ANB,
⋃
αNα). By

adjunction, this is equivalent to giving an element x ∈ BMA ⊗
⋃
αNα. However, in this tensor

product, we can surely write x as the finite linear combination of pure tensors, so there is some
finitely generated submodule AN

′
B which this identity map factors through. Therefore ANB must

have also been finitely generated. Since ANB is finitely generated and projective, it is the direct
summand of a free module Am. Now, BMA ⊗ (−) = homA(ANB,−) so putting the module A in
the variable position gives BMA = homA(ANB, A), the dual module of ANB. Therefore, BMA is
the dual module to this summand of a free module and so it must be a summand of the dual free
module. Consequently, BMA is also finitely generated and projective as a right A-module.
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Conversely, suppose BMA is finitely generated and projective over A; then we can write it as a
summand of a free module. Then picking ANB to be the corresponding summand of the dual free
module shows that there is a left adjoint to BMA ⊗ (−). �

Proposition 3.8. In the same setup as above if B is Noetherian, the functor BMA ⊗ (−) has a
cocontinuous right adjoint if and only if M is finitely generated over B.

Proof. By tensor-hom adjunction, we automatically know that the functor BMA ⊗ (−) has a right
adjoint of the form hom(BMA,−). However, we do not know that this right adjoint is cocontinuous;
in order to have cocontinuity, we need that hom(BMA,−) preserves all small coproducts (and
therefore all small colimits). If M is finitely generated, then hom(BMA,−) certainly preserves
coproducts. If B is Noetherian, then the converse is true [16]. In our case, the Noetherian condition
on B will be guaranteed since B will be the ground field k. �

We now apply this theorem to the category Alg2(k) to obtain a list of criteria for when an
algebra A is fully dualizable. Recall that theorem 2.3 says that an algebra A is dualizable if and
only if a dual object exists and the evaluation map has adjoints on both sides. Since all algebras A
have Ao as their dual, it suffices to check when the evaluation map has adjoints. At this point, we
specialize to the case where k is perfect, for example k = C.

Theorem 3.9. An algebra A ∈ Alg2(C) is fully dualizable if and only if it is semisimple and finitely
generated over C as a module.

Proof. The evaluation map is A : A ⊗ Ao → k. This is equivalent to asking that the functor
F = kAA⊗Ao ⊗ (−) has a left and right adjoint. By theorem 3.8, F has a right adjoint which is
cocontinuous if and only if A is finite dimensional over k. Similarly, F has a left adjoint if and
only if A is finitely generated and projective over A ⊗ Ao. This condition is equivalent to asking
that A be a finite dimensional separable algebra over k, and since k is a perfect field, this is further
equivalent to A being finite dimensional and semisimple. �

3.3 Calculation of the Serre Automorphism

Mentioned earlier was how the factorization evRX = (S ⊗ 1X∨) ◦ coevX was really a more explicit
construction of the Serre automorphism. In order to obtain this factorization, it suffices to draw
the coevaluation and right adjoint of evaluation in Cobfr(1). One will see that the map S must
precisely induce one twist in the normal framing of the unit interval therefore acting as the generator
of π1(SO(2)). This is carried out in [17]. Therefore, in order to write down S a specific bimodule,
we only need to deduce what evRX is. Right adjunction gives

homC(ev ⊗N,M) = homC(A⊗A⊗Ao N,M) ∼= homA⊗Ao(N, evR ⊗C M)

Since these isomorphisms hold for arbitrary N and M , pick M = C and N = A ⊗ Ao. Then we
have isomorphisms

homC(A⊗A⊗Ao (A⊗Ao),C) ∼= homA⊗Ao(A⊗Ao, evR ⊗C C)

More simply, A∨ = homC(A,C) = homA⊗Ao(A⊗Ao, evR) = evR
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Now, writing out the factorization of evR gives: A∨ = evRX = (S ⊗ 1X∨) ◦ coevX = ASA ⊗k
AoAoAo ⊗A⊗Ao A. Since A ⊗ Ao modules correspond to A-A bimodules, this expression reduces to

ASA ⊗k AAA ⊗A AAA = S ⊗k A. However, this last module has the action of A ⊗ A with the
first factor acting on S and the second acting on A so this tensor product is just S. Therefore one
immediately sees that S = A∨ as an A-A bimodule or A⊗Ao-module. Since an oriented field theory
is a equivalent to a fully dualizable (i.e. finitely generated semisimple) algebra A, the trivialization
of the Serre automorphism is the same thing as giving an isomorphism of A-A bimodules A→ A∨.
This isomorphism produces a perfect pairing

A⊗A⊗Ao A→ C

Therefore, one can think of this trivialization of the Serre automorphism S as giving a trace tr :
A⊗A⊗Ao A→ C. To summarize, we have the following classification result:

Theorem 3.10. (Classification of 2 dimensional Extended Topological Field Theories) An extended
2 dimensional framed topological field theory Z is specified up to natural equivalence by a finitely
generated semisimple algebra A over C up equivalence in Alg2(C) (this equivalence is called “Morita
equivalence”). The data of an oriented 2 dimensional topological field theory is just providing a non-
degenerate bilinear form on A so that 2 dimensional oriented topological field theories are equivalent
to the data of a finitely dimensional semisimple Frobenius algebra A.

Since Morita equivalent rings have the same module categories, two Morita equivalent rings A
and B must have the same trivializations of the Serre automorphism. Therefore, the set of traces
on A and B turning these two rings into Frobenius algebras must biject with one another so the
same oriented field theories come from Morita equivalent algebras.

Before moving on to examples of 2 dimensional topological field theories, we take a quick detour
to explain the nomenclature of the Serre automorphism. It turns out that in general, it is important
to study when a k-linear category C has a functor S : C → C such that hom(X,SY ) = hom(Y,X)∨.
If this functor exists, it is unique up to canonical isomorphism. Furthermore, if we restrict our
attention only to the subcategory generated by “compact objects” of C, the existence of the Serre
automorphism implies the full dualizability of C in the 2-category of linear categories, functors and
natural transformations [8]. In the case where C = D+QCoh(X) the lower-bounded derived category
of quasicoherent OX -modules for a smooth projective variety X of dimension d, Serre Duality allows
us to explicitly construct the Serre automorphism.

Theorem 3.11. (Serre Duality) Let F ∈ C be a quasicoherent OX-module, then there is a perfect
pairing

homC(F , ωX [d])× homC(OX ,F)→ k

inducing an isomorphism homC(F , ωX [d]) ∼= homC(OX ,F)∨.

Now, set the functor S so that SF = F ⊗ ωX [d]. Then we have

hom(F , SG) = hom(F ,G ⊗ ωX [d])

= hom(F ⊗ G∨, ωX [d])

= hom(OX ,F ⊗ G∨)∨

= hom(G,F)∨
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Therefore, we see that S must be the Serre functor and if we take only the complexes in C which
are compactly generated, then C is a fully dualizable object. The reader interested in what framed
field theory this category defines is referred to [8]; details of Serre duality can be found in almost
any standard text on algebraic geometry, e.g. Hartshorne [18][19].

4 Extended Dijkgraaf-Witten Theory (Finite Gauge Theory)

4.1 Construction

We can now attempt to build the corresponding extended topological quantum field theory for
group rings C[G] for a finite group G. These rings are all semisimple since they decompose into
direct sums of the irreducible representations of G and so by theorem 3.9, these should correspond
to extended 2 dimensional field theories. While at first, it seems that group rings might be very
distinguished examples of semisimple algebras, we will show that the theories arising from these
group rings, so called Dijkgraaf-Witten theories or finite gauge theories, account for every possible
extended 2 dimensional field theory up to natural equivalence of functors.

Definition For a finite group G, the extended topological quantum field theory which evaluates
to C[G] for the positively oriented point is called “extended Dijkgraaf-Witten theory” or extended
finite gauge theory for G.

To begin, we first construct the framed version of Dijkgraaf-Witten theory. Then, we know from the
Cobordism Hypothesis with group structure that to get an oriented theory only requires the addi-
tional specification of a trace map on C[G] (different choices of trace maps can turn the underlying
framed theory into different oriented theories). By the Cobordism Hypothesis, we know that we
must prescribe A = Z(+) = C[G]. Now, consider the evaluation map ∅ → +

∐
− and the coevalua-

tion map +
∐
− → ∅ (the category is symmetric monoidal so we may freely swtich the ordering on

disjoint unions). The framing of the evaluation and coevaluation map is just the standard framing
on the unit interval now bent into a half circle (so that the composition has the framing on S1 that
precisely is the one not inherited from R2). Since the evaluation and coevaluation map are AA⊗Ao

and A⊗AoA, we get that Z(S1) = A⊗A⊗Ao A. Now, suppose f ∈ A. Consider the element f ⊗ 1 in
A ⊗A⊗Ao A. Since 1 = gg−1, it must be that f = g−1fg for any g ∈ G. Therefore, f has to be of
the form

∑
aiHi where ai ∈ C and Hi is the sum of all the elements in a conjugacy class of G. One

can think of this as assigning a complex number ai to each conjugacy class Hi and we recover that
Z(S1) is the vector space of class functions from G to C. At this moment, one may think that this
identification also automatically gives a counit (and therefore trace) map: intuitively, Z(S1) has a
canonical identity element which is just the function assigning the number 1 to the conjugacy class
of the identity. However, this map does not correspond to a framed bordism in Cob(2) since the
framing of the circle not coming from R2 does not extend over the disc.

The more difficult construction is to determine what morphism of modules to assign to 2-
manifolds. Since the pair of pants is the fundamental building block of all other 2-bordisms, it
suffices to check to see what morphism it gives from Z(B) : Z(S1

∐
S1) → S1. The method is as

follows: a conjugacy class of G is really just a conjugacy class of homomorphisms Z → G. Since
Z = π1(S1), this is the same thing as specifying a G-bundle on S1. Therefore, a class function is

26



just a way of assigning a complex number to every isomorphism class of G-bundles on S1. Now,
consider the following diagram corresponding to restriction of G-bundles:

Maps(B,BG)
p+

))

p−

vv
Maps(S1, BG) Maps(S1

∐
S1, BG)

Each connected component of each mapping space gives an isomorphism class of a principal G-
bundle on the source of the mapping space so the vector spaces Z(S1) and Z(S1

∐
S1) are really

the vector spaces of locally constant complex-valued functions on each of these mapping spaces.
Then given a locally constant function f : Maps(S1

∐
S1, BG) → C, we can pull this function

back to Maps(B,BG) as follows: given an isomorphism class of G-bundle ξ on B, we can restrict
it to the boundary component S1

∐
S1 and get a bundle ξ|S1

∐
S1 . Then we define a function

g(ξ) = f(ξ|S1
∐
S1). Since π1(B) for the pair of pants B is the free group on two generators Z ∗Z, a

principal G-bundle ξ is the same as a conjugacy class of a pair (g, h) ∈ G ×G. Indeed, projecting
into the first and second factors produces conjugacy classes giving the restricted bundle ξ|S1

∐
S1

for which we have a way of assigning complex values. Therefore, the only nontrivial map to define
is the map p−: given a rule for assigning complex numbers to G-bundles ξ on B, one must find a
way of assigning complex numbers to bundles on the incoming boundary S1. The algorithm is as
follows: given a connected component of Maps(S1, BG), look at the preimage in Maps(B,BG).
For each connected component Ui, we get a G-bundle ξi. Then we compute the number

a =
∑
i

g(ξi)

#π1(Ui)

And assign the restricted bundle on S1 the number a. In practice, this computation is actually not
as difficult as it might look: the first thing to do is to label the generators of π1(B). Label one of
the generators γ and the other γ′; these correspond to a single loop around the outgoing boundary
S1

∐
S1 of the bordism. Then the loop around the incoming boundary S1 is just γ′γ. Therefore,

given a G-bundle ζ ∈Maps(S1, BG) or equivalently a conjugacy class F ⊆ G, we look at each way
we can write F as the product of two conjugacy classes F = HH ′. Then we add together the value
g(H,H ′) for all the pairs H and H ′ multiplying to F .

Recall that the way we were able to extract class functions from elements A ⊗A⊗Ao A was to
write elements as the form

∑
aiHi and set f(Hi) = ai. With this in mind, the procedure we just

described is exactly the way polynomials are multiplied: in particular, given two class functions
f =

∑
aiHi and g =

∑
biHi, the image in Z(S1) under Z(B) is fg =

∑
aiHi

∑
biHi which is

exactly the multiplication inherited from the group ring C[G].

If B is a manifold without boundary, the formula reduces to

Z(B) =
∑

Ui∈π0Maps(B,BG)

1

#π1(Ui)

Since each connected component Ui gives a principal G-bundle ξi, this formula is the same thing as
counting each isomorphism class of principal G-bundle weighted by the order of its automorphism
group π1(Ui) = G. Now, we can ask what kinds of manifolds our framed theory allows us to compute
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invariants for. Unfortunately, the only 2-manifold that has a trivializable tangent bundle is the torus
S1 × S1. Therefore, it is desirable to give this theory additional structure in order to make it an
oriented field theory. Such additional structure amounts to a trace map A ⊗A⊗Ao A → C which
induces a perfect pairing therefore giving an isomorphsim of A⊗ Ao modules A→ A∨. Therefore,
we can look at the central elements z(A) = homA⊗Ao(A,A) = hom(k,A∨ ⊗A) and so we are given
an isomorphism z(A) → A ⊗A⊗Ao A albeit non canonically. As a result, we see that z(A) has a
non-degenerate trace form and so is a commutative Frobenius algebra and hence gives an ordinary
topological quantum field theory on oriented manifolds of dimensions 1 and 2.

4.2 The Morita Theory of Semisimple Algebras

Since there is an equivalence of categories between the category of framed topological quantum
field theories with values in algebras bimodules and intertwiners to the category of fully dualizable
objects in Alg2(C), it suffices to check if two fully dualizable objects are equivalent in order to check
if the field theories they define are naturally isomorphic. Equivalence in the category Alg2(C) is
Morita equivalence.

Definition Two algebras A and B are said to be “Morita equivalent” if the categories of right
modules are equivalent under a cocontinuous functor. More explicitly, the two algebras are Morita
equivalent if there is a B-A bimodule BPA such that the functor BPA ⊗ (−) is an equivalence of
categories.

Note that Morita equivalences will have both adjoints since modules BPA ⊗ (−) inducing Morita
equivalences will be finitely presented and projective [21].

It turns out the Morita theory for semisimple algebras is actually quite simple: this is because
of a powerful structure theorem for semisimple algebras.

Theorem 4.1. (The Artin-Wedderburn Theorem) Let A be a semisimple algebra. Then A is
isomorphic to a product of matrix rings over division rings:

A ∼=
∏

Mni(Di)

This decomposition is unique up to order of the factors [20].

Since our algebras A are all over C, the decomposition reduces to giving A as the product of
matrix rings with entries in C. This decomposition combined with a standard result from Morita
theory allows us to fully classify Morita equivalences of semisimple algebras.

Theorem 4.2. For a ring R, any matrix ring Mm(R) is Morita equivalent to R [21].

These two theorems show that any semisimple algebra A is Morita equivalent to a ring that is
some product of the scalar field C. In particular, since each copy of the scalar field embeds to the
matrix ring Mm(C) by multiples of the identity matrix, this ring Cn is actually the center z(A).
Therefore, any semisimple algebra A is Morita equivalent to z(A). Since z(A) is commutative,
Morita equivalence is the same as isomorphism, so two semisimple rings are Morita equivalent if
and only if they have isomorphic centers.
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Corollary 4.3. Let G be a finite group and n be the number of conjugacy classes of G. Then C[G]
is Morita equivalent to C[Z/n].

Proof. The group ring C[G] is essentially the regular representation for G. The regular represen-
tation is the sum of all of the irreducible representations of G with each irreducible representation
contributing a factor Mni(C) in the Artin-Wedderburn decomposition of C[G]. Since the number n
of irreducible representations of a finite group G is the same as the number of its conjugacy classes,
the center of C[G] is Cn. Since Z/n is Abelian, it clearly also has n conjugacy classes and therefore
the center of its group ring is also Cn and we see that C[G] is Morita equivalent to C[Z/n]. �

Corollary 4.4. A 2 dimensional framed extended topological quantum field theory with values in
algebras bimodules and intertwiners are naturally isomorphic to finite gauge theory for a cyclic
group.

5 Conclusion

Putting together all the results we have so far, we can provide a concise description of all 2 dimen-
sional topological field theories: suppose Z is an ordinary oriented 2 dimensional field theory, then
Z defines a commutative Frobenius algebra F . If this ring F is semisimple, then it is isomorphic to
a product of fields F =

∏n
i=1 k. Any two semisimple algebras A and A′ over k that has F as their

center will be Morita equivalent: this is because A and A′ must have the same number of factors
in their Artin-Wedderburn decomposition since each factor contributes a copy of k to the center.
Therefore there will be a unique extended 2 dimensional framed field theory extending Z given by
A and we might as well pick A = k[Z/n]. The possible oriented field theories coming from this
underlying framed field theory are in bijection with A-A bimodule isomorphisms A∨ → A and each
trace gives an isomorphism of Z(S1) = A ⊗A⊗Ao A with the center of A. These results allow one
to really understand all topological field theories in 2 dimensions: we have an easily computable
criterion for when the field theory has an extension and we can list and explicitly construct every
fully extended 2 dimensional field theory. This is largely due to the fact that full dualizability in
2-categories do not require us to write down too many conditions; as expected, in 3 dimensions the
story is different. Instead of having a semisimple algebra give an extended field theory, one has the
much more complicated “fusion category” [22]. Dijkgraaf-Witten theory happens to translate nicely
over to the 3 dimensional case to produce fully extended field theories, but in general, there are
problems in extending other well known field theories such as Chern-Simons theory [24]. These 3
dimensional theories give rise to more interesting phenomena than their 2 dimensional counterparts,
for example, Witten has shown that knot invariants are related to 3 dimensional field theories in
[4]; another common application of 3 dimensional topological field theories is build two equivalent
theories from different constructions and compare the invariants produced. For (∞, n)-categories
with n higher than 4, not much is known about full dualizability and the subject remains largely
uncharted.
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