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Chapter 1

Introduction

In 1907, Mantel proved that all n node graphs with at least n2/4 edges con-
tain a triangle in what was probably the first result in extremal graph theory
[10]. Define t(F,G) as the probability that a random map of the nodes of F
into G preserves the adjacencies of F . Then Mantel’s statement says that if
the edge density t(K2, G) is greater than one half, then the triangle density
t(K3, G) is greater than zero. The natural question arising from this result
is: Given that a graph has some edge density, what triangle densities can it
have? Call the space of all possible values (t(K2, G), t(K3, G)) D2,3. Find-
ing D2,3 proved difficult. In 1976, Lovász and Somonovitis conjectured the
bounding curves [14], but the conjecture remained unproven until Razborov
solved the problem in 2008 using his flag algebra technique [19]. In this
thesis, instead of flag algebras, the modern theory of large dense graphs is
developed, ultimately providing the relationship between edge density and
triangle density.

However, the theory of large graphs is widely applicable outside of extremal
graph theory, as large graphs are ubiquitous not only in mathematics but
also in computer science, statistical physics, biology, engineering, and many
other fields. Large graphs present unique difficulties. Due to their size, it is
generally hard to compute graph parameters on them, as most parameters,
at least naively, take time exponential in the size of the graph to compute.
Graphs also can be sufficiently large that even looking at all of the nodes
and edges takes too much time. In this case, it is important to know what
information can be gained from looking at subgraphs of the graph. In order
for the sampling of subgraphs to prove useful, there must be some notion
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of distance between graphs that describes how different two graphs are with
respect to these subgraphs, although it is not clear how this distance can be
usefully defined. Finally, just as a metal, actually a large graph of atoms
and their interactions, can be approximated as a smooth solid with certain
properties, it is convenient to define a notion of the convergence of sequences
of graphs so that large graphs can be approximated by integrable functions.

Thus, on the way to Razborov’s result these questions associated with large
graphs are answered. In Chapter 2 it is shown that a large class of graph
parameters define a factor algebra that is a finite dimensional inner product
space, culminating in the proof that such parameters can be evaluated on
graphs with finite tree-width in polynomial time. Further, with one other
requirement, these parameters are equivalent to homomorphism functions,
a result that allows for the proof of Goodman’s Bound and the Kruskal-
Katona Bound, partial progress toward the categorization of D2,3. Chapter
3 concerns the theory of convergent graph sequences. Convergence is defined
as convergence in homomorphism density for all graphs F . Graphons are
proposed as a limit, and it is shown that they have the desired behavior.
The cut distance provides a notion of distance between graphs or graphons,
and the Szemerédi Regularity Lemma is used to prove that the space defined
by the cut distance is compact. The Counting Lemma is then used to show
that graphons are, in fact, the appropriate limit object. At this point, the
theory of large graphs is well developed, and one could easily branch into the
study of spin models of statistical physics, further algorithmic study of large
graphs, or the topology of large graphs and graphons, among others, but that
is outside of the scope of this thesis. Instead, in Chapter 4 the continuity
of graphons is used first to prove the Generalized Turan’s Theorem, after
which the variational calculus of graphons is developed. With this final tool,
Razborov’s proof translated into the language of graphons is presented.
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Chapter 2

Algebra of Graph
Homomorphisms

The primary difficulty of understanding how parameters act on large graphs
is the size of the graphs. One avenue for simplifying large graphs is to define a
product between graphs to create algebraic relationships, with the idea being
that evaluation of a parameter on a graph can be broken into subproblems.
As in [11], we define k- labeled graphs with a corresponding operation called
the gluing product, which defines a space of graphs Qk, and, for some graph
parameter f , a connection matrix M(f, k). It turns out that a surprising
number of connection matrices M(f, k) have finite rank, which allows the
definition of an inner product space Qk/f with finite dimension. In other
words, with respect to such a parameter f , any graph can be written as a
linear combination of a finite number of basis elements in Qk/f . This has
profound implications, two of which are explored here. First, for parameters
with finite connection rank and graphs with bounded tree-width, one can
use dynamic programming to compute the parameter in time polynomial in
the size of the graph. Second, parameters with finite connection rank are
intimately connected with homomorphism functions, which will allow for the
proof of Goodman’s Bound and the Kruskal-Katona Bound, partial progress
toward the characterization of D2,3.
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2.1 Gluing Algebra

A S-labeled graph is a graph with an identification of the labels x ∈ S with
distinct nodes of the graph. If S = [k], the graph is called k-labeled, and if
no node has multiple labels, the graph is called simply labeled. The gluing
product of two k-labeled graphs is computed by taking the disjoint union of
the two graphs, and then identifying the nodes with the same label, possi-
bly creating multiple edges between two nodes. Notice that the product is
associative and commutative and always yields a k-labeled graph. This prod-
uct can be extended in the natural way to linear combinations of k-labeled
graphs to define the quantum algebra Qk. Any graph parameter f : Q0 → R
defines a Frobenius inner product 〈, 〉 on x, y ∈ Qk : 〈x, y〉 = f([[xy]]) where
[[, ]] is the unlabeling operator, projecting quantum graphs into Q0.

2.1.1 Connection Rank

Consider any graph parameter f and integer k ≥ 0. The connection matrix
M(f, k) is the symmetric matrix whose rows and columns are indexed by the
simply k-labeled graphs Gi and the element in the ith row and jth column
is 〈G1, G2〉. A graph parameter is reflection positive if all of its connection
matrices are positive semidefinite and define its connection rank r(f, k) as
rk(M(f, k)).

Many familiar graph parameters have finite connection rank. Below are three
examples to give intuition for why this is often the case and which parameters
one might expect to (and not to) have finite connection rank. We frequently
use the fact that r(f) + r(g) ≥ r(f + g):
Example 2.1.1: Let χq(G) denote the number of q-colorings of a graph G
and χq(G, f) for f : [k] → [q] denote the number of q-colorings of G that
assign each labeled node i the color f(i). Then for k-labeled graphs G1

and G2, the q-colorings of [[G1G2]] can be split into cases depending on the
function f , giving that

χq([[G1G2]]) =
∑
f

χq(G1, f)χq(G2, f)

Thus, M(χq, k) can be written as the sum of qk rank 1 matrices and so
r(χq, k) ≤ qk.
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Example 2.1.2: Let Ham(G) denote the number of Hamiltonian cycles of
G. Consider the form of a Hamiltonian cycle on the k-labeled G1G2. Fol-
lowing the cycle will define a cyclic ordering of the labeled nodes (i1, . . . , ik).
Further, the path from il to il+1 either uses edges in G1 or G2. If the edges
used are in Gm, let jl = m. Then each Hamiltonian path can be associated
with a trace T = (i1, . . . , ik, j1, . . . , jk). Define Ham(Gm, T ) as the number
of sets of paths in Gm such that every path is from some il to il+1 with
jl = m, does not cover any of the other labeled nodes, are node-disjoint
on the unlabeled edges, and cover every unlabeled node of Gm. Intuitively,
Ham(Gm, T ) is the number of halves of a Hamiltonian path that satisfy
some trace T . Then

Ham(G1G2) =
∑
T

Ham(G1, T )Ham(G2, T )

and so by the same logic as the above example, r(Ham, k) is bounded by
the number of possible traces, 2k(k − 1)! [12].

It’s worth noting quickly that the above argument does not work for Eulerian
paths, as the jl above would need to be replaced by something like in-degree,
which is only bounded by the edge multiplicity of the labeled nodes, which
is unbounded. In fact, the parameter counting the number of Eulerian paths
in a graph has infinite connection rank.
Example 2.1.3: The chromatic number χ does not have finite connection
rank. Consider the submatrix N of M(χ, 0) indexed by graphs Ki. Then
it is clear that Ni,j = max(i, j) and so N has infinite rank. Thus, χ has
infinite connection rank.

It’s clear that this argument can be extended to any maxing parameter, ie
one in which f(G1G2) = max(f(G1), f(G2)). In particular, the size of the
maximum clique also has infinite connection rank.

Many 0-1 valued parameters, called properties also have finite connection
rank. For example, Robertson and Seymour [21] showed that all proper-
ties such that f(G) = 1 implies f(G′) = 1 for all minors of G G′ have
finite connection rank, and Godlin, Kotex, and Makowski [7] showed that all
properties that can described by a monadic second order formula do as well.

The above examples of q-colorings and Hamiltonian paths also suggest that
parameters with finite connection rank can be computed more efficiently
than those with infinite connection rank through something like dynamic
programming. This notion can be formalized, but first we need to know a
bit more about the structure of Qk.
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2.1.2 QS/f and the Idempotent Basis

Let Nk(f) denote the kernel of the inner product associated with f . In other
words, let

Nk(f) = x ∈ Qk : f(xy) = 0 ∀y ∈ Qk
Let Qk/f := Qk/Nk(f).
Theorem 2.1.1: The dimension of Qk/f is r(f, k).

This follows immediately from the definition of r(f, k).

Further, if f is reflection positive, then the inner product is positive definite
on Qk, implying that Qk/f is an inner product space. Consider the linear
transformation Ax associated with x ∈ Qk such that Axy = xy. Since
the inner product is definite, x → Ax is injective. Since the Ax commute
and satisfy the Frobenius identity, they can be simultaneously diagonalized.
Thus, Qk/f is isomorphic to the algebra of diagonal matrices, and so it has
an idempotent basis Bk. This logic can be extended to any set S ⊂ N to
define an idempotent basis BS . For two idempotents in Q/f , p resolves q if
pq = q. If p ∈ BS and |T | = |S| + 1, the number of elements in BT that
resolve p is called the degree of p and is denoted deg(p).

This algebraic structure has far reaching ramifications. We present without
proof two results that will be useful later, as well as one immediate corollary.
The omitted proofs consist only of various algebraic manipulations, see [12]
for details:
Lemma 2.1.1: Let S, T ⊂ N be finite sets, p ∈ BS∩T , and let q ∈ BS resolve
p. Then for x ∈ QT /f , f(p)f(qx) = f(q)f(px).
Lemma 2.1.2: If two idempotents q ∈ BT and r ∈ BS resolve the same
idempotent p ∈ BS∩T , then qr 6= 0.

Proof: By the above lemma,

f(qr) =
f(q)

f(p)
f(pr) =

f(q)

f(p)
f(r) > 0

and so qr 6= 0.
Lemma 2.1.3: If S ⊂ T and q ∈ BT resolves p ∈ BS , then deg(q) ≥ deg(p).
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2.1.3 Finite Connection Rank and Computation

As suggested by Examples 2.1.1 and 2.1.2, parameters with finite connection
rank give rise to a decomposition of the calculation of the parameter into
subproblems. We show here that this allows such parameters to be calculated
efficiently on graphs with small treewidth [11].

A tree decomposition of a graph G is a tree T and a set of subgraphs
{Gi}i∈V (T ) such that ∪Gi = G and, if i is on the path from j to k in
T , V (Gi) ⊇ V (Gj) ∩ V (Gk). A graph G has treewidth k if k is the largest
integer such that there is no tree decomposition of G into subgraphs of size
at most k.
Theorem 2.1.2: [12] If f is a graph parameter with r(f, k) finite, then f
can be computed in polynomial time for graphs with treewidth at most k .

Proof: Essentially, we do a large amount of precomputation, and then use
dynamic programming.

It is easy to confirm that r(f, k) is non-decreasing in k, so since r(f, k) is
finite, so is r(f, l) for all l ≤ k. By Theorem 2.1.1, then, each of the algebras
Ql/f have finite dimension. For each l, compute a basis Bl, as well as the
product of any two elements in the basis.

Next, for everym-labeled graph H form ≤ k with at most k+1 nodes, every
ordered subset S ⊆ V (H) with |S| ≤ k, and every FS ∈ B|S|, let H ′ be the
m-labeled graph formed from gluing the labels of FS to the corresponding
element of S on the graph H. Rewrite H ′ as a linear combination of the
elements Bm.

Finally, compute f(G) for all G ∈ B0. Thus ends our precomputation, which
depends only on k and r(f, k).

Let G be some graph with treewidth k and decomposition using the notation
above. Call any leaf r of T the root, and for i 6= r, let i′ denote its parent.
Then for all i 6= r, Si = V (Gi) ∩ V (Gi′) is a cutset in G with ki ≤ k nodes.
Define Fi as the union of all graphs Gj where j is a descendant of i (including
i) after which the ki nodes of Si are labeled. Our goal is to express every Fi
in the basis Bki .

Assume we have done so for all proper descendants of i. By definition, Fi
is obtained from Gi by attaching different branches Fj at the sets Sj . By
assumption, we know how to express each Fj as a linear combination of
elements Bkj , and so Fi is a linear combination of graphs, each of which
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is Gi with some number of basis graphs attached at some S ⊆ V (Gi) with
|S| ≤ k. If multiple bases are attached at the same S, they can be easily
replaced by a single graph, as we have precomputed all of the products of
bases. This yields a linear combination of ki labeled graphs in the basis Bki ,
as desired. Finally, when we reach the root, consider it 0-labeled, giving an
expression for G in the basis B0, which immediately gives the value of f(G)
as desired.

2.2 Graph Homomorphisms

Consider two simple graphs G and H. A homomorphism ψ from G to H is a
map from V (G) to V (H) such that if (i, j) ∈ E(G), (ψ(i), ψ(j)) ∈ E(H). Let
hom(F,G) denote the number of homomorphisms from F to G. A weighted
graph is a looped simple graph with positive real weights αi associated with
the nodes and real weights βij associated with the edges. The notion of
homomorphisms can be extended to weighted graphs H with nodeweights
αi and edgeweights βij as follows:

αψ =
∏

u∈V (F )

aψ(u)

homψ(F,H) =
∏

(u,v)∈E(F )

βψ(u)ψ(v)

hom(F,H) =
∑

ψ:V (F )→V (H)

αψhomψ(F,H)

We define the homomorphism densities as

t(F,G) =
hom(F,G)

v(G)v(F )

and
t(F,H) =

hom(F,H)

(
∑

v∈V (H) αv)
v(F )

for G simple and H weighted, respectively. inj(F,G) and tinj can be defined
analogously where ψ is restricted to being injective. It’s clear that for simple
graphs F,G

hom(F,G) =
∑
P

inj(F/P,G)
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where P ranges over all partitions of V (F ) and G/P is the graph that re-
sults from merging each element of the partition P into a single node, with
the new nodes connected only if they have adjacent pre-images. It follows
immediately that we can use the Möbius inversion of the partition lattice to
get [24]:

inj(F,G) =
∑
P

µPhom(F/P,G)

We can now prove the following:
Theorem 2.2.1: The simple graph parameter hom(., G) determines a simple
graph G.

Proof: By the above relation between hom(F,G) and inj(F,G), if for all F
hom(F,G) = hom(F,G′), then inj(F,G) = inj(F,G′) for all F . But then
inj(G′, G) = inj(G,G′) = inj(G,G) > 0, and so there is an injective map
from G into G′ and from G′ into G, and so G ∼= G′.

We will not prove it here, but an analogous result to the above theorem holds
for weighted graphs [11]. If weighted graphs H1 and H2 have no twin nodes
and hom(F,H1) = hom(F,H2) for all simple graphs F , then H1

∼= H2. A
weighted graph H has twin nodes if there exist some two nodes u and v such
that βuj = βvj for all j. If such twins exist, H can be reduced to a graph with
one less node by removing u and changing v’s weight to αu +αv without af-
fecting any of its values with respect to homomorphism functions. Thus, the
above result could equivalently state that if two weighted graphs have identi-
cal homomorphism functions, then after twin reduction they are isomorphic.
In the next section, we will complete this identification of graphs with pa-
rameters, but first, it’s worthwhile to see some examples of homomorphism
functions.
Example 2.2.1: hom(G,Kn) is the number of n colorings of G.
Example 2.2.2: hom(Pk, G) is the number of walks of length k − 1 in G.
Example 2.2.3: The number of stable sets stab(G) is hom(G,K◦2 ) where
K◦2 is an edge with a loop added at one of the nodes. This is because for
each homomorphism ψ, the set of nodes that ψ sends to the unlooped node
in K2 form an independent set in G.

2.2.1 Homomorphism Functions and Connection Rank

We are now ready to unify our notions of homomorphism functions and finite
connection rank.
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Theorem 2.2.2: For f a graph parameter defined on multigraphs without
loops, f = hom(., H) for some weighted graph H on q nodes if and only if
it is reflection positive, f(K0) = 1, and r(f, k) ≤ qk for all k ≥ 0.

Proof: (⇒) [2] For any two k-labeled graphs F1 and F2 and ψ : [k]→ V (H),
let homψ(G,H) : Qk → R be the number of homomorphisms from G to H
that send i to ψ(i) for i ∈ [k]. Then by definition

homψ([[F1F2]], H) = homψ(F1, H)homψ(F2, H)

Since
hom([[F1F2]], H) =

∑
ψ

αψhom
ψ([[F1F2]], H)

M(hom(., H), k) is the sum of positive semidefinte rank 1 matrices. Since
there are v(H)k possible choices for ψ, hom(., H) is reflection positive and
has rank at most v(H)k. It is easy to confirm that hom(K0, H) = 1 for all
H.

(⇐) [13] By Lemma 2.1.3, if some idempotent p ∈ BS is resolved by some
q ∈ BT with |T | = |S| + 1, then deg(q) ≥ deg(p). This process can be
repeated indefinitely to show that for arbitrary |T | > |S|, the dimension of
QT is at least deg(p)|T−S|. Since by assumption the dimension is bound by
qk, then, deg(p) ≤ q and, in particular, there is some largest degree D ≤ q of
some idempotent such that all idempotents that resolve it also have degree
D.

For some set S fix an idempotent basis p ∈ BS with degree D. Let qu1 , . . . , quD
be the elements of BS∪{u} for any u ∈ N−S. Then for any finite T ⊃ S and
ψ : T − S → {1, . . . , D}, let

qψ =
∏

v∈T−S
qvψ(v)

It follows from Lemma 2.1.1 that

f(qψ) = f

( ∏
v∈T−S

qvψ(v)

)
=

( ∏
v∈T−S

f(qψ(v))

f(p)

)
f(p) 6= 0

and so qψ 6= 0.

We claim that the basic idempotents of QT /f that resolve p are the elements
qψ. We show this by induction. If |T − S| = 1, the result follows trivially.
Now assume that |T − S| > 1. For some u ∈ T − S, let U = S ∪ {u} and
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W = T −{u}. By the inductive assumption, the idempotent bases resolving
p are of the form qψ. Call one of these r. By Lemma 2.1.2, rqui 6= 0 for all
i. Further, both it and the idempotent bases of BT clearly resolve r. Since
rqui 6= rquj for i 6= j, and the degree of r is D, it follows that each rqui is an
idempotent basis in BT . We thus have all of the elements in BT that resolve
p, and so QT /f behaves as we claimed.

Note that an idempotent qψ resolves qui if and only if ψ(u) = i. It follows
that

qui =
∑

ψ:ψ(u)=i

qψ

We are ready to define H, a weighted looped complete graph on D nodes
with nodeweights αi and edgeweights βij . Pick some u ∈ N − S. Let αi =
f(qui )/f(p) (which is trivially greater than zero).

Choose another distinct v ∈ N− S and let W = S ∪ {u, v}. Let Kuv denote
the graph on W which was just one edge connecting u and v, and let kuv be
the corresponding graph in QW . pkuv trivially resolves p, and so it can be
written as a linear combination of elements of BW that resolve p. We define
βij as the elements that arise from this linear combination, namely

pkuv =
∑
i,j

βijq
u
i q
v
j

It’s worth noting that βij = βji, as is necessary, because pkuv = pkvu.

Using the above expression of qui as a sum of qψs, we get the following:

pkuv =
∑

i,j∈V (H)

βijq
u
i q
v
j

=
∑

i,j∈V (H)

βij
∑

ψ:ψ(u)=i,ψ(v)=j

qψ

=
∑
ψ

βψ(u)ψ(v)qψ

Let G be a Z-labeled graph with V (G) = Z ⊆ N − S and let g be the
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corresponding element of Q/f . Then

pg =
∏

uv∈E(G)

pkuv

=
∏

uv∈E(G)

∑
ψ

βψ(u)ψ(v)qψ


=
∑
ψ

 ∏
uv∈E(G)

βψ(u)ψ(v)qψ


Since p ∈ QS/f and g ∈ QZ/f with S ∩ Z = ∅, f(p)f(q) = f(pq) and so (in
the third step using Lemma 2.1.2)

f(g) = f(pg)/f(p)

=
∑
ψ

 ∏
uv∈E(G)

βψ(u)ψ(v)f(qψ)

 /f(p)

=
∑
ψ

 ∏
uv∈E(G)

βψ(u)ψ(v)

 ∏
v∈V (G)

f(qvi )

f(p)

 f(p)

 /f(p)

=
∑
ψ

 ∏
uv∈E(G)

βψ(u)ψ(v)
∏

v∈V (G)

αφ(v)


= hom(G,H)

as desired.

2.3 Reflection Positivity

We are now ready to do some extremal graph theory. All arguments about
t(F,H) will hold for all H, so for notational simplicity denote t(F,H) by
just F . Further, denote the number of labels of a graph using superscripted
dots. Unless otherwise stated, the labels are applied to graphs from nodes
with smallest degree first. When this is not the case, the labeling will be
described explicitly.

The reflection positivity of homomorphism numbers gives many free inequal-
ities. For example, for any submatrixM indexed by the graphs {F1, . . . , Fn}
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and vector v ∈ Rn, reflection positivity implies that vTMv ≥ 0. Written in
terms of the Fi,

0 ≤
n∑

i,j=1

vivj [[FiFj ]]

≤

[[(
n∑
i=1

viFi

)]]

Thus, [[x2]] ≥ 0 for all x ∈ Qk.

Another property implied by reflection positivity is that all submatrices of
M(hom(., H), k) have non-negative determinant. In particular, for a subma-
trix indexed by two elements F1 and F2,

[[F 2
1 ]][[F 2

2 ]] ≥ [[F1F2]]
2

Finally, if F is a subgraph of G, then any homomorphism of G into some H
gives a corresponding homomorphism of F into H and so F −G ≥ 0

2.3.1 Kruskal-Katona Bound

Given some edge density, the Kruskal-Katona Bound gives an upper bound
on triangle density.
Theorem 2.3.1: t(K3, H) ≤ t(K2, H)3/2

Proof: [9] Let F1 = K ··2 and F2 = P ··3 . Then since

[[F 2
1 ]][[F 2

2 ]] ≥ [[F1F2]]
2

⇒ P4K2 ≥ K2
3

⇒ K3
2 ≥ K2

3

⇒ t(K3, H) ≤ t(K2, H)3/2

Where the second to last step follows from the fact that K2
2 is a subgraph

of P4.

Can this bound be attained? It turns out that one can get arbitrarily
close to any point on the curve. Consider a graph G that has subgraph
Kk with n − k accompanying isolated nodes. Then t(K2, G) = k(k−1)

n2 and
t(K3, G) = k(k−1)(k−2)

n3 . As n approaches infinity, t(K2, G) approaches ( kn)2
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and t(K2, G) approaches ( kn)3. Thus, one can write a sequence of graphs
whose homomorphism densities converge to any point on the Kruskal-Katona
line. One benefit of defining the limit of a convergent sequence of graphs is
that the Kruskal-Katona bound will be saturated in this way for all choices
of t(K2, G).

2.3.2 Goodman’s Bound

Goodman’s Bound gives a similar lower bound on triangle density.
Theorem 2.3.2: [8] t(K3, G) ≥ t(K2, G)(2t(K2, G)− 1) for all G.

Proof: Notice that x = K ···3 − P ···3 − P
··,·
3 +K ··2K

·
1 is idempotent, where the

two P3s correspond to paths of length two with label 3 and 2 on the middle
node, respectively. This means that

[[x2]] = K3 − 2P3 +K2K1 = K3 − 2P3 +K2

since t(K1, H) = 1 for all H. Similarly,

[[(K ·2 −K2)
2]] = P3 −K2

2

Since unlabeled squares of quantum graphs are always positive, we thus have
that

0 ≤ [[x2]] + 2[[(K ·2 −K2)
2]]

≤ K3 − 2K2
2 +K2

⇒ K3 ≥ K2(2K2 − 1)

as desired.

It’s clear that this bound is not strict for t(K2, G) < .5, as then

t(K2, G)(2t(K2, G)− 1) < 0 ≤ t(K3, G).

For any graph Kn, t(K2,Kn) = n−1
n and t(K3,Kn) = (n−1)(n−2)

n2 so Kn

saturates the inequality. It turns out that the only time the inequality is
saturated is at t(K2, G) = n−1

n for integer n, but we don’t yet have the tools
to prove this. In order to optimize our lower bound further, we need to
move away from the discrete space of graphs into a space in which we can
make continuous deformations. This space will turn out to be the space of
graphons, which is described in Chapter 3.
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Chapter 3

Graphons

The example of the Kruskal-Katona Bound strongly suggests defining a limit
object of a sequence of convergent graphs, the idea being that defining such
object will allow us to move from the discrete space of graphs into a continu-
ous one, which will open up many new lines of attack mathematically. First,
one must define which sequences of graphs are convergent. We have already
seen above that homomorphism functions hom(., G) not only describe many
important properties of graphs, but also fully determine simple graphs. This
suggests a notion of convergence first defined by Borgs, Chayes, Lovász, Sós,
and Vesztergombi in 2006[2]. A sequence of graphs (Gn) is called convergent
if t(F,Gn) converges for all F .

Next, we need to define a limit object. The definition is motivated by consid-
ering the adjacency matrix of a graph G, and then normalizing it, showing
that graphs can be represented by symmetric step functions [0, 1]2 → [0, 1].
Graphons are generalizations of graphs, and defined as the set of all sym-
metric measurable functions [0, 1]2 → [0, 1]. In section 1, we go on to prove
that graphons can be given appropriate homomorphism functions, and that
all graphs have a corresponding graphon with identical homomorphism func-
tion.

In section 2, a distance on the space of graphons called the cut distance,
first suggested by Frieze and Kannan [6], is motivated and presented. Sec-
tion 3 introduces the Szemerédi Regularity Lemma, which, when applied to
graphons, says that graphons can be approximated up to some error ε by
a stepfunction with k(ε) steps. In particular, k(ε) does not depend on the
specific graphon. These two notions combine to allow for the proof that the
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space of graphons such that graphons with cut distance 0 are identified with
each other is compact with respect to the cut distance.

With the result that the cut distance defines a compact space, in section 4
we prove that each graphon is the limit of some graph sequence and that
each graph sequence has some graphon as its limit. Thus, it is confirmed
that graphons are the appropriate limit object.

3.1 Definition of Graphons

A kernel is a symmetric, measurable function W : [0, 1]2 → R. Denote the
space of all kernels W . If the range of W is [0, 1], it is called a graphon [15],
and the space of graphons is called W0. We also let W1 denote the space of
graphons with range [−1, 1]. For any graph H, the corresponding kernel is
defined as follows: if the weights of the edges of H are βij and the weights of
the nodes of H are αi and αH =

∑
αi, thenWH is a stepfunction partitioned

into steps Si of size αi/αH such that W (x, y) = βij for x ∈ Si, y ∈ Sj . If all
0 ≤ βij ≤ 1, WH is a graphon. Intuitively, the graphon representation of a
graph looks very similar to an adjacency matrix- both can be thought of as
look up tables giving the adjacency between nodes of a graph.

In order to have a useful definition, it must be the case that homomorphism
densities of graphs extend to kernels. Define

t(F,W ) =

∫
[0,1]V (F )

∏
ij∈E(F )

W (xi, xj)
∏

i∈V (F )

dxi

It’s clear that this is an analogous definition to that of homomorphism den-
sity of graphs, and so t(F,G) = t(F,WG) as we would desire. Crucially, it
is also the case that t(.,W ) is multiplicative and reflection positive. This
means, for example, that Goodman’s Bound and the Kruskal-Katona Bound
extend to graphons. It is not the case in general, however, that t(.,W ) has
finite connection rank.
Example 3.1.1: let Sn denote the nth star, namely a tree with a root and
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n leaves. Then

t(Sn,W ) =

∫
[0,1]V (Sn)

∏
ij∈E(Sn)

W (xi, xj)
∏

i∈V (Sn)

dxi

=

∫
[0,1]n+1

n∏
i=1

W (x, yi)
n∏
i=1

dyidx

=

∫ 1

0

(∫ 1

0
W (x, y)dy

)n
dx

=

∫ 1

0
(dW (x))ndx

where dW (x) is called the normalized degree function and defined as

dW (x) :=

∫ 1

0
W (x, y)dy

Example 3.1.2: [12] We already noted that the number of Eulerian paths
in a graph F has infinite connection rank, and so cannot be written as a
homomorphism function t(., H) for some weighted graph H. Let Eul(F ) be
the set of orientations ~F of F with equal in degree and out degree on each
vertex. We claim that |Eul(F )| = t(F,W ) for W (x, y) = 2cos(2π(x − y)).
Below we let d~Fin(i) and d~Fout(i) denote the in and out degrees of some vertex
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i under the orientation ~F :

t(F,W ) =

∫
[0,1]V (F )

∏
ij∈E(F )

2cos(2π(x− y))
∏

i∈V (F )

dxi

=

∫
[0,1]V (F )

∏
ij∈E(F )

e2πi(xi−xj) + e2πi(xj−xi)
∏

i∈V (F )

dxi

=

∫
[0,1]V (F )

∑
~F

∏
ij∈E(~F )

e2πi(xi−xj)

 ∏
i∈V (F )

dxi

=

∫
[0,1]V (F )

∑
~F

∏
i∈V (~F )

e2πi(d
~F
in−d

~F
out)xi

 ∏
i∈V (F )

dxi

=

∫
[0,1]V (F )

 ∑
~F∈Eul(F )

1 +
∑

~F 6∈Eul(F )

∏
i∈V (~F )

e2πi(d
~F
in−d

~F
out)xi

 ∏
i∈V (F )

dxi

=

∫
[0,1]V (F )

 ∑
~F∈Eul(F )

1

 ∏
i∈V (F )

dxi

= |Eul(F )|

where all cases with ~F 6∈ Eul(F ) cancel because the period of each e2πik for
k 6= 0 is 1/k, and so integrating from 0 to 1 cancels out the element.

Thus, the class t(.,W ) retains the properties of t(., H) while expanding
the possible uses of homomorphism functions. In many cases, the func-
tion t(.,W ) is all we will care about with respect to some kernel. For
this reason we say that two kernels W1 and W2 are weakly isomorphic if
t(F,W1) = t(F,W2) for all simple graphs F and call the space of equivalence
classes of weakly isomorphic kernels W̃ .

As an extension, for a k-labeled graph G let V = V (G)− [k]. Then define

tx1,...,xk(F,W ) =

∫
x∈[0,1]V

∏
ij∈E(V )

W (xi, xj)
∏
i∈V

dxi

It’s clear that tx(F1F2,W ) = tx(F1,W )tx(F2,W ) and, for F ′ the graph
obtained by unlabeling the k node,

tx1,...,xk−1
(F ′,W ) =

∫ 1

0
tx1,...,xk(F,W )dxk
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3.2 Cut Norm

A fundamental question one might ask about graphs is how different they
are from each other. First, consider two graphs F,G with the same number
of nodes n. One natural choice is the edit distance

d1(F,G) =
|E(F )∆E(G)|

n2

which is the distance associated with the L1 norm. This doesn’t really work
well with our definition of convergence. For example, consider two graphs
A,B with n nodes that are generated as follows: for any two nodes i and j,
put an edge between them with probability 1/2. Then for large n, the two
graphs will have nearly identical homomorphism densities, and our notion
of distance should say that these two graphs are similar. However, the edit
distance between these two graphs has expected value 1/2, the same expected
value as the edit distance between one of these graphs and the complete
graph.

The cut distance addresses this problem by instead trying to isolate the
portions of the graphs that are most different. Let eG(S, T ) with S, T ∈ [n]
denote the edges in G with first node in S and second node in T . Then we
define

d�(F,G) = maxS,T
|eF (S, T )− eG(S, T )|

n2

In this case, d�(A,B) is O(1/
√
n), which seems more reasonable.

However, there are still two more issues. First, labeling shouldn’t matter,
as this has no bearing on homomorphism densities. Second, we would like
to be able to compare graphs with different numbers of nodes. To address
the first problem, we will just take the minimum value of our distance across
all relabelings. We let Ĝ denote relabelings of a graph G. To address the
second, we introduce the concept of the blowup of a graph. The blowup G(k)
is formed from G by creating k copies of each node in G and then connecting
nodes in G(p) if and only if their corresponding node was connected in G.
Then for F and G with m and n nodes, we define the cut distance

δ�(F,G) = min
F̂ ,Ĝ

lim
k→∞

d�(F̂ (kn), Ĝ(km))

Working with kernels, we analogously define the cut norm [6]

||W ||� = sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

W (x, y)dxdy

∣∣∣∣
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and, letting ψ be invertible measure preserving maps from [0, 1] to [0, 1] and
Wψ(x, y) := W (ψ(x), ψ(y)), we define the cut distance as

δ�(W1,W2) inf
ψ
||W1 −Wψ

2 ||�

It’s immediate that ||, ||� ≤ ||, ||1. It’s easy, although a bit tedious, to confirm
that for two graphs F and G, δ�(F,G) = δ�(WF ,WG) and, further, that
two kernelsW1 andW2 are weakly isomorphic if and only if δ�(W1,W2) = 0.
This second fact allows us to consider δ� as a metric over W̃ , the space of
weak isomorphism classes of kernels. We would like to show that (W̃ , δ�) is
compact, but, in order to do so, we need the Szemerédi Regularity Lemma.

3.3 Szemerédi Regularity Lemma

In this section a partition P will be defined as a finite set of measurable sets
Si such that Si ∩ Sj = ∅ and ∪Si = [0, 1]. A step function U is associated
with some partition P and has the property that U(x, y) depends only on
which set Si x and y are in. A refinement Q of a partition P is a partition
such that each Si is a subset of one of the sets of P . Given some kernel W
and partition P , we define

WP (x, y) =
1

λ(Si)λ(Sj)

∫
Si×Sj

W (x, y)dxdy

for x ∈ Si, y ∈ Sj . P is called the stepping operator, sending kernels to a
stepfunction that averages W over its steps Si × Sj . It is easy to confirm
that the stepping operator is contractive in the cut norm.

All graphs have corresponding graphons that are stepfunctions. In order
for graphons to be useful for describing graphs, it must be the case that all
graphons are “graph-like" in some way. The Szemerédi Regularity Lemma
gives this link, showing that graphons can be made arbitrarily close to step
functions with respect to the cut distance. We only state the lemmas here
without proof, as the proofs are outside of the scope of this thesis. See [23]
and [6] for the complete proofs.
Theorem 3.3.1: [6] Weak Regularity Lemma for Kernels. For everyW ∈ W
and k ≥ 1 there is a step function U with k steps such that

||W − U ||� <
2√
log k

||W ||2

where ||, ||2 is the L2 norm.
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As desired, the above theorem states that eachW can be approximated by a
stepfunction with k steps, and the error term depends only on ||W ||2 (which,
for graphons, is less than 1) and k. In order to prove compactness, it is con-
venient to have the ability to successively refine the graphons’ corresponding
stepfunctions, so we will use a different yet equivalent form of the Weak
Regularity Lemma, which can be stated as follows:
Lemma 3.3.1: For W ∈ W1, k > m ≥ 1, and some m-partition P of [0,1],
there is a k-partition Q refining P such that

||W −WQ||� ≤
2√

logk/m

In particular, this lemma says that no matter what partition P one starts
with, there is a refinement Q such that WQ is arbitrarily close to W in the
cut distance.
Lemma 3.3.2: For W ∈ W1, U a step function, and P the partition of [0,
1] into the steps of U ,

||W −WP ||� ≤ 2||W − U ||�

Proof: Because the stepping operator is contractive, 2||W −U ||� ≥ ||W −
U ||� + ||(W − U)P ||�. Further,

||W − U ||� + ||(W − U)P ||� = ||W − U ||� + ||WP − U ||�
≥ ||W −WP ||

by triangle inequality.

3.3.1 Compactness of (W̃0, δ�)

Theorem 3.3.2: [16] (W̃0, δ�) is compact.

Proof: (W̃0, δ�) is compact if and only every sequence of graphons (Wi)
has a convergent subsequence. By Lemma 3.3.1, it is possible to construct
partitions Pn,k of [0, 1] and stepfunctions Wn,k = (Wn)Pn,k

such that Pn,k+1

refines Pn,k, |Pn,k| = sk is only a function of k, and ||Wn −Wn,k||� < 1/k.
Assume without loss of generality that each partition class in Pn,k is an
interval. If not, there is some measure preserving bijection on Wn to make
this the case.
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For each k, we can find a subsequence (Wn) such that the length of the
ith interval of the Wn,k converges for each i ≤ sk and the value of the the
product of the ith and jth intervals converge because Wn is bounded and sk
is finite. Thus, each subsequence Wn,k converges almost everywhere to some
stepfunction Uk with sk intervals. Let Pk denote the partition of [0, 1] into
the steps of Uk. It’s clear that since each Pn,k was a refinement of all Pn,l
for l < k, it is also the case that Uk = (Ul)Pk

.

Choose a random point (x, y) ∈ [0, 1]2. Since each Uk is a refinement of Ul for
k > l, (Uk(x, y)) is a bounded martingale, and so the sequence (Uk) converges
almost everywhere. Let U be the limit of Uk. For arbitrary positive ε, since
Uk → U , there exists some k > 1/ε such that ||U−Uk||1 < ε. Similarly, since
(Wn,k)→ Uk, there exists some n such that ||Wn,k−Uk||1 < ε. Finally, by the
construction of Pn,k, δ�(Wn,k,Wn) < 1/k < ε. Thus by triangle inequality
and the fact that ||, ||1 ≥ ||, ||�

δ�(U,Wn) ≤ δ�(U,Uk) + δ�(Uk,Wn,k) + δ�(Wn,k,Wn)

≤ ||U − Uk||1 + ||Uk −Wn,K ||1 + δ�(Wn,k,Wn)

< 3ε

Thus, the subsequence (Wn) converges to U , and so (W̃0, δ�) is compact.

3.4 Convergence of Dense Graph Sequences

We are almost ready to prove that graphons are, in fact, the appropriate
limit object for convergent graph sequences. Because we now know that
(W̃0, δ�) is compact, we now just need that nearby graphons have similar
homomorphism functions. The Counting Lemma provides exactly that.
Theorem 3.4.1: [15] Counting Lemma: For F simple and W1,W2 ∈ W0,

|t(F,W1)− t(F,W2)| ≤ e(F )δ�(W1,W2)

Proof: Label the edges of F as et = (it, jt), and let Et = {e1, . . . , et} and

Xt = (W1(xit , xjt)−W2(xit , xjt))
∏

ij∈Et−1

W1(xi, xj)
∏

ij∈E(F )−Et

W2(xi, xj)

The Xt are constructed explicitly so that their sum will telescope, and so
e(F )∑
t=1

Xt =
∏

ij∈E(F )

W1(xi, xj)−
∏

ij∈E(F )

W2(xi, xj)
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Further, since 0 ≤W (x, y), U(x, y) ≤ 1∣∣∣∣∫ 1

0

∫ 1

0
Xtdxitdxjt

∣∣∣∣ ≤ ∣∣∣∣∫ 1

0

∫ 1

0
W1(xit , xjt)−W2(xit , xjt)dxitdxjt

∣∣∣∣
≤ δ�(W1,W2)

We are now prepared to complete the proof, first using the definition of
homomorphism functions on graphons, and then using the above relations.

|t(F,W1)− t(F,W2)| =

∣∣∣∣∣∣
∫
[0,1]V (F )

dx
∏

ij∈E(F )

W1(xi, xj)−
∏

ij∈E(F )

W2(xi, xj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
[0,1]V (F )

dx

e(F )∑
t=1

Xt

∣∣∣∣∣∣
≤ e(F )δ(W1,W2)

First, we show that the limit graphon exists for every convergent graph
sequence.
Theorem 3.4.2: [15] For any convergent graph sequence (Gn), there exists
a graphon W such that Gn →W .

Proof: Because (W̃0, δ�) is compact, the sequence WGn has some con-
vergent subsequence (WGi) and there exists some graphon W such that
δ�(WGi ,W ) → 0. Then it follows by the Counting Lemma that for every
simple F

|t(F,Gi)− t(F,W )| = |t(F,WGi)− t(F,W )|
≤ e(F )δ�(WGi ,W )

and so t(F,Gi) → t(F,W ). Since (t(F,Gn)) has a subsequence that con-
verges to t(F,W ) it must be the case that (t(F,Gn)) converges to t(F,W ),
and so (Gn) converges to W .

Next, we show that convergence can also be characterized by the cut distance.
Theorem 3.4.3: [12] (Gn)→W if and only if δ�(WGn ,W )→ 0.

Proof: As above, the Counting Lemma shows that δ�(WGn ,W ) → 0 im-
plies Gn → W . Now assume that Gn → W . Then by definition t(F,Gn)→
t(F,W ) for all simple F . Consider the map ζ that sends W ∈ W̃0 to the
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family (t(F,W )) of all functions with simple F . This map is trivially in-
jective by the definition of W̃0 and clearly continuous by the definition of
homomorphism functions on graphons. Thus, since (W̃0, δ�) is compact, ζ−1

is continuous, and so δ�(WGn ,W )→ 0.

To complete our identification of graphons as the limit object of convergent
sequences, we would like for every graphon to be the limit of some simple
graph sequence. This is the case. Generate a W -random graph G(n,W ) as
follows. Let the n nodes be associated with some xi chosen uniformly at
random from the interval [0, 1]. Then for each set of nodes xi and xj , put
an edge between them with probability W (xi, wj), with the decision about
each edge made independently. It would require too much of a diversion in
probability theory to prove here, but it is the case that
Theorem 3.4.4: (G(n,W )) converges to W with probability 1.

Proof: See [3].

Thus, all convergent graph sequences converge to some W , every W has a
sequence that converges to it, and convergence is well characterized by the
cut distance. Graphons are the appropriate limit object.
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Chapter 4

Extremal Graph Theory

We are now ready to characterize the possible relationships between edge
density and triangle density. The Kruskal-Katona Bound gave a strict upper
bound on triangle density, t(K3, G) ≤ t(K2, G)3/2. However, Goodman’s
Bound t(K3, G) ≥ t(K2, G)(2t(K2, G)− 1) is not strict and is, in fact, only
attained when t(K2, G) = k−1

k for integer k. Graph algebras alone were not
able to improve this lower bound, but graphons provide new tools. First,
we prove that the complete graphs are the extremal points of the lower
bound. Next, graphons can be continuously deformed, and so one can define
a variational calculus on the space of graphons. This additional tool will be
the key to Razborov’s proof.

4.1 Inequalities and Complete Graphs

In this chapter, we are considering homomorphism densities of complete
graphs. In characterizing a linear inequality on quantum graphs g that
are linear combinations of complete graphs, ideally testing a subset of such
graphs and having the inequality being satisfied on this subset would imply
that it is satisfied on all graphs. Goodman’s Bound is saturated by the com-
plete graphs, and so one might conjecture that the complete graphs are the
desired subset. This is the case.
Theorem 4.1.1: [22] For g a quantum graph that is a linear combination
of complete graphs, t(g, .) ≥ 0 if and only if t(g,Kn) ≥ 0 for all n ≥ 1.

Proof: If t(g, .) ≥ 0, then t(g,Kn) ≥ 0 trivially.
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If t(g,Kn) ≥ 0 for all n ≥ 1, then we want to show that t(g,W ) ≥ 0 for all
W . Because (W̃0, δ�) is compact, if the above holds for some dense subset of
the space, then it holds for the whole space. We choose the dense subsetWH ,
where H is a simple weighted graph with edgeweights 0 or 1 and nodeweights
αi such that

∑
αi = 1. It follows from Theorem 3.4.4 that this is a dense

subset. Assume for the sake of contradiction that there is some H such
that t(g,H) < 0. Choose the H with this property first with the minimum
number of nodes, then such that t(g,H) is minimized.

We claim that H is a complete graph. First, notice that since all homomor-
phisms in hom(Kn, H) are injective and g is a linear combination of complete
graphs, t(g,H) is multilinear in the αi. If two nodes i and j are not adjacent,
then t(g,H) has no term with αiαj , and so t(g,H) = k+ lαi+mαj for some
k, l,m that don’t depend on αi and αj . While keeping αi +αj constant, one
can change the values of αi and αj without increasing t(g,H) until αi or
αj is 0, giving a graph with 1 less node than our original H with negative
homomorphism function, a contradiction. Thus, H is a complete graph. We
also claim that all weights are equal. Since H is complete, we now know
that t(g,H) is a symmetric bilinear polynomial. Again only considering two
weights αi and αj , t(g,H) = k + lαi + mαj + nαiαj for k, l,m, n not de-
pending on αi and αj . Since t(g,H) is symmetric, l = m. Since αi + αj is
constant, then, t(g,H) = k′ + nαiαj for some k′ that doesn’t depend on αi
or αj . If n ≥ 0, the value is minimized by letting αi = 0, a contradiction as
αi > 0. Thus, n < 0 and so t(g,H) is minimized when αi = αj . But then
the sign of t(g,H) is the sign of t(g,Kn) for some n, and it is nonnegative.
Thus, we have a contradiction, and so t(g, .) ≥ 0.

This result can be restated in a form more useful to our study of the rela-
tionship between edge density and triangle density. For integer m ≥ 1 and
graphonW , let tW = (t(K2,W ), . . . , t(Km,W )) and Tm the set of all vectors
tW . Then Tm is the closure of the set of all tG by Theorem 3.4.2 and 3.4.4. In
particular, in this language, the above theorem states that the extreme points
of the convex hull of Tm are the vectors TKn and (1, 1, . . . , 1). Applying this
to the m = 3 case gives Bollobás’s result [1], that D2,3 lies above the con-
vex hull of the points (1, 1) and (t(K2,Kn), t(K2,Kn)) =

(
n−1
n , (n−1)(n−2)

n2

)
,

improving our lower bound from the quadratic Goodman’s Bound to the
polygonal curve formed by the points TKn .
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4.1.1 Generalized Turan’s Theorem

Turan’s Theorem states that the graph G on n nodes with the maximum
number of edges without containingKk as a subgraph is obtained by equipar-
titioning the nodes into k−1 subsets and then connecting all nodes not in the
same subset. These graphs are called Turan graphs and denoted T (n, k−1).
The natural extension of this result is the question of how to maximize
the number of edges of a graph subject to the restriction that there are no
subgraphs L1, L2, . . . , Lm. It turns out that, up to a negligible error, the
optimizer depends only on the chromatic numbers of the Li, denoted χ(Li).
We develop the appropriate result below, which mirrors the results proved
by Zykov in 1949 [25].
Lemma 4.1.1: [12] For r ≥ 2

max{t(K2,W ) : W ∈ W̃0, t(Kr,W ) = 0} = 1− 1

r − 1

with unique optimizer WKr−1 .

Proof: Consider the inequality

rrt(Kr,W )− (r − 1)t(K2,W ) + r − 2 ≥ 0

It’s clear that it holds for all W = WKn , and so by Theorem 4.1.1 it holds
for all W . Further, equality only potentially holds for W = WKn . Checking,
it only holds for W = WKr−1 . Since t(Kr,Kr−1) = 0, the inequality reduces
to the result.
Lemma 4.1.2: For L1, . . . , Lm simple graphs and r = minχ(Li),

max{t(K2,W ) : t(L1,W ) = · · · = t(Lm,W ) = 0} = 1− 1

r − 1

with unique optimizer WKr−1

Proof: Let χ(L1) = r. Then t(L1,Kr) > 0 and so if t(L1,W ) = 0,
t(Kr,W ) = 0. The result then follows immediately from the above lemma.

Using the above Lemma, it is easy to show, although we do not here, that

Theorem 4.1.2: [4] (Generalized Turan’s Theorem) Let L1, . . . , Lm be sim-
ple graphs with r = minχ(Li) and G a graph that does not contain any Li
as a subgraph. Then

e(G) ≤
(

1− 1

r − 1
+ o(1)

)(
v(G)

2

)
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4.2 Variational Calculus of Graphons

In the previous section, we described one way in which a graphonWH can be
continuously deformed: by decreasing the weight of one node while increasing
the weight of another. We can generalize this notion. The below results were
first shown by Razborov, although we use the notation of Lovász here [12].
Define a family of weight functions αs : [0, 1]→ R+ such that

∫ 1
0 αs(x)dx = 1

and α̇s = d
dsas exists and is bounded. Each as gives rise to a graphon Ws

with

t(F,Ws) =

∫
[0,1]V (F )

∏
ij∈E(F )

W (xi, xj)
∏

i∈V (F )

αs(xi)
∏

i∈V (F )

dxi

Let F † denote the sum of alll possible 1-labelings of F . Then

d

ds
t(F,Ws) = 〈α̇s, tx(F †,Ws)〉

Another possible variation is characterized by a family Us ∈ W0 such that
U̇s(x, y) exists and is bounded for all x, y, 0 ≤ s ≤ 1. Let F ij denote the
graph obtained from deleting the edge ij from F , F ‡ = 1

2

∑
ij F

ij·· with the
labels going to the nodes i and j and F ] = K ··2F

‡. Then it follows from the
definition of homomorphism functions that

d

ds
t(F,Us) = 〈U̇s, txy(F ‡, Us)〉

For some function f of W0, we call W a local minimizer on f if there is some
ε > 0 such that f(U) ≥ f(W ) for all graphons U with ||U −W ||1 < ε.

In both of the below lemmas, let Φ : Rm → R be a differentiable func-
tion, Φi = ∂

∂xi
Φ, F1, . . . Fm be simple graphs, W be a local minimizer of

Φ(t(F1,W ), . . . , t(Fm,W )), and ai = Φi(t(F1,W ), . . . , t(Fm,W )).
Lemma 4.2.1: [18] For almost all x ∈ [0, 1],

m∑
i=1

ai(tx(F †i ,W )− v(Fi)t(Fi,W )) = 0

Proof: Let φ : [0, 1]→ [−1, 1] be a measurable function such that
∫
φ = 0.

Then αs(x) = 1 + sφ(x) defines a family of weight functions with corre-
sponding graphons Ws. Since W is a local minimizer and lims→0Ws =
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W, ddsΦ(t(F1,Ws), . . . , t(Fm,Ws))|s=0 = 0. Thus,

0 =
d

ds
Φ(t(F1,Ws), . . . , t(Fm,Ws))|s=0

=
m∑
i=1

αi

∫ 1

0
φ(x)tx(F †i ,W )dx

=

∫ 1

0
φ(x)

m∑
i=1

aitx(F †i ,W )dx

In particular, this relation holds for arbitrary φ, and so
∑m

i=1 aitx(F †i ,W )
is a constant function of x almost everywhere. Integrating over x gives the
desired result.
Lemma 4.2.2: [18] For almost all x, y ∈ [0, 1],

m∑
i=1

aitxy(F
]
i ,W ) ≤ 0

Proof: The proof is very similar to the above. Let U ∈ W1 be a function
such that U(x, y) ≥ 0 if W (x, y) = 0 and U(x, y) ≤ 0 if W (x, y) = 1. Then
Us = W + sU defines a family of graphons for 0 ≤ s < ε for some ε > 0.
Further, since W is a local minimizer, d

dsΦ(t(F1,Ws), . . . , t(Fm,Ws))|s=0 ≥
0. Thus,

0 ≤ d

ds
Φ(t(F1,Ws), . . . , t(Fm,Ws))|s=0

=

∫
[0,1]2

U(x, y)
m∑
i=1

aitxy(F
‡
i ,W )dxdy

Since this holds for arbitrary U subject to the constraints, it follows that∑m
i=1 aitxy(F

‡
i ,W ) = 0 if 0 < W (x, y) < 1, is less than or equal to 0 if

W (x, y) = 1 and greater than or equal to 0 if W (x, y) = 1. Notice that
W (x, y) = txy(K

··
2 ). Then

m∑
i=1

aitxy(F
]
i ,W ) = txy(K

··
2 )

(
m∑
i=1

aitxy(F
‡
i ,W )

)

= W (x, y)

(
m∑
i=1

aitxy(F
‡
i ,W )

)
Reading off from our results for the various cases for W (x, y), we get that∑m

i=1 aitxy(F
]
i ,W ) ≤ 0 as desired.
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4.3 Razborov’s Proof

The variational calculus finally allows for the complete characterization of
D2,3. We present Razborov’s proof in 3 parts following a version of the
proof given by Lovász in the language of graphons. First, we consider the
conjecture of Lovász and Simonovitis and the bound that it implies. We then
prove the bound in the interval t(K2, G) ∈ [1/2, 2/3], first proven by Fisher
in 1989. Finally, we present a proof of the bound for all edge densities, a
result which was first shown by Razborov in 2007.

Lovász and Simonovitis conjectured the following:
Theorem 4.3.1: [14] For t(K2,W ) = d, the minimum of t(K3,W ) for W ∈
W̃0 is attained by WH where H is a weighted complete graph on k = d 1

1−de
nodes with edgeweights 1 and nodeweights all equal except for one node
which has weight no greater than the others.

Proof: First, it’s worth noting that the above does not claim that WH is
unique. In fact, this is not the case.

We now find the bound implied by the above claim. Nikiforov [17] suggested
letting the weights of the first k − 1 nodes be α1 = 1+u

k and the weight of
the final node be ak = 1−(k−1)u

k . Then

d = t(K2,WH)

= (k − 1)
1 + u

k

(
1− 1 + u

k

)
+

1− (k − 1)u

k

(
1− 1− (k − 1)u

k

)
=
k − 1

k

(
(1 + u)

k − 1− u
k

+
1− ku+ u

k
(1− u)

)
=
k − 1

k
(1− u2)

⇒ u =

√
1− kd

k − 1

Similarly, we can calculate the triangle density f(d)

f(d) = t(K3,WH)

=
(k − 1)(k − 2)

k2
(1 + u)2(1− 2u)

Thus, if we can show that f(d) is the lower bound for D2,3, then the conjec-
ture will be proved. We set out to do so below.
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The k = 3 case is easier and was shown by Fisher in 1989:
Theorem 4.3.2: [5] If t(K2, G) = d, then t(K3, G) ≥ f(d) for

f(d) =
(k − 1)(k − 2)

k2

(
1 +

√
1− kd

k − 1

)2(
1− 2

√
1− kd

k − 1

)

and k = d 1
1−de = 3.

Proof: We keep the proof valid for general k as long as possible as the
proof for general k is the same at the beginning. LetW be the graphon with
k−2
k−1 ≤ t(K2,W ) = d ≤ k−1

k that minimizes φ(W ) = t(K3,W )−f(t(K2,W )).
Assume that this value is negative. By Goodman’s Bound, φ(W ) ≥ 0 for
d at the endpoints, and so k−2

k−1 < d < k−1
k , which means that W is a local

minimizer in W̃0. This means we can use the results from the variational
calculus, letting λ = f ′(d) = 3k−2k (1 + u). Notice that λ positive. In all of
the below, we, as before, let t(F,W ) be denoted by F .

By Lemma 4.2.1,
3K ·3 − 2λK ·2 = 3K3 − 2λK2

Multiplying by K ·2 and then unlabeling gives

3Kij,ik
4 − 2λKij

3 = 3K3K2 − 2λK2K2

This is our first relevant equality. We develop a relevant inequality as follows:
By Lemma 4.2.2, 3K ··3 −λK ··2 ≤ 0. Multiplying each side by the always non-
negative K ··3 − 2K ·2 + 1 and then unlabeling gives

3Kij
4 − 6Kij,ik

4 ≤ (λ− 3)K3 + λK2 − 2λP3

We need one more inequality. Consider the probability that a map of 4 nodes
into some graphon W creates a subgraph with a specific node isolated and
the rest forming a triangle. The probability of this is clearly at least zero,
and it can be expressed using the principle of inclusion exclusion in terms of
homomorphism functions as K3 − 3Kij,ik

4 + 3Kij
4 −K4. Thus,

3Kij,ik
3 − 3Kij

3 ≤ K3 −K4

Adding our three inequalities together and replacing K2 with d gives

(λ+ 3d− 2)K3 ≥ λ(2d2 − d) +K4
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For k = 3, λ+ 3d− 2 > 0 and so removing the always positive K4 term and
solving for K3 gives

K3 ≥
λ(2d2 − d)

λ+ 3d− 2

= f(d)

after some algebraic manipulation. Thus, φ(W ) is nonnegative and our
bound is correct for k = 3.

It makes sense that throwing out the K4 term works for the k = 3 case
because the optimizing graphons are in the form WH where H has only
three nodes. However, for k > 3, we need an explicit bound for K4.
Theorem 4.3.3: [12] [19] If t(K2, G) = d, then t(K3, G) ≥ f(d) where

f(d) =
(k − 1)(k − 2)

k2

(
1 +

√
1− kd

k − 1

)2(
1− 2

√
1− kd

k − 1

)

where k = d 1
1−de.

Proof: Our plan is to prove the result by induction. We have a base case,
k = 3. We now just need to show that if the result holds for some k, then it
holds for k + 1. We use the same proof as above up until the result

(λ+ 3d− 2)K3 ≥ λ(2d2 − d) +K4.

We now derive a bound for K4. By induction, we have a bound for t(K3, U)
for all graphons U with t(K2, U) < k−2

k−1 . We thus look to expressK4 in terms
of t(K3, U) for such a graphon U . Pick any z ∈ [0, 1]. Define a graphon Wz

that is the same as W modified by the weight function W (z, .)/dW (z) where
dW (z) is the degree of z as defined in Example 3.1.1. We aim to show that
t(K2,Wz) ≤ k−2

k−1 .

Let µ = 2λd − 3K3. Then the equality 3K ·3 − 2λK ·2 = 3K3 − 2λK2 in
the above proof can be restated as 3tz(K

·
3,W ) − 2λdW (z) = −µ. By its

construction, t(K2,Wz) = tz(K3,W )
dW (z)2

and so

t(K2,Wz) =
2λdW (z)− µ

3dW (z)

We thus want to try to find good bounds for µ, dW (z), and λ. The explicit
description of λ above gives λ ∈ [3(k−2)/k, 3(k−2)/(k−1)]. By Goodman’s
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Bound and our original hypothesis, d(2d − 1) ≤ t(K3,W ) < f(d) and so,
after some algebraic manipulation

2dλ− 3f(d) < µ ≤ 2dλ− 3d(2d− 1)

It takes a bit of algebraic manipulation, but these two relations imply that

k − 1

k − 2
<

3µ

λ2
≤ k − 2

k − 3

Since we have already show that 3K ··3 − λK ··2 ≤ 0, it follows by unlabeling
one node that 3tz(K

·
3,W ) ≤ λdW (z), and so using the definition of µ we get

µ

2λ
≤ dW (z) ≤ µ

λ

Returning to our equation, for t(K2,Wz),

∂

∂dW (z)

2λdW (z)− µ
3dW (z)

=
2(µ− λdW (z))

3dW (z)3

and so t(K2,Wz) is a non-decreasing function in the range of dW (z). This
means we can plug in dW (z) = µ

λ to get the bound

t(K2,Wz) ≤
λ2

3µ
≤ k − 2

k − 1

Thus, the edge density of Wz is sufficiently small that we can use the induc-
tive hypotheis that t(K3,Wz) ≥ f(t(K2,Wz)). Thus,

t(K4,W ) =

∫ 1

0
tz(K

·
4,W )dz

=

∫ 1

0
t(K3,Wz)dW (z)3dz

≥
∫ 1

0
f

(
2λdW (z)− µ

3dW (z)2

)
dW (z)3dz

In some sense, this is enough to prove the theorem, but the integral is es-
sentially impossible to use in its current form. Playing around with the
function inside the integral, though, shows that it is roughly linear in dW (z).
The idea, then, is to give a linear lower bound of the function inside the
integral. Let g(z) = 2λz−µ

3z2
and h(z) = f(g(z))z3. Since g is continuous
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and g( µ2λ) ≤ k−3
k−2 ≤ g(µλ), there exists some z0 such that g(z0) = k−3

k−2 for
z0 ∈ [ µ2λ ,

µ
λ ]. Thus,

h(z0) = f

(
k − 3

k − 2

)
z30 =

(k − 3)(k − 4)

(k − 2)2
z30

Now that everything is explicit, one can prove using simple yet messy calculus
(which we omit here) that

h(z)− h(z0) ≥
1

3
(2λ2 − 3µ)(z − z0)

Thus,

t(K4,W ) ≥
∫ 1

0
h(dW (z))dz

≥ 1

3

∫ 1

0
(2λ2 − 3µ)dW (z)dz + h(z0)−

1

3
(2λ2 − 3µ)z0

=
(k − 3)(k − 4)

(k − 2)2
z30 +

1

3
(2λ2 − 3µ)(d− z0)

Plugging this into the inequality

(λ+ 3d− 2)K3 ≥ λ(2d2 − d) +K4

gives, after some algebraic manipulation, an expression only in terms of k,
u, and y = w0/(1 + u):

(1 + u)2
(
y − k − 2

k

)
×(

k − 1

k
(1− u)−

(
k − 3

k − 2
u+

3k − 7

k − 2

)
y +

2(k − 1)(k − 3)

k(k − 2)
(1 + u)y2

)
≥ 0

Further, we know that 0 < u < 1
k−1 and can easily show from our pre-

vious inequalities that k−2
k ≤ y ≤ (k−2)2

k(k−3) . After another tedious calculus
calculation, one can show that the above value subject to the constraints is
always negative, and so we have a contradiction. There is no W such that
f(K3,W ) < f(t(K2,W )).

Thus, not only have we proved a bound, but we have graphs which give values
arbitrarily close to the bound, and soD2,3 is finally completely characterized.
The next question one might ask is how to characterize D2,n for all n. This
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is highly non-trivial and is outside of the scope of this thesis, but it turns out
that the ideas behind flag algebras or, equivalently, graphons, are the key.
In fact, after Razborov’s proof in 2007, more general proofs came quickly.
In 2011, Nikiforov extended the result to D2,4[17], and, in 2012, Reiher
completely characterized D2,n for all n [20]. The application of graph limit
theory to extremal graph theory continues to be an active field of research
to this day.
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