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These lectures are about the stability of black holes, which are
certain Lorentzian manifolds solving Einstein’s equation – the first
lecture will mostly discuss what these black holes are and what
stability means.

We adopt the convention that Lorentzian metrics on an
n-dimensional manifold have signature (1, n − 1). For instance, the
Minkowski metric on R4 = R1+3, with coordinates z0, z1, z2, z3, is

g = dz2
0 − dz2

1 − dz2
2 − dz2

3 .

Here z0 is ‘time’, (z1, z2, z3) ‘space’, but there are many other
timelike and spacelike coordinate functions on it! Here f timelike
means g−1(df , df ) > 0, spacelike means g−1(df , df ) < 0.
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In 4 dimensions Einstein’s equation in vacuum is an equation for
the metric tensor of the form

Ric(g) + Λg = 0,

where Λ is the (given) cosmological constant, and Ric(g) is the
Ricci curvature of the metric. If there were matter present, there
would be a non-trivial right hand side of the equation, given by (a
modification of) the matter’s stress-energy tensor.

In local coordinates, the Ricci curvature is a non-linear expression
in up to second derivatives of g ; thus, this is a partial differential
equation. Only a few properties of Ric matter for our purposes; we
point these out later.
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The type of PDE that Einstein’s equation is most similar to (with
issues!) are (tensorial, non-linear) wave equations. The typical
formulation of such a wave equation is that one specifies ‘initial
data’ at a spacelike hypersurface, such as z0 = C , C constant, in
Minkowski space. For linear wave equations �u = f on spaces like
R1+3, where � = d∗d = D2

z0
− D2

z1
− D2

z2
− D2

z3
, the solution u for

given data exists globally and is unique.

The analogue of the question how solutions of Einstein’s equation
behave is: if one has a solution u0 of �u = 0, say u0 = 0 with
vanishing data, we ask how the solution u changes when we
slightly perturb data (to be still close to 0). For instance, does u
stay close to u0 everywhere? Does it perhaps even tend to u0 as
z0 →∞? This is the question of stability of solutions.

Since one cannot expect that the universe is given by some explicit
solution of Einstein’s equation, even if it is close to it, answering
this question is of great importance.
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Now, Ric is diffeomorphism invariant, so if Ψ is a diffeomorphism,
and g solves Einstein’s equation, then so does Ψ∗g . This means
that if there is one solution, there are many (even with same IC).
In practice (duality) this means that it may not be easy to solve
the equation at all!

Thus, Einstein’s equation is not quite a wave equation, but it can
be turned into one by imposing extra gauge conditions. Concretely,
imposing that the local coordinates solve wave equations enabled
Choquet-Bruhat to show local well-posedness in the 1950s. A
closely related version, is DeTurck’s trick – more on this later.
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Turning to global questions: the first stability results were obtained
for Minkowski space and de Sitter space, respectively, and are due
to Christodoulou and Klainerman (1990s), later simplified by
Lindblad and Rodnianski (2000s) (and extended by Bieri and
Zipser), resp. Friedrich (1980s). In the late 2010s Hintz-V. gave a
different proof that provided a full asymptotic expansion
(polyhomogeneous, with logarithmic terms) of the metric.

The first main result, joint with Peter Hintz, in this lecture is the
global non-linear asymptotic stability of the Kerr-de Sitter family
for the initial value problem for small angular momentum a
(Λ > 0). The second main result with Dietrich Häfner and Peter
Hintz is the analogus linearized stability of the Kerr family for
small a (Λ = 0).

These are a family of metrics depending on two parameters, called
mass m and angular momentum a (as well as the cosmological
constant Λ), whose geometric features we explore at first.
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We will discuss both Λ = 0 and Λ > 0, though we focus on the
latter as the results are more complete then. We remark that the
observed accelerating expansion of the universe is consistent with a
positive cosmological constant, which plays the role of a positive
vacuum energy density; indeed, in theoretical physics Λ > 0 is what
plays a dominant role.

Roughly, Λ > 0 is the geometer’s problem, as it has all the
interesting black hole features without serious analytic
complications, while Λ = 0 is the analyst’s problem as most of the
additional difficulties are ultimately of analytic nature.

While physically Λ > 0 is small, on the scale of stability, i.e. ‘time
tends to ∞’ behavior, there is no such thing as small Λ: on the
relevant time scale the only relevant distinction is whether Λ is
zero, or it is positive.
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The simplest solution of Einstein’s equation with Λ = 0 is
Minkowski space, which is of course flat: it is the Lorentzian
version of Euclidean space.

Its counterpart in Λ > 0 is de Sitter space. This is a symmetric
space; it is a Lorentzian version of hyperbolic space.

A simple description is in terms of Minkowski space of one higher
dimension: n-dimensional de Sitter space dSn is the hyperboloid

z2
0 − (z2

1 + . . .+ z2
n ) = −1

in Rn+1 with the Minkowski metric dz2
0 − (dz2

1 + . . .+ dz2
n ).

Pulling back the metric to dSn one obtains a signature (1, n − 1)
Lorentzian manifold which solves Einstein’s equation with
cosmological constant (n−1)(n−2)

2 . (Cf. hyperbolic space!)
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Figure: As a manifold, dSn = Rt∗ × Sn−1, where t∗ is given by an explicit
expression in terms of z0 (roughly log z0 for z0 � 2); the metric is then
dt2

∗ − (cosh2 t∗) h, h the round metric. Here n = 2.
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Another family of explicit solutions to Einstein’s equations with
Λ ≥ 0 (in 1 + 3 dimensions here) is the Schwarzschild, resp.
Schwarzschild-de Sitter (SdS) family of metrics depending on a
parameter, called mass m > 0:

g = µ(r) dt2 − µ(r)−1 dr2 − r2 h, µ(r) = 1− 2m

r
− Λr2

3
,

h the metric on the 2-sphere, m > 0 a parameter.

Λ = 0 gives the Schwarzschild metric, discovered about a
month after Einstein’s 1915 paper; Λ > 0 is the SdS metric.

Depending on Λ, m = 0 gives the Minkowski/de Sitter metric
in different coordinates.

Thus, this family describes a black hole in Minkowski/de
Sitter space in a certain sense.
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Recall:

g = µ(r) dt2 − µ(r)−1 dr2 − r2 h, µ(r) = 1− 2m

r
− Λr2

3
.

µ(r) = 0 has two positive solutions r+, r− if m,Λ > 0 and
9Λm2 < 1 (SdS); if Λ = 0, m > 0, the only root is r− = 2m
(Schw); if m = 0, Λ > 0, the only root is r− =

√
3/Λ (dS).

In this form the metric makes sense where µ > 0:
Rt × (r−,∞)r × S2 (Λ = 0), resp. Rt × (r−, r+)r × S2 (Λ > 0).

It is spherically symmetric,

∂t is a Killing vector field, i.e. translation in t preserves the
metric.



The setup Geometry Stability The proof Outlook The gauge fixing Analytic aspects Microlocal analysis On Feynman

It is not hard to see that r = r± are coordinate singularities.

A better coordinate than t is, with c± smooth,

t∗ = t − F (r), F ′(r) = ±(µ(r)−1 + c±(r)) near r = r±.

In the coordinates (t∗, r , ω), the metric makes sense (as a
Lorentzian metric) on

Rt∗ × (0,∞)r × S2
ω,

thus for r ≤ r− and r ≥ r+ as well.

r = r− is called the event horizon, r = r+ the cosmological horizon
(if Λ > 0); the geometry of the spacetime is very similar at these.
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The Schwarzschild/SdS metric fits into an even bigger family
discovered by Kerr and Carter in the 1960s: the Kerr/Kerr-de
Sitter family of metrics depending on 2 parameters, called mass m
and angular momentum a; a = 0 gives the
Schwarzschild/Schwarzschild-de Sitter metric.

Without specifying the general Kerr(-de Sitter) metric, we just
mention that the underlying manifold is still Rt∗ × (0,∞)r × S2,
and ∂t∗ is a Killing vector field, i.e. translation in t∗ preserves the
metric. These metrics are axisymmetric around the axis of
rotation; in the case a = 0 they are spherically symmetric (like the
de Sitter metric). There are restrictions on a to preserve the
geometric features; if Λ = 0, this is |a| < m; if Λ > 0 they are more
complicated.
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To better understand the relationship between the spaces for
Λ > 0, it is useful to conformally compactify dS4 = R× S3 by
compactifying R to an interval. Here we concentrate on z0 ≥ 1;
then τ = z−1

0 , adding τ = 0 as infinity, the metric is roughly like

τ−2(dτ2 − h),

h a metric on the sphere, and τ being essentially e−t∗ .
(‘Conformally compact’; cf. the Riemannian analogue, the Poincaré
model of hyperbolic space.)

A nice feature is that null-geodesics (geodesics with null, i.e.
g(V ,V ) = 0, tangent vectors V , geodesics are similar to the
Riemannian setting) are simply reparameterized by such a
conformal factor, i.e. they are essentially the same as those of
dτ2 − h.
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Figure: Left: the conformal compactification of de Sitter space dSn,
n = 2, with the backward light cone (null-geodesics) Ω+ from q+. The
red line is the path of an observer (or particle) who tends to q+. The
blue line is that of another who leaves Ω+... then no matter how
desperately she/he/it tries, cannot get back to it. Even the green
flashlight signal cannot make it back!!!
Right: the blow up of de Sitter space at q+. This desingularizes the tip
of the light cone, and the interior of the light cone inside the front face
ffq+ can be identified with a ball, which itself is a conformal
compactification of hyperbolic space Hn−1. The radial variable r for the
SdS presentation of dS is that of the ball; r = 1 is the light cone.
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The interior of the backward light cone from a point at τ = 0
(future infinity) can be identified with Rt∗ × B3; in the coordinates
(0,∞)r × S2 above, singular at r = 0, this is r < 1, often called
the static (region of) de Sitter space.

Notice that dS has the feature that if a forward timelike or lightlike
curve leaves the backward light cone, it can never return. Thus,
the lightcone, r = 1, acts as a horizon; it is called the cosmological
horizon.

Notice that nothing drastic happens at the horizons though; the
manifold and the metric continue smoothly across it!
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For KdS then we consider an analogue of this region, or rather that
of its slight enlargement r < 1 + ε.

Kerr-de Sitter space has two such horizons, at r = r±, with r+
called the cosmological horizon, r− the black hole event horizon.
They are extremely similar: once one leaves, one cannot return
along timelike or lightlike curves.

There is one more relevant null-feature of KdS: there are some
trapped null-geodesics in the exterior region r ∈ (r−, r+), i.e.
null-geodesics that do not cross either horizon. (This does not
happen in dS.) This is the photonsphere in SdS, deformed in KdS.
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Figure: Setup for the initial value problem for perturbations of a
Schwarzschild–de Sitter spacetime (M, gb0 ), showing the Cauchy surface
Σ0 of Ω and a few translates (level sets of the nonsingular time t∗) Σt∗ ;
here εM > 0 is small. Left: Product-type picture, illustrating the
stationary nature of gb0 . Right: Penrose diagram of the same setup. The
event horizon is H+ = {r = r−}, the cosmological horizon is
H+ = {r = r+}, and the (idealized) future timelike infinity is i+.
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Kerr behaves completely analogously to KdS near the event
horizon. The key difference is the presence of the Minkowski
infinity. For this purpose it is useful to have a time function t that
is equal to t∗ near the event horizon (i.e. r close to r−), and is
equal to the standard t for r large. Then the underlying manifold
is still Rt × (0,∞)r × S2.

Σ◦0

t−1∗ (c)

i0

i+

H+

I +

Figure: Part of the Penrose diagram of a Kerr spacetime: the event
horizon H+, null infinity I +, timelike infinity i+ and spacelike infinity i0.
We show the domain {t ≥ 0} inside of M◦ in gray, the Cauchy surface
Σ◦

0 = t−1(0), and a level set of t∗; t∗ = t − (r + 2m log(r − 2m)), r large.
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We now return to the stability questions for Einstein’s equation.
Recall that one subtlety is the diffeomorphism invariance of the
equation, causing non-uniqueness; this invariance is the only cause
of non-uniqueness locally.

On the flipside, one cannot specify the initial data completely
arbitrarily: they need to satisfy certain equations, called the
constraint equations, implied by Einstein’s equation.

In general, for a manifold M with Σ0 a codimension 1
hypersurface, the initial data are a Riemannian metric h and a
symmetric 2-cotensor k which satisfy the constraint equations, and
one calls a Lorentzian metric g on M a solution of Einstein’s
equation with initial data (Σ0, h, k) if the pull-back of g to Σ0 is
−h, and k is the second fundamental form of Σ0 in M.
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For instance, a very roughly (and weakly!) stated version of
stability of Minkowski space R4

z , Σ0 = {0} × R3, due to
Christodoulou and Klainerman, is that given initial data (h, k)
close to (gEucl, 0) in an appropriate sense (in particular decaying),
there is a global solution of Einstein’s equation on R4, and it tends
to gMink as |z | → ∞.

The KdS stability is simplest phrased by considering a fixed
background Schwarzschild-de Sitter metric, gb0 , b0 = (m, 0), where
we use a ∈ R3 as the angular momentum parameter instead of the
scalar a. Let Σt∗ denote the translate of Σ0 by the ∂t∗ flow. Let

Ω = ∪t∗≥0Σt∗ .
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Theorem (Stability of the Kerr–de Sitter family for small a;
informal version, Hintz-V., arXiv 2016, published 2018)

Suppose (h, k) are smooth initial data on Σ0, satisfying the
constraint equations, which are close to the data (hb0 , kb0) of a
Schwarzschild–de Sitter spacetime in a high regularity norm. Then
there exist a solution g of Einstein’s equation in Ω attaining these
initial data at Σ0, and black hole parameters b which are close to
b0, so that

g − gb = O(e−αt∗)

for a constant α > 0 independent of the initial data; that is, g
decays exponentially fast to the Kerr–de Sitter metric gb.
Moreover, g and b are quantitatively controlled by (h, k).

The strongest Λ = 0 nonlinear black hole result is the very recent
work of Klainerman and Szeftel under polarized axial symmetry
assumptions.
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What the theorem states is that the metric ‘settles down to’ a
Kerr-de Sitter metric at an exponential rate. Note that even if we
perturb a Schwarzschild-dS metric, we get a KdS limit!

This ‘settling down’ means that gravitational waves are being
emitted; far away observers (hopefully us!) can see this ‘tail’.
LIGO exactly aimed (successfully!) at capturing these waves, using
numerical computations as a template to see what one would
expect from the merger of binary black holes.

Figure: LIGO/Virgo collaboration 2016
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In Λ = 0 in full generality (no additional symmetry assumptions)
only linearized results are available. For the following statement
recall that at the linearized level pullbacks by diffeomorphisms
correspond to Lie derivatives along vector fields.
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Theorem (Linearized stability of the Kerr family for small a;
informal version, Häfner-Hintz-V., arXiv 2019, to appear)

Let b = (m, a) be close to b0 = (m0, 0); let α ∈ (0, 1). Suppose
ḣ, k̇ ∈ C∞(Σ◦0; S2 T ∗Σ◦0) satisfy the linearized constraint
equations, and decay according to |ḣ(r , ω)| ≤ Cr−1−α,
|k̇(r , ω)| ≤ Cr−2−α, together with their derivatives along r∂r and
∂ω (spherical derivatives) up to order 8. Let ġ denote a solution of
the linearized Einstein vacuum equations on Ω which attains the
initial data ḣ, k̇ at Σ◦0. Then there exist linearized black hole
parameters ḃ = (ṁ, ȧ) ∈ R× R3 and a vector field V on Ω, lying
in a 6-dimensional space, consisting of generators of spatial
translations and Lorentz boosts, such that

ġ = ġb(ḃ) + LV gb + ġ ′,

where for bounded r the tail ġ ′ satisfies the bound
|ġ ′| ≤ Cηt

−1−α+η for all η > 0.
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There are a number of closely related linearized Λ = 0 black hole
results: linearized Schwarzschild, plus Teukolsky in the slowly
rotating case: Dafermos, Holzegel and Rodnianski (2016, 2017), as
well as the linearized stability result of Andersson, Bäckdahl, Blue
and Ma (2019) also in the slowly rotating case, with also a more
restricted general result, under a strong asymptotic assumption.

There has been extensive research in the area, including works by
(in addition to the authors already mentioned) Wald, Kay, Finster,
Kamran, Smoller, Yau, Tataru, Tohaneanu, Marzuola, Metcalfe,
Sterbenz, Donninger, Schlag, Soffer, Sá Barreto, Wunsch, Zworski,
Wang, Bony, Dyatlov, Luk, Ionescu, Shlapentokh-Rothman...
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Back to the nonlinear setting: in DeTurck’s gauge, one fixes a
background metric g0, and requires that the identity map
(M, g)→ (M, g0) be a wave map (solve a wave equation). This is
implemented by working with the equation (called a gauge fixed, or
reduced, Einstein’s equation)

Ric(g) + Λg − Φ(g , g0) = 0,

where
Φ(g , g0) = δ∗gΥ(g), Υ(g) = gg−1

0 δgGgg0.

Here δ∗g is the symmetric gradient mapping one-forms to symmetric
2-cotensors, δg its adjoint (negative divergence), Gg is the
trace-reversal operator Gg r = r − 1

2 (trg r)g , and Υ(g) is the gauge
one-form, whose vanishing is equivalent to the wave map condition.

The point is that this is a (quasilinear) wave-type equation, so the
problems with diffeomorphism invariance have been eliminated,
thus at least one has local existence and uniqueness near the initial
surface Σ0!
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To see that for given initial data solving the gauged Einstein’s
equation actually gives a solution of the original, ungauged,
problem, one constructs Cauchy data for the gauged problem for g
which give rise to the required initial data and moreover solve
Υ(g) = 0 at Σ0 (Υ is a first order differential operator, so this is
determined by Cauchy data).

Solving the gauged Einstein equation with these data (which can
be done locally since this is a wave equation), the constraint
equations show that the normal derivative of Υ(g) at Σ0 also
vanishes...
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...then applying δgGg to the gauged Einstein’s equation, in view of
the second Bianchi identity,

δgGgRic(g) = 0,

true for any metric g , gives

�CP
g Υ(g) = 0, �CP

g = 2δgGgδ
∗
g ,

so by the vanishing of the Cauchy data for Υ(g) we see that Υ(g)
vanishes identically.

While any choice of g0 works for this local theory, for the global
solvability g0 makes a difference; it is natural to choose g0 = gb0 .
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The analytic framework we use:

non-elliptic linear global analysis with coefficients of finite
Sobolev regularity,

with a simple Nash-Moser iteration to deal with the loss of
derivatives corresponding to both non-ellipticity and trapping,

gives global solvability for quasilinear wave equations like the
gauged Einstein’s equation provided

certain dynamical assumptions are satisfied (only trapping is
normally hyperbolic trapping, with an appropriate subprincipal
symbol condition) and

there are no exponentially growing modes (with a precise
condition on non-decaying ones), i.e. non-trivial solutions of
the linearized equation at gb0 of the form e−iσt∗ times a
function of the spatial variables r , ω only, with Imσ > 0.
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Unfortunately, in the DeTurck gauge, while the dynamical
assumptions are satisfied, there are growing modes, although only
a finite dimensional space of these. The key to proving the
theorem (given the analytic background, discussed in the next
lecture) is to overcome this issue.

Typically when solving a non-linear equation any growing modes of
the linearization destroy stability; even non-decaying ones typically
do.

For instance, for the ODE u′ = u2 with initial condition at 0,
u ≡ 0 is a solution, which is stable on [0,T ] for any T , but for any
positive initial condition φ the solution u = φ/(1− tφ) blows up in
finite time, so there cannot be any stability on [0,∞).

Here the linearized operator is v 7→ v ′, which has the non-decaying
mode v ≡ 1 (i.e. σ = 0).
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The Kerr-de Sitter family automatically gives rise to non-decaying
modes with σ = 0, but as these correspond to non-linear solutions,
one may expect these not to be a problem with some work.

However, in the DeTurck gauge there are even growing modes,
which are definitely problematic!

The reason this problem can be overcome is that the PDE is not
fixed: one can modify Φ(g , g0) as long as it gives a wave-type
equation which asymptotically behaves like a Kerr-de Sitter wave
equation.

In spite of this gauge freedom, we actually cannot arrange a gauge
in which there are no non-decaying modes, even beyond the trivial
Kerr-de Sitter family induced ones.
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However, we can arrange for a partial success: we can modify Φ by
changing δ∗g by a 0th order term:

δ̃∗ω = δ∗g0
ω + γ1 dt∗ ⊗s ω − γ2g0 trg0(dt∗ ⊗s ω),

Φ(g , g0) = δ̃∗Υ(g).

For suitable choices of γ1, γ2 � 0, this preserves the dynamical
requirements, and while the gauged Einstein’s equation does still
have growing modes, it has a new feature:

�̃CP
g = 2δgGg δ̃

∗, g = gb0

has no non-decaying modes! It should not be a surprise that such
a change is useful: there is no reason to expect that the DeTurck
gauge is well-behaved in any way except in a high differential order
sense, relevant for the local theory!
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We call this property SCP, or stable constraint propagation; by a
general feature of our analysis, this property is preserved under
perturbations of the metric around which we linearize.

Such a change to the gauge term, called ‘constraint damping’, has
been successfully used in the numerical relativity literature by
Pretorius and others, following the work of Gundlach et al, to
damp numerical errors in Υ(g) = 0; here we show rigorously why
such choices work well.

SCP is useful because it means that, for g = gb0 , any non-decaying
mode h of the linearized gauge fixed Einstein equation is a solution
of Dg (Ric(g) + Λg)h = 0.

Indeed this follows by applying δgGg to the gauge fixed Einstein’s

equation, using Bianchi’s second identity, giving that �̃CP
g (DgΥ)h

and thus (DgΥ)h vanish. Thus, properties of a gauge dependent
equation are reduced to those of one independent of the gauge!
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Growing modes are disastrous for non-linear equations, such as
Einstein’s, so we also need a statement that the above modes are
actually pure gauge modes, i.e. given by linearized diffeomorphisms,
so of the form δ∗gω for a one-form ω, corresponding to infinitesimal
diffeomorphisms. We call this, together with a precise treatment of
the zero modes, UEMS, ungauged Einstein mode stability.

UEMS is actually well-established in the physics literature in a
form that is close to what one needs for a precise theorem; this
goes back to Regge-Wheeler, Zerilli and others; the invariant form
we use is due to Ishibashi, Kodama and Seto.
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Now, without the KdS-family zero modes (we call such a setting
UEMS*, which holds for dS), we could easily have a framework to
show global stability: namely consider

Φ(g , g0; θ) = δ̃∗(Υ(g)− θ),

where θ is an unknown, lying in a finite dimensional space Θ of
gauge terms of the form Dgb0

Υ(δ∗gb0
(χω)), where χ ≡ 1 for

t∗ � 1, χ ≡ 0 near t∗ = 0, and such that δ∗gb0
ω is a non-decaying

resonance of the gauged Einstein operator.

As Dgb0
Υ(δ∗gb0

(ω)) = 0 by SCP, Dgb0
Υ(δ∗gb0

(χω)) is compactly
supported, away from Σ0, i.e. elements of Θ are also such.
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Then we could solve

Ric(g) + Λg − Φ(g , g0; θ) = 0

for g and θ, with g − gb0 in a decaying function space. So crucially
θ is also treated as an unknown.

This can be seen by solving the linearized equation without θ in a
space which is decaying apart from finitely many non-decaying
resonant modes, and then subtracting away cut off versions of
these resonant terms and checking the equation they satisfy.

The full KdS version is not much harder... more details coming
after the break.
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Some interesting questions:

Is the Kerr-de Sitter family stable even if a is not small? The
biggest issue here is checking UEMS, which is harder due to
the lack of symmetry.

Cosmic censorship: what’s going on farther in the black hole
(r < r−)? Recent work of Dafermos-Luk in the Λ = 0 setting,
giving a conditional result, should have an unconditional
analogue, and the modification of the Dafermos-Luk argument
should not be too hard.

Can we see show an expansion of the solution in terms of
decaying modes? This would mathematically justify the
ringdown.

Last, but certainly not least: can we extend the non-linear
stability results to the case Λ = 0?
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Thank you!
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The claim is that under UEMS* (i.e. ignoring the KdS-family zero
modes, which e.g. would be the case for dS) we can solve

Ric(g) + Λg − Φ(g , g0; θ) = 0,

for g and θ, with g − gb0 in a decaying function space. Here

Φ(g , g0; θ) = δ̃∗(Υ(g)− θ).

This can be seen by solving the linearized equation without θ in a
space which is decaying apart from finitely many non-decaying
resonant modes, and then subtracting away cut off versions of
these resonant terms and checking the equation they satisfy.

Concretely:
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The linearization of the gauged Einstein equation at (gb0 , 0), in
(g , θ) (with the linearized change of g denoted by r , that in θ is
still denoted by θ since the equation is linear in θ) is

(Dgb0
Ric + Λ)r − δ̃∗(Dgb0

Υ)r + δ̃∗θ = 0.

This can be solved in a decaying function space.

Indeed, with slight imprecision, dropping the θ term, the equation
can be solved with solution r̃ with

r̃ =
∑
j

rj + r ′

r ′ in a decaying function space, rj finitely many non-decaying
terms, given by the resonances, which satisfy the linearized gauged
Einstein equation (but of course not the initial conditions).
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We have rj = δ∗gb0
ωj (UEMS*!), so as

(Dgb0
Ric + Λ)δ∗gb0

ω = 0

for any one-form ω, due to gb0 solving Einstein’s equation and the
diffeomorphism invariance of Ric, the tensor

r = r̃ −
∑
j

δ∗gb0
(χωj)

satisfies

(Dgb0
Ric + Λ)r − δ̃∗(Dgb0

Υ)r =
∑
j

δ̃∗(Dgb0
Υ)δ∗gb0

(χωj),

which is exactly of the form given above!
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Analytically, the point is that the operator

Lb0 = (Dgb0
Ric + Λ)− δ̃∗(Dgb0

Υ)

is not surjective between appropriate decaying function spaces,
though the range is closed with a finite dimensional complement.

So we need to add a finite dimensional complementary subspace
W so that

Lb0r = f

for given f is replaced by...
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Lb0r = f + h,

h ∈W undetermined, for this equation to become solvable in these
function spaces.

For us, W = δ̃∗Θ, and it is important that this lies in the range of
δ̃∗ because this assures (much like without the θ term) that the
solution of the gauged Einstein equation actually gives a solution
of the ungauged one!
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An important point is that the analytic framework is stable under
perturbations, so if one has a metric g which is close to gb0 in the
appropriate sense then for the gauged Einstein’s equation,
linearized at g ,

Lg = (DgRic + Λ)− δ̃∗(DgΥ),

Lg r = f + h is also solvable with h in the same space W . In
particular, this holds for Kerr-de Sitter metrics with small a (and
their perturbations!).
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This assures that the non-linear equation is also solvable for
perturbations of the initial data, near gb0 , in the same decaying
function spaces, which then gives (under UEMS*) the non-linear
stability result.

We interpret as saying that solving the equation finds the gauge,
Υ(g) = θ, in which the solution is stable as well as the actual
solution of Einstein’s equation.

Now, UEMS* does not hold for the KdS family (exactly because it
is a family) but it does hold for de Sitter space, giving a new proof
of its stability.
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However, it is not hard to actually deal with the full KdS family by
modifying our equation by adding another term to it which
corresponds to the family and somewhat enlarging the space Θ.

The result is that for an appropriate finite dimensional space Θ the
nonlinear equation

(Ric(g) + Λg)− δ̃∗(Υ(g)−Υ(gb0,b)− θ) = 0

with prescribed initial condition is solvable for g , θ, b with θ ∈ Θ, b
near b0, and g − gb exponentially decaying; here
gb0,b = (1− χ)gb0 + χgb is the asymptotic Kerr-de Sitter metric
with parameter b. Thus, both b and θ are found along with g in
the nonlinear iteration! This proves the nonlinear stability of the
KdS family with small a.
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Recall that the analytic framework we use:

non-elliptic linear global analysis with coefficients of finite
Sobolev regularity,

with a simple Nash-Moser iteration to deal with the loss of
derivatives corresponding to both non-ellipticity and trapping

gives global solvability for quasilinear wave equations like the
gauged Einstein’s equation provided

certain dynamical assumptions are satisfied (only trapping is
normally hyperbolic trapping, with an appropriate subprincipal
symbol condition) and

there are no exponentially growing modes (with a precise
condition on non-decaying ones), i.e. non-trivial solutions of
the linearized equation at gb0 of the form e−iσt∗ times a
function of the spatial variables r , ω only, with Imσ > 0.
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This fits into a much broader class of linear and non-linear
problems from general relativity, QFT, dynamical systems and
inverse problems.

As mentioned, the non-linear aspects can be reduced to a precise
understanding of underlying linear problems, via linearization and
an iteration such as Picard, Newton or Nash-Moser, or
‘pseudolinearization’.

In all of these problems one solves the linear (and non-linear)
problems globally on a certain underlying ‘physical space’. Here
‘globally’ still leaves us freedom in deciding what region of perhaps
an even bigger physical space we care about, but once we decide
this, we need to work globally in the region.
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The non-linear aspects usually simply mean that the linear analysis
needs to be ‘done right’, so I ignore these for the general
discussion. To reiterate, the linear problems are solved globally and
this is used to solve the non-linear problems so as well, rather than
using the finite time non-linear solvability and attempting to
control it uniformly as time goes to infinity.

Thus, one decides on an underlying ‘physical space’ (often a
complete manifold for QFT, possibly a region bounded by horizons
in space-time in GR, a domain for the inverse problems) M, and
one considers an operator P on M.
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More precisely, one needs to specify some function spaces (usually
with considerable freedom) X ,Y , and consider the continuous map

P : X → Y .

In spite of the considerable freedom, it is crucial to be able to fix
these spaces. Note also that while many choices may be
equivalent, other choices may result in very different operators (cf.
boundary conditions)!

Solving equations amounts to a surjectivity statement for P

Inverse problems/rigidity amount to an injectivity statement
for P.
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Since function spaces are infinite dimensional, we also need
estimates: these are (semi-)Fredholm estimates.

The almost-injectivity estimate is

‖u‖X ≤ C (‖Pu‖Y + ‖u‖Z1)

and the almost surjectity estimate is

‖v‖Y ∗ ≤ C (‖P∗v‖X∗ + ‖u‖Z2),

where the inclusion maps X → Z1 and Y ∗ → Z2 are compact.

Compactness of these maps typically comes from the Zj being
weaker in the sense of derivatives, and if M is non-compact, or has
a degenerate structure, then from in addition the Zj being weaker
in the sense of decay. (Invertibility amounts to being able to drop
the relatively compact terms.)

Global analysis is standard for elliptic PDE, like Laplace’s equation:
one cannot solve an elliptic PDE by solving it locally!
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The simplest example for Fredholm theory is elliptic operators P
on compact manifolds without boundary M. (There is a similar
theory for M with smooth boundary with boundary conditions.)

Recall that for P ∈ Diffm(M), m ∈ N, the principal symbol σm(P)
captures the leading terms. In local coordinates, if
P =

∑
|α|≤m aα(x)Dα

x , σm(P)(x , ξ) =
∑
|α|=m aα(x)ξα. Ellipticity

is the statement that this does not vanish (is invertible) if ξ 6= 0.
Then

X = Hs = Hs(M), Y = Hs−m(M), s ∈ R,

so X ∗ = H−s(M), Y ∗ = H−s+m(M),

Z1 = H−N(M), Z2 = H−N(M), N large.

The Fredholm property follows from the elliptic estimate

‖φ‖Hr ≤ C (‖Lφ‖Hr−m + ‖φ‖H−N ),

with L = P, r = s, resp. L = P∗, r = −s + m. Note that the
choice of s is irrelevant here (elliptic regularity).
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The non-elliptic problems we consider are problems in which the
elliptic estimate is replaced by estimates of the form

‖u‖Hs ≤ C (‖Pu‖Hs−m+1 + ‖u‖H−N ),

i.e. with a loss of one derivative relative to the elliptic setting, and

‖v‖Hs′ ≤ C (‖P∗v‖Hs′−m+1 + ‖v‖H−N′ ),

with s ′ = −s + m − 1 being the case of interest. These are often
proved by propagation estimates using microlocal analysis.

Such estimates imply that P : X → Y is Fredholm if

X = {u ∈ Hs : Pu ∈ Hs−m+1}, Y = Hs−m+1.

It is easy to see that C∞ is still dense in X .

Our non-elliptic problems are usually more complicated (except:
dymanical systems!) as there is an infinity, which means that the
Sobolev spaces will only have a compact inclusion if the error term
is in a weaker weighted space; this is how resonances enter.
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In these cases with infinity there is typically a 2-step process of
obtaining estimates on weighted Sobolev spaces. Thus, one works
with spaces Hs,` = e−`t∗Hs , and the estimates to prove are

‖u‖Hs,` ≤ C (‖Pu‖Hs−m+1,` + ‖u‖H−N,−N ). (1)

In Step 1 one proves an estimate

‖u‖Hs,` ≤ C (‖Pu‖Hs−m+1,` + ‖u‖H−N,`). (2)

Thus, the error term is lower order in the differential sense but not
in the decay sense, and hence the inclusion from Hs,` into H−N,` is
not compact. Again, this step is often proved using microlocal
analysis. Then, in the simplest settings in Step 2 one proves an
estimate for a model operator at infinity

‖u‖Hs′,` ≤ C‖P0u‖Hs′−m+1,` . (3)

Applying this to u (with s ′ ≥ −N) or its localized to large t∗
version, and using that P − P0 has decaying coefficients, thus
maps into a more decaying space, one gets (1).
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For nonlinear stability problems, P is the linearization of the
nonlinear problem at a current step in the iteration, and P0 is the
linearization at a metric to which the current iterate is asymptotic.
Thus, for KdS stability, this would be a KdS space.

In order to have the P0 estimate (3), one conjugates it by the
Fourier transform to obtain a family P̂0(σ) where σ is the
(complex!) Fourier dual of −t∗; this is where the stationarity is
used. One then automatically has a(n analytic) Fredholm theory
for P̂0(σ), corresponding to the Step 1 estimate. Thus, the
question is invertibility, i.e. whether P̂0(σ) has a non-trivial
nullspace (index 0 follows from large σ considerations); this is how
the resonances play a role. The net result is that as long as −` is
not the imaginary part of a resonance σ, one has the desired
estimate (3), and so the Fredholm theory for P for all but a
discrete set of weights (at least as long as the Step 1 theory allows
this: trapping!).
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For the stability problems, we want forward solutions, which is to
say we want to work on distributions supported in the future of our
Cauchy hypersurface.

On these spaces we get invertibility for sufficiently negative `
(growing space!) due to the absence of resonances in an upper half
space, and indeed in more decaying spaces up to having to allow
finitely many terms corresponding to the more growing resonances
in the solution.

For Kerr, the fixed σ theory already has a similar aspect due to the
Minkowski end. It turns out that an analogous, but more subtle,
theory also works in this case.
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We still need to prove the estimates with a gain in differential order
(2). The tool we use is microlocal analysis. Microlocal analysis is
local in phase space, T ∗M, which is locally Rn

z × Rn
ζ , with ζ the

momentum variables. A key point is that this is both perturbation
stable, and (for GR) works in a limited regularity setting, with work
on this going back to Beals and Reed in the 1980s.

More precisely, corresponding to the differential order gain we are
after, we are interested in what happens as |ζ| → ∞, referred to as
‘fiber infinity’. This is encoded by using dilations in the fibers (i.e.
in ζ) (or a compactification), so the phase space can be considered
as T ∗M \ o modulo dilations in the fibers, i.e.
S∗M = (T ∗M \ o)/R+.

For instance, one can say where, i.e. at which point z and which
codirection ζ is a distribution in a Sobolev space or is C∞ (wave
front set) or in Hs . E.g.
WF((z1 + i0)−1) = {(0, z ′, ζ1, 0) : ζ1 > 0}.
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The idea is that one proves estimates locally in S∗M, i.e.
microlocally. This microlocalization is carried out by
pseudodifferential operators, but for now all that matters is that
they can in particular be associated to functions b on S∗M so that
the associated B = Op(b) ∈ Ψ0(M) is localizing to supp b, and is
non-degenerate, namely elliptic on {b > 0}; b is the principal
symbol of B, extending the notion for differential operators.

For a wave operator P = �g , the principal symbol is given by the
dual metric, i.e. the inverse G = (g ij) of g , which we think of as
an ‘energy function’ on phase space: p(z , ζ) =

∑
g ij(z)ζiζj .

Now P is elliptic at α ∈ S∗M if the homogeneous function p is
non-zero at α, i.e. at non-null covectors. Near such points we have
elliptic estimates:

‖B1u‖Hs ≤ C (‖B3Pu‖Hs−m + ‖u‖H−N ),

Bj ∈ Ψ0, provided b3 6= 0 on supp b1 and p 6= 0 on supp b1.
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The basic non-elliptic estimates relate to the Hamiltonian
formulation of classical mechanics, which encodes geodesics as
follows.

The lifted geodesics are integral curves of the Hamilton vector
field given by the symplectic structure on T ∗M; locally

Hp =
n∑

j=1

∂p

∂ζj

∂

∂zj
− ∂p

∂zj

∂

∂ζj
,

i.e. Hp = (∂ζp,−∂zp); these are also called bicharacteristics.

Each point in T ∗M gives rise to a unique lifted geodesic (the
integral curve through the point).

The ‘quantum’ or analytical, version, then propagates Hs -estimates
in the characteristic set Char(P) = {p = 0} along bicharacteristics
(Hörmander).
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This is an estimate of the form

‖B1u‖Hs ≤ C (‖B2u‖Hs + ‖B3Pu‖Hs−m+1 + ‖u‖H−N ),

Bj ∈ Ψ0, provided supp b1 ⊂ {b3 6= 0}, and all bicharacteristics
from points in supp b1 ∩ Char(P) reach {b2 6= 0} of while
remaining in {b3 6= 0}. This is usually proved via a positive
commutator estimate, which is a microlocal version of an energy
estimate.

✲Hp









. .........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

✲

✲

✲

✲

✲

✲

b3

.

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............



.

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

.....
b2
.

..........................................................................

.

.................................................................................................................................

.

....................................................................................................................................................

.

.................................................................................................................................................... .

................................................................................................... .

...............................

b1

.

.......................................................................................................................................................................................................................................................................
.

..............................................................................................................................................................................................
.

..............................................................................................................



The setup Geometry Stability The proof Outlook The gauge fixing Analytic aspects Microlocal analysis On Feynman

A key question is how one starts the propagation estimate, i.e. how
one controls the B2u term.

For wave equations, one option is Cauchy hypersurfaces (in the
base manifold M); this gives the usual finite time formulation of
wave propagation: a support condition makes this term trivial.

Another possibility is to have a structured bicharacteristic flow: we
need that there are submanifolds L of S∗M which act as
sources/sinks in the normal direction: it turns out that on high
regularity spaces, one can get an estimate in which the B2 term
can be dropped. This plays a key role in scattering theory, where it
was introduced by Melrose in the 1990s, though has a long history
in a non-microlocal way, and around 2009 Faure and Sjöstrand also
introduced this to dynamical systems.
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Then one can propagate them along the flow, from say the source,
and then eventually into the sink, on low regularity spaces. Often
thus one needs variable order (s), or anisotropic, spaces. Crucially,
these also give estimates for the adjoint on dual spaces.
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In this case there is a threshold, sΛ, which depends on m and the
imaginary part of the subprincipal symbol at Λ.
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If s ≥ s0 > sΛ, then

‖B1u‖Hs ≤ C (‖B3Pu‖Hs−m+1 + ‖u‖Hs0 ),

Bj ∈ Ψ0 elliptic on L, provided supp b1 ⊂ {b3 6= 0}, and all
bicharacteristics from points in supp b1 ∩ Char(P) tend to L
while remaining in {b3 6= 0}.
If s < sΛ then

‖B1u‖Hs ≤ C (‖B2u‖Hs + ‖B3Pu‖Hs−m+1 + ‖u‖H−N ),

Bj ∈ Ψ0 elliptic on L, provided supp b1 ⊂ {b3 6= 0}, and all
bicharacteristics from points in (supp b1 ∩ Char(P)) \ L reach
the elliptic set {b2 6= 0} of B2 while remaining in {b3 6= 0}.

Replacing P by P∗ changes sΛ, and it naturally leads to estimates
on the required dual spaces.
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As a consequence, if there are radial sets L1, L2 such that all
bicharacteristics in Char(P) \ (L1 ∪ L2) escape to L1 in one of the
directions along the bicharacteristics and to L2 in the other, one
has the required Fredholm estimate provided one can arrange the
Sobolev spaces so that

at L1 the Sobolev order is above the threshold for P,

at L2 the Sobolev order is above the threshold for P∗.

Typically this requires variable order Sobolev spaces, i.e. the order
s is a function on S∗M, in which case we also need

the Sobolev order is monotone decreasing from L1 to L2,

for the real principal type estimates are valid in that case.

Namely,
‖u‖Hs ≤ C (‖Pu‖Hs−m+1 + ‖u‖H−N ),

‖v‖Hs′ ≤ C (‖P∗v‖Hs′−m+1 + ‖v‖H−N′ ),

with s ′ = −s + m − 1.
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A frequent place these arise is radial sets, i.e. points in T ∗M
where Hp is tangent to the fiber dilation orbits; propagation
provides no information here as in S∗M the induced vector
field vanishes.

In non-degenerate settings, i.e. when Hp is non-zero, the
biggest possible dimension of a radial set is that of M, in
which case it is a conic Lagrangian submanifold of T ∗M.

In this case, they act as source or sink within Char(P); in the
source case Hp flows to the zero section within Λ, in the sink
case from the zero section: red shift/blue shift.

More generally there may be a non-trivial flow within the
sources/sinks; this is the case for dynamical systems as well as
rotating black holes, where these are at the conormal bundles
of the horizons.
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The just described theory works for instance for the Fourier
transformed family P̂0(σ) of the model. For the operator P itself it
is best to think of M as a compact manifold with boundary; the
new boundary is an ideal boundary added to infinity with defining
function e−t∗ = τ . The microlocal analysis is then on the phase
space of this compactified space, which is bS∗M; here ‘b’ encodes
the compactification used.

The normal sinks/sources are then replaced by saddle points of the
Hamilton flow, at which a similar theory to the normal
sources/sinks holds, with the point being the ability to propagate
estimates through radial points. Again this corresponds to
red/blue shifts.

The additional issue is the trapping, corresponding to
bicharacteristics that even in a generalized sense (going through
the saddle points) do not propagate to the initial/final ‘Cauchy
hypersurfaces’.
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−
ε M

r
=
r +

+
ε M

r = r− r = r+

Ω

Σ0

Σt∗

H+ H+

r =
r−
− εM

r =
r
+ +

ε
M

i+

Thus, M = [T0,∞)t∗ × [r− − εM , r+ + εM ]r × S2, εM > 0, where
r = r−, r+ are the event and cosmological horizons.

Here r = r+ + εM and r = r− − εM are final Cauchy hypersurfaces,
t∗ = T0 is the initial Cauchy hypersurface (all space-like). (These
are artificial boundaries: we choose them. While they are
important for the complete framework, they do behave as for finite
time problems. But once chosen: work globally!)
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Compactifying, by making τ = e−t∗ the boundary defining function
and adding in τ = 0 as ideal boundary, the flow structure is:

So one propagates estimates from H1 through the radial saddle
points L± at the horizons to H2: in this context, the radial
estimates are called red-shift (forward)/blue-shift (adjoint,
backward) estimates. (There’s also normally hyperbolic trapping,
not shown.)
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Thank you!
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For the sake of perspective, let us consider an even simpler
problem: the linear wave equation on a Lorentzian spacetime
(M, g): �gu = f (f given). Typically the Cauchy problem is
considered (data at an (embedded) spacelike hypersurface S).
Then

there is a unique local solution (near S), and

if (M, g) is globally hyperbolic, i.e. each maximally extended
time-like curve intersects S exactly once, or equivalently there
is a global time function t, there is a unique global solution.

The Cauchy problem is equivalent to a forcing (or inhomogeneous)
problem: solve �gu = f where f is supported in t ≥ t0, by finding
u which is supported in t ≥ t0, together with its analogue where ≥
is replaced by ≤.

The solution operator �−1
g ,R : f 7→ u is the forward, or retarded

solution operator. If one replaces ≥ by ≤, one obtains the
backward, or advanced, solution operator, �−1

g ,A.
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Question

What are the natural inverses of �g? Are the inverses beyond the
advanced/retarded ones?

With Gell-Redman, Haber and Wrochna we show that in
reasonable (but quite general geometric) settings, there are two
more natural inverses, the Feynman and anti-Feynman propagators
(introduced by Feynman in the Minkowski setting!).

Idea: encode propagators via the choice of function spaces (the
inverse depends on the choice!) on which �g is Fredholm: in terms
of the source/sink picture where the regularity is high vs. low.

In a ‘parametrix’ sense (modulo smoothing errors) this was
analyzed by Duistermaat and Hörmander: ‘distinguished
parametrix’ for each choice of a direction in each connected
component of the characteristic set. But: ‘smoothing errors’ are
weak in non-compact settings; we set up Fredholm problems.
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In fact, our discussion is not really specific for the wave equation,
rather it is a general non-elliptic phenomenon.

But back in the setting of second order PDE, another place where
Feynman and anti-Feynman propagators arise is ultrahyperbolic
PDE such as

∑k
j=1 D

2
xj
−∑n

j=k+1 D
2
xj

, k, n − k ≥ 2. These are in
fact very much like the wave equation except for the Cauchy
problem — but our approach of constructing inverses works just as
well!

There has been much work in mathematical quantum field theory
on Feynman propagators. The closest works in terms of general
(non-algebraic) outlook have been due to Dereziński, Gérard,
Häfner, Siemssen and Wrochna. Some others in the field are Bär,
Brunetti, Dappiaggi, Fredenhagen, Köhler, Moretti, Pinamonti,
Strohmaier...
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Let M̃ = Rn+1 with the Minkowski metric and � be the wave
operator; there are natural generalizations.

Let ρ be a homogeneous degree 1 positive function, e.g. a
Euclidean distance from the origin. (Analogue of τ−1 above.)

The conjugate of ρ2� by the Mellin transform along the
dilation orbits gives a family of operators Pσ, σ the Mellin dual
parameter, on Sn (smooth transversal to the dilation orbits).

Pσ is elliptic inside the light cone, but Lorentzian outside the
light cone.

The conormal bundle of the light cone consists of radial
points.

The characteristic set has two components, and there are four
components of the radial set: a future and a past component
within each component of the characteristic set.
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In one component Σ+ of the characteristic set, the
bicharacteristics go from the past component of the radial set L+−
to the future one L++; in the other component Σ− they go from
the future component of the radial set L−+ to the past one L−−.

In this case the interior of the light cone is naturally identified with
hyperbolic space, while the exterior with de Sitter space.
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Reasonable choices of Fredholm problems:

Make the Sobolev spaces high regularity at the past radial sets
and low at the future radial sets: this is the forward
propagator.

Make the Sobolev spaces low regularity at the past radial sets
and high at the future radial sets: this is the backward
propagator.

Make the Sobolev spaces high regularity at the sources L+−
and L−+ and low regularity at the sinks, or vice versa. These
are the Feynman propagators, and they propagate estimates
for Pσ in the direction of the Hamilton flow in the first case,
and against the Hamilton flow in the second.

Note that the adjoint of these inverses always propagates
estimates in the opposite direction!
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Thank you again!
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