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Abstract

We study the set of crepant resolutions of Q-factorial threefolds with compound Du

Val singularities. We derive sufficient conditions for the Kawamata–Kollár–Mori–

Reid decomposition of the relative movable cone into relative ample cones to be the

decomposition of a cone into chambers for a hyperplane arrangement. Under our

sufficient conditions, the hyperplane arrangement can be determined by computing

intersection products between exceptional curves and divisors on any single crepant

resolution. We illustrate our results by considering the Weierstrass models of elliptic

fibrations arising from Miranda collisions with non-Kodaira fibers. Many of our results

extend to the set of crepant partial resolutions with Q-factorial terminal singularities.
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0 Preface

This thesis studies the geometry of mathematical objects called singular algebraic

varieties. Algebraic varieties are the spaces of solutions to systems of polynomial

equations.1 We call one-dimensional and two-dimensional varieties curves and sur-

faces, respectively. The class of algebraic varieties include ubiquitous objects like

lines, conic sections, and elliptic curves—as well as higher-dimensional objects like

double cones, which we call quadric cones. Figure 1 on page 2 depicts some examples

of algebraic varieties.

Singularities complicate the geometry of algebraic varieties. Intuitively, a singu-

larity is a point of an algebraic variety at which the variety is pinched or folds onto

itself. More formally, a variety is nonsingular at a point if the variety is diffeomorphic

to Euclidean space around that point, and singularities are points at which a variety

fails to be nonsingular. A variety is singular if it has a singularity and nonsingular

otherwise. Figure 2 on page 3 depicts a singular curve called the nodal cubic.

A natural question in algebraic geometry asks whether any singular variety can be

made nonsingular by surgical operations on the singular locus. If surgically removing

singularities is possible, then we call any nonsingular variety so obtained a resolution

(of singularities) of the original singular variety. Figure 3 on page 3 depicts a res-

olution of singularities of the nodal cubic. In a remarkable contribution, Hironaka

[33, 34] proved the existence of a resolution of singularities for any algebraic variety

defined over the complex numbers—or, more generally, over any field of characteristic

0. To be precise, Hironaka [33, 34] described a formal procedure for constructing a

resolution of any singular variety. However, his results are silent on the geometry of

other possible resolutions and how they relate to the one constructed by his procedure.

In this thesis, we consider the problem of analyzing the set of all possible res-

olutions of singularities of a singular algebraic variety. For curves and surfaces, it

turns out that there is a unique “minimal” resolution of singularities that differs as

little as possible from the starting singular variety. For threefolds (three-dimensional

varieties), however, there is not in general a unique minimal resolution—there can

be several “minimal” resolutions with different geometric properties.2 Our contribu-

1It turns out that many spaces of solutions to systems of analytic equations are guaranteed to
be algebraic varieties. Specifically, Chow [12] and Serre [73] have shown that varieties defined by
systems of complex analytic equations in projective space are algebraic. Hence, the restriction to
polynomial equations in defining algebraic varieties is sometimes innocuous.

2Following Mori [61]), we define “minimality” using numerical properties of the canonical class—a
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Figure 1: Algebraic varieties The left panel depicts an elliptic curve, which is the
set of solution to a general cubic equation in two variables. The right panel depicts a
quadric cone, which is the set of solutions to the three-variable equation z2 = x2 +y2.
The quadric cone is pinched at its apex. Hence, the apex is a singularity of the
quadric cone.

tion is to shed some light on the structure of the set of all “minimal” resolutions of

threefolds with simple singularities called compound Du Val (cDV) singularities.

Our analysis is motivated by geometric predictions from theoretical physics. The

mathematical objects involved in F-theory are elliptic fibrations—which are algebraic

varieties that consist of families of elliptic curves—and their associated Weierstrass

models—which describe simple forms in which elliptic fibrations can appear. Places

at which the elliptic curves in a family degenerate often give rise to cDV singularities

of the associated Weierstrass model. Physicists have investigated the geometry of

Weierstrass models, and have shown that physical dualities between F-theory and M-

theory lead to geometric predictions regarding the structure of the set of all “minimal”

resolutions of Weierstrass models.3

In this thesis, we provide mathematical proofs of some of the geometric predictions

of F-theory. While our results have the flavor of F-theoretic predictions, we go beyond

mathematical object that is canonically associated to any sufficiently well-behaved variety.
3See Witten [84], Morrison and Vafa [66, 67], Vafa [79], Intriligator et al. [35], and Morrison and

Seiberg [63] for seminal work in this vein.
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Figure 2: The nodal cubic. This curve is the set of solutions to the equation
y2 = x3 + x. There is a singularity at the point at which the curve holds onto itself.

Figure 3: Resolution of singularities of the nodal cubic. The resolution (in
orange) of the nodal cubic (in black) uses a third dimension to separate the branches
of the nodal cubic at its singularity, using the mathematical process of blowing up
the singularity. In the case of the nodal cubic, blowing up the singularity surgically
replaces the singular point by two nonsingular points.

3



the scope of F-theory by considering threefolds with cDV singularities that are not

the Weierstrass models of elliptic fibrations. Therefore, in addition to proving formal

proofs of some of the geometric predictions of F-theory that were previously derived

based on physical arguments, we show that the predictions of F-theory extend to

some settings in which the physical arguments do not apply.

1 Introduction

In this thesis, we study the structure of the set of crepant resolutions of complex

threefolds with Q-factorial compound Du Val singularities. Because resolutions of

singularities are birational morphisms, our analysis requires ideas and techniques

from the theory birational geometry. To put our results into context, we first recall

some ideas from the theories of birational geometry and singularities—with a focus

on the issues that arise in dimension 3. We then describe the geometric predictions

of F-theory—which are the inspiration for our work—and introduce our results.

1.1 Birational geometry

Birational equivalence provides a coarsening of the notion of isomorphism of algebraic

varieties. Intuitively, two varieties are birationally equivalent if and only if they can be

made isomorphic by removing (possible different) proper algebraic subvarieties—that

is, if the varieties are generically isomorphic. Formally, we say that two varieties are

birationally equivalent if there is a birational map—that is, a map that is generically

an isomorphism—between them.

One of the basic questions in birational geometry asks how to obtain a member of

a birational equivalence class of nonsingular varieties that is as “simple” as possible.

This question can be interpreted as a step toward more difficult problem of classifying

all (nonsingular) varieties up to isomorphism and understanding all birational maps

between them. The formal definition of “as simple as possible”—which is due to

Mori [61]—is subtle in dimensions 3 and higher. We therefore review the theory

of birational geometry in dimensions 1 and 2 before turning to the case of higher-

dimensional varieties.

In the case of curves, it is trivial to obtain the simplest member of a birational

equivalence class. Indeed, any birational map between nonsingular, complete curves

4



is an isomorphism. In particular, every nonsingular, complete curve is the unique

“simplest” member of its birational class.

In the case of surfaces, there is a straightforward process for the simplification

via birational transformations. Unlike in the case of curves, there are non-trivial

birational transformations between nonsingular surfaces. For example, we can blow

up a variety at a point—or, more generally along proper subvariety. In the case of

nonsingular surfaces, blowing up at a point defines a surgery operation that replaces

the point by an exceptional rational curve. The inverse of blowing up is called con-

tracting the exceptional curve. A nonsingular surface is minimal if no rational curve

on it can be contracted without introducing singularities. Given an arbitrary non-

singular surface, the strategy to obtain a birational minimal surface is to iteratively

contract rational curves without introducing singularities—until no further rational

curves can be contracted without introducing singularities. At each step, there may

be several possible rational curves that can be contracted. However, the outcome of

the process turns out to be independent of starting choices—as long as the starting

surface is not birational to C × P1 for an algebraic curve C. Indeed, there is exactly

1 minimal surface in each the birational equivalence class—except for the birational

equivalence classes ruled surfaces.4 Hence, similarly to the case of curves, there are

unique minimal surfaces in essentially every birational equivalence class.

Birational geometry is much more subtle in dimensions 3 and higher. In this

context, blowing up a nonsingular variety along any nonsingular subvariety surgically

replaces the center of the blow-up by a codimension 1 subvariety instead of simply

a rational curve. We call codimension 1 subvarieties (prime) divisors, as they are

analogous to (codimension 1) prime ideals of commutative rings. In dimensions 3 and

higher, we must therefore contract divisors instead of curves to invert the process of

blowing up. We call a morphism that contracts a divisor a divisorial contraction.

The first complication of birational geometry in dimensions 3 and higher relates

to problem of defining “minimality.” The issue is that there are varieties that can be

simplified by birational transformations but on which no divisor can be contracted.

Specifically, there can be obstructions to contracting divisors that live in codimension

2. These obstructions can be removed by birational codimension 2 surgery opera-

tions called flips, so that performing a sequence of flips can allow further divisors

to be contracted. As a result, in higher dimensions, it is not satisfactory to define

4This fact is proven, for example in [49, Chapter 1].
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“minimality” as the inability to contract a divisor without introducing singularities.

In a remarkable contribution, Mori [61] proposed to define minimality in terms

of the canonical class. The canonical class is a divisor that is canonically associated

to every sufficiently well-behaved algebraic variety.5 Mori [61] proposed to call a

nonsingular threefold minimal if its canonical bundle is numerically effective (nef)—in

that it has nonnegative intersection number with every curve on the variety. For most

nonsingular surfaces, minimality in the sense of Mori is equivalent to the property

tha no curve can be contracted without introducing singularities.6

For it to be possible to make the canonical class nef by performing birational

transformations, the canonical class must initially be sufficiently positive. Specifically,

all sufficiently large multiples of the canonical class must have nonzero sections—in

which case we say that the variety has nonnegative Kodaira dimension.7 If a variety

does not have nonnegative Kodaira dimension, then the goal is to reduce the variety

to a fibration of Fano varieties over a lower-dimensional base, as it is impossible to

obtain a birational minimal model. We can then study the birational geometry of

the original variety by studying the birational geometry of a general fiber and the

birational geometry of the base of the fibration. For varieties of nonnegative Kodaira

dimension, the goal is to obtain a birational minimal model.

The second complication of higher-dimensional birational geometry is that we may

need to allow mild singularities to obtain a minimal model of a given variety, as Ueno

[78] has shown. Specifically, divisorial contractions and flips can introduce Q-factorial

5Formally, that the canonical bundle of a nonsingular variety is the invertible sheaf of top-
dimensional differential forms. The canonical class is the first Chern class of the canonical bundle;
more concretely, the canonical class is the class of the divisor of zeros and poles of a top-dimensional
meromorphic differential form. The definition of the canonical class can be extended to normal
varieties—see, for example, Section 3.3.

6To be precise, the equivalence holds for surfaces of nonneegative Kodaira dimension. To un-
derstand the equivalence, recall Castelnuovo’s contractibility criterion [31, Theorem V.5.6], which
asserts that a rational curve can be contracted without introducing singularities if and only if the
curve has self-intersection number −1. By the adjunction formula [49, Proposition 5.73], it follows
that a rational curve can be contracted without introducing singularities if and only if the intersec-
tion number of the canonical class with the curve is −1. Hence, if the canonical class of a surface
is nef, then no curve can be contracted without introducing singularities. To show the converse, we
apply the cone theorem on the structure of the cone of curves of a nonsingular variety [61, Theorem
1.3] to construct an “extremal” rational curve with which the canonical class has intersection number
−1, −2, or −3. For surfaces of nonnegative Kodaira dimension, only the first case is possible [49,
Theorem 1.28]. See Kollár and Mori [49, Chapter 1] for the details of the argument.

7In general, if the canonical ring is finitely generated, the Kodaira dimension is the dimension
of the image of the pluricanonical map, which is only defined if the Kodaira dimension is positive.
The Kodaira dimension is always a nonnegative integer or −∞.
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terminal singularities. Conversely, given any non-minimal threefold, it is possible to

perform a divisorial contraction or a flip without introducing any singularities that

are not Q-factorial terminal. Intuitively, a singularity is Q-factorial terminal if it

is impossible to even partially resolve the singularity without moving the canonical

class further from being numerically effective. In dimensions 1 and 2, there are no

nontrivial terminal singularities, which explains why we can restrict to nonsingular

varieties and still obtain the existence of minimal models in dimensions 1 and 2.

In an attempt to prove the existence of minimal models of all nonsingular vari-

eties of nonnegative Kodaira dimension, Mori [62] described an iterative simplification

process called the minimal model program, which can be applied in all dimensions.

The procedure iteratively performs divisorial contractions or, when that is impossible,

performs flips. At each step, the procedure seeks to modify the variety as little as pos-

sible. In dimension 3, Mori [62] showed that the minimal model program terminates,

and hence reduces every nonsingular threefold of nonnegative Kodaira dimension

(resp. negative Kodaira dimension) to a birational minimal model (resp. Fano fibra-

tion). In dimensions 4 and higher, the termination of the minimal model program

turns out to be even more subtle than in dimension 3.8

There is also a third complication of higher-dimensional birational geometry: even

if they exist, minimal models may not be unique. That is, there are often many

minimal models in one birational class. To understand why, note that the numerical

effectiveness of the canonical class is essentially determined in codimension 1. Hence,

the geometry of birational minimal models can differ in codimension 2 and higher.

For curves and (nonsingular) surfaces, there is no nontrivial geometry in codimension

2. In dimensions 3 and higher, however, there is non-trivial geometry in codimension

2 and higher that can vary between birational minimal models. Specifically, there are

codimension 2 surgery operations called flops, which preserve the property of being

a minimal model.9 Flops are closely related to flips, which are the codimension 2

surgery operations that arise in the minimal model program. However, flips help to

“simplify” a variety by changing the numerical intersection properties of the canonical

class, while flops arise even between minimal models—which are already as “simple”

8Some results have been proven regarding the termination of flips—and hence the termination of
the minimal model program—in dimension 4. See, for example, Kawamata et al. [41], Matsuki [56],
Fujino [25], and Alexeev et al. [1].

9In dimension 3, Kollár [48] has shown that birational minimal models are related by finite
sequences of (extremal) flops. See also Theorem 3.40 in Section 3.
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as possible.

1.2 Resolution of singularities

Our results deal more closely with the theory of resolution of singularities, which

is closely connected to—and shares many of the subtleties of—birational geometry.

Intuitively, a resolution of singularities of a singular variety is a nonsingular variety

that is obtained from the singular variety by surgery operations on its singular lo-

cus. More formally, a resolution of singularities of a variety is a proper, birational

morphism from a nonsingular variety to the original variety that is an isomorphism

away from the singular locus of the original variety. The first question in the theory

of resolutions asks whether any singular variety admits a resolution of singularities.

Generalizing work by Zariski [85, 86, 87], Hironaka [33, 34] answered this question in

the affirmative for varieties of arbitrary dimension over fields of characteristic zero.

Given Hironaka’s result, we can ask how singularities can be resolved in a way

that modifies the variety as little as possible. The goal is then to avoid introducing

any unnecessary divisors in the resolution—that is, to find a relative minimal model

of a resolution over the starting singular variety. Formally, a morphism between

varieties is a relative minimal model if the source has Q-factorial terminal singularities

and its canonical class is relatively nef —i.e., has nonnegative intersection number

with any curve that lies in a single fiber of the morphism. We consider relative

minimal models instead of absolute minimal models because the starting singular

variety may itself have a canonical class that is not nef, and here our goal is to avoid

modifying the starting singular variety more than is necessary to obtain a resolution.

Providing a complete solution to the problem of finding a resolution that modifies a

singular variety as little as possible requires classifying all relative minimal models of

(projective) resolutions and understanding how the (relative) minimal models relate to

one another. This classification problem is a question in (relative) birational geometry.

In the cases of curves and surfaces, the structure of the set of resolutions of

singularities is simple. As nonsingular curves and nonsingular, (relatively) minimal

surfaces are their unique relative minimal models, every singular curve or surface ad-

mits a unique “minimal” resolution of singularities,10 which turns out to be universal

among all resolutions of singularities.

10Singular curves actually admit unique resolution of singularities because every birational map
between nonsingular, complete curves is an isomorphism.
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In dimensions 3 and higher, studying the set of resolutions is more complicated

due to the subtleties of higher-dimensional birational geometry. First, we must de-

fine minimality in terms of the canonical class instead of in terms of the inability to

contract divisors without introducing singularities. Specifically, due to the possibility

of flips occurring when running the (relative) minimal model program, there may

be resolutions that are not relative minimal models which nevertheless do not have

any divisor that can be contracted. Second, we should allow Q-factorial terminal

singularities, and therefore we should actually study a class ofpartial resolutions in-

stead of full resolutions. Indeed, mild singularities may arise during the process of

simplifying a resolution using the (relative) minimal model program.11 Third, there

may be multiple relative minimal models, so that there is no unique “minimal reso-

lution.” Specifically, resolutions may have multiple relative minimal models—which

must be related by flops (at least in the case of threefolds). In particular, relative

minimal models are in general not universal among all resolutions or among all partial

resolutions with Q-factorial terminal singularities.

To study of the set of relative minimal models of resolution in dimensions 3 and

higher, we follow an approach taken by Brieskorn [9], Reid [71], and Matsuki [57].

The strategy is to analyze the relationships between the movable cone and the nef

cones. Recall that an invertible sheaf is movable if it is (relatively) globally generated

in codimension 1. The set of R>0-linear combinations of movable (resp. nef) invertible

sheaves forms the movable (resp. nef) cone in cohomology. The KKMR decomposition

theorem—which was proven by Kawamata [39], Kollár [48], Mori [61], and Reid [71]—

shows that the movable cone of any (relative) minimal model decomposes canonically

as the union of the nef cones of all (relative) minimal models. Moreover, the nef cones

are locally polyhedral and disjoint in their interiors, and there is a geometric criterion

for when the nef cones of two non-isomorphic (relative) minimal models share a

codimension 1 face. Therefore, characterizing the KKMR decomposition provides

geometric information regarding the set of relative minimal models and how they

relate to one another.

11As terminal singularities can only arise in dimensions 3 and higher, they do not affect the
existence of minimal resolutions arise in dimensions 1 and 2.
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1.3 F-theory

In this thesis, we develop a Lie-theoretic characterization of the KKMR decomposi-

tions of relative minimal models of resolutions of a class of singular threefolds. Our

characterization, which is based on ideas from the F-theory literature, provides ge-

ometric information regarding the set of all relative minimal models of resolutions.

To motivate our analysis, we summarize some of the ideas of F-theory from a math-

ematical perspective.

F-theory has analyzed the geometry of elliptic n-folds for 2 ≤ n ≤ 5. To illustrate

the geometric predictions, we focus on the case of elliptic threefolds, which are the

total spaces of elliptic fibrations over nonsingular surfaces. Formally, let B be a

nonsingular surface. A genus 1 fibration is a flat morphism π : X → B from a

nonsingular, complex projective threefold X to B whose generic fiber is a curve of

genus 1 over the function field of B. An elliptic fibration consists of a genus 1 fibration

π : X → B and a section σ : B → X whose image lies in the smooth locus of π.

Given an elliptic fibration π : X → B, we can associate a Weierstrass model W by

analogy with embedding of an elliptic curve in the projective plane.12

When the total space X is Calabi–Yau, dualities between F-theory and M-theory

in string theory predict that the decomposition of the “extended Kähler cone” into

the “Kähler cones” of the relative minimal models of resolutions of W is determined

by the structure of the Coulomb branch of a supersymmetric gauge theory (see Witten

[84], Morrison and Vafa [66, 67], Vafa [79], Intriligator et al. [35], and Morrison and

Seiberg [63]). The decomposition of the extended Kähler cone into the Kähler cones

of relative minimal models of resolutions is the differential-geometric counterpart of

the (algebro-geometric) KKMR decomposition. The Coulomb branch is determined

by the geometry of X along the singular locus of the structure morphism π. Singular

fibers of π over points of codimensions 1 and 2 in B correspond in M-theory to charged

gauge fields and matter fields respectively [80]. The Intrilegator–Morrison–Seiberg

[35] superpotential connects these data to the semisimple part of a gauge algebra and

a representation of the gauge algebra—called the matter representation.13

We obtain a hyperplane arrangement in the dual fundamental Weyl chamber of the

12Formally, we define the Weierstrass model by W = ProjB
⊕∞

n=0 π∗OX(nS), where S is the
image of the section σ. See, for example, Mumford and Suominen [68].

13When the elliptic fibration has rank 0, the gauge group is semisimple, as suggested by Mayrhofer
et al. [59] and Morrison and Taylor [65].
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Lie algebra of the gauge group from the hyperplanes that are normal to the weights of

the matter representation—yielding a decomposition of the dual fundamental Weyl

chamber into closed cones. Following Witten [84], the physics literature has loosely

conjectured that this decomposition corresponds to the KKMR decomposition (or,

equivalently, the decomposition of the extended Kähler cone into Kähler cones) of

a relative minimal model of the elliptic fibration over its Weierstrass model—under

an identification between the movable cone of a minimal model with the dual fun-

damental Weyl chamber.14 This conjectural description has been verified in several

low-rank examples by Esole et al. [19, 21–24] and Braun and Schäfer-Nameki [7, 8].

Esole et al. [19, 21–24] have also observed that the Calabi–Yau condition appears un-

necessary provided that we pass to a relative minimal model of the elliptic fibration.15

From a mathematical perspective, the F-theory literature has associated a com-

plex simple Lie algebra to each singular fiber in codimension 1 from the Kodaira

[45–47] classification of the singular fibers of elliptic surfaces. To be precise, the

Kodaira classification implies that the dual graph of each singular fiber is an affine

Dynkin diagram. By removing the extra node, we obtain a standard Dynkin diagram

and hence an isomorphism class of complex simple Lie algebras. These simple Lie

algebras are called the gauge factors in F-theory. The semisimple part of the gauge

algebra is obtained by multiplying the gauge factors associated to all codimension

1 singular fibers. On the other hand, the F-theory literature has not given a pre-

cise, mathematical definition of the matter representation in general.16 Morrison and

Taylor [64] have defined the matter representation in several cases with simple gauge

algebras from the intersection numbers of exceptional curves with exceptional divisors

and have suggested that similar methods might work in general.

1.4 This thesis

We focus on a particularly simple type of threefold singularities—the compound Du

Val (cDV) singularities—to obtain a general characterization of the KKMR decom-

position for relative minimal models of a resolutions. The characterization, which

14The combinatorics of this decomposition of the dual fundamental Weyl chamber has been studied
by Hayashi et al. [32] and Esole et al. [18, 20].

15As Calabi–Yau manifolds have trivial canonical classes, they are minimal models. Hence, we do
not need to pass to a relative minimal model if the starting elliptic fibration is Calabi–Yau.

16However, general heuristics/predictions have been given using anomaly cancellation for the
Intrilegator–Morrison–Seiberg superpotential [35, 63]. See also Grassi and Morrison [27, 28].
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is novel to this thesis, resembles the conjectural description of the KKMR decom-

positions of the relative minimal models of resolutions of the Weierstrass models of

elliptic threefolds from the F-theory literature.

The class of singularities that we consider—the cDV singularities—are the sin-

gularities through which there are surface sections with Du Val singularities. For

threefolds, cDV singularities are the only singularities that admit small resolutions—

that is, resolutions all of whose fibers are points or (possibly non-integral) curves—as

Reid [71] has shown. The restriction to cDV singularities therefore allows us to fo-

cus on the geometry of exceptional curves and exceptional families of curves in our

analysis. Because the class of threefolds with cDV singularities includes the Weier-

strass models of elliptic threefolds,17 our starting point goes beyond the scope of the

F-theory literature—more than simply relaxing the Calabi–Yau condition as Esole

et al. [19, 21–24] have done.

For cDV singularities, there is a particularly simple characterization of the reso-

lutions that are minimal models: a (projective) resolution is a minimal model if and

only if the resolution does not change the canonical class.18 Such resolutions are said

to be crepant.19 Intuitively, for sufficiently simple singularities, we do not need to

modify the canonical class so that it has strictly positive intersection number with

any exceptional curve to obtain a resolution. As a result, (projective) crepant partial

resolutions with Q-factorial terminal singularities can be obtained for threefolds with

compound Du Val singularities.20 Conversely, any crepant partial resolution with

Q-factorial terminal singularities is by definition a relative minimal model over the

starting singular variety.

Starting with a threefold with cDV singularities, we obtain a simple factor of

the gauge algebra for each codimension 2 point of the singular locus. Intuitively, a

general hyperplane section through a general point of each curve in the singular locus

has a Du Val singularity. Considering the dual graph of a minimal resolution, we

17To see why the Weierstrass models of elliptic threefolds have cDV singularities, note that (flat,
nonsingular) elliptic fibrations provide small resolutions of their Weierstrass models by construction.

18This property is even true for the more general class of canonical singularities, which are the
possible singularities of (relative) canonical models.

19The change in the canonical class is referred to as the discrepancy. Reid [71] coined the termi-
nology crepant to mean “not discrepant”.

20This property applies more generally to surfaces and threefolds with canonical singularities.
Indeed, in this case, we can take any resolution of singularities and run the relative minimal model
program to obtain a crepant partial resolution with Q-factorial terminal singularities.
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obtain a simply-laced connected Dynkin diagram due to the results of Du Val [13].

Taking monodromy into account, we can obtain non-simply-laced Dynkin diagrams,

as shown by Lipman [54] and Esole et al. [22, 23]. The Dynkin diagrams give rise to

simple Lie aglebras for all codimension 2 points of the singular locus. Multiplying the

simple Lie algebras associated to all codimension 2 singular points, we obtain a gauge

algebra. When the starting singular threefold is Q-factorial,21 we show that there is an

identification between a Cartan subalgebra and a cohomology space under which the

dual fundamental Weyl chamber coincides with movable cones of the relative minimal

models of resolutions. We also construct “matter representations” for each minimal

model, which we show are closely related to the ample cones. Our combinatorial

description of the matter representation sheds light on the set of possible codimension

1 faces of nef cones, and allows us to deduce an effective bound on the number of

crepant partial resolutions of Q-factorial threefolds with cDV singularities.

Motivated by the approaches of Reid [71, 72], Mori [61], Katz and Morrison [36],

and Cattaneo [11], our definition of the matter representation at a singular point

relies on considering a general hyperplane section through the singular point. Such

a hyperplane section has a Du Val singularity, and Reid [71] has shown that any

crepant partial resolution of the starting threefold gives rise to a crepant partial reso-

lution of the hyperplane section. To obtain a matter representation, we consider the

intersection numbers of divisors with not only between the exceptional curves but

also 1-cycles that correspond to other roots in the root system with the same ADE

type as the hyperplane section’s Du Val singularity. This definition of the matter

representation is crucial to our main theorem, which provides conditions under which

the matter representation is independent of the choice of crepant resolution of the

starting singular threefold. As a consequence, we show that the KKMR decomposi-

tion coincides with the decomposition of the dual fundamental Weyl chamber of the

gauge algebra into closed chambers for the hyperplane arrangement consisting of the

hyperplanes that are normal to the weights of the matter representation.

Our characterization of the KKMR decomposition is closely related to previous

work by Brieskorn [9] and Matsuki [57]. Brieskorn [9] has characterized the KKMR

decomposition of the relative minimal models of resolutions of families of Du Val

21Q-factoriality requires that some multiple of every codimension 1 subvariety is cut out by a
single equation. This condition is analogous to the requirement in the physics literature that the
elliptic fibration have rank 0 for its gauge algebra to be semisimple. Indeed, if an elliptic fibration
has rank 0, then its Weierstrass model is Q-factorial, as we show in Proposition 8.6 in Section 8.
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singularities. The total spaces of such families have cDV singularities, and hence

our starting point is more general than that of Brieskorn [9]. However, our KKMR

decomposition result does not generalize that of Brieskorn [9] because we impose

stronger auxiliary conditions. Matsuki [57] has proven a form of the conjectural

description of the KKMR decomposition for the crepant resolutions of Weierstrass

models of elliptic threefolds. Crucially to his argument, Matsuki [57] has assumed

that the discriminant locus of the elliptic fibration has simple normal crossings and

that only Kodaira fibers appear in codimension 2. However, non-Kodaira fibers can

appear in codimension 2 in general—as shown by Miranda [60], Lawrie and Schäfer-

Nameki [51], Braun and Schäfer-Nameki [7, 8], and Esole et al. [22, 23, 24] in many

examples—and the discriminant in general does not have simple normal crossings—as

observed by Esole and Yau [17] and Lawrie and Schäfer-Nameki [51]. Our hypotheses

are different than those of Matsuki [57], but we allow for non-Kodaira fibers as well as

for more general discriminant loci. We illustrate the use of these additional degrees

of generality in our examples.

In general, we hope that the framework proposed in this thesis may provide a useful

starting point for applying F-theoretic intuition to understanding the structure of the

set of relative minimal models of resolutions. It would be interesting to determine the

extent to which the story developed in this thesis can be extended to settings in which

the main hypotheses—namely that the starting singular variety is three-dimensional,

Q-factorial, and has cDV singularities—are not satisfied.

1.5 Outline of this thesis

The remainder of this thesis is organized as follows.

In Sections 2 and 3, we review background material. Specifically, in Section 2, we

briefly reviews basic facts from the theory of root systems. In Section 3, we review

relevant facts from intersection theory, birational geometry, and surface and threefold

singularities. Our presentation in Section 3 is guided by illustrative examples.

Sections 4–8 comprise the heart of this thesis and consist of original material.

In Section 4, we construct the gauge algebra and the matter representations. In

Section 5, we formally state our main results and provide basic applications. In

Sections 6 and 7, we prove results that we assert in Section 4. In Section 8, we

present a family of examples from the Weierstrass models of (possibly singular) elliptic
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fibrations with non-Kodaira fibers in codimension 2.

Appendix A presents a standard proof that we omit from Section 3.

2 Root systems

In this section, we briefly review elements of the theory of root systems. Our treatment

follows Kirillov [42].

To fix terminology, we call a finite-dimensional real inner product space a Eu-

clidean vector space. We denote the inner product by 〈−,−〉. Given a Euclidean

vector space V and a nonzero vector α ∈ V, let sα : V → V denote the orthogonal

operator given by reflection through the hyperplane perpendicular to α.

A root system in a Euclidean vector space V is a set R ⊆ V \ {0} that generates

V as a vector space, such that:

• for all α, β ∈ V, we have that

2〈α, β〉
〈β, β〉

∈ Z and sα(β) ∈ R;

• for all α ∈ R, the only multiples of α that lie in R are ±α.

Thus, we require root systems to be reduced and crystallographic. An isomorphism

from a root system R in V to a root system R′ in V ′ is an orthogonal isomorphism

θ : V → V ′ such that θ(R) = R′. Given root systems R in V and R′ in V ′, the set

R∪R′ is a root system in V ⊕V ′ and that we call the direct sum R⊕R′ of R and R′.

Here, we are abusing notation and writing R for {(α, 0) |α ∈ R} ⊆ V ⊕ V ′ to regard

R as a subset of V ⊕ V ′, and similarly writing R′ for {(0, α) |α ∈ R′} ⊆ V ⊕ V ′ to

regard R′ as a subset of V ⊕ V ′. A root system is reducible if it is isomorphic to a

nontrivial direct sum of root systems and irreducible otherwise.

Henceforth, we require that R = ∅ or that minα∈R′ 〈α, α〉 = 2 for every root

subsystem R′ ⊆ R that appears in a direct sum decomposition of R. This normaliza-

tion of the inner product comes from a normalized Killing form of the corresponding

semisimple Lie algebra. A root system R is simply-laced if 〈α, α〉 = 2 for all α ∈ R.

A polarization of a root system R in a vector space E is a functional λ ∈ V ∗

such that 0 /∈ λ(R). Given a polarization λ, a root α is positive (resp. negative) with

respect to λ if λ(α) > 0 (resp. λ(α) < 0). A positive root is simple with respect to
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λ if it cannot be expressed as a nontrivial Z≥0-linear combination of positive roots.

The root lattice is the lattice L(R) in V generated by the roots. It turns out that the

simple roots form a Z-basis for the root lattice and that the positive roots are the

roots that are nonnegative integral combinations of simple roots.

Proposition 2.1 ([42, Corollary 7.18]). The set of simple roots (with respect to any

polarization) forms a Z-basis for the root lattice, and a root is positive (resp. negative)

if and only if it is Z≥0-linear (resp. Z≤0-linear) combination of simple roots.

The Killing matrix (with respect to λ) is the matrix whose entries are 〈αi, αj〉,
where α1, . . . , αn are the simple roots. This matrix is the expansion of the normalized

Killing form in a basis of simple roots. For simply-laced root systems, the Killing

matrix coincides with the Cartan matrix, but for non-simply-laced root systems, the

Killing matrix is symmetric while the Cartan matrix is not. Up to simultaneous

permutation of its rows and columns, the Killing matrix is independent of the choice

of polarization [42, Theorem 7.48]. Hence, we call the Killing matrix with respect

to any polarization the Killing matrix of the root system. The Killing matrices of

irreducible root systems have been classified.

Theorem 2.2 (Classification of irreducible root systems [42, Theorem 7.49]). Ta-

ble 1 on page 17 lists the possible Killing matrices of irreducible root systems up to

simultaneous permutation of rows and columns.

We can use Theorem 2.2 to produce root systems from configurations of vectors

in a lattice whose matrix of inner products is one of the possible Killing matrices of

irreducible root systems.

Corollary 2.3. Let L be a lattice with form 〈−,−〉, and let ∆ ⊆ L. If the form

〈−,−〉 expands (with respect to the set ∆) to a Killing matrix of Table 1 on page 17,

then there is a unique root system R ⊆ L in spanR ∆ ⊆ L⊗ R of which ∆ is the set

of simple roots.

Proof. It follows from Theorem 2.2 that there is a root system R in L⊗R with set of

simple roots ∆. Proposition 2.1 implies that L(R) ⊆ L, and hence we must have that

R ⊆ L. Uniqueness follows from the fact that a root system is uniquely determined

by its set of simple roots [42, Corollary 7.33].

Short elements of root lattices of simply-laced irreducible root systems are roots.
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An :


2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

...
0 0 0 · · · 2

 Bn :



4 −2 0 · · · 0 0
−2 4 −2 · · · 0 0
0 −2 4 · · · 0 0
...

...
...

...
...

0 0 0
... 4 −2

0 0 0
... −2 2



Cn :



2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

...
...

0 0 0
... 2 −2

0 0 0
... −2 4


Dn :



2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...

...
...

...
...

...

0 0 0
... 2 −1 −1

0 0 0
... −1 2 0

0 0 0
... −1 0 2



F4 :


2 −1 0 0
−1 2 −2 0
0 −2 4 −2
0 0 −2 4


G2 :

[
2 −3
−3 6

] En :



2 −1 0 · · · 0 0 0 0
−1 2 −1 · · · 0 0 0 0
0 −1 2 · · · 0 0 0 0
...

...
...

...
...

...
...

0 0 0
... 2 −1 −1 0

0 0 0
... −1 2 0 −1

0 0 0
... −1 0 2 0

0 0 0
... 0 −1 0 2



Table 1: Killing matrices of irreducible root systems. The subscript on the
type denotes the dimension of the ambient vector space. Type En is possible for and
only for n = 6, 7, 8.
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Proposition 2.4 (Folk result). If R is a simply-laced irreducible root system and

v ∈ L(R) satisfied 〈v, v〉 = 2, then v ∈ R.

Proof sketch. Note that each of the root systems An, Dn, E6, E7, and E8 is defined as

the set of length-
√

2 vectors in a lattice. By construction, this ambient lattice must

contain the root lattice, and the proposition follows by Theorem 2.2.

The Weyl group W(R) of a root system R in a vector space V is the subgroup of

Aut(V ) generated by the reflections sα for α ∈ R. As W(R) acts naturally on V via

orthogonal transformations that send roots to roots, W(R) acts naturally on L(R).

3 Geometric preliminaries

In this section, we review background material from intersection theory, the birational

geometry of algebraic varieties, and the theories of Du Val and compound Du Val

singularities. We illustrate the theories through the examples of the quadric cone and

the conifold.

3.1 Intersection multiplicities and products

Given a Noetherian, integral scheme X, let PicX denote the Picard group of isomor-

phism classes of invertible sheaves on X. We denote by PicX/tors the Picard group

modulo torsion. A prime divisor on X is a codimension 1 integral subscheme. A

divisor (resp. Q-divisor) is a Z-linear (resp. Q-linear) combination of prime divisors.

We denote by [Z] the divisor class of a prime divisor Z. Let ClX denote the divisor

class group of X.

Let c1 : PicX → ClX denote the first Chern class homomorphism, which is

injective if X is normal. If X is normal and c1 is surjective (resp. has torsion cokernel),

then we say that X is factorial (resp. Q-factorial). For a normal, integral scheme X,

a class D ∈ ClX is Cartier (resp. Q-Cartier) if some D (resp. some positive integral

multiple of D) lies in c1(PicX). We can similarly define Q-Cartier divisors and

Q-Cartier Q-divisors. Note that a normal, integral scheme X is factorial (resp. Q-

factorial) if and only if every divisor is Cartier (resp. Q-Cartier).

Example 3.1 (Singularities and factoriality). The Auslander–Buchsbaum Theorem

[14, Theorem 19.19] guarantees that any regular scheme is factorial. On the other
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hand, singularities can (but do not always) cause a failure of Q-factoriality or fac-

toriality. For example, the quadric cone Q = V (z2 − xy) ⊆ P3
C has a singularity at

x = y = z = 0, and the prime divisor V (x, z) is not Cartier. (The equation z2 = xy is

related to the equation z2 = x2 + y2—which defines the quadric cone depicted in Fig-

ure 1 on page 2—by a C-linear change of coordinates.) However, Q is Q-factorial. For

example, we have that 2[V (x, z)] = c1(OQ(1)) in ClX because the section x cuts out

2[V (x, z)] as a divisor. The conifold X = V (zw − xy) ⊆ P4
C is not even Q-factorial,

as the prime divisor V (x, z) is not Q-Cartier. (Note that the quadric cone and the

conifold are cones over nonsingular quadrics in P2 and P3, respectively.)

If f : Y → X is a morphism between normal, integral schemes and D is a Cartier

divisor on X, then we write f ∗D for the pullback of D to Y, which is a Cartier divisor

on Y . If D is a Q-Cartier Q-divisor on X, then we write f ∗D = 1
n
c1(f

∗L), where

nD = c1(L). In this case, f ∗D is well-defined as an element of ClY ⊗Q.
By a variety, we mean an irreducible, reduced, separated scheme of finite type

over C. Given a proper curve or 1-cycle C on a variety X and an invertible sheaf

L ∈ PicX, we define the intersection number of C with L by

L · C = deg(L ∩ C) ∈ Z.

As degrees are constant in flat families [81, Corollary 24.7.3], the intersection number

depends only on the algebraic equivalence class of C. When X is normal, we can

naturally extend the intersection pairing − · − to take Q-Cartier Q-divisors in the

first argument, in which case the intersection number has values in Q instead of Z.

Intersection numbers with non-Q-Cartier divisors are in general not well-defined.

Example 3.2 (Intersection numbers on non-factorial varieties [16, Examples 2.21 and

2.22]). Consider the varieties described in Example 3.1. As the quadric cone Q =

V (z2 − xy) ⊆ P3 is Q-factorial, curves have well-defined intersection numbers with

all divisors. However, these intersection numbers may not be integral because Q is

not factorial. For example, we have that [V (x, z)] · V (x, z) = 1
2

on X. Indeed, as

V (x2, xz, z2) = V (x2, xz, xy), the divisor 2[V (x, z)] is Cartier and is cut out by x.

Hence, we have that [V (x, z)] = 1
2
c1(OX(1)), so that

[V (x, z)] · V (x, z) =
1

2
OX(1) · V (x, z) =

1

2
,
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where the second equality uses the projection formula for intersection multiplicities

[26, Proposition 2.5(c)] and Bézout’s Theorem [26, Proposition 8.4].

On the other hand, rational (and hence algebraic) equivalence classes of curves do

not have well-defined intersection numbers with divisors that are not Q-Cartier. On

the conifold X = V (zw − xy) ⊆ P4, for example, the intersection number [V (x, z)] ·
V (y, z, w) is not well-defined. Intuitively, we should have that [V (x, z)]·V (y, z, w) > 0

because V (y, z, w) and V (x, z) meet transversely (at [0; 0; 0; 0; 1]). However, note that

V (y, z, w) is rationally equivalent to V (y, w, u)—where u cuts out the hyperplane at

∞ in P4—and V (y, w, u) ∩ V (x, z) = ∅. Hence, it would appear that we should also

have that [V (x, z)] · V (y, z, w) = 0.

3.2 The cone of curves and classes of divisors

Our treatment of the cone of curves and related classes of divisors (ample, nef, and

movable) follows Kollár and Mori [49] and Matsuki [58]. Throughout, we work in a

relative setting as a setup for developing relative birational geometry.

Let f : Y → X be a morphism between varieties. We write Z1(Y/X) for the group

of relative 1-cycles on Y—that is, the abelian group freely generated by the classes

of curves in Y that map to points under f . We say that 1-cycles C1, C2 ∈ Z1(Y/X)

are numerically equivalent if L · C1 = L · C2 for all L ∈ PicY. Let N1(Y/X) =

(Z1(Y/X)/ ∼) ⊗ R, where ∼ denotes the relation of numerical equivalence over X.

Let NE(Y/X) denote the cone spanned in N1(Y/X) by the classes of effective 1-cycles,

and let NE(Y/X) denote the closure of NE(Y/X) in N1(Y/X).

We say that invertible sheaves L,L′ ∈ PicY, are numerically equivalent over X if

L · C = L′ · C for all C ∈ Z1(Y/X). Let NumY/X denote the group of invertible

sheaves on Y modulo numerical equivalence over X. Define N1(Y/X) = NumY/X⊗Z

R. Note that the intersection pairing extends to a canonical duality between N1(Y/X)

and N1(Y/X).

If L is numerically equivalent to OY over X, then we say that L is numerically

f -trivial. By abuse of terminology, we extend the definition of numerical triviality to

Q-Cartier Q-divisors on normal varieties. An invertible sheaf L ∈ PicY is f -ample

if there exists n ∈ Z>0 such that the complete relative linear series (L⊗n, f∗L⊗n) is

basepoint free and the resulting morphism Y → ProjX
⊕∞

i=0(f∗L⊗n)⊗i is a closed

embedding. An invertible sheaf L ∈ PicY is f -nef if L ·C ≥ 0 for all C ∈ NE(Y/X)
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(or, equivalently, all C ∈ NE(Y/X)). An invertible sheaf L ∈ PicY is f -movable if

f∗L 6= 0 and the support of the cokernel of the natural homomorphism f ∗f∗L → L
has codimension 2 or higher.

Let Amp(Y/X) (resp. Amp(Y/X), Mov(Y/X)) denote the cone in N1(Y/X) gen-

erated by the classes of f -ample (resp. f -nef, f -movable) invertible sheaves, and let

Mov(Y/X) denote the closure of Mov(Y/X). Because ample invertible sheaves are

movable, we have that Amp(Y/X) ⊆ Mov(Y/X). We say that a class D ∈ N1(Y/X)

is f -ample (resp. f -nef, f -movable) if D ∈ Amp(Y/X) (resp., D ∈ Amp(Y/X),

D ∈ Mov(Y/X)) by abuse of terminology.22

An important characterization of the ample cone is Kleiman’s criterion [43].

Theorem 3.3 (Relative Kleiman criterion [49, Theorem 1.44]). Let f : Y → X be

a projective morphism between varieties. An invertible sheaf L ∈ PicY is f -ample if

and only if L · C > 0 for all C ∈ NE(Y/X) \ {0}.

Hence, the ample cone is the interior of the nef cone [53, Theorem 1.4.23].

We now illustrate the preceding theory through two examples from resolutions

of the quadric cone and the conifold. Recall that a proper, birational morphism

f : Y → W between integral schemes is a partial resolution if Y is normal and f is

an isomorphism above the regular locus of W . A partial resolution f : Y → W is a

resolution if Y is regular.

In the examples, we use blow-ups to construct resolutions. Recall that the blow-up

of a scheme X along a closed subscheme Z is

BlZ X = ProjX

∞⊕
n=0

InZ ,

where IZ is the quasicoherent sheaf of ideals that corresponds to Z.

Example 3.4 (Divisors on a resolution of the quadric cone). As in Example 3.1, con-

sider the quadric cone Q = V (z2−xy) ⊆ P3. Let Q̃ = BlV (x,z) denote the blow-up of Q

along the line V (x, z), and let g : Q̃→ Q denote the projection, which is a resolution

of singularities. Let E denote the exceptional locus of f, which is a rational curve.

22The relative Kleiman criterion implies that the numerical class of any f -ample invertible sheaf
consists of f -ample sheaves. It is clear that the numerical class of any f -nef invertible sheaf consists
of f -nef sheaves. However, it is possible for f -movable and f -immovable invertible sheaves to be
numerically equivalent over X [39, §2]. Nevertheless, if L and L′ are numerically equivalent over X
and L is f -movable, then some tensor power of L′ is f -movable—see Kawamata [39, Lemma 2.2].
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The self-intersection number of E is −2. Because the invertible sheaf c−11 ([E]) gen-

erates the relative Picard group Pic Q̃/f ∗ PicQ, the class [E] generates both N1(Q̃/Q)

and N1(Q̃/Q). By definition, the cone of curves is NE(Q̃/Q) = NE(Q̃/Q) = R≥0[E].

As E has negative self-intersection number, the movable cone and the nef cone are

both the closed cone R≤0[E] while the ample cone is the interior R<0[E] by Theo-

rem 3.3.

Example 3.4 illustrates a general point regarding the relationship between the

movable cone and the nef cone: when Y is a surface and f : Y → X is a projective

morphism, we have that Mov(Y/X) = Amp(Y/X) [57, Remark II-5(2)]. Intuitively,

movability is determined in codimension 1 while the property of being nef is deter-

mined in dimension 1. Codimension 1 and dimension 1 coincide in dimension 2 but

not in higher dimensions. Indeed, in dimensions 3 and higher, we only have the

inclusion Mov(Y/X) ⊇ Amp(Y/X) in general.

Example 3.5 (Divisors on a small resolution of the conifold). As in Example 3.1,

consider the conifold X = V (zw − xy) ⊆ P4. Let Y = BlV (x,z)X denote the blow-up

of X along the line V (x, z), and let f : Y → X denote the projection. Let C denote

the exceptional locus of f, which is a rational curve. Let D = f−1(V (x, z)) denote

the prime divisor above the center of the blow-up, which is Cartier.

The intersection number [D] · C is −2. Hence, the class [C] generates N1(Y/X).

By definition, the cone of curves is NE(Q̃/Q) = NE(Q̃/Q) = R≥0[C]. As the in-

vertible sheaf c−11 ([D]) generates the relative Picard group Pic Q̃/f ∗ PicQ, the class

[D] generates N1(Y/X). Moreover, the nef cone is the closed cone R≤0[D], while

the ample cone is the interior R<0[D]. On the other hand, as g is an isomorphism

in codimension 1, every invertible sheaf is movable. Hence, the movable cone is

Mov(Y/X) = N1(Y/X) = R[D].

3.3 Canonical classes and dualizing sheaves

Our treatment of canonical classes follows Kollár and Mori [49]. Let X be a normal

variety, let Xsing denote the singular locus of X, and let Xsm = X \ Xsing. Let

ΩXsing
∈ PicXsm denote the canonical bundle of Xsm, which is the top exterior power

of the cotangent bundle of X. Define the canonical class of X by KX = c1(ΩXsm),

where we identify ClX = ClXsm as codimXsing ≥ 2. A normal variety X is Q-

Gorenstein if KX is Q-Cartier. Intuitively, Q-Gorenstein varieties are the varieties
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for which intersection numbers with the canonical class are well-defined. A birational

morphism f : Y → W is crepant if Y is normal, W is Q-Gorenstein, and f ∗KW = KY

as elements of ClY ⊗Q. Intuitively, crepant morphisms do not change the canonical

class—up to torsion in the divisor class group.

We next state a criterion for blow-ups to be crepant.

Proposition 3.6 (Folk result). Let X ′ be a nonsingular, quasi-projective variety and

let X = V (f) be a prime divisor on X. Let Z ⊆ X be a nonsingular proper subvariety.

If X and BlZ X are normal, then the projection π : BlZ X → X is crepant if and only

if f vanishes to order exactly codimX Z − 1 at the generic point of Z.

Proposition 3.6 has implications for the crepancy of resolutions, for example of

the quadric cone and the conifold.

Example 3.7 (Crepant resolutions of the quadric cone and the conifold). As in Ex-

ample 3.1, consider the quadric cone Q = V (z2 − xy) ⊆ P3 and the conifold X =

V (zw − xy) ⊆ P4. Proposition 3.6 implies that the blow-ups g : BlV (x,z)Q → Q and

f : BlV (x,z)X → X are crepant, and hence define crepant resolutions of Q and X,

respectively. Indeed, the centers of the blow-ups have codimension 2 in the ambient

spaces P3 and P4, while the equations defining Q and X have vanish to order exactly

1 at the generic points of the centers V (x, z). On the other hand, Proposition 3.6 im-

plies that blowing up the conifold at its singular point V (x, y, z, w) = [0; 0; 0; 0; 1] does

not yield a crepant resolution. Indeed, the equation zw = y2 has vanishes to order

exactly 2 at [0; 0; 0; 0; 1], while [0; 0; 0; 0; 1] has codimension 4 6= 2+1 in P4. Intuitively,

blowing up the singular point [0; 0; 0; 0; 1] modifies the conifold excessively—by sur-

gically inserting a surface instead of merely a curve at the singular point—and hence

changes the canonical class.

To prove Proposition 3.6, we apply standard results on how the canonical classes of

nonsingular varieties change on passing to divisors and on blow-ups with nonsingular

centers.

Lemma 3.8 (Adjunction formula [49, Proposition 5.73]). Let X ′ be a nonsingular,

quasi-projective23 variety over a field and let X be a prime divisor on X ′. If X is

normal, then we have that KX = c1(i
∗OX′(KX′ + [X])), where i : X ↪→ X ′ is the

closed embedding.
23Kollár and Mori [49, Proposition 5.73] have assumed that X ′ is projective, but the same logic

applies for quasi-projective X ′.
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Lemma 3.9 ([31, Exercise II.8.5]). If X is a nonsingular variety and Z ⊆ X is

nonsingular subvariety, then we have that KBlZ X = π∗KX + (codimZ X − 1)[E],

where π : BlZ X → X is the projection and E is the exceptional divisor of π.

Proof of Proposition 3.6. Let i : X ↪→ X ′ denote the closed embedding. The blow-up

BlZ X is the proper transform of X in BlZ X
′. Hence, BlZ X = V (π∗f/em) in BlZ X

′,

where π : BlZ X
′ → X ′ is the projection, e cuts out the exceptional locus E of π, and

m is the multiplicity of f at the generic point of Z. By abuse of notation, we write

i : BlZ X ↪→ BlZ X
′ for the closed embedding and π : BlZ X → X for the projection.

We have that

KBlZ X = i∗(KBlZ X′ + π∗[X]−m[E])

= i∗(π∗KX′ + (codimX Z − 1)[E] + π∗[X]−m[E])

= (codimX Z − 1−m)i∗[E] + π∗(i∗(KX′ + [X]))

= (codimX Z − 1−m)i∗[E] + π∗KX ,

where the first and fourth equalities follow from using Lemma 3.8 to compute the

canonical classes of BlZ X and X, respectively, and the second equality follows from

Lemma 3.9. The proposition follows.

We will also need to deal with the canonical classes of resolutions of (the spectra

of) Noetherian local rings. As the relevant schemes are not algebraic varieties, we use

the dualizing sheaf as a replacement for the canonical class.

Our treatment of the theory of dualizing sheaves is brief and follows the Stacks

Project [76, Tag 0DWE]. Let X be a Noetherian scheme. Let D(X) denote the full

subcategory of the derived category of OX-modules consisting of objects with quasi-

coherent cohomology sheaves, and denote by D+(X) the full subcategory of D(X)

consisting of objects that are bounded below. Let f : Y → X be a quasi-projective

morphism between Noetherian schemes, and suppose that f factors as f = f ◦i where

i : Y → Y is an open immersion and f : Y → X is projective. Let Rf ∗ : D(Y ) →
D(X) denote the derived pushforward functor, and let f

!
: D+(X)→ D+(Y ) denote

the restriction of the right adjoint of Rf ∗ to D+(X)—which exists by [76, Tag 0A9E].

We define a functor f ! : D+(X) → D+(Y ) by f !(−) = f
!
(−)
∣∣∣
Y

—a functor that

is independent of Y up to canonical natural isomorphism by [76, Tag 0AA0]. The

relative dualizing complex is ω•Y/X = f !OX . If ω•Y/X ' ωY/X [n] for some coherent sheaf
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ωY/X and integer n, then we call ωY/X the dualizing sheaf of Y/X.

The canonical class and the dualizing sheaf are well-behaved and essentially co-

incide for normal, Gorenstein varieties. Recall that a Noetherian local ring R is

Gorenstein if Exti(k,R) = 0 for some i > dimR, where k is the residue field of R and

dimR is the Krull dimension of R. A Noetherian scheme X is Gorenstein if OX,p is

Gorenstein for all p ∈ X. Here, OX,p denotes the local ring of X at p.24 For normal,

Gorenstein, quasi-projective varieties, the canonical class is Cartier and the dualizing

sheaf is the corresponding invertible sheaf.

Lemma 3.10 ([49, Corollary 5.69 and Proposition 5.75] and [76, Tag 0C08]). h

(a) If X is a normal, Gorenstein variety, then KX is Cartier.25

(b) If furthermore X is quasi-projective,26 then X/ SpecC has a dualizing sheaf and

ωX/SpecC is the invertible sheaf corresponding to KX .

When X/S has an invertible dualizing sheaf, there is a simple relationship between

the dualizing sheaves of Y/X and of Y/S: the first Chern class of the dualizing sheaf

of Y/X is the difference between the first Chern classes of the dualizing sheaves of

Y/S and X/S.

Proposition 3.11. Let f : Y → X and g : X → S be quasi-projective morphisms

between Noetherian schemes, and suppose that X/S has an invertible dualizing sheaf.

Then, Y/X has a dualizing sheaf if and only if Y/S has a dualizing sheaf. Under the

equivalent conditions of the previous sentence, we have that ωY/S ' ωY/X ⊗ ωX/S.

Proof. Let n be such that ω•X/S ' ωX/S[n]. As ωX/S is invertible, the complex ωX/S[n]

is perfect. [76, Tag 0ATX] implies that ω•Y/S ' f !ω•X/S. Hence, we have that

f !ω•X/S ' f !(OX ⊗L
OX ω

•
X/S) ' (f !OX)⊗L

OY Lf
∗ω•X/S,

where −⊗L − denotes the derived tensor product, Lf ∗(−) denotes the derived pull-

back, and the second isomorphism is by [76, Tag 0A9T]. Because ωX/S is invertible,

we have that Lf ∗ω•X/S ' (f ∗ωX/S)[n]. Therefore, we have that ω•Y/S ' ω•Y/X ⊗ ωX/S,
and the lemma follows.

24As the localization of a Gorenstein local ring is Gorenstein [14, Corollary 21.17], the property
of being Gorenstein can be checked at closed points.

25Lemma 3.10(a) implies in particular that normal, Gorenstein varieties are Q-Gorenstein.
26Kollár and Mori [49, Proposition 5.75] have assumed that X is projective, but the same logic

applies for quasi-projective X.
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In light of Lemma 3.10, it follows from Proposition 3.11 that the dualizing sheaf

of a crepant morphism between normal, Gorenstein, quasi-projective varieties is an

invertible sheaf that defines a torsion class in the Picard group.

Proposition 3.12. Let f : Y → X be a morphism between normal, Gorenstein,

quasi-projective varieties. If f is crepant, then Y/X has a invertible dualizing sheaf

ωY/X whose class in PicY is torsion.

Proof. Lemma 3.10(a) implies that KX and KY are Cartier. As f is crepant, we have

that f ∗KX = KY in Cl(Y )⊗Q. Hence, the class of OY (KY )⊗ f ∗OX(KX)∗ in PicY

must be torsion, whereOX(KX) andOY (KY ) are the invertible sheaves corresponding

to KX and KY , respectively. The proposition follows by Proposition 3.11.

Similarly to how the canonical class of an open subvariety is the restriction of

the canonical class of the ambient variety, dualizing sheaves restrict nicely under

localization. Specifically, the dualizing sheaf of the base-change to the spectrum of a

stalk is the restriction/localization of the dualizing sheaf of the original scheme.

Proposition 3.13. Let X be a quasi-compact, quasi-separated, Noetherian scheme,

let f : Y → X be a quasi-projective morphism, and let p ∈ X be a point. If

ωY/X is a dualizing sheaf for Y/X, then j∗ωY/X is a dualizing sheaf for (Y ×X
SpecOX,p)/ SpecOX,p, where j : Y ×X SpecOX,p → Y is the natural morphism.

Proof. Follows from [76, Tags 0A9N and 0A9P].

3.4 Du Val singularities

For this subsection, we consider resolutions of general two-dimensional local rings

with Du Val singularities following Lipman [54]—who extended the results of Du Val

[13] and Artin [2] on the resolutions of Du Val singularities to local rings without

algebraically closed residue fields. As we will see in Sections 3.5 and 4.1, such local

rings arise from threefolds with cDV singularities as the local rings at codimension 2

points of the singular locus.

We say that a Noetherian, normal, local ring R has rational singularities if there

is a resolution f : X → SpecR such that H1(X,OX) = 0. Likewise, we say that

a Noetherian scheme X has rational singularities if OX,p has rational singularities
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for all p ∈ X.27 By the dimension of a Noetherian local ring, we mean the Krull

dimension. We say that a two-dimensional Noetherian local ring R has a Du Val

singularity if R is Gorenstein and has rational singularities.

Example 3.14 (The quadric cone has a Du Val singularity). As in Example 3.1, con-

sider the quadric cone Q = V (z2 − xy) ⊆ P3. The local ring OQ,[0;0;0;1] has a Du

Val singularity. To see this, note that Q is a hypersurface and is therefore Goren-

stein. Letting X = BlV (x,z) SpecOQ,[0;0;0;1], one can show that H1(X,OX) = 0, so

that OQ,[0;0;0;1] has rational singularities.

The first result shows that there is a minimal resolution for every two-dimensional,

normal, Noetherian local ring with rational singularities.

Theorem 3.15 ([54, Theorem 4.1]). Let R be a two-dimensional Noetherian local

ring with rational singularities. There exists a resolution f : Y → SpecR such that

every resolution f ′ : Y ′ → SpecR factors through f .

We call the resolution given in Theorem 3.15 the minimal resolution of SpecR.

There is a simple characterization of the minimal resolution of a Du Val singularity

in terms of dualizing sheaves. Loosely speaking, the minimal resolution is the unique

crepant resolution. The formal result uses dualizing sheaes to generalize the fact

that the minimal resolutions are the unique crepant resolutions of complex algebraic

surfaces with Du Val singularities to the setting of local rings.

Proposition 3.16. Let R be a local ring with a Du Val singularity that is of essentially

finite type over a field.28

(a) If g : X → SpecR is the minimal resolution, then X/ SpecR has a dualizing

sheaf ωX/ SpecR ' OX .

(b) If f : Y → SpecR is a non-minimal resolution, then Y/ SpecR has an invertible

dualizing sheaf and the class of ωY/ SpecR in PicY is non-torsion.

27In fact, the property of having rational singularities can be checked at closed points. To justify
this assertion, it suffices to show that the localizations of a Noetherian local rings with rational
singularities have rational singularities. Consider a Noetherian local ring R with rational singularities
and let f : X → SpecR be a resolution with H1(X,OX) = 0. Let p be a prime ideal in R.
The base-change f ×SpecR SpecRp is a resolution of singularities, and we have that H1(X ×SpecR

SpecRp,OX×SpecRSpecRp
) = 0 by the flat base change [76, Tag 02KH]. It follows that Rp has rational

singularities, as desired.
28The same argument applies if R is of essentially finite type over Z.
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Although Proposition 3.16 is standard, we provide a proof of Proposition 3.16 in

Appendix A for sake of completeness.

Example 3.17 (Minimal resolution of the local ring of the quadric cone at its singular

point). As in Example 3.1, consider the quadric cone Q = V (z2 − xy) ⊆ P3. Let

f : BlV (x,z)Q → Q denote the blow-up of Q along V (x, z). Consider the resolu-

tion f ×Q SpecOQ,[0;0;0;1] : BlV (x,z) SpecOQ,[0;0;0;1] → SpecOQ,[0;0;0;1] of SpecOQ,[0;0;0;1].
We claim that f ×Q SpecOQ,[0;0;0;1] is the minimal resolution of SpecOQ,[0;0;0;1]. To

see this, note that f is crepant by Proposition 3.6 (as we showed in Example 3.7).

By Propositions 3.12 and 3.13, it follows that BlV (x,z) SpecOQ,[0;0;0;1]/ SpecOQ,[0;0;0;1]
has an invertible dualizing sheaf whose class in Pic BlV (x,z) SpecOQ,[0;0;0;1] is torsion.

Hence, the contrapositive of Proposition 3.16(b) guarantees that f ×Q SpecOQ,[0;0;0;1]
is the minimal resolution of SpecOQ,[0;0;0;1].

Lipman [54] has determined the possible intersection matrices of the exceptional

curves of minimal resolutions of local rings with Du Val singularities. To fix notation,

let R be a two-dimensional Noetherian local ring with rational singularities, and let

f : X → SpecR be the minimal resolution of SpecR. Let E1, E2, . . . , Ek be the

exceptional curves of f . Consider the free abelian group L(R) with basis ∆(R) =

{r1, . . . , rk}. Define a homomorphism θR : L(R) → PicX by θR(ri) = c−11 ([Ei]). It

turns out that θR is injective and has finite cokernel.

Proposition 3.18 ([54, Lemma 14.1 and Proposition 17.1]). If R is a two-dimen-

sional Noetherian local ring with rational singularities, then the homomorphism θR is

injective and has finite cokernel.

In light of Proposition 3.18, the tensor product θR,Q = θR ⊗ Q : L(R) ⊗ Q →
PicX ⊗ Q has an inverse, which we denote by θ−1R,Q. Continuing with the same

notation, given 1 ≤ i ≤ j ≤ k, consider the intersection numbers

Ei · Ej = degEi Lj =
degree of the invertible sheaf Lj restricted

to the proper one-dimensional scheme Ei
,

where Lj = c−11 ([Ej]) ∈ PicX. Define a k × k matrix M = M(R) = (mi,j) by mi,j =

Ei · Ej. The matrix M(R) is symmetric as mi,j counts the number of intersections

between Ei and Ej for i 6= j.29 We equip L(R) and L(R)⊗ R with the bilinear form

given whose matrix expansion in the basis ∆(R) ⊆ L(R) is −M(R).

29To be precise, let 1 ≤ i 6= j ≤ k be indices. As X is nonsingular and Ei and Ej meet dimension-
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Du Val [13] showed that M(R) is negative definite (see also [54, Lemma 14.1]).

When R is Gorenstein, −M(R) is even the Killing matrix of a root system.

Theorem 3.19 ([54, §24]). Let R be a local ring with a Du Val singularity.30

(a) −M(R) is the Killing matrix of an irreducible root system (up to simultaneous

permutation of the rows and columns).

(b) If the residue field of R is algebraically closed and of characteristic 0, then

−M(R) is the Killing matrix of a simply-laced irreducible root system (up to

simultaneous permutation of the rows and columns).31

In light of Theorem 3.19, we obtain a canonical root system in L(R) for every

local ring R with Du Val singularities.

Corollary 3.20. Let R be a local ring with a Du Val singularity. There exists a

unique set R ⊆ L(R) that forms a root system in L(R) ⊗ R of which ∆(R) is a set

of simple roots.

Proof. Follows from Corollary 2.3 and Theorem 3.19.

Remark 3.21. Corollary 3.20 implies that the dual graph of the exceptional locus

of the minimal resolution of a Du Val singularity can be interpreted as a Dynkin

diagram. Indeed, Corollary 3.20 guarantees that the exceptional curves naturally

correspond to the simple roots of an irreducible root system. Simple roots in turn

correspond to vertices of a Dynkin diagram.

We denote the root system R of Corollary 3.20 by R(R). Theorem 3.19(b) implies

that R(R) is simply-laced whenever R is a local ring with a Du Val singularity and

an algebraically closed residue field.

Example 3.22 (The quadric cone as an A1 singularity). As in Example 3.1, consider

the quadric cone Q = V (z2−xy) ⊆ P3. We showed in Example 3.17 that the minimal

resolution of SpecOQ,[0;0;0;1] contains one exceptional curve. Hence, −M(OQ,[0;0;0;1])
must be the Killing matrix of type A1, because the unique root system in R1 is of

type A1. Du Val singularities of type A1 are also called ordinary double points.

ally transversely, mi,j is the length of H0(X,OEi∩Ej
) as an R-module due to the characterization

of the intersection number by Fulton [26, Proposition 8.2(b)].
30Strictly speaking, Lipman [54] has classified the possible exceptional loci of minimal resolutions

of surfaces with rational double points. In dimension 2, rational double points are precisely the
rational Gorenstein singularities [58, Corollary 4-6-16].

31Theorem 3.19(b) is originally due to Du Val [13].
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We will also use a necessary and sufficient condition for invertible sheaves on res-

olutions to be globally generated. Intuitively, an invertible sheaf is relatively globally

generated if and only if it is relatively nef.

Proposition 3.23 ([54, Proposition 1.2 and Theorem 12.1]). Let R be a two-di-

mensional Noetherian local ring with rational singularities, let π : X → SpecR be

a resolution, and let L ∈ PicX be an invertible sheaf. The natural homomorphism

π∗π∗L → L is surjective if and only if degC L ≥ 0 holds for all exceptional curves C.

3.5 Compound Du Val singularities

Our treatment of compound Du Val (cDV) singularities focuses on threefolds and

follows Reid [70, 71]. Intuitively, a cDV singularity is a singularity whose general

hyperplane section is a Du Val singularity.

Let W be a normal threefold. Intuitively, a hyperplane section through p is a

subvariety that is cut out in a neighborhood of p by a single equation whose differential

does not vanish at p. Formally, a hyperplane section through a closed point p ∈ W is a

prime Cartier divisor H containing p such that dimmH,p/m
2
H,p = dimmW,p/m

2
W,p − 1.

Here, mH,p (resp. mW,p) denotes the maximal ideal of OH,p (resp. OW,p). We say

that W has cDV singularities at a closed point p ∈ W if there exists a hyperplane

section H through p such that OH,p has a Du Val singularity. As the class of Du Val

singularities is closed under analytic local isomorphisms, it is equivalent to require

that OH,p has a Du Val singularity for the general hyperplane section through p.

Proposition 3.24 ([71, §0.5]). If a threefold W has cDV singularities at a closed

point p, then OH,p has a Du Val singularity for all hyperplane sections H through p

whose tangent planes are general (in the sense of Reid [70, Definition 2.5]).

Proof sketch. Reid [70, §2] has shown that W is analytically locally isomorphic (at

p) to the variety in C4 cut out by f + wg, where f ∈ C[x, y, z] is the equation of

a Du Val singularity and g ∈ C[x, y, z, w] is arbitrary. It follows that the general

hyperplane section H through p is analytically locally isomorphic (at p) to a Du Val

singularity. But Du Val singularities are the only singularities that are analytically

locally isomorphic to Du Val singularities.

A basic example of a cDV singularity is the singularity of the conifold.
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Example 3.25 (The conifold has a cDV singularity). As in Example 3.1, consider the

conifold X = V (zw−xy) ⊆ P4. The prime divisor H = V (z−w)∩X is a hyperplane

section through p. Note that H is cut out in V (z−w) ⊆ P4 by the equation z2− xy.
Hence, the hyperplane section H is isomorphic to the quadric cone, which has a Du

Val singularity (as we showed in Example 3.14. Because the quadric cone has a

singularity of type A1 (as we showed in Example 3.22), we say that the conifold has

a compound A1 singularity.

If W has cDV singularities at all closed points, then we say that W has cDV sin-

gularities. Threefolds with cDV singularities have rational, Gorenstein singularities.

Proposition 3.26 ([70, Theorem 2.6(II)]). If W is a threefold with cDV singularities,

then W is Gorenstein and has rational singularities.

Hence, threefolds with cDV singularities have well-behaved canonical classes.

Moreover, the local rings of such threefolds at codimension 2 points have Du Val

singularities—due to the definitions of rational singularities and Gorenstein schemes

and because Du Val singularities are the rational Gorenstein surface singularities.

Reid [71] has shown that crepant partial resolutions of varieties with cDV singu-

larities give rise (locally) to crepant partial resolutions of hyperplane sections that

have Du Val singularities.

Theorem 3.27 ([71, Theorem 1.14]). Let f : Y → W be a crepant partial resolution

of a threefold W with cDV singularities. Let p ∈ W be a closed point and let H be a

hyperplane section through p. If OH,p has a Du Val singularity, then Y ×W SpecOH,p
is integral and normal and the minimal resolution of SpecOH,p factors through

f ×W SpecOH,p : Y ×W SpecOH,p → SpecOH,p.

Example 3.28 (A crepant resolution of the conifold resolves a Du Val hyperplane

section). As in Example 3.1, consider the conifold X = V (zw−xy) ⊆ P4. We showed

in Example 3.7 that f : BlV (x,z)X → X is a crepant resolution of X. Let H =

V (z−w)∩X, which we showed in Example 3.25 to have a Du Val singularity of type

A1 at V (x, y, z, w) = [0; 0; 0; 0; 1]. The base change BlV (x,z)X ×X SpecOH,[0;0;0;0;1] is

isomorphic the blow-up BlV (x,z) SpecOH,[0;0;0;0;1], which is normal. Moreover, the base

change f ×X SpecOH,p is isomorphic to the projection BlV (x,z) SpecOH,[0;0;0;0;1] →
SpecOH,[0;0;0;0;1], which we showed in Example 3.17 to be minimal resolution of an
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A1 singularity. In general, the base change of a crepant resolution to a hyperplane

section with a Du Val singularity may only be a partial resolution through which

the minimal resolution factors—as guaranteed by Theorem 3.27—instead of the full

minimal resolution—as in this example.

It follows from Theorem 3.27 that every crepant partial resolution of a threefold

with cDV singularities continues to have cDV singularities.

Corollary 3.29. If f : Y → W is a crepant partial resolution of a threefold W with

cDV singularities, then Y has cDV singularities.

To prove Corollary 3.29, we use the observation of Reid [72, §1] that any partial

resolution of the minimal resolution of a Du Val singularity must itself have Du Val

singularities at every closed point.

Proof. Let p ∈ Y be an arbitrary closed point. We need to show that there exists a

hyperplane section H ⊆ Y through p such that OH,p has a Du Val singularity.

Let p′ = f(p). Because W has cDV singularities, there is a hyperplane section

H ′ ⊆ W through p′ such that OH′,p′ has a Du Val singularity. Theorem 3.27 guaran-

tees that Y ×W SpecOH′,p′ is integral and normal and that the minimal resolution of

SpecOH′,p′ factors through f ×W SpecOH′,p′ . [72, §1] implies that OY×W SpecOH′,p′ ,p

has a Du Val singularity. Taking H = f−1(H ′), we have that OY×W SpecOH′,p′ ,p = OH,p
as quotients of OY,p. Hence, the local ring OH,p must have a Du Val singularity as

well. As p was arbitrary, we have shown that Y must have cDV singularities.

3.6 Terminal singularities

Our treatment of terminal singularities follows Matsuki [58]. Intuitively, terminal

singularities are the singularities such that any exceptional divisor of any proper

birational morphism from a nonsingular variety appears with positive multiplicity in

the canonical class.

Formally, let X be a Q-Gorenstein variety and let f : Y → X be a proper

birational morphism from a nonsingular variety Y . Let E1, . . . , Ek be the exceptional

divisors of f . Supposing that mKX is Cartier, we write

mKY = f ∗(mKX) +m

k∑
i=1

a(Ei, X, Y )[Ei]
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in ClY, where a(Ei, X, Y ) ∈ 1
m
Z. It turns out that the quantity a(Ei, X, Y ) is inde-

pendent of Y (see, e.g., [58, Proposition-Definition 4-4-1]), and hence we can write

a(Ei, X, Y ) as a(Ei, X). We call a(E,X) the discrepancy of X at E and say that X

has terminal singularities if a(E,X) > 0 for all exceptional divisors E of all proper

birational morphisms f : Y → X from nonsingular varieties Y .

Recall that nonsingular varieties have terminal singularities. In dimension 2, the

converse is also true—there are no nontrivial terminal singularities.

Proposition 3.30 ([58, Corollary 4-6-6]). Varieties with terminal singularities are

nonsingular in codimension 2.

In dimension 3, on the other hand, there are nontrivial terminal singularities. In

particular, any isolated cDV singularity is terminal.

Proposition 3.31 ([71, Theorem 1.1]). If X is a threefold with isolated cDV singu-

larities, then X has terminal singularities.

For example, Proposition 3.31 implies that the conifold has terminal singularities.

Remark 3.32. A partial converse to Proposition 3.31 holds: every Gorenstein threefold

with terminal singularities has isolated cDV singularities [49, Corollary 5.38].

Consider a crepant partial resolution of a threefold with cDV singularities. In

light of Corollary 3.29 and Proposition 3.31, if the partial resolution has isolated

singularities, then it must have terminal singularities.

Corollary 3.33. Let f : Y → W is a crepant partial resolution of a threefold with

cDV singularities. If Y has isolated singularities, then Y has terminal singularities.

Proof. Follows from Corollary 3.29 and Proposition 3.31.

The class of singularities that arise in the minimal model program are the termi-

nal singularities of Q-factorial varieties—i.e., the Q-factorial terminal singularities.

Such singularities cannot be resolved without moving the canonical class further from

being nef (see Kovács [50]), which is the motivation for considering crepant partial

resolutions with Q-factorial terminal singularities. 3.33 will be useful in building

crepant partial resolutions with Q-factorial terminal singularities in our examples

(see Section 8).
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3.7 Flops

Our treatments of flops and (relative) minimal models follow Kollár and Mori [49].

Let Y be a Q-Gorenstein variety. We say that a proper birational morphism

f : Y → X is a flopping contraction if KY is numerically f -trivial and the exceptional

locus of f has codimension at least 2 (in Y ). If furthermore D is a Q-Cartier Q-divisor

of Y such that −D is f -ample, then we say that f is a D-flopping contraction. In

this case, we say that a birational morphism f+ : Y + → X is a D-flop of f if Y + is

Q-Gorenstein, D is Q-Cartier on Y + and f+-ample, and the exceptional locus of f+

has codimension at least 2 (in Y +). Here, we are using the fact that the composite

f−1 ◦ f+ : Y + 99K Y—which is a rational map32—is an isomorphism in codimension

1 to identify D with a Q-divisor on Y +. Being an isomorphism in codimension 1, the

composite f−1 ◦f+ is a codimension 2 surgery operation—which is the sense in which

flops are surgery operations.

The simplest example of a flop is due to Atiyah [3].

Example 3.34 (Crepant resolutions of the conifold and Atiyah’s flop). As in Exam-

ple 3.1, consider the conifold X = V (zw − xy) ⊆ P4. Let Y = BlV (x,z)X denote the

blow-up of X along the line V (x, z), and let f : Y → X denote the projection. The

exceptional locus of f is a curve and—as we showed in Example 3.7—f is crepant.

Hence, f is a flopping contraction. Let D = f−1(V (x, z)) denote the prime divisor

above the center of the blow-up, which is Cartier. As we showed in Example 3.5, the

divisor −D is f -ample. Hence, f is a D-flopping contraction.

We now construct the D-flop of f . Let Y + = BlV (x,w)X denote the blow-up of X

along the line V (x,w), and let f+ : Y + → X denote the projection. We claim that

f+ is the D-flop of f . By symmetry between z and w, the exceptional locus of f+ is

a curve and KY + is numerically f+ trivial. Hence, to prove that f+ is the D-flop of

f, it suffices to show that D is f+-ample. By symmetry, we can instead show that

D′ = f−1(V (x,w)) is f -ample. Note that D+D′ is linearly equivalent to f−1(V (x)),

which is numerically f -trivial. Hence, D′ is numerically equivalent to −D over X,

which implies that D′ is f -ample by the relative Kleiman criterion (Theorem 3.3).

The flop that we described is called Atiyah’s flop. It relates the two crepant

resolutions of the conifold.

The flops of extremal flopping contractions are especially well-behaved. Recall

32We denote morphisms by solid arrows → and rational maps by dashed arrows 99K.
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that a birational morphism f : Y → X is extremal if Y is Q-factorial and f has

relative Picard number dimN1(Y/X) = 1. Intuitively, extremal flopping contractions

are flopping contractions that contract as little of the variety as possible.

Theorem 3.35 (Uniqueness of flops [49, Corollary 6.4]). Let f : Y → X be a D-

flopping contraction.

(a) If a D-flop of f exists, then it is unique.

(b) If f is extremal, then the D-flop of f does not depend on D.

If f is an extremal flopping contraction, then we call the D-flop of f—for any Q-

Cartier divisor D such that f is a D-flopping contraction—the flop of f . In dimension

3, terminal flops exist—as shown by Kawamata [39] and Mori [62]—and preserve

nonsingularity—as shown by Kollár [48].

Theorem 3.36 (Terminal flops between threefolds [49, Theorems 6.14 and 6.15]).

Let Y be a threefold and let f : Y → X be a D-flopping contraction.

(a) If Y has terminal singularities, then f has a D-flop f+ : Y + → X.33

(b) If Y is nonsingular above a closed point p ∈ X, then the variety Y + defined in

Part (a) is also nonsingular above p.34

If π : Y → W and π+ : Y + → W are morphisms, we say that π and π+ are related

by an extremal flop if there exist a morphism p : X → W and factorizations π = p◦f
and π+ = p ◦ f+ such that f is an extremal flopping contraction with flop f+. We

say that π : Y → W and π′ : Y ′ → W are related by a finite sequence of extremal

flops if there exist morphisms πi : Yi → W for i = 1, 2, . . . , n − 1 such that πj and

πj+1 are related by an extremal flop for all 0 ≤ j ≤ n− 1, where π0 = π and πn = π′.

33It follows from the main result of Shokurov [75] that Theorem 3.36(a) holds in dimension 4.
More generally, Birkar et al. [5] and Hacon and McKernan [30] have shown existence of terminal
flips–and hence the existence of terminal flops—in all dimensions.

34Kollár [48] actually showed, more generally, that flops between threefolds preserve the analytic
singularity type. However, the proof of Theorem 3.36(b) given by Kollár [48] relies on an analytic
classification of terminal flops in dimension 3, and hence only applies to threefolds.
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3.8 Minimal models

Following Mori [61], we say that a projective morphism π : Y → W is a (relative)

minimal model if Y is Q-factorial and has terminal singularities and KY is π-nef.

Given a morphism π : Y → W , a minimal model of π consists of a minimal model

π′ : Y ′ → W and a birational map h : Y 99K Y ′ such that π′ ◦h = π as rational maps.

Any two birational relative minimal models are isomorphic in codimension 1 [58,

Proposition 12-1-2]. Moreover, if π : Y → W is a minimal model, and π′ is a minimal

model of π, then the birational map h : Y 99K Y ′ induces an isomorphism between

the spaces N1(Y/W ) ∼= N1(Y ′/W ) by taking proper transforms [58, Lemma 12-2-1].

In this case, we can therefore identify N1(Y/W ) and N1(Y ′/W ). As minimal models

are isomorphic in codimension 1 and the definition of movability depends only on

codimension 1 geometry [39, Lemma 2.3], we have that Mov(Y/W ) = Mov(Y ′/W )

under the identification between N1(Y/W ) and N1(Y ′/W ) [58, Definition 12-2-5].

The KKMR decomposition—which was proven by Kawamata [39], Kollár [48], Mori

[61], and Reid [71]—relates the movable cone Mov(Y/W ) to the nef cones of the

minimal models of π.

Theorem 3.37 (KKMR Decomposition [58, Theorem 12-2-7]). Let π : Y → W be

a minimal model. Let {πi : Yi → W | i ∈ I} be a set of representatives for the set of

isomorphism classes of minimal models of π. The following conclusions hold.

(a) The cones Amp(Yi/W ) are locally polyhedral in N1(Y/W ).

(b) The cones Amp(Yi/W ) are pairwise disjoint in N1(Y/W ).

(c) There is a decomposition

Mov(Y/W ) = closure of
⋃
i∈I

Amp(Yi/W ) in N1(Y/W ).

Roughly, the KKMR decomposition says that (1) any divisor that is nef on one

minimal model is ample on any minimal model, (2) no divisor is ample on more than

one isomorphic class of minimal models, and (3) a dense set of movable divisors are

nef on at least one minimal model. There is also a geometric interpretation of when

the nef cones of two minimal models share a codimension 1 face: this occurs precisely

when the two minimal models are related by an extremal flop [58, Proposition 12-2-
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2]. Hence, the KKMR decomposition reflects the set of relative minimal models and

some of the geometric relationships between the (relative) minimal models.

Example 3.38 (The KKMR decomposition for crepant resolutions of the conifold).

As in Example 3.1, consider the conifold X = V (zw − xy) ⊆ P4. Let Y = BlV (x,z)X

denote the blow-up of X along the line V (x, z), and let f : Y → X denote the

projection. Let D = f−1(V (x, z)) denote the prime divisor above the center of the

blow-up, which is Cartier. As we showed in Example 3.5, we have that Mov(Y/X) =

R[D] and that Amp(Y/X) = R≤0[D]. As we showed in Example 3.34, we have that

Amp(Y +/X) = R≥0[D], where Y + = BlV (x,w)X and f+ : Y + → X is the projection.

Theorem 3.37 implies that there are no other minimal models. The two nef cones

meet along the codimension 1 face {0} ⊆ N1(Y/X), and the corresponding extremal

flop is Atiyah’s flop (as defined in Example 3.34).

Remark 3.39. The KKMR decomposition also implies that uniqueness of the relative

minimal models of surfaces. When Y is a surface, the closed movable cone Mov(Y/X)

coincides with the nef cone Amp(Y/X) (such as in Example 3.4). By Theorem 3.37,

there cannot be any other non-isomorphic relative minimal models.

We now explain how flops relate minimal models in dimension 3. Suppose that

π : Y → W is a minimal model and that π′ : Y ′ → W is related to π by an extremal

flop. As the canonical class is determined in codimension 1 and is numerically trivial

along flopping contractions, the canonical class KY ′ must be π′-nef. It turns out that

Y ′ must have Q-factorial terminal singularities, so that π′ : Y ′ → W is also a minimal

model. Due to the existence of terminal flops, we can attempt to make any movable

divisor D nef by repeatedly flopping—yielding a sequence of extremal D-flops. As

there is no infinite sequence of extremal D-flops between threefolds with terminal

singularities [48], such a sequence must eventually terminate. Hence, in dimension 3,

any divisor can be made nef by applying a finite sequence of extremal flops. By the

KKMR decomposition, it follows that birational minimal threefolds must be related

by finite sequences of extremal flops.

Theorem 3.40 (Flops between minimal threefolds [49, Corollary 6.19]). If Y is a

threefold, π : Y → X is a minimal model, and π′ is a minimal model of π that is not

isomorphic to π, then π and π′ are related by a finite sequence of extremal flops.

As flops preserve nonsingularity in dimension 3, it follows that the nonsingularity

of one minimal model of a morphism implies the nonsingularity of all minimal models.
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Corollary 3.41 (Singularity types of minimal models [48, Corollary 4.11]). Let π :

Y → W be a minimal model with dimY = 3 and let π′ : Y ′ → W is a minimal model

of π. If π is nonsingular above a closed point p ∈ W, then so is π′.

Proof. Follows from Theorems 3.36(b) and 3.40.

Example 3.42 (Flops and singularity types for relative minimal models of the resolu-

tions of the conifold). As in Example 3.1, consider the conifold X = V (zw−xy) ⊆ P4.

As shown in Example 3.38, there are two relative minimal models of resolutions of

the conifold, which are related by Atiyah’s flop and are both nonsingular.

A similar but more complex structure persists for the minimal resolutions of bi-

nomial singularities—that is, singularities of the form V (zw − x1x2x3). In this case,

there are multiple minimal models, which are related by generalizations of Atiyah’s

flop. Esole and Yau [17] have presented examples of crepant resolutions of binomial

singularities in F-theory.

4 Construction of “matter representations”

The setup for the remainder of the paper is the following situation.

Situation 4.1. Consider a quasi-projective threefold W with cDV singularities. Let

Wsing denote the singular locus of W, and let

Wsing = W0 ∪
s⋃
i=1

Zi

be the set-theoretic decomposition of W into its irreducible components, where W0

is a finite set of closed points and Z1, . . . , Zs are curves.35 Let ηi denote the generic

point of Zi for 1 ≤ i ≤ s.

We consider a particularly well-behaved class of partial resolutions, which are the

projective crepant partial resolutions with Q-factorial terminal singularities.

Definition 4.2. Given a Q-Gorenstein variety W , a good partial resolution of W is

a crepant partial resolution π : Y → W such that π is projective and Y is Q-factorial

and has terminal singularities.

35As W has cDV singularities, it is normal and hence in particular non-singular in codimension 1.
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Remark 4.3. Our notion of a good partial resolution is unrelated to the notion of a

“good minimal model” from Nakayama [69].

Let Good(W ) denote the set of isomorphism classes of good partial resolutions.

In this thesis, we investigate what can be deduced about the set Good(W ) from the

properties of one good partial resolution.

In Section 4.1, we construct a root system R—and hence the corresponding root

lattice L—from the codimension 2 singularities of W and relate the root lattice to

the geometry of good partial resolutions. The root system R is the co-root system of

the semisimple part of the gauge algebra. In Section 4.2, we construct a root system

Rp (and hence the corresponding root lattice Lp) at each closed, singular point p

of W, and, for each good partial resolution π, a homomorphism φpπ from L ⊗ Q to

Lp ⊗ Q. This enhancement homomorphism gives rise to a set Wp
π of enhancement

weights of L. The set Wp
π depends à priori on choice of good partial resolution π,

but our main results—which we state in Section 5—provide sufficient conditions for

Wp
π to be independent of π and derive consequences for the structure of Good(W ).

4.1 Co-root system of the gauge algebra

In Situation 4.1, we construct a lattice Li for each ηi and relate the lattices to the

Picard groups of good partial resolutions. The lattice Li will be defined to be the

root lattice of the root system corresponding to the Du Val singularity type of W

at ηi. To make sense of this construction and to relate W to the geometry of good

partial resolutions, we need the following proposition.

Proposition 4.4. In Situation 4.1, let 1 ≤ i ≤ s be arbitrary. The following conclu-

sions hold.

(a) The local ring OW,ηi has a Du Val singularity.

(b) For any crepant partial resolution π : Y → W with Y nonsingular in codimen-

sion 2, the base-change π×W SpecOW,ηi : Y ×W SpecOW,ηi → SpecOW,ηi is the

minimal resolution of SpecOW,ηi.

Proof. We first prove Part (a). As normality is preserved under localization [76, Tag

00GY], the local ring OW,ηi is normal. By Proposition 3.26, W has rational Goren-

stein singularities. The stalks of Gorenstein schemes (resp. schemes with rational
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singularities) are by definition Gorenstein (resp. have rational singularities). Hence,

the local ring OW,ηi has a Du Val singularity.

We next prove Part (b). As Y is nonsingular in codimension 2, Y has only

finitely many singular points. Let Ysing denote the singular locus of Y. Define W 0 =

W \π(Ysing) and Y 0 = π−1(W 0), which are open subschemes of W and Y, respectively.

Note that Y 0 is nonsingular, hence in particular normal and Gorenstein. As Y 0 and

W 0 are normal, Gorenstein, and quasi-projective, Proposition 3.12 hence implies that

Y 0/W 0 has an invertible dualizing sheaf whose class in PicY 0 is torsion.

By Proposition 3.13, Y ×W SpecOW,ηi/ SpecOW,ηi has an invertible dualizing sheaf

whose class in PicY ×W SpecOW,ηi/ SpecOW,ηi . Proposition 3.16(b) implies that

Y ×W SpecOW,ηi must be the minimal resolution of SpecOW,ηi .

In Situation 4.1, for 1 ≤ i ≤ s, let π̃i : Ỹ ηi → X denote the minimal resolution

of SpecOW,ηi , which exists by Theorem 3.15 and Proposition 4.4(a). Denote the

exceptional curves of π̃i by C
(1)
i , . . . , C

(s)
i . Let Ri = R(OW,ηi) denote the root system

associated to the Du Val singularityOW,ηi . Let ∆i = {c(1)
i , . . . , c

(ki)
i } be the given basis

of simple roots of Li = L(OW,ηi), where c
(j)
i is the basis vector corresponding to C

(j)
i .

Let L =
⊕s

i=1 Li, which we equip with the bilinear form 〈−,−〉 =
⊕s

i=1 〈−,−〉OW,ηi .
The lattice Li reflects the singularity type of W along the curve Zi. From the

perspective of F-theory, Li is the co-root lattice of the local gauge factor along the

curve Zi, and L is the co-root lattice of the semisimple part of the gauge group. We

can therefore define a gauge algebra as in the F-theory literature.

Definition 4.5. In Situation 4.1, the gauge algebra g is a complex semisimple Lie

algebra with co-root system isomorphic to R.

Remark 4.6. As R is the co-root system of g, the types of g and R are Langlands

dual. Specifically, each irreducible factor of R of type Bn (resp. Cn) corresponds to

a simple factor of g of type Cn (resp. Bn). This appearance of the Langlands dual

arises in the F-theory literature as well (see Witten [84], Morrison and Vafa [66, 67],

Vafa [79], Intriligator et al. [35], and Morrison and Seiberg [63]).

We next relate L to the geometry of crepant partial resolutions of W . Let π :

Y → W be a crepant partial resolution of W with Y nonsingular in codimension

2. Proposition 4.4(b) guarantees that π ×W SpecOW,ηi is the minimal resolution

of SpecOW,ηi . As a result, we can (canonically) identify π−1(ηi) with π̃−1i (ηi) for
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1 ≤ i ≤ s. For 1 ≤ i ≤ s and 1 ≤ j ≤ ki, let η
(j)
i be the generic point of C

(j)
i and let

Z
(j)
i = {η(j)i } be the subvariety of Y with generic point η

(j)
i . In accordance with the

F-theory literature, we call the varieties Z
(j)
i the Cartan divisors.

To relate L to the Picard group, we need to specialize to good partial resolutions.

Let π : Y → W be a good partial resolution. By Proposition 3.30, Y is nonsingular

in codimension 2, and hence the discussion of the previous paragraph applies. Define

a homomorphism ψπ : L→ PicY ⊗Q by ψπ(c
(j)
i ) = c−11,Q([Z

(j)
i ]), where

c1,Q = c1 ⊗Q : PicY ⊗Q→ ClY ⊗Q

is an isomorphism because Y is Q-factorial. Identifying PicY ⊗ Q with PicY ′ ⊗ Q
for any good partial resolution π′ : Y ′ → W by taking proper transforms, note that

ψπ is independent of π by construction. We therefore write ψ for the homomorphism

ψπ for any π ∈ Good(W ).

4.2 The enhancement, and obtaining a set of weights

Let p ∈ Wsing be a closed point. To define the enhancement, we first construct a root

system that captures the singularity type of W at p. Let Sp = {i | p ∈ Zi} denote the

set of indices i such that Zi passes through p.

We fix once and for all a hyperplane section Hp through p ∈ W such that OHp,p

has a Du Val singularity. Such a hyperplane section exists because W has cDV singu-

larities. In light of Proposition 3.24, we can assume that Hp meets Zi dimensionally

transversely at p for all i ∈ Sp. Let π̃p : Ỹ p → SpecOHp,p denote the minimal

resolution of SpecOHp,p, which exists by Theorem 3.15.

We consider the root system and root lattice associated to the local ring OHp,p,

which has a Du Val singularity. Specifically, let Lp = L(OHp,p), denote the basis

vectors by rp1, . . . , r
p
kp , and let Cp

1 , . . . , C
p
kp denote the corresponding exceptional curves

of π̃p. We equip Lp with the bilinear form 〈−,−〉OHp,p , which we denote by 〈−,−〉p.
Let Rp = R(OHp,p) and let Rp,+ denote the set of positive roots of Rp (for any

polarization for which rp1, . . . , r
p
kp are the simple roots).

To define and work with the enhancement homomorphism, we consider a more

special situation than Situation 4.1 by fixing p and a good partial resolution.

Situation 4.7. In Situation 4.1, let p ∈ Wsing be a closed point and let π : Y → W

be a good partial resolution.
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In Situation 4.7, Theorem 3.27 implies that π̃p factors via π ×W SpecOHp,p, say

via a morphism Λp
π : Ỹ p → Y ×W SpecOHp,p. Let Φp

π : Ỹ p → Y denote the composite

Φp
π = Γpπ ◦ Λp

π, where Γpπ : Y ×W SpecOHp,p → Y is the natural morphism. We use

the pullback (Φp
π)∗ : PicY → Pic Ỹ p to construct the enhancement homomorphism.

Definition 4.8. In Situation 4.7, let π : Y → W be a good partial resolution and let

p ∈ Wsing be a closed point. The enhancement homomorphism φpπ : L → Lp ⊗ Q is

defined by

φpπ = θ−1OHp,p,Q ◦ (Φp
π)∗Q ◦ ψ,

where θ−1OHp,p,Q : Pic Ỹ p⊗Q→ Lp⊗Q was defined in Section 3.4 using Proposition 3.18

and (Φp
π)∗Q = (Φp

π)∗ ⊗Q : PicY ⊗Q→ Pic Ỹ p ⊗Q.

We use φpπ to obtain a set of weights. We first recall the definition of weights.

Formally, the weight group of R is the lattice-theoretic dual

L†(R) = {λ ∈ E | 〈λ, α〉 ∈ Z for all α ∈ L(R)}.

We call the elements of the weight group weights. All roots are weights because the

inner products of roots are integral. Note that L†(R) is the set of integral weights for

the gauge algebra g by construction.

To obtain a set of enhancement weights, we consider the image of the set of roots

Rp under the adjoint of the enhancement homomorphism.

Definition 4.9. In Situation 4.7, let (φpπ)† : Lp⊗Q→ Lp⊗Q denote the adjoint of φpπ

with respect to the inner products 〈−,−〉p and 〈−,−〉. The multiset of enhancement

weights is the image Wp
π of Rp under (φpπ)†, and the multiset of positive enhancement

weights is the image Wp,+
π of Rp,+ under (φpπ)†. We denote by Wp

π,6=0 (resp. Wp,+
π,6=0)

the multiset of nonzero elements of Wp
π (resp. Wp,+

π ).

Let Lp =
⊕

i∈Sp Li ⊆ L denote the portion of L associated to curves in the singular

locus that pass through p, and let Rp =
⊕

i∈Sp Ri ⊆ Lp denote the set of roots that

come from curves that pass through p. To understand the interaction between the

enhancement homomorphism and the forms 〈−,−〉p and 〈−,−〉, we need to require

that the singular curves are nonsingular at p and the Cartan divisors Z
(j)
i are Cartier.

The former condition was expected by the F-theory literature to be needed to obtain

(quasi-)minuscule matter representations (see Klevers et al. [44]). The latter condition

is a mild regularity condition on Y .

42



Proposition 4.10. In Situation 4.7, suppose that Zi is nonsingular at p for all i ∈ Sp
and that [Z

(j)
i ] is Cartier for all i ∈ Sp and 1 ≤ j ≤ ki. The homomorphism φpπ factors

through Lp and induces an isometric embedding of Lp into Lp. In particular, we have

that w ∈ L†(Rp) and that 〈w,w〉 ≤ 2 for all w ∈ Wp
π.

Proposition 4.10, which we prove in Section 6, provides conditions under which

the enhancement homomorphism gives rise to an isometric embedding of Lp into Lp.

In this case, the enhancement weights have norm at most
√

2 with respect to 〈−,−〉
and only have nonzero inner product with the roots that lie in Rp.

When furthermore the root system R is simply-laced, the set of weights acquires

a representation-theoretic interpretation. We say that a nonzero weight w ∈ L†(R)

is (quasi-)minuscule if the orbit W(R)w is the set of nonzero weights of a finite-

dimensional representation of the gauge algebra g. We denote by Q-Minusc(R) ⊆
L†(R) the set of (quasi-)minuscule weights. Likewise, a representation R of a complex

semisimple Lie algebra g is (quasi-)minuscule if its set of nonzero weights forms a

single orbit for the action of the Weyl group. (By construction, a dominant weight

w is (quasi-)minuscule if and only if the representation with highest weight w is

(quasi-)minuscule.)

Proposition 4.11. In Situation 4.7, suppose that Zi is nonsingular at p for all i ∈ Sp.
Suppose furthermore that [Z

(j)
i ] is Cartier for all i ∈ Sp and 1 ≤ j ≤ ki, and that Ri

is simply-laced for all i ∈ Sp. The following conclusions hold.

(a) We have that Wp
π,6=0 ⊆ Q-Minusc(R).

(b) If w ∈W(R), then we have that w(Wp
π) =Wp

π as multisets.

Proposition 4.11, which we prove in Section 6, implies the existence of matter

representations for simply-laced semi-simple gauge algebras.

Definition 4.12. Under the hypotheses of Proposition 4.11(b), the matter represen-

tation Rp
π is a representation of the gauge algebra g whose multiset of nonzero weights

is the multiset Wp
π,6=0 of nonzero enhancement weights.

Under the hypotheses of Proposition 4.11(b), Proposition 4.11 implies the exis-

tence of a matter representation. The matter representation is unique up to isomor-

phism and trivial factors by construction. It is a direct sum of (quasi-)minuscule rep-

resentations by Proposition 4.11(a) and is self-dual because we have that −Wp
π =Wp

π

as multisets.
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Note that our definition of the matter representation comes equipped with well-

defined multiplicities for every non-trivial irreducible factor. As our matter repre-

sentations are associated to singular points, they are closest to the “local” matter

representations of F-theory.36 When a representation appears at only finitely points,

it would be interesting to see if the multiplicities in our matter representations match

the multiplicities that are predicted by anomaly cancellation for the Intrilegator–

Morrison–Seiberg [35] superpotential.

Our definition of the matter representation is similar in spirit to the Katz–Vafa

[37] predictions of matter representations from F-theory (see also Grassi and Morrison

[27, 28]). Indeed, both we and they construct matter representations by restricting by

considering the Du Val singularity type of an enhancement. However, we consider a

map of root lattices, which Katz and Vafa [37] have assumed to come from a particular

map between Lie groups. Moreover, the Katz–Vafa predictions are only valid when

components of the discriminant locus meet transversely, whereas we do not need to

make any such restriction.

5 Statements of the main results

We are now ready to state our main results, in which we characterize the KKMR

decomposition of a good partial decomposition in terms of the gauge algebra, the

enhancement weights, and the matter representation. Section 5.1 describes the regu-

larity assumptions that we make. Section 5.2 describes our main results for general

gauge algebras, and Section 5.3 specializes to the case of simply-laced gauge algebras.

5.1 Setup

We specialize Situation 4.1 by imposing regularity conditions to study the set of

good partial resolutions. We first require that W is Q-factorial. As we show in

Proposition 8.6 in Section 8, this requirement is satisfied by the Weierstrass models

of elliptic fibrations with Mordell-Weil rank 0. Such elliptic fibrations are the ones

whose gauge algebras are semisimple in F-theory [52, 59, 65].

Under Q-factoriality, there is a particularly simple characterization of good partial

36Nevertheless, if a finite-dimensional irreducible representation appears in local matter represen-
tations at infinitely many points, it becomes non-localized.
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resolutions in terms of Cartan divisors. Although we do not use this characterization

in our main arguments, we nevertheless present it to make the concept of a good

partial resolution more concrete.

Proposition 5.1. In Situation 4.1, suppose that W is Q-factorial and let π : Y → W

be a projective, crepant partial resolution. If Y is nonsingular in codimension 2 and

all of the Cartan divisor classes [Z
(j)
i ] are Q-Cartier, then π is good.

Proof. Corollary 3.33 implies that Y has terminal singularities. It remains to prove

that Y is Q-factorial. Note that Y is normal by the definition of a partial resolution.

Let Z be a prime divisor on Y . As W is Q-factorial, there exists n ∈ Z>0 such

that nπ∗[Z] is Cartier. Hence, π∗(nπ∗[Z]) is well-defined and is a Cartier divisor on

Y . By construction, the divisor n[Z]−π∗(nπ∗Z) is supported on the exceptional locus

of π, and hence can be expressed as a Z-linear combination of the classes [Z
(j)
i ] for

1 ≤ i ≤ s and 1 ≤ j ≤ ki. Because the classes [Z
(j)
i ] are Cartier, we have that n[Z] is

Cartier. As Z was arbitrary, we have proven that Y is Q-factorial, as desired.

We also impose a condition on good partial resolutions—we instead consider very

good partial resolutions.

Definition 5.2. In Situation 4.1, a good partial resolution π : Y → W is very good

if [Z
(j)
i ] is Cartier for all 1 ≤ i ≤ s and 1 ≤ j ≤ ki, and each closed point p ∈ W

satisfies at least one of the following conditions:

(i) Y is nonsingular above p; or

(ii) all enhancement weights above p are proportional to roots: Wp
π ⊆ R≥0R.

Intuitively, a good partial resolution is very good if the Cartan divisors are Cartier

and the enhancement weights below singular points are all proportional to roots.

The very goodness of good partial resolutions turns out to be a property of W—

independent of the choice of good partial resolution—as long as W is Q-factorial.

Proposition 5.3. In Situation 4.1, if W is Q-factorial and there exists a very good

partial resolution, then every good partial resolution is very good.

Proposition 5.3, which we prove in Section 6, implies that if we assume that

one good partial resolution of a Q-factorial threefold with cDV singularities is very

good, then it is guaranteed that every good partial resolution is very good. We
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make this assumption—in addition to the assumptions of Q-factoriality of W and the

nonsingularity of the irreducible components of Wsing—to specialize Situation 4.1.

Situation 5.4. In Situation 4.1, suppose that Zi is nonsingular for all 1 ≤ i ≤ s, and

that W is Q-factorial and admits a very good partial resolution π : Y → W .

In Situation 5.4, it follows from Proposition 5.3 that the good partial resolutions

of W are precisely the very good partial resolutions of W , so that Good(W ) is the

set of isomorphism classes of very good partial resolutions.

5.2 Results for general gauge algebras

Our first result characterizes the movable, nef, and ample cones in terms of the gauge

algebra and the enhancement weights. The result then applies these characterizations

to show that few hyperplanes can be the spans of codimension 1 faces in the KKMR

decomposition, and to provide an effective bound on the number of (very) good partial

resolutions.

Theorem 5.5. In Situation 5.4, the following conclusions hold.

(a) The homomorphism ψR : ψ⊗R induces an isomorphism from L⊗R to N1(Y/W ),

and we have that

ψ−1R (Mov(Y/W )) = ψ−1R (Mov(Y/W ))

= {c ∈ L⊗ R | 〈c, c(j)
i 〉 ≤ 0 for all 1 ≤ i ≤ s and 1 ≤ j ≤ ki}.

(b) For all crepant resolutions π′ : Y ′ → W, we have that

ψ−1R (Amp(Y ′/W )) =

c ∈ L⊗ R

∣∣∣∣∣∣ 〈c,w〉 < 0 for all w ∈
⋃

p∈Wsing(C)

Wp,+
π′,6=0


ψ−1R (Amp(Y ′/W )) =

c ∈ L⊗ R

∣∣∣∣∣∣ 〈c,w〉 ≤ 0 for all w ∈
⋃

p∈Wsing(C)

Wp,+
π′

 .

(c) There is a finite, polyhedral decomposition

ψ−1R (Mov(Y/W )) =
⋃

(π′:Y ′→W )∈Good(W )

ψ−1R (Amp(Y ′/W )), (1)
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where the cones ψ−1R (Amp(Y/W )) are disjoint in their interior. Each codimen-

sion 1 face spans a hyperplane that is normal to a weight w with 〈w,w〉 ≤ 2.

(d) We have that

|Good(W )| ≤ 22−1+2
∑s
i=1 ki .

We prove Theorem 5.5 in Section 6. Each of the parts has a different inter-

pretation. Theorem 5.5(a) implies that the homomorphism ψR identifies the closed

dual fundamental Weyl chamber of the gauge algebra with the movable cone. Theo-

rem 5.5(b) shows that ψ−1R identifies the nef (resp. ample) cone with the cone of com-

binations of roots with which all of the positive enhancement weights are nonnegative

(resp. positive) inner product. Theorem 5.5(c) proves that the KKMR decomposi-

tion is globally polyhedral and shows that very few hyperplanes—only the normals

to integral weights of length at most
√

2—can appear as the spans of codimension 1

faces. Theorem 5.5(d) concludes that the number of (very) good partial resolutions

is at most a double exponential in the rank of the gauge algebra.

Remark 5.6. Kawamata and Matsuki [40] have shown that every threefold with canon-

ical singularities has only finitely many projective crepant partial resolutions. Theo-

rem 5.5(d) provides an effective version of their result in a case.

If R is simple of type Cn for n ≥ 9, E8, F4, or G2, then every integral weight of

length at most
√

2 is proportional to a root. As a result, the only hyperplanes that

can appear in the KKMR decomposition are the walls of the dual fundamental Weyl

chamber, and hence there can be at most one chamber in the KKMR decomposition.

This property implies that there is only one (very) good partial resolution.

Corollary 5.7. In Situation 5.4, if Wsing has a unique positive-dimensional irre-

ducible component at whose generic point W has a Du Val singularity of type Cn for

n ≥ 9, E8, F4, or G2, then W has a unique good partial resolution.

Proof. The hypothesis of the corollary requires that R is irreducible of type Cn for

n ≥ 9, E8, F4, or G2. By Theorem 5.5(c), it suffices to show that every weight of

length at most
√

2 is proportional to an element of R.

In the cases of E8, F4, and G2, the Cartan matrix has determinant 1 [6, Planches

VII–IX], and hence we have that L†(R) = L(R). As L(R) is an even lattice,37 we

37It follows from Theorem 2.2 that root lattices are even, in the sense that all elements have
square-lengths that are even integers.
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must have that 〈w,w〉 ≥ 2 for all nonzero w ∈ L†(R). By Proposition 2.4, every

weight w ∈ L†(R) = L(R) with 〈w,w〉 = 2 must be a root. Therefore, any weight of

length at most
√

2 must be proportional to an element of R.

We now consider the case of type Cn for n ≥ 9. The standard formulae for the

inverses of the Cartan matrices of irreducible root systems [55, 83] imply that the

lengths of all fundamental weights are at least 1, and the lengths of all fundamental

weights except the first and second are greater than
√

2. Hence, the only dominant

weights of length at most
√

2 are the first and second fundamental weights. The first

fundamental weight is proportional to a root while the second fundamental weight is

the highest root. Hence, every weight of length at most
√

2 must be proportional to

an element of R.

Remark 5.8. The hypothesis of Corollary 5.7 amounts to assuming that the gauge

algebra g is isomorphic to one of so2n+1 for n ≥ 9, e8, f4, or g2, because the type of g

is Langlands dual to the type of R. For the case of so2n+1, the hypothesis that n ≥ 9

is needed because weights of the spin representation have norm less than or equal to√
2 for n ≤ 8. These weights are not proportional to roots, and hence can give rise

to nontrivial KKMR decompositions.

The enhancement weights might à priori depend on the choice of a (very) good

partial resolution, making it difficult to determine the KKMR decomposition without

computing all of the (very) good partial resolutions. When the set of enhancement

weights is known to be independent of phase, it suffices to compute one (very) good

partial resolution to determine the KKMR decomposition. Our next result shows that

as long as every enhancement weight of length at most
√

8
9

is proportional to a root,

the multisets of enhancement weights are independent of the choice of (very) good

partial resolution. The result also describes the consequences of this independence

property for the KKMR decomposition.

Theorem 5.9. In Situation 5.4, if each w ∈
⋃
p∈Wsing(C)W

p
π with 〈w,w〉 ≤ 8

9
is

proportional to an element of R, then the following conclusions hold.

(a) We have that Wp
π′ =Wp

π as multisets for all π′ ∈ Good(W ).

(b) The KKMR decomposition (1) given in Theorem 5.5(c) coincides with the de-

composition of ψ−1R (Mov(Y/W )) into closed chambers for the hyperplane ar-
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rangement consisting of the hyperplanes that are normal to elements of⋃
p∈Wsing(C)

Wp
π,6=0.

We prove Theorem 5.9 in Section 7. Theorem 5.9(a) states our result on the

resolution-independence of the enhancement weights. Theorem 5.9(b) shows that the

KKMR decomposition is given by the decomposition of the Weyl chamber into cham-

bers for the hyperplane arrangement with hyperplanes normal to the enhancement

weights of any given (very) good partial resolution.

Theorem 5.9(b) resembles results of Brieskorn [9] and Matsuki [57]. Brieskorn

[9] has shown an analogous result for simultaneous resolutions of families of Du Val

singularities. Our result applies to a larger class of cDV singularities and does not

require that every hyperplane section with a cDV singularity is resolved. Nevertheless,

our result is not strictly stronger than that of Brieskorn [9] due to our assumption on

very short enhancement weights being proportional to roots. Matsuki [57, Theorem

II-2-1-1] has shown an analogous result for elliptic threefolds with Kodaira fibers.38

However, non-Kodaira fibers can arise in codimension 2 in elliptic fibrations. As we

show in Section 8, our result can apply even in the presence of non-Kodaira fibers.

For most gauge algebras, every integral weight of length at most
√

8
9

is propor-

tional to a root. Indeed, this condition can only fail when one of the root systems Ri

is of type An for 2 ≤ n ≤ 8 or of type C3. When none of those root systems arise as

an Ri, the conclusions of Theorem 5.9 are guaranteed to hold in Situation 5.4.

Corollary 5.10. In Situation 5.4, if the Du Val singularity type of W at every codi-

mension 2 point of Wsing is not An for 2 ≤ n ≤ 8 or C3, then the hypothesis of

Theorem 5.9 is satisfied. In particular, the conclusions of Theorem 5.9 hold.

Proof. The hypothesis of the corollary requires that, for all 1 ≤ i ≤ s, the root system

Ri is not of type An for 2 ≤ n ≤ 8 or of type C3. We first show that 〈w,w〉 ≥ 1
2

for

all w ∈ L†(Ri) and that 〈w,w〉 > 8
9

when w is not proportional to any element of Ri.

To prove this claim, we divide into cases based on the type of Ri, excluding the cases

of types A1 and B2, which can be dealt with through simple explicit computations.

38Technically, Matsuki [57] uses a lemma of Burns and Rapoport [10] on how the restrictions of
divisors to nonsingular surfaces change during flops between threefolds. In the presence of non-
Kodaira fibers, some hyperplane sections are not fully resolved in (very) good partial resolutions,
and hence the Burns–Rapoport Lemma does not apply.
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Case 1: Ri is of type Bn for n ≥ 4, of type Dn for n ≥ 4, or of type E6, E7,

E8, F4, or G2. The standard formulae for the inverses of the Cartan matrices of

irreducible root systems [55, 83] imply that the lengths of all fundamental weights

are at least 1. As a result, all dominant weights (and hence all nonzero weights)

have length at least 1.

Case 2: Ri is of type An for n ≥ 9. The standard formulae for the inverses of the

Cartan matrices of irreducible root systems [55, 83] imply that the lengths of all

fundamental weights but the first and last are greater than 1, and that the first

and last fundamental weights have length
√

n
n+1

. As we have assumed that n ≥ 9,

all dominant weights (and hence all nonzero weights) have length at least
√

9
10

.

Case 3: Ri is of type Cn for n ≥ 3. The standard formulae for the inverses of

the Cartan matrices of irreducible root systems [55, 83] imply that the lengths

of all fundamental weights but the first are greater than 1. Therefore, the only

dominant weight of length less than 1 is the first fundamental weight, which in

turn has length 1√
2

and is proportional to the highest root. Hence, every dominant

weight other than the first fundamental weight has length at least 1. As a result, all

nonzero weights other than the weights of the first fundamental representation—

whose weights are proportional to roots—have length at least 1.

By Theorem 2.2, the cases exhaust all possibilities, and hence we have proven the

claim. Taking linear combinations, it follows that 〈w,w〉 > 8
9

for all weights w that

are not proportional to elements of R. The corollary follows by Theorem 5.9.

Remark 5.11. The hypothesis of Corollary 5.10 amounts to assuming that the gauge

algebra g does not have a simple factor that is isomorphic to sln+1 for 2 ≤ n ≤ 9

or so7. The difficulty with sln+1 for 2 ≤ n ≤ 9 (resp. so7) is that the weights of the

first fundamental (resp. spin) representation have length less than
√

8
9

and are not

proportional to roots.

5.3 Results for simply-laced gauge algebras

In light of Proposition 4.11, the enhancement weights come from a matter representa-

tion when the gauge algebra is simply-laced. In this case, the hyperplane arrangement

of hyperplanes that are normal to the nonzero enhancement weights takes the form

50



of the singular locus of the Intrilegator–Morrison–Seiberg superpotential from the

physics literature. Esole et al. [18, 20] have provided a mathematical formalization.

Definition 5.12 ([18, Definition 1.1]). Let g be a complex, semisimple Lie algebra,

let h be a split, real form of a Cartan subalgebra of g, and let R be a locally finite

representation of g with only finitely many non-isomorphic irreducible factors. We

denote by I(g,R) the decomposition of the dual fundamental Weyl chamber in h into

the chambers for the hyperplane arrangement consisting of the hyperplanes that are

orthogonal to the nonzero weights of R.

We can reinterpret Corollary 5.10 in the case of simply-laced gauge algebras using

the concept of a matter representation and the notation I(g,R).

Corollary 5.13. In Situation 5.4, if R is simply-laced and Ri is not of type An for

2 ≤ n ≤ 8 for any i, then the following conclusions hold:

(a) For all closed points p ∈ Wsing, the matter representation Rp
π is independent (up

to isomorphism and trivial factors) of the choice of π ∈ Good(W ).

(b) The KKMR decomposition (1) is of the form I(g,R), where g is the gauge of

algebra and R =
⊕

p∈Wsing(C) Rp
π (which is independent up to isomorphism and

trivial factors of the choice of π ∈ Good(W ) by Part (a)).

(c) Every irreducible factor of R is a (quasi-)minuscule representation whose high-

est weight has length at most
√

2.

(d) The duals of the irreducible factors of R are themselves factors of R.

Proof. Proposition 5.3 guarantees that every good partial resolution π′ of W is very

good. Hence, Proposition 4.11 implies that Wp
π′ is the set of nonzero weights of a

matter presentation Rp
π′ for all closed points p ∈ Wsing and all π′ ∈ Good(W ). The

representation Rp
π′ is unique up to isomorphism and the additional and removal of

trivial factors, as we showed in Section 4.2.

By Theorem 5.9(a) and Corollary 5.10, Wp
π′ is independent of the choice of π′ ∈

Good(W ), and Part (a) follows. Part (b) follows from Theorem 5.9(b), and Part (c)

follows from Propositions 4.10 and 4.11(a). To prove Part (d), note that Rp = −Rp

for all closed points p ∈ Wsing. Hence, we have that Wp
π = −Wp

π—so that the

representation Rp
π is self-dual—for all closed points p ∈ Wsing. Part (d) follows.
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Corollary 5.13(a) implies that the local matter representations are independent of

choice of a (very) good partial resolution when the gauge algebra g is simply-laced

and does not have a simple factor that is isomorphic to sln+1 for any 2 ≤ n ≤ 8. In

this case, Corollary 5.13(b) implies that KKMR decomposition is given by I(g,R),

where g is the gauge algebra and R is the sum of local matter representations. As the

irreducible factors of local matter representations are (quasi-)minuscule, so are the

irreducible factors of R, as Corollary 5.13(c) guarantees. Because the local matter

representations are self-dual, irreducible representations appear in R only in dual

pairs, as Corollary 5.13(d) shows.

We can use Corollary 5.13 to obtain a list of possible KKMR decompositions for

the case of a simple simply-laced gauge algebra that is not isomorphic to sln+1 for

2 ≤ n ≤ 8, as we show explicitly in the following result.

Corollary 5.14. In Situation 5.4, if Wsing has a unique positive-dimensional irre-

ducible component (i.e., if R is irreducible), then the following conclusions hold.

(a) If R is of type An for n ≥ 9 and |Good(W )| > 1, then the KKMR decomposition

(1) is one of I(sln+1,vec), I(sln,
∧2 vec), and I(sln+1,vec⊕

∧2 vec), where vec

is the defining (first fundamental) representation of sln+1.

(b) If R is of type Dn for n ≥ 9 and |Good(W )| > 1, then the KKMR decomposition

(1) is I(so2n,vec), where vec is the defining (vector) representation of so2n.

(c) If R is of type Dn for 4 ≤ n ≤ 8 and |Good(W )| > 1, then the KKMR

decomposition (1) is one of I(so2n,vec), I(so2n, spin+), and I(so2n,vec⊕spin+),

where vec and spin+ are the defining (vector) representation and one of the

half-spin representations of so2n, respectively.

(d) If R is of type E6 and |Good(W )| > 1, then the KKMR decomposition (1) is

I(e6,27), where 27 is one of the non-trivial minuscule representations of e6.

(e) If R is of type E7 and |Good(W )| > 1, then the KKMR decomposition (1) is

I(e7,56), where 56 is the non-trivial minuscule representation of e7.

(f) If R is of type E8, then we have that |Good(W )| = 1.

Proof. The case of E8 has already been dealt with in Corollary 5.7. We therefore

only need to consider the other cases.
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We first describe a general property of the decomposition I(g,R′), where g is the

gauge algebra. Let Irrep/∗(g) denote the set of isomorphism classes of non-trivial non-

adjoint finite-dimensional irreducible representations of the gauge algebra g modulo

duality. Given a locally finite representation R′ of g, let red(R′) ⊆ Irrep/∗(g) denote

the set of isomorphism classes of the non-trivial non-adjoint irreducible factors of R

modulo duality. Because w and −w have the same normal hyperplanes for all nonzero

weights w and the weights of the adjoint representation define the walls of the dual

fundamental Weyl chamber, we have that

the decomposition I(g,R′) depends on R′ only through red(R′). (2)

Let R denote the representation defined in Corollary 5.13(b), which is a locally fi-

nite representation. By Corollary 5.13(c), any irreducible representation that appears

in red(R) must be a minuscule representation whose highest weight has length at most√
2. We now divide into cases to apply the classification of minuscule representations

of simple Lie algebras to complete the proof of the corollary.

Case 1: R is of type An for n ≥ 9. The minuscule representations of sln+1 are

fundamental representations
∧i vec for 1 ≤ i ≤ n, where vec is the defining (first

fundamental) representation. The ith and (n+1−i)th fundamental representations

are dual. In light of the standard formulae for the inverses of the Cartan matrices

of irreducible root systems [55, 83], the highest weight of the ith fundamental

representation has length
√

i(n+1−i)
n+1

. For 3 ≤ i ≤ n− 2 and n ≥ 9, we have that

i(n+ 1− i)
n

≥ 3(n− 2)

n+ 1
= 3− 9

n+ 1
> 2.

Hence, for n ≥ 9, the class red(R) must be one of red(0), red(vec), red(
∧2 vec),

and red(vec⊕
∧2 vec). Part (a) therefore follows from Corollary 5.10(b) and (2).

Case 2: R is of type Dn. The minuscule representations of so2n are the defining

(vector) representation vec and the half-spin representations spin±. As the half-

spin representations are dual, red(R) must be one of red(0), red(vec), red(spin+),

and red(vec⊕ spin+). Part (c) therefore follows from Corollary 5.10(b) and(2).

To prove Part (b), note that the standard formulae for the inverses of the

Cartan matrices of irreducible root systems [55, 83] imply that the highest weights
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of the half-spin representations have length
√

n
4
, which is greater than

√
2 for

n ≥ 9. Hence, the only possibilities for red(R) when n is at least 9 are red(0) and

red(vec). Part (b) therefore follows from Corollary 5.10(b) and (2).

Case 3: R is of type E6. The minuscule representations of e6 are 27 and its dual.

Hence, red(R) must be one of red(0) and red(27). Part (d) therefore follows from

Corollary 5.10(b) and (2).

Case 4: R is of type E7. The unique minuscule representation of e7 (up to iso-

morphism) is 56. Hence, red(R) must be one of red(0) and red(56). Part (e)

therefore follows from Corollary 5.10(b) and (2).

The cases clearly exhaust all possibilities, completing the proof of the corollary.

6 Proofs of Propositions 4.10, 4.11, and 5.3 and

Theorem 5.5

In this section, we prove all of results asserted in Sections 4 and 5 except for Theo-

rem 5.9, which we prove in Section 7.

In Sections 6.1 and 6.2, we prove preliminary results. In particular, in Section 6.1,

we relate the enhancement homomorphism to intersection numbers on good partial

resolutions. In Section 6.2, we prove basic Lie-theoretic properties of roots and weights

that have length at most
√

2.

In Sections 6.3–6.5, we complete arguments for the results asserted in Sections 4

and 5. Specifically, in Section 6.3, we prove basic properties of the enhancement

weights and complete the proofs of Propositions 4.10 and 4.11. In Section 6.4, we

characterize the movable cone and complete the proof of Proposition 5.3. In Sec-

tion 6.5, we characterize the ample cone and complete the proof of Theorem 5.5.

6.1 Intersection theory on the partial resolution

In this section, we relate the enhancement homomorphism to intersection numbers on

good partial resolutions. The first lemma relates the form 〈−,−〉 on L to the degrees

of line bundles on the one-dimensional schemes C
(j)
i .
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Lemma 6.1. In Situation 4.1, let c ∈ L be such that ψ(c) = c1(L) in PicY/tors. We

have that

deg
C
(j)
i
L = −〈c(j)

i , c〉

for all 1 ≤ i ≤ s and 1 ≤ j ≤ ki.

Proof. By linearity, we can assume that c = nc
(j′)
i′ for some 1 ≤ i′ ≤ s and 1 ≤ j′ ≤ ki′ .

If i = i′, then we have that

deg
C
(j)
i
L = −〈c(j)

i , nc
(j′)
i′ 〉OW,ηi = −〈c(j)

i , nc
(j′)
i′ 〉

by the definitions of 〈−,−〉OW,ηi and 〈−,−〉. If i 6= i′, then as L is trivial in a

neighborhood of Yηi , we have that

deg
C
(j)
i
L = 0 = −〈c(j)

i , nc
(j′)
i′ 〉.

In either case, we have that

deg
C
(j)
i
L = −〈c(j)

i , nc
(j′)
i 〉,

as desired.

The next two results provide alternative characterizations of the enhancement

homomorphism, in terms of the fibers of the Cartan divisors and intersection numbers

on the surfaces Ỹ p, respectively. The proofs of these characterizations exploit the

projection formula for intersection numbers [26, Proposition 2.5(c)].

Proposition 6.2. In Situation 4.7, let i ∈ Sp and 1 ≤ j ≤ ki indices. For 1 ≤ k ≤ kp,

let mj,p,π
i,k denote the multiplicity of (Z

(j)
i )p along π∗C

p
k . We have that

(
(Λp

π)∗ ◦ θOHp,p,Q ◦ φ
p
π

)
(c

(j)
i ) =

kp∑
k=1

mj,p,π
i,k [Cp,π

k ],

as elements of Cl(Y ×W SpecOHp,p)⊗Q.

Proof. Let n ∈ Z>0 be such that nψ(c
(j)
i ) ∈ PicY/tors, which exists because Y is

Q-factorial. Let L be such that c1(L) = n[Z
(j)
i ] in PicY/tors. By the definition of φpπ,

we have that θOHp,p,Q ◦ φpπ = (Φp
π)∗Q ◦ ψ. Hence, we have that (θOHp,p,Q ◦ φpπ)(nc

(j)
i ) =
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(c1 ◦ (Φp
π)∗)(L) in Cl(Ỹ p)⊗Q. As Λp

π is birational and Φp
π = Γpπ ◦ Λp

π, the projection

formula [26, Proposition 2.5(c)] implies that

(Λp
π)∗ ◦ θOHp,p,Q ◦ φ

p
π)(nc

(j)
i ) = (c1 ◦ (Γpπ)∗)(L).

Because Y ×W SpecOHp,p is normal (by Theorem 3.27), the definition of the first

Chern class implies that

(c1 ◦ (Γpπ)∗)(L) = n
kp∑
k=1

mj,p,π
i,k [Cp,π

k ]

in Cl(Y ×W SpecOHp,p)⊗Q. Dividing by n yields the assertion of the proposition.

Proposition 6.3. In Situation 4.7, let c ∈ L be such that ψ(c) = c1(L) in PicY/tors.

For all 1 ≤ k ≤ kp, we have that

degπ∗Cpk (Γpπ)∗L = degCpk (Φp
π)∗L = −〈rpk, ψ

p
π(c)〉p.

Proof. The first equality of the lemma follows from the projection formula [26, Propo-

sition 2.5(c)]. To prove the second equality, note that θOHp,p,Q ◦ φpπ = (Φp
π)∗Q ◦ψ holds

by the definition of φpπ. Hence, we have that (Φp
π)∗L = (θOHp,p ◦ φpπ)(c). The second

equality of the lemma therefore follows from the definition of 〈−,−〉p.

6.2 Lemmata on roots and weights of length at most
√

2

In this section, we prove properties of roots and weights of length at most
√

2. The

first result shows that, for simply-laced root systems, every integral weight of length

at most
√

2 is (quasi-)minuscule.

Lemma 6.4. Let R be a simply-laced root system. If weight w ∈ L†(R) is such that

〈w,w〉 ≤ 2, then w is (quasi-)minuscule.

Proof. It suffices to prove the result for irreducible root systems. We divide into cases

based on the type of the root system to complete the argument.

Case 1: R is of type An. We claim that the only non-fundamental dominant

weight of length at most
√

2 is the highest root. This claim can be verified straight-

forwardly for n = 1, 2. We next consider the case of n ≥ 3. Let wi denote the ith
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fundamental weight. The standard formulae for the inverses of the Cartan matri-

ces of irreducible root systems [55, 83] imply that 〈wi,wj〉 = min{i, j} − ij
n+1

. It

follows that, for all i ≤ j with i+ j ≤ n+ 1, we have

〈wi + wj,wi + wj〉 = 4i+ 2j − i2 + 2ij + j2

n+ 1

= 2i+
2(i+ j)(n+ 1)− (i+ j)2

n+ 1
≥ i ≥ 1,

with equality if and only if i = 1 and j = n. Analogous logic applies for i+j ≥ n+1.

Hence, the only sum of two fundamental weights that has length at most
√

2 is

w1 + wn, which is the highest root. The claim follows.

Because the fundamental representations of sln+1 are all minuscule, the previous

paragraph implies that the lemma holds in the case of type A.

Case 2: R is of type Dn for n ≥ 4. The standard formulae for the inverses of

the Cartan matrices of irreducible root systems [55, 83] imply that the lengths

of all fundamental weights are all greater than 1. Hence, all dominant minuscule

weights of length at most
√

2 are fundamental. For n ≤ 8, the only fundamental

weights of length at most
√

2 are the first two and the last two, which are the

highest weight of the defining (vector) representation of so2n, the highest root,

and the highest weights of the two half-spin representations of so2n, respectively.

For n ≥ 9, the only fundamental weights of length at most
√

2 are the first and

second, which are the highest weight of the defining (vector) representation of so2n

and the highest root, respectively. Because the defining representation and the

half-spin representations are minuscule, the lemma holds in either case.

Case 3: R is of type E6, E7, or E8. The standard formulae for the inverses of

the Cartan matrices of irreducible root systems [55, 83] imply that the lengths

of all fundamental weights are all greater than 1. Hence, all dominant minuscule

weights of length at most
√

2 are fundamental. In the case of E6, the fundamental

weights of length at most
√

2 are the first, fifth, and sixth, the first of which is the

highest root and the last two of which are the highest weights of (27-dimensional)

minuscule representations. In the case of E7, the fundamental weights of length at

most
√

2 are the first and sixth, which are the highest weights of the 56-dimensional

minuscule representations and the highest root, respectively. In the case of E8, the

57



only fundamental weight of length at most
√

2 is the highest root. In all cases, the

lemma holds.

Theorem 2.2 implies that the cases exhaust all possibilities, completing the proof of

the lemma.

The second result shows that short roots span the ambient vector spaces of irre-

ducible root systems.

Proposition 6.5. If R is an irreducible root system in a vector space V , then the set

of roots of length
√

2 span V .

Proof. Let α be any root with 〈α, α〉 = 2. Because W(R) acts via orthogonal trans-

formations and preserves R, the set W(R)α consists entirely of roots of length
√

2.

By the irreducibility of the action of W(R) on V for any irreducible root system R

[6, Chapitre V, §4.7, Proposition 7], the set W(R)α must span V .

The third and final result provides an upper bound on the number of weights of

length at most
√

2.

Lemma 6.6. If R is a root system in an inner product space E, then L†(R) has at

most 22 dimE−1 elements of with length at most
√

2 that are not proportional to roots.

Proof. Let Rs denote the set of elements of R that have length
√

2. It follows from

Proposition 6.5 that Rs is a root system in E. Note that L†(R) ⊆ L†(Rs). Hence,

we can assume that R is simply-laced, so that R = Rs. As L†(R1 ⊕R2) = L†(R1)⊕
L†(R2), we can further assume that R is irreducible. By Lemma 6.4, it suffices to

show that there are at most 22 dimE − 1 minuscule weights. By Theorem 2.2, R must

be of one of types A, D, and E, and we divide into cases to complete the proof.

Case 1: R is of type An. The minuscule representations of sln+1 are
∧i vec

for 1 ≤ i ≤ n, where vec is the defining (first fundamental) representation. In

particular, there are at most

|Q-Minusc(R)| ≤
n∑
i=1

(
n+ 1

i

)
= 2n+1 − 2 < 22n − 1,

as desired.
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Case 2: R is of type Dn for n ≥ 4. The minuscule representations of so2n are the

defining (vector) representation vec and the half-spin representations spin+ and

spin−. These representations have dimensions 2n, 2n−1, and 2n−1, respectively.

Hence, we have that

|Q-Minusc(R)| ≤ 2n+ 2n−1 + 2n−1 ≤ 2n + 2n = 2n+1 < 22n,

as desired.

Case 3: R is of type E6, E7, or E8. In the case of E6, there are two non-isomorphic

27-dimensional minuscule representations and no other minuscule representations.

Hence, there are 54 < 212 minuscule weights. In the case of E7, there is a unique

(up to isomorphism) minuscule representation, which is 56-dimensional. Hence,

there are 56 < 214 minuscule weights. In the case of E8, there is no minuscule

representation.

We have exhausted all possible cases and have proven that there are at most 22 dimE−1

minuscule weights in all cases—completing the proof of the lemma.

6.3 Basic properties of the enhancement weights

We now prove the basic properties of the enhancement homomorphism in Situa-

tion 4.7. The first result shows that φpπ restricts to 0 on Li for all i /∈ Sp.

Lemma 6.7. In Situation 4.7, we have that φpπ|Li = 0 for all i /∈ Sp, and hence that

Wp
π ⊆ Lp ⊗ R.

Proof. To prove the first assertion, it suffices to show that φpπ(c
(j)
i ) = 0 for all i ∈ Sp

and 1 ≤ j ≤ ki. Let i ∈ Sp and 1 ≤ j ≤ ki. Let n ∈ Z>0 be such that nψ(c
(j)
i ) ∈

PicY/tors, which exists because Y is Q-factorial. Let L be such that c1(L) = n[Z
(j)
i ]

in PicY/tors. As p /∈ Zi, the invertible sheaf L is trivial in an open neighborhood of

Yp. Hence, the class of (Γpπ)∗L in PicY ×W SpecOHp,p is trivial. As a result, we have

that (Γpπ)∗Q[Zi] = 0 and hence that φpπ(c
(j)
i ) = 0. Because i and j were arbitrary, we

have proven the first assertion. The second assertion follows from the first.

The second result shows that φpπ is an isometry if all of irreducible components of

Wsing that pass through p are nonsingular at p.
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Lemma 6.8. In Situation 4.7, if Zi is nonsingular at p for all i ∈ Sp, then we have

that 〈φpπ(−), φpπ(−)〉p = 〈−,−〉 as forms on Lp. Hence, we have that 〈w,w〉 ≤ 2 for

all w ∈ Wp
π.

The proof of Lemma 6.8 exploits the results of Section 6.1 and the constancy of

the degrees of invertible sheaves in flat families [81, Corollary 24.7.3].

Proof. For all i ∈ Sp and 1 ≤ j ≤ k, the scheme Z
(j)
i is integral and dominates Zi,

which is nonsingular at p. Hence, Z
(j)
i must be flat over Zi at p by the standard

criterion for flatness over discrete valuation rings [31, Proposition III.9.7].

Let i′ ∈ Sp and 1 ≤ j′ ≤ ki′ be arbitrary indices. Let n ∈ Z>0 be such that

nψ(c
(j′)
i′ ) ∈ c1(PicY/tors), which exists because Y is Q-factorial. Let L be such that

c1(L) = n[Z
(j)
i ] in PicY/tors. Due to the constancy of the degrees in flat families [81,

Corollary 24.7.3], we have that

deg
(Z

(j)
i )p
L = deg

C
(j)
i
L.

By Lemma 6.1, it follows that

deg
(Z

(j)
i )p
L = deg

C
(j)
i
L = −〈c(j)

i , nc
(j′)
i′ 〉.

Proposition 6.2 and the projection formula [26, Proposition 2.5(c)] imply that

deg
(θHp,p,Q◦φ

p
π)(c

(j)
i )

(Φp
π)∗L = deg

(Z
(j)
i )p
L = −〈c(j)

i , nc
(j′)
i′ 〉.

In light of Proposition 6.3, it follows that

−〈φpπ(c
(j)
i ), nφpπ(c

(j′)
i′ )〉

p
= deg

(θHp,p,Q◦φ
p
π)(c

(j)
i )

(Φp
π)∗L = −〈c(j)

i , nc
(j′)
i′ 〉.

As i, j, i′, and j′ were arbitrary, we have proven the first assertion of the proposition,

and the second assertion follows from the first.

The third result shows that the image of φpπ lies in Lp (instead of merely Lp ⊗Q)

if all of the Cartan divisors are Cartier.

Lemma 6.9. In Situation 4.7, if [Z
(j)
i ] is Cartier for all i ∈ Sp and 1 ≤ j ≤ ki, then

the image of φpπ lies in Lp ⊆ Lp ⊗Q. In this case, we have that Wp
π ⊆ L†p.
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Proof. The hypothesis of the lemma implies that the image of ψ lies in PicY/tors ⊆
PicY ⊗ Q. It therefore follows from Proposition 6.2 that the image of θOHp,p,Q ◦ φpπ
lies in the set of integral divisors that are supported on the exceptional locus of π̃p.

Applying θ−1OHp,p,Q yields the first assertion of the lemma, and the second assertion is

direct subsequent the first assertion.

We are now ready to prove Propositions 4.10 and 4.11.

Proof of Propositions 4.10 and 4.11. Proposition 4.10 follows from Lemmata 6.7, 6.8,

and 6.9. Proposition 4.11(a) follows from Proposition 4.10 and Lemma 6.4.

It remains to prove Proposition 4.11(b). As reflections over the hyperplanes that

are normal to roots generate the Weyl group, it suffices to prove that scWp
π = Wp

π

for all c ∈ R. Let c ∈ R be arbitrary. It follows from Proposition 4.10 that sφpπ(c)c ◦
φpπ = φpπ ◦ sc. As reflections are self-adjoint, we have that sc ◦ (φpπ)† = (φpπ)† ◦ sφpπ(c).
Propositions 2.4 and 4.10 imply that φpπ(c) ∈ Rp. Hence, sφpπ(c) defines a bijection

from Rp to Rp. It follows that

sc(Wp
π) = (sc ◦ (φpπ)†)(Rp) = ((φpπ)† ◦ sφpπ(c))(R

p) = (φpπ)†(Rp) =Wp
π

as multisets, as desired.

6.4 The movable cone

To study the movable cone, we first relate L to the relative Picard group.

Proposition 6.10. In Situation 4.1, if W is Q-factorial and π : Y → W is a good

partial resolution, then ψR = ψ ⊗ R induces an isomorphism L⊗ R to N1(Y/W ).

The proof of Proposition 6.10 relies on Lemma 6.1. We use two results on

flatness—generic flatness [29, Corollaire 6.9.3] and the constancy of the degrees of

invertible sheaves in flat families [81, Corollary 24.7.3]—to relate the degree expres-

sion that appears in the statement of Lemma 6.1 to the degree of an invertible sheaf

along a curve.

Proof. We first verify that ψR is injective. Suppose for sake of deriving a contradiction

that there exists

c =
s∑
i=1

ki∑
j=1

γ
(j)
i c

(j)
i
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with ψ(c) numerically π-trivial, where the coefficients γ
(j)
i are integral and some

coefficient is nonzero. As 〈−,−〉 is nondegenerate, there exist 1 ≤ i ≤ s and 1 ≤ j ≤
ki such that 〈c, c(j)

i 〉 6= 0. Let n ∈ Z>0 and L ∈ PicY be such that c1(L) = nψ(D)—

which exist because Y is Q-factorial. By Lemma 6.1, we have that

deg
C
(j)
i
L 6= 0.

By generic flatness [29, Corollaire 6.9.3], there exists a closed point p such that Z
(j)
i

is flat over Zi at p. Due to the constancy of the degrees of invertible sheaves in flat

families [81, Corollary 24.7.3], we have that

deg
(Z

(j)
i )p
L = deg

C
(j)
i
L 6= 0.

Hence, L is not numerically π-trivial, and it follows that ψ(c) is not numerically

π-trivial either. Because c was arbitrary, we have proven that ψR is injective.

We next verify that ψR is surjective. Let L ∈ PicY be arbitrary, and let D be a

divisor that represents L. Let n ∈ Z>0 be such that nπ∗D is Cartier. Suppose that

nπ∗D has class c1(L2). Note that L⊗n is numerically equivalent to L⊗n⊗L−12 over W .

Furthermore, the divisor nD−π∗(nπ∗D) represents L⊗n⊗L−12 . By construction, the

divisor nD− π∗(nπ∗D) is supported on the exceptional locus of π, and hence can be

expressed as a Z-linear combination of the classes [Z
(j)
i ] for 1 ≤ i ≤ s and 1 ≤ j ≤ ki.

As a result, nc1(L) is in the image of ψ. Because L was arbitrary, we have proven

that ψR is surjective.

In light of Proposition 6.10, we can identify N1(Y/W ) and N1(Y/W ) via ψR and

〈−,−〉 in Situation 4.1 when W is Q-factorial.

The second result characterizes the movable cone.

Lemma 6.11. In Situation 4.1, let π : Y → W is a good partial resolution and let

c ∈ L⊗R. We have that ψR(c) ∈ Mov(Y/W ) if and only if 〈c, c(j)
i 〉 ≤ 0 holds for all

1 ≤ i ≤ s and 1 ≤ j ≤ ki.

The proof of Lemma 6.11 relies on the Lipman [54] intersection-theoretic charac-

terization of globally generated invertible sheaves on resolutions of local rings with

rational singularities (Proposition 3.23).
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Proof. We first prove the “only if” direction of the first assertion. Suppose that

ψR(c) ∈ Mov(Y/W ), so that ψR(c) =
∑n

k=1 γkc1(Lk) holds in N1(Y/W ), where γk > 0

and Lk is π-movable for all k. Let 1 ≤ i ≤ s be an arbitrary index. By the definition

of movability, the codimension of the cokernel of π∗π∗Lk → Lk in Y is at least 2. It

follows that the relative complete linear series (Lk, (π̂i)∗Lk) has only isolated points as

base points, where we define π̂i = π ×W SpecOW,ηi : Y ×W SpecOW,ηi → SpecOW,ηi .
Therefore, Lk is π̂-nef. By Lemma 6.1, it follows that 〈c, c(j)

i 〉 ≤ 0 for all 1 ≤ i ≤ s

and 1 ≤ j ≤ ki.

We next prove the “if” direction of the first assertion. It suffices to prove that

if c ∈ L is such that ψ(c) = c1(L) and 〈c, c(j)
i 〉 < 0 holds for all 1 ≤ i ≤ s and

1 ≤ j ≤ ki, then L is movable. Consider c and L as in the preceding sentence.

Lemma 6.1 implies that

deg
C
(j)
i
L ≥ 0

for all 1 ≤ i ≤ s and 1 ≤ j ≤ ki.

Fix an index 1 ≤ i ≤ s. Proposition 4.4(a) implies that OW,ηi has a Du Val

singularity, hence in particular rational singularities. By Proposition 3.23, the nat-

ural homomorphism (π̂i)∗(π̂i)
∗L → L is surjective, where π̂i = π ×W SpecOW,ηi :

Y ×W SpecOW,ηi → SpecOW,ηi . Hence, the support of the cokernel of the natural

homomorphism π∗π∗L → L does not contain η
(j)
i for any 1 ≤ j ≤ ki.

By Theorem 3.27, the fibers of π all have dimension at most 1. Hence, the points

η
(j)
i are the only codimension 1 points of Y that lie in the exceptional locus of π.

Because i was arbitrary, it follows that the support of the cokernel of the natural

homomorphism π∗π∗L → L has codimension at least 2 in Y , as desired.

We are now ready to prove Proposition 5.3.

Proof of Proposition 5.3. By Theorem 3.40, it suffices to show that if π : Y → W is

a very good partial resolution and π′ : Y ′ → W is related to π by an extremal flop,

then π′ is a very good partial resolution. Let ξ : Y → X be an extremal flopping

contraction over W with flop is ξ′ : Y ′ → X. If a closed point p ∈ W satisfies

Condition (i) for π, then Theorem 3.36(b) implies that p satisfies Condition (i) for π′.

Let p ∈ W be a closed point that satisfies Condition (ii) for π. Proposition 6.10

guarantees that ψ−1R is well-defined. To prove that p satisfies Condition (ii) for π′, it

suffices to show that ξ does not contract any curve Cp
k . Suppose for sake of deriving
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a contradiction that ξ contracts curve Cp
k . We derive a contradiction by showing that

no divisor that is ample on X can fail to be ξ-ample.

By Condition (ii) and Proposition 6.10, the class of Cp
k in N1(Y/W ) is proportional

to ψR(c) for some root c ∈ R. Without loss of generality, we can assume that the

class of Cp
k in N1(Y/W ) is a positive multiple of ψR(c). Let D′ ∈ Amp(Y ′/X) be

arbitrary, so that ξ is a D′-flopping contraction and ξ′ is the D′-flop of ξ. As −D′

is ξ-ample, Theorem 3.3 and Proposition 6.3 imply that 〈−ψ−1R (D′), c〉 < 0, so that

〈ψ−1R (D′), c〉 > 0. As D′ ∈ Mov(Y/X) by Theorem 3.37, Lemma 6.11 implies that c

cannot be a positive linear combination of simple roots, so that c must be a negative

root (for any polarization for which the simple roots are the c
(j)
i ).

Now let D ∈ Amp(Y/X) be arbitrary. By Theorem 3.3 and Proposition 6.3, we

must have that 〈ψ−1R (D), c〉 < 0. Because c is a negative root, Lemma 6.11 implies

that D /∈ Mov(Y/X), contradicting the fact that ample divisors are movable (see,

e.g., Theorem 3.37). Hence, we can conclude that ξ cannot contract any curve Cp
k ,

and the proposition follows.

6.5 The cone of curves and the ample cone

We now relate the enhancement weights to the cone of curves and the ample cone.

The first result characterizes the cone of curves.

Proposition 6.12. In Situation 4.1, if W is Q-factorial and π : Y → W is a good

partial resolution, then ψ−1R (NE(Y/W )) is spanned by
⋃
p∈Wsing(C)W

p,+
π .

Proof. Let C be a curve in Y that maps to a closed point p ∈ W . As π is a

partial resolution, we must have that p ∈ Wsing. Hence, we have that C = π∗C
p
k

for some 1 ≤ k ≤ kp. By Proposition 6.3 and Proposition 6.10, the class of C in

N1(Y/W ) is (φpπ)†(rpk). We have therefore shown that NE(Y/W ) lies in the span of⋃
p∈Wsing(C)W

p,+
π .

Conversely, we need to show that w ∈ NE(Y/W ) for all closed points p ∈ Wsing

and all w ∈ Wp,+
π . By Proposition 2.1 and the linearity of (φpπ)†, it suffices to

show that (φpπ)†(rpk) ∈ NE(Y/W ). If π∗r
p
k = 0, then we have that (φpπ)†(rpk) = 0

by Proposition 6.3. If π∗r
p
k 6= 0, then (φpπ)†(rpk) is the class of π∗C

p
k in N1(Y/W )

by Proposition 6.3 and Proposition 6.10. In either case, we have that (φpπ)†(rpk) ∈
NE(Y/W ), as desired.
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The second result applies our combinatorial results on the enhancement weights

from Section 6.3 to show that the cone of curves is closed.

Corollary 6.13. In Situation 5.4, we have that ψ−1R (NE(Y/W )) = ψ−1R (NE(Y/W ))

and
⋃
p∈Wsing(C)W

p,+
π spans both cones.

Proof. By Proposition 6.12, the cone ψ−1R (NE(Y/W )) is spanned by
⋃
p∈Wsing(C)W

p,+
π .

Proposition 4.10 guarantees that every element of
⋃
p∈Wsing(C)W

p,+
π ⊆ Q-Minusc(R)

has length at most
√

2. But L†(R) can only contain finitely many elements of length

at most
√

2. As a result, ψ−1R (NE(Y/W )) is spanned by a finite set, and is hence a

closed cone. It follows that ψ−1R (NE(Y/W )) = ψ−1R (NE(Y/W ))

We are now ready to complete the proof of Theorem 5.5.

Proof of Theorem 5.5. Part (a) is the special case of Proposition 6.10 and Lemma

6.11 in which we are in Situation 5.4. Part (b) can be proven directly by combining

Theorem 3.3, Corollary 6.13, and Part (a).

To prove Part (c), note that Part (a) implies that Mov(Y/W ) is closed. Theo-

rem 3.37 hence implies that there is a locally polyhederal KKMR decomposition

ψ−1R (Mov(Y/W )) = closure of
⋃

(π′:Y ′→W )∈Good(W )

ψ−1R (Amp(Y ′/W )) in L⊗ R,

where the cones ψ−1R (Amp(Y ′/W )) are pairwise disjoint. There is also a finite, poly-

hedral decomposition of Mov(Y/W ) into closed chambers for the hyperplane arrange-

ment consisting of hyperplanes that are orthogonal to weights of length at most
√

2—

a decomposition that we call the short-weight hyperplane decomposition. Note that

there only finitely many weights of length at most
√

2. Part (b) implies that the short-

weight hyperplane decomposition refines the KKMR decomposition of Mov(Y/W ),

and Part (c) follows.

To prove Part (d), we continue to use the terminology of the previous paragraph.

In light of Lemma 6.6, there are at most 2−1+
∑s
i=1 ki hyperplanes involved in the short-

weight hyperplane decomposition. Hence, the short-weight hyperplane decomposition

contains at most 22−1+
∑s
i=1 ki chambers. As the short-weight hyperplane decomposition

refines the KKMR decomposition, the KKMR decomposition must contain at most

22−1+
∑s
i=1 ki chambers as well, and Part (d) follows.
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7 Proof of Theorem 5.9

Our primary tool to show that two enhancement homomorphisms give rise to the same

multisets of enhancement weights is to show that the homomorphisms are conjugate

under the action of the Weyl group—a property that we call Weyl-relatedness.

Definition 7.1. In Situation 4.1, for closed points p ∈ Wsing and π, π′ ∈ Good(W ), we

say that φpπ and φpπ′ are Weyl-related if there exists w ∈W(Rp) such that φpπ′ = w◦φpπ.

Lemma 7.2. In Situation 4.1, if p is a closed point of Wsing and π, π′ ∈ Good(W )

are such that φpπ and φpπ′ are Weyl-related, then we have that Wp
π =Wp

π′ as multisets.

Proof. Suppose that w ∈W(Rp) is such that φpπ′ = w◦φpπ. Because w is an orthogonal

operator, we have that w† = w−1 and hence that (φpπ′)
† ◦ w = (φpπ)†. Recall that

Wp
π = (φpπ)†(Rp) and Wp

π′ = (φpπ′)
†(Rp) by definition. As w induces a bijection from

Rp to itself, we have that

Wp
π = (φpπ)†(Rp) = (φpπ′)

†(w(Rp)) = (φpπ′)
†(Rp) =Wp

π′

as multiset. The lemma follows.

The key to the proof of Theorem 5.9(a) is the following result, which exploits the

condition on the lengths of weights to show that very good partial resolutions that

are related by extremal flops give rise to Weyl-related enhancement homomorphisms.

Lemma 7.3. In Situation 5.4, let p ∈ Wsing be a closed point such that Y is non-

singular above p. Let ζ : Y → X be an extremal flopping contraction over W, let

ζ ′ : Y ′ → W be the flop of ζ, and let π′ denote the composite Y ′ → X → W . Suppose

that ζ contracts curve Cp
k and let w = (φpπ)†(rpk) denote the corresponding weight. If

we have that 〈w,w〉 > 8
9
, then φpπ and φpπ′ are Weyl-related.

To prove Lemma 7.3, we consider a short root c ∈ R whose associated divisor is not

Cartier on the contracted variety X. We consider the difference between the images

of c under the enhancement homorphisms for the two very good partial resolutions.

We divide into cases based on the length of the difference to construct elements of the

Weyl group that relate the enhancement homomorphisms. The bound on the length

of the weight corresponding to the flopping curve is crucial to constraining the length

of the difference and its inner products with other roots.
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Proof. By passing to an open neighborhood of p, we can assume that Sp = {1, . . . , s}.
(This operation does not affect φpπ|Lp or φpπ′ |Lp due to Proposition 4.10.) In this case,

we have that L = Lp and that R = Rp.

We can regard N1(X/W ) as a subset of N1(Y/W ) via ζ∗. Note that (Φp
π)∗D =

(Φp
π′)
∗D holds for all D ∈ N1(X/W ). Because ζ is extremal, N1(X/W ) has codimen-

sion 1 in N1(Y/W ). By the projection formula [26, Proposition 2.5(c)], N1(X/W )

must consist of the classes D such that

degCpk (Φp
π)∗D = 0.

The homomorphisms φpπ and φpπ′ define isometric embeddings of Lp ⊗ R into Lp ⊗
R by Proposition 4.10. Hence, Proposition 6.3 implies that ψ−1R (N1(Y/W )) is the

orthogonal complement w⊥ of w and that φpπ and φpπ′ agree on ψ−1R (N1(Y/W )) = w⊥.

By Proposition 6.5, there exists a root c ∈ R with 〈c, c〉 = 2 such that c /∈ w⊥.

As w ∈ L†(R) (by Proposition 4.10), we can assume that 〈c,w〉 = 1. Hence, we have

that c− w
〈w,w〉 ∈ w⊥. Define r = φpπ(c) and r′ = φpπ′(c), which are elements of Lp by

Proposition 4.10. Note that for all c′ ∈ w⊥, we have that

〈r− r′, (φpπ ⊗ R)(c′)〉p = 〈r, (φpπ ⊗ R)(c′)〉p − 〈r′, (φpπ′ ⊗ R)(c′)〉p

= 〈c, c′〉 − 〈c, c′〉 = 0
(3)

because φpπ and φpπ′ are isometries that agree on w⊥.

As φpπ and φpπ′ agree on w⊥, we also have that

r− r′ = (φpπ ⊗ R)

(
w

〈w,w〉

)
− (φpπ′ ⊗ R)

(
w

〈w,w〉

)
.

As φpπ and φpπ′ are isometries, it follows that

〈r− r′, r− r′〉p =
〈((φpπ − φ

p
π′)⊗ R)(w), ((φpπ − φ

p
π′)⊗ R)(w)〉p

〈w,w〉2

=
4〈w,w〉 − 〈((φpπ + φpπ′)⊗ R)(w), ((φpπ + φpπ′)⊗ R)(w)〉p

〈w,w〉2
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≤ 4

〈w,w〉
− 〈((φ

p
π + φpπ′)⊗ R)(w), ((φpπ + φpπ′)⊗ R)(w)〉p

〈w,w〉2
(4)

≤ 4

〈w,w〉
<

9

2
,

where the second equality uses the identity

〈a− b, a− b〉p = 2〈a, a〉p + 2〈b, b〉p − 〈a+ b, a+ b〉p.

Because Lp is an even lattice, we must have that 〈r− r′, r− r′〉p ∈ {0, 2, 4}. We

divide into cases based on the value of 〈r− r′, r− r′〉p to show that φpπ and φpπ′ are

Weyl-related.

Case 1: 〈r− r′, r− r′〉p = 0. In this case, we have that r = r′. As w⊥ and c

generate L⊗R, it follows that φpπ = φpπ′ . In particular, φpπ and φpπ′ are Weyl-related.

Case 2: 〈r− r′, r− r′〉p = 2. By Proposition 2.4, we have that r − r′ ∈ Rp. We

claim that φpπ′ = sr−r′ ◦ φpπ. As w⊥ and c generate L⊗ R, it suffices to check that

sr−r′ restricts to the identity on (φpπ ⊗ R)(w⊥) and that sr−r′(r) = r′. The first

part follows from (3). To see the second part, note that

〈r, r′〉p =
〈r, r〉p + 〈r′, r′〉p − 〈r− r′, r− r′〉p

2
= 1.

Hence, we have that 〈r, r− r′〉p = 1, so that

sr−r′(r) = r− 〈r, r− r′〉p(r− r′) = r− (r− r′) = r′.

Therefore, φpπ and φpπ′ are Weyl-related.

Case 3: 〈r− r′, r− r′〉p = 4. (4) implies that

4

〈w,w〉
− 〈((φ

p
π + φpπ′)⊗ R)(w), ((φpπ + φpπ′)⊗ R)(w)〉p

〈w,w〉2
≥ 4

〈((φpπ + φpπ′)⊗ R)(w), ((φpπ + φpπ′)⊗ R)(w)〉p

〈w,w〉2
≤ 4

〈w,w〉
− 4 <

1

2
. (5)
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As c− w
〈w,w〉 ∈ w⊥, we have that

〈rpk, r〉
p =
〈rpk, (φpπ ⊗ R)(w)〉p

〈w,w〉
+

〈
rpk, (φ

p
π ⊗ R)

(
c− w

〈w,w〉

)〉p
=
〈rpk, (φ

p
π′ ⊗ R)(w)〉p

〈w,w〉
.

As φpπ and φpπ′ agree on w⊥, we also have that

〈rpk, r
′〉p =

〈rpk, (φ
p
π′ ⊗ R)(w)〉p

〈w,w〉
+

〈
rpk, (φ

p
π′ ⊗ R)

(
c− w

〈w,w〉

)〉p
=
〈rpk, (φ

p
π′ ⊗ R)(w)〉p

〈w,w〉
+

〈
rpk, (φ

p
π ⊗ R)

(
c− w

〈w,w〉

)〉p
=
〈rpk, (φ

p
π′ ⊗ R)(w)〉p

〈w,w〉
.

By the Cauchy–Schwarz inequality and (5), it follows that

∣∣〈rpk, r〉p + 〈rpk, r
′〉p
∣∣ =

∣∣∣∣〈rpk, (φpπ ⊗ R)(w) + (φpπ′ ⊗ R)(w)〉p

〈w,w〉

∣∣∣∣
≤
√

2〈((φpπ + φpπ′)⊗ R)(w), ((φpπ + φpπ′)⊗ R)(w)〉p

〈w,w〉
< 1.

We have that 〈rpk, r〉
p = 1 by construction. Because 〈rpk, r′〉

p ∈ Z, we must have

that 〈rpk, r′〉 = −1. It follows that 〈rpk, r− r′〉p = 2, so that

〈rpk − r + r′, rpk − r + r′〉p = 〈rpk, r
p
k〉
p + 〈r− r′, r− r′〉p − 2〈rpk, r− r′〉p = 2.

Proposition 2.4 therefore guarantees that rpk − r + r′ ∈ Rp.

We claim that φpπ′ = srpk−r+r′ ◦ srpk ◦ φ
p
π. As w⊥ and c generate L⊗R, it suffices

to check that srpk−r+r′ ◦ srpk restricts to the identity on (φpπ ⊗ R)(w⊥) and that

srpk−r+r′(srpk(r)) = r′. To see the first part, note that rpk and r−r′ are orthogonal to

(φpπ ⊗ R)(w⊥) by construction and (3), respectively. To see the second part, note

that

〈rpk − r, rpk − r + r′〉p = 2− 〈r′, rpk − r + r′〉p = 1.
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It follows that

srpk(r) = r− 〈r, rpk〉
prpk = r− rpk

srpk−r+r′(srpk(r)) = r− rpk − 〈r− rpk, r
p
k − r + r′p〉(rpk − r + r′)

= r− rpk + (rpk − r + r′) = r′.

Therefore, φpπ and φpπ′ are Weyl-related.

We have proven that φpπ and φpπ′ are Weyl-related in all three cases and that the cases

exhaust all possibilities. The lemma follows.

The next result shows—roughly—that if the sets of enhancement weights are

independent of the choice of (very) good partial resolution, then the conclusion of

Theorem 5.9(b) holds.

Proposition 7.4. In Situation 5.4, if we have that⋃
p∈Wsing(C)

Wp
π,6=0 =

⋃
p∈Wsing(C)

Wp
π′,6=0

as sets for all π′ ∈ Good(W ), then the conclusion of Theorem 5.9(b) holds.

Proof. Define a set W by W =
⋃
p∈Wsing(C)W

p
π′,6=0 for any π′ ∈ Good(W ). As

Wp
π′, 6=0 = ±Wp,+

π′, 6=0 holds for all p ∈ Wsing(C), we have that W = ±
⋃
p∈Wsing(C)W

p,+
π′,6=0

as sets. In particular, for all π′ ∈ Good(W ), the set of hyperplanes that that are

orthogonal to elements ofWp,+
π′ is the same as the set of hyperplanes that are orthog-

onal to elements of W . By Theorem 5.5(b), it follows that, for all π′ ∈ Good(W ),

the cone ψ−1R (Amp(Y ′/W )) is a closed chamber for the hyperplane arrangement in

ψ−1R (Mov(Y/X)) consisting of hyperplanes orthogonal to the elements of W . The

conclusion of Theorem 5.9(b) follows by Theorem 5.5(c).

We are now ready to complete the proof of Theorem 5.9.

Proof of Theorem 5.9. We first prove Part (a). Define a set S ⊆ Good(W ) by

S = {π′ ∈ Good(W ) |Wp
π′ =Wp

π for all p ∈ Wsing(C)}.

We show that S is closed under extremal flops. Let π′ : Y ′ → W be a good partial

resolution with Wp
π′ = Wp

π as multisets for all p ∈ Wsing(C). Proposition 5.3 implies
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that π′ is a very good partial resolution. Let ζ : Y ′ → X be an extremal flopping

contraction over W , let ζ ′ : Y ′′ → X be the flop of ζ, and let π′′ denote the composite

Y ′′ → X → W. We prove that φpπ′ and φpπ′′ are Weyl-related for all closed points

p ∈ Wsing by dividing into cases based on whether ζ contracts a curve above p.

Case 1: ζ does not contract any curve Cp
k . We have that φpπ′′ = φpπ′ . In particular,

φpπ′ and φpπ′′ are Weyl-related.

Case 2: ζ contracts curve Cp
k . Let w = (φpπ)†(rpk) ∈ W

p
π′,6=0 = Wp

π, 6=0 denote the

corresponding weight.

We claim that w is not proportional to any element of R. Suppose for sake

of deriving a contradiction that w is proportional some c ∈ R. Without loss of

generality, we can assume that w is a positive multiple of c. Let D′ ∈ Amp(Y ′/X)

be arbitrary, so that ξ is a D′-flopping contraction and ξ′ is the D′-flop of ξ. As

−D′ is ξ-ample, Theorem 3.3 and Proposition 6.3 imply that 〈−ψ−1R (D′), c〉 < 0, so

that 〈ψ−1R (D′), c〉 > 0. As D′ ∈ Mov(Y/X) by Theorem 3.37, Lemma 6.11 implies

that c cannot be a positive linear combination of simple roots, so that c must be

a negative root (for any polarization for which the simple roots are the c
(j)
i ).

Now let D ∈ Amp(Y/X) be arbitrary. By Theorem 3.3 and Proposition 6.3, we

must have that 〈ψ−1R (D), c〉 < 0. Because c is a negative root, Lemma 6.11 implies

that D /∈ Mov(Y/X), contradicting the fact that ample divisors are movable (see,

e.g., Theorem 3.37). Therefore, we can conclude that w cannot be proportional

to any element of R.

Because π′ is a very good partial resolution, it follows that Y ′ must be nonsin-

gular above p. The hypothesis of the theorem implies that 〈w,w〉 > 8
9
. Lemma

7.3 hence guarantees that φpπ′ and φpπ′′ are Weyl-related.

The cases exhaust all possibilities, and hence we can conclude that φpπ′ and φpπ′′ are

Weyl-related for all closed points p ∈ Wsing. Lemma 7.2 implies that Wp
π′ =Wp

π′′ for

all closed points p ∈ Wsing, and hence we have that π′′ ∈ S. As π′ and ζ were arbitrary,

we have proven that S is closed under extremal flops over W . Theorem 3.40 hence

implies that S = Good(W ), proving Part (a).

In light of Proposition 7.4, Part (a) implies Part (b).
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8 A family of examples from the Weierstrass mod-

els of elliptic fibrations

In this section, we present applications of Theorems 5.5 and 5.9 to the KKMR decom-

positions for good partial resolutions of Weierstrass models. The examples that we

consider feature non-Kodaira fibers in codimension 2, so that the results of Matsuki

[57] do not apply. We consider examples based on Weierstrass models so that we

can apply a generalized Tate’s algorithm [4, 38, 77] to produce the desired Du Val

singularity types in codimension 2.

In Section 8.1, we recall the general setup of Weierstrass models. In Section 8.2,

we present the family of examples that we study, describing both the Weierstrass

model and one example of a good partial resolution. In Section 8.3, we compute the

enhancement homomorphisms for the good partial resolution described in Section 8.2

and apply our main results to characterize the KKMR decomposition.

8.1 Preliminaries on Weierstrass models

The general setup for Weierstrass models is the following situation.

Situation 8.1. Let B be a nonsingular variety, let L ∈ PicB be an invertible sheaf,

and let W ⊆ PB[L⊗2 ⊕ L⊗3 ⊕OB] be a closed subvariety of the form

V (y2z + a1xyz + a3yz
2 − x3 − a2x2z − a4xz2 − a6),

where [x; y; z] is the projective coordinate on PB[L⊗2⊕L⊗3⊕OB] and the coefficients

ai satisfy ai ∈ H0(B,L⊗i) for i = 1, 2, 3, 4, 6. Suppose that the natural projection

µ : W → B is smooth at the generic point of B. We denote by σ : B → W the

function [0; 0; 1], and we write S for the image of σ.

Remark 8.2. We use the same convention for projective bundles as Eisenbud and

Harris [15], so that points in PBV correspond to lines in the fibers of V . Formally, if

V is a locally free coherent sheaf on a scheme B, we let

PBV = ProjB Sym• V∗,

where Sym• V∗ is the symmetric algebra of the dual of V . This convention is dual
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to the one used by Grothendieck, who defined points in PBV to correspond to one-

dimensional quotients of the fibers of V .

The first result shows that W is normal and Gorenstein.

Lemma 8.3 ([69]). In Situation 8.1, W is normal and Gorenstein.

Proof. As W is a complete intersection, it is Gorenstein by [14, Corollary 21.19].

By construction, W is nonsingular in codimension 1. Serre’s criterion [14, Theorem

18.15] implies that W is normal.

We need to determine when W has cDV singularities. Whether this property

holds depends in general on the orders to which the coefficients in the Weierstrass

model vanish. To simplify the analysis, we reduce the defining equation. Formally,

the defining equation of a Weierstrass model can be written in reduced form

y2z − x3 − fxz2 − gz3 = 0

by applying a linear change of coordinates on the projective bundle PB[L⊗2 ⊕L⊗3 ⊕
OB]. We say that the defining equation is minimal if, there exists a reduced form

such that, for each closed point p ∈ B, either the coefficient f vanishes to order at

most 3 at p or the coefficient g vanishes to order at most 5 at p.

Proposition 8.4. In Situation 8.1, under minimality, W has cDV singularities.

Proof. Let p ∈ B be an arbitrary closed point, and let H ⊆ B be a general hyperplane

section through p. The proof of [69, Lemma 3.6] shows that W ×B SpecOH,p has

rational singularities (under minimality). As W is Gorenstein (by Lemma 8.3), so is

W ×B SpecOH,p. Thus, W ×B SpecOH,p has a Du Val singularity at every closed

point. Hence, W has a cDV singularity at every closed point of µ−1(p). As p was

arbitrary, W must have cDV singularities.

Remark 8.5. Proposition 8.4 was essentially proven by Nakayama [69]. However,

Nakayama [69, Lemma 3.6] only asserted that W has rational Gorenstein singularities

under minimality, when in fact W must have cDV singularities in this case.

We also need to determine when W is Q-factorial, which we show occurs when the

generic fiber has rank 0. Formally, let η denote the generic point ofB. In Situation 4.1,

note that Wη is an elliptic curve over k(η) embedded in P2
k(η) in Weierstrass form.
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Proposition 8.6. In Situation 8.1, if Wη has only finitely many k(η)-valued points,

then W is Q-factorial.

Proof. Lemma 8.3 guarantees that W is normal. To prove the proposition, it remains

to show that every divisor class is Q-Cartier.

We first show that every divisor D whose support does not meet µ−1(η) is Cartier.

Let D′ = µ∗D, which must be a divisor on B by construction. As B is nonsingular,

D′ is Cartier. As µ is a contraction, we have that D = µ∗D′, so that D is Cartier.

Let Z be an arbitrary prime divisor on W . We need to show that n[Z] is Cartier

for some n ∈ Z>0. If µ(Z) 6= B, then the previous paragraph implies that [Z] is

Cartier. Hence, we can assume that µ(Z) = B.

Using the group law on the elliptic curve Wη, we obtain a rational function f ∈
k(W ) such that the principal divisor of zeros and poles (f)|Wη

is [Zη] −m[Sη] − [q],

where m ∈ Z≥0 and q is a k(η)-valued point of Wη. As Wη has only finitely many

k(η)-valued points, q must be a torsion point of the elliptic curve Wη → Spec k(η).

Hence, there exist n ∈ Z>0 and g ∈ k(W ) such that (g)|Wη
= n[q] − n[Sη]. As a

result, we have that (fng)|Wη
= n[Zη]− (m + 1)n[Sη]. It follows that the support of

n[Z] − (m + 1)n[Sη] − (fng)|Wη
does not meet µ−1(η), so that the divisors n[Z] −

(m + 1)n[S] − (fng)|Wη
must be Cartier. As S does not meet the singular locus of

W, the divisor [S] is also Cartier, and it follows that n[Z] is Cartier as well.

Taking linear combinations, we see that W must be Q-factorial.

Remark 8.7. Proposition 8.6 is similar in spirit to results of Shioda [74] and Wazir [82],

who constructed homomorphisms from the Mordell-Weil group to the Picard group.

In essence, we exploit this homomorphism in our proof. Note that our argument

works for bases B of arbitrary dimension.

In light of Proposition 8.6, W is Q-factorial when the gauge group derived in

the F-theory literature is semisimple. When the Mordell-Weil rank is positive, the

F-theory literature considers a gauge algebra that is not semisimple—see Mayrhofer

et al. [59], Lawrie et al. [52], and Morrison and Taylor [65]—to handle subtleties in

the birational geometry. From our point of view, these subtleties are caused by the

possibility that W is not Q-factorial when the Mordell-Weil rank is positive.
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8.2 A collision and its good partial resolution

Our family of examples is based on partial compactifications of a class of Weierstrass

models introduced by Miranda [60]. In this class of Miranda models, the singular

locus Wsing has two irreducible components Z1 and Z2, which are nonsingular curves.

The Du Val singularity type at the generic points of Z1 and Z2 are Bn (with n ≥ 2)

and Cm (with m ≥ 4) respectively. Hence, the gauge algebra is isomorphic to the

spn⊕so2m+1, whose type is Langlands dual to Bn⊕Cm. In the terminology of elliptic

fibrations, we focus on the case in which the Kodaira singularity types below general

points of Z1 and Z2 are I2n+1 and I∗m−3 respectively. As the gauge group is not simply-

laced, these Kodaira fibers are non-split in the sense of Esole et al. [22, 23], in that

one has to pass to field extensions of the function fields of Z1 and Z2 to obtain split

Kodaira fibers—or, equivalently, Du Val singularities with simply-laced types—above

the generic points of Z1 and Z2.

Tate’s algorithm [77]—as generalized to elliptic threefolds by Bershadsky et al. [4]

and Katz et al. [38]—provides Tate forms for the coefficients of the defining equation

of the Weierstrass model that yield the Du Val singularity types described in the

previous paragraph. These Tate forms give rise to instances of Situation 8.1. Formally,

let B be a nonsingular surface. Let S = V (s) and T = V (t) be nonsingular curves

on B that meet transversely, and let L be an invertible sheaf on B. If m = 2k with

k ≥ 2, then the Tate form can be written as

y2z − x3 − b2tx2z − b4sn+1tk+1xz2 − b6s2n+1t2kz3, (6)

where we have that

b2 ∈ H0(B,L⊗2(−[T ]))

b4 ∈ H0(B,L⊗4(−(n+ 1)[S]− (k + 1)[T ]))

b6 ∈ H0(B,L⊗6(−(2n+ 1)[S]− 2k[T ])).

In this case, the discriminant of the defining equation is

∆ = s2n+1t2k+3
(
4b32b6 − b22b24st+ 27b26s

2n+1t2k−3 − 18b2b4b6s
n+1tk−1 + 4b34s

n+2tk
)

∈ H0(B,L⊗12).
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If m = 2k + 1 with k ≥ 2,39 then the Tate form can be written as

y2z − x3 − b2tx2z − b4sn+1tk+1xz2 − b6s2n+1t2k+1z3, (7)

where we have that

b2 ∈ H0(B,L⊗2(−[T ]))

b4 ∈ H0(B,L⊗4(−(n+ 1)[S]− (k + 1)[T ]))

b6 ∈ H0(B,L⊗6(−(2n+ 1)[S]− (2k + 1)[T ])).

In this case, the discriminant of the defining equation is

∆ = s2n+1t2k+4
(
4b32b6 − b22b24s+ 27b26s

2n+1t2k−2 − 18b2b4b6s
n+1tk−1 + 4b34s

n+2tk−1
)

∈ H0(B,L⊗12).

Remark 8.8. We note that—due to the presence of non-split I2n+1 fibers—the Tate

forms (6) and (7) are not the most general starting points for elliptic fibrations with

gauge algebra spn⊕so2m+1. See Katz et al. [38, Section 4.10] for a detailed discussion

of this point. For sake of simplicity, we consider only the Weierstrass models whose

defining equations can be written in Tate forms similar to (6) and (7).

Some mild regularity conditions are needed for the Tate forms to give rise to the

desired type of cDV singularities. In both cases, if

we have that b2b6|S 6= 0 and b2b6|T 6= 0 and that

the divisor V (∆s−2n−1t−m−3) ⊆ B is reduced and nonsingular,
(8)

then the singular locus of the Weierstrass model W is V (x, y, st). Letting Z1 =

V (x, y, s) and Z2 = V (x, y, t), if furthermore

the quadratic z2 − b2t does not have a zero z ∈ C(S) and

the quadratic b2x
2 + b4s

n+1x+ b6s
2n+1 does not have a zero x ∈ C(T ),

(9)

then the generalized Tate’s algorithm [38] implies that W has a Du Val singularity of

39We ignore the case of m = 3 due to subtleties of Tate forms for type B3 that arise from the
triality symmetry of the Dynkin diagram of type D4—see Esole et al. [22].
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type Cn at the generic point of Z1 and a Du Val singularity of type Bm at the generic

point of Z2. If (8) is satisfied and

V (b2) and S meet transversely and V (b2, t) = ∅, (10)

then it can be straightforwardly verified that the defining equation is minimal, and

hence Proposition 8.4 implies that W has cDV singularities. If furthermore

Wη has only finitely many k(η)-points, where η is the generic point of B, (11)

then Proposition 8.6 guarantees that W is Q-factorial. We summarize the discussion

of this paragraph in the following lemma.

Lemma 8.9. (a) If (8) and (10) are satisfied, then W has cDV singularities and

Wsing = Z1 ∪ Z2, where Z1 = V (x, y, s) and Z2 = V (x, y, t).

(b) Letting η1 and η2 denote the generic points of Z1 and Z2, respectively, if fur-

thermore (9) is satisfied, then the local rings OW,η1 and OW,η2 have Du Val

singularities of types Bn and Cm, respectively.

(c) If (11) is satisfied, then W is Q-factorial.

We now describe a good partial resolution of W–under further regularity condi-

tions. As resolutions involve blowing up repeatedly, we need to fix notation for the

defining equations of Cartier divisors that lie above the centers of blow-ups. Our

notation follows Esole and Yau [17, Section 4.1] and Lawrie and Schäfer-Nameki [51,

Section 2.3]. Given an integral scheme X and nonzero functions si ∈ H0(X,Li) for

1 ≤ i ≤ `, we write Bls1,...,s`|e for the blow-up of X at V (s1, . . . , s`). We let e be

such that V (e) = f−1(V (s1, . . . , s`)), where f : BlV (s1,...,sn)X → X is the projection.

By abuse of notation, we write si for e−mif ∗(si)—where mi is the order to which si

vanishes at V (s1, . . . , s`)—so that V (si) is the strict transform of V (si) under f−1.

Lemma 8.10. Under (8), (9), (10), and (11), suppose that

V (b6, s, t) = ∅. (12)
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Consider the sequence of blow-ups

Blx,y,sn−1|sn · · ·Blx,y,s2|s3 Blx,y,s1|s2 Blx,y,s|s1

Bluk,vk−1|w Blx,vk−1|uk · · ·Blx,v2|u3 Bly,u2|v2 Blx,v1|u2 Bly,u1|v1 Blx,y,t|u1 W.

if m = 2k and the sequence of blow-ups

Blx,y,sn−1|sn · · ·Blx,y,s2|s3 Blx,y,s1|s2 Blx,y,s|s1

Bluk,vk|w Bly,uk|vk · · ·Blx,v2|u3 Bly,u2|v2 Blx,v1|u2 Bly,u1|v1 Blx,y,t|u1 W

if m = 2k+1. In either case, the sequence of blow-ups yields a good partial resolution

of W that is nonsingular away from the inverse image of V (b6, x, y, s) and has Cartier

Cartan divisor classes [Z
(j)
i ].

To prove Lemma 8.10, we first provide explicit sections of invertible sheaves that

cut out the Cartan divisors. By considering the singularities of the Cartan divisors, we

next show first show that the composite of blow-ups yields a variety with only finitely

singular points and that the singular points all lie over V (b6, x, y, s). The blow-up is

Gorenstein by construction, and Serre’s criterion therefore implies that the blow-up

is therefore normal. Hence, the sequence of blow-ups defines a partial resolution. We

then apply Proposition 3.6 to show that the partial resolution is crepant. In light of

Lemma 8.9, W is Q-factorial and has cDV singularities, and Proposition 5.1 therefore

guarantees that the partial resolution is good.

Proof sketch. We first explicitly show that the Cartan divisor classes are all Cartier.

By reordering the curves if necessary, we can assume that −M(OW,ηi) is one of the

Killing matrices of Table 1 on page 17 for i = 1, 2. It can be straightforwardly verified

that Z
(j)
1 = V (sj) for 1 ≤ j ≤ n. For m = 2k, it can be verified that

Z
(1)
2 = V

(∏k−1
i=1 vi∏k−1
i=1 ui

)
Z

(2)
2 = V (u1)

Z
(2j−1)
2 = V

(∏k−1
i=j uj∏k−1
i=j vj

)
for 2 ≤ j ≤ k − 1
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Z
(2j)
2 = V

( ∏k−1
i=j vj∏k−1
i=j+1 uj

)
for 2 ≤ j ≤ k − 1

Z
(2k−1)
2 = V (w)

Z
(2k)
2 = V (um).

For m = 2k + 1, it can also be verified that

Z
(1)
2 = V

(∏k−1
i=1 vi∏k
i=1 ui

)
Z

(2)
2 = V (u1)

Z
(2j−1)
2 = V

(∏k
i=j uj∏k−1
i=j vj

)
for 2 ≤ j ≤ k

Z
(2j)
2 = V

( ∏k−1
i=j vj∏k
i=j+1 uj

)
for 2 ≤ j ≤ k − 1

Z
(2k)
2 = V (w)

Z
(2k+1)
2 = V (vm).

In either case, all of the Cartan divisor classes are Cartier, as claimed.

We denote the composite of the sequence of blow-ups by π : Y → W . Define a

variety Y ′ over W ′ = PB[L⊗2 ⊕ L⊗3 ⊕OB] by

Y ′ = Blx,y,sn−1|sn · · ·Blx,y,s2|s3 Blx,y,s1|s2 Blx,y,s|s1

Bluk,vk−1|w Blx,vk−1|uk · · ·Blx,v2|u3 Bly,u2|v2 Blx,v1|u2 Bly,u1|v1 Blx,y,t|u1 W
′

if m = 2k and

Y ′ = Blx,y,sn−1|sn · · ·Blx,y,s2|s3 Blx,y,s1|s2 Blx,y,s|s1

Bluk,vk|w Bly,uk|vk · · ·Blx,v2|u3 Bly,u2|v2 Blx,v1|u2 Bly,u1|v1 Blx,y,t|u1 W
′

if m = 2k + 1. Because s and t define nonsingular curves in B, the centers of the

blow-ups are nonsingular. Hence Y ′ is obtained from the nonsingular variety W ′ by

blow-ups at nonsingular centers, so that Y ′ must be nonsingular. The variety Y is
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the proper transform of W in Y ′, and is cut out in Y ′ by section f defined by

(
k−1∏
i=1

vi

)
y2z −

(
k−1∏
i=1

ui

)
(
∏n

i=1 si)
(∏k−1

i=2 (uivi)
)
u2kw

2x3 + b2tukx
2z

+b4s
n+1
(∏n

i=1 s
n+1−i
i

)
tk+1

(∏k−1
i=1 (uivi)

k−i
)
ukxz

2

+b6s
2n+1

(∏n
i=1 s

2n+1−2i
i

)
t2k
(∏k−1

i=1 (uivi)
2k−1−2i

)
z3


if m = 2k and

(
k∏
i=1

vi

)
y2z −

(
k∏
i=1

ui

)
(
∏n

i=1 si)
(∏k

i=2(uivi)
)
w2x3 + b2tx

2z

+b4s
n+1
(∏n

i=1 s
n+1−i
i

)
tk+1

(∏k−1
i=1 (uivi)

k−i
)
xz2

+b6s
2n+1

(∏n
i=1 s

2n+1−2i
i

)
t2k+1

(∏k−1
i=1 (uivi)

2k−2i
)
z3


if m = 2k + 1.

For ease of notation, define an integer

` =

k − 1 if m = 2k

k if m = 2k + 1
.

On Y ′, we have that

π∗s = s
n∏
i=1

si

π∗t = tw2

(
k∏
i=1

ui

)(∏̀
i=1

vi

)
.

Define a section

r =

uk if m = 2k

vk if m = 2k + 1.

We next show that Ysing ⊆ V (b6, x, π
∗s) as sets. As the centers of the blow-ups

all lie over V (x, y, st), the morphism π must be an isomorphism over the nonsingular

locus of W by Lemma 8.9. Hence, π−1(W \Wsing) must be nonsingular.

We check nonsingularity by considering the singularities of Cartan divisors. The

Cartan divisor Z
(j)
1 is cut out in the nonsingular variety V (sj) ⊆ Y by the restriction
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of f, which can be written as

f
(j)
1 =

(∏̀
i=1

vi

)
y2z − b2t

(
k∏
i=1

ui

)
x2.

Note that V ((π∗t)/r, sj) = ∅ on Y ′ for 1 ≤ j ≤ n by construction. Hence, the section

f
(j)
1 vanishes to order at most 1 except on V (r, xy, sj) ∪ V (x, y, sj), so that Z

(j)
1 is

nonsingular away from V (r, xy, sj) ∪ V (x, y, sj). As Z
(j)
1 is a Cartier divisor for all

1 ≤ j ≤ n, it follows that Y is nonsingular on V (sj)\(V (r, xy, sj) ∪ V (x, y, sj)) for all

1 ≤ j ≤ n. Because S and T meet transversely on B, the section f vanishes to order

only 1 at every closed point in V (r, xy, sj) ⊆ Y ′. For 1 ≤ j ≤ n − 1, we have that

V (x, y, sj) = ∅ on Y ′ by construction. Note also that the section f vanishes to order

1 at every closed point in V (x, y, sn) \ V (x, y, sn, b6). It follows that Y is nonsingular

along

V

(
n∏
i=1

si

)
\ V (x, y, sn, b6).

It can also be verified straightforwardly that Y is nonsingular along V (s) \ V (π∗t).

A similar argument shows that Y is nonsingular along

(V (π∗t) \ V (b2, x, π
∗t)) = V (f ∗t),

where the second equality is due to (10). Therefore, we have that Ysing ⊆ V (b6, x, π
∗s)

as sets, so that Ysing is a finite subset of π−1(V (b6, x, y, s)). In particular, Y is non-

singular in codimension 2.

Because Y is the prime divisor V (f) in the nonsingular variety Y ′, the variety Y

must be Gorenstein by [14, Corollary 21.19]. As Y is nonsingular in codimension 2,

it is nonsingular is codimension 1 and hence normal by Serre’s criterion [14, Theorem

18.15]. Therefore, π is a partial resolution.

As W is normal (by Lemma 8.3), applying Proposition 3.6 repeatedly shows that

f is crepant. Note that f is projective by construction. Because W is Q-factorial and

has cDV singularities (by Lemma 8.9) and Y is nonsingular in codimension 2 (as we

have shown in the course of this proof), Proposition 5.1 implies that π is good.
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8.3 Using the main results to find the KKMR decomposition

As shown by Miranda [60, Section 11], there is a crepant resolution in a neighborhood

of V (s, t) whose fiber above V (s, t) of the partial resolution is an incomplete I∗ fiber—

a non-Kodaira fiber. More precisely, in the Miranda [60] resolution, the dual graph

fiber above any point in the intersection Z1 ∩ Z2 is an incomplete type D Dynkin

diagram. In particular, there are non-Kodaira fibers, so that the results of Matsuki

[57, Section II-2] do not apply.40 Nevertheless, we are able to completely describe the

KKMR decomposition using Theorems 5.5 and 5.9.

Corollary 8.11. Under (8), (9), (10), (11), and (12), the following conclusions hold.

(a) The good partial resolution given in Lemma 8.10 is very good.

(b) The KKMR decomposition (1) of Theorem 5.5 is given by the decomposition

I(spn⊕so2n+1, (vec,vec)), where (vec,vec) is the bifundamental representation,

i.e., the tensor product of the defining (first fundamental) representation of spn

and the defining (vector) representation of so2n+1.

To prove Corollary 8.11, we determine the sets of enhancement weights for the

good partial resolution given in Lemma 8.10. We show that all enhancement weights

below singular points are proportional to roots, and that the weights that are not

proportional to roots that appear anywhere are precisely the weights of the bifunda-

mental representation. The corollary then follows from Corollary 5.10.

Proof sketch. By Lemma 8.10, the sequence of blow-ups defined in Lemma 8.10 gives

a good partial resolution, which we denote by π : Y → W . Note also that Y is

nonsingular above Z1 ∩ Z2 because V (b6, s, t) = ∅ on B.

We compute the enhancement weights of π at every singular point. For all closed

points p ∈ Z1 \ Z2 with p /∈ V (b2b6), it can be verified straightforwardly that the

multisetWp
π,6=0 consists of 2 (resp. 1) copies of every short (resp. long) element of R1,

as well as two copies of every weight of the defining (first fundamental) representation

vec of spn. Here, we say that a root is short if it has length
√

2 and long otherwise.

For p ∈ V (b6, x, y, s), it can be verified that the multiset Wp
6=0 consists of 2 (resp. 1)

copies of every short (resp. long) element of R1, as well as 4 copies of every weight

40It is a consequence of [57, Theorem II-2-1-1] that all crepant resolutions have Kodaira fibers
under the hypotheses of [57, Theorem II-2-1-1].
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of the defining (first fundamental) representation vec of spn. For p ∈ V (b2, x, y, s),

it can be verified that the multiset Wp
π, 6=0 consists of 4 (resp. 1) copies of every short

(resp. long) element of R1, as well as 6 copies of every weight of the defining (first

fundamental) representation vec of spn. Similar characterizations of Wp
π hold for

all closed points p ∈ Z2 \ Z1 and all closed points p ∈ V (b2, x, y, s). In all of these

cases—which together comprise all closed points p ∈ (Z1 ∪ Z2) \ (Z1 ∩ Z2)—all of

the enhancement weights are proportional to roots. Because π is nonsingular above

Z1 ∩ Z2, we have therefore proven Part (a).

We now compute Wp
π for p ∈ Z1 ∩ Z2. Let p ∈ Z1 ∩ Z2 be arbitrary, and let Hp

denote the inverse image in W of a general hyperplane section through the image of

p in B. By construction, we can take Hp to meet Z1 and Z2 transversely at p. Tate’s

algorithm [77] guarantees that OHp,p has a Du Val singularity of type Dm+2n+2. It

can be verified straightforwardly from Proposition 6.2 that φpπ is given by

φpπ(c
(j)
1 ) = rpm+2j−1 + 2rpm+2j + rpm+2j+1 for all 1 ≤ j ≤ n− 1

φpπ(c
(n)
1 ) = rpm+2n−1 + 2rpm+2m + rpm+2n+1 + rpm+2n+2

φpπ(c
(j)
2 ) = rpj for all 1 ≤ j ≤ m− 1

φpπ(c
(m)
2 ) = 2

m+2n∑
k=m

rpk + rpm+2n+1 + rpm+2n+2.

Here, we are ordering the simple roots so that the Killing matrix is exactly one of the

matrices given in Table 1 on page 17—without having to permute (simultaneously)

rows and columns. A simple calculation from the formula for φpπ shows thatWp
π,6=0\RR

consists of 2 copies of each weight of the bifundamental representation.

Taking unions over all p, we see that the enhancement weights that appear that

are not proportional to roots are precisely the weights of the bifundamental represen-

tation. Part (b) therefore follows from Corollary 5.10.

Corollary 8.11 illustrates how our main results can be used to characterize the

KKMR decomposition of a relative minimal model of a resolution of a Q-factorial

threefold with cDV singularities without having to compute all of the relative minimal

models. Indeed, in the course of the proof of Corollary 8.11, we only had to deal with

one good partial resolution—the one constructed in Lemma 8.10. Yet, we were able

to leverage Theorems 5.5 and 5.9—in the form of Corollary 5.10—to characterize the

KKMR decomposition.
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A Proof of Proposition 3.16

We first prove Part (a). By [54, Theorem 4.1], there exists a sequence of schemes

X = Xn → Xn−1 → · · · → X1 → X0 = SpecR

such that Xi+1 is obtained from Xi by blowing up a singular, closed point pi ∈ Xi

for all i. Because R is of essentially finite type over a field, R is a Nagata ring

by [76, Tags 0335 and 032U] and is excellent by [76, Tags 07QU and 07QW]. The

completion of R is normal by [76, Tag 0C23]. As a result, [76, Tag 0BGC] applies.

[76, Tag 0BGB] implies that Xi/Xi−1 has a dualizing sheaf ωXi/Xi−1
' OXi for all i.

By Proposition 3.11, it follows that X/ SpecR has a dualizing sheaf ωX/ SpecR ' OX ,

as desired.

We next prove Part (b), continuing with the preceding notation. By the definition

of minimality (Theorem 3.15), f must factor through g via some morphism h : Y →
X. Note that h must be proper and birational because f and g are both proper and

birational. As Y and X are regular two-dimensional Noetherian schemes, h must

factor as a sequence of blow-ups at closed points by [76, Tag 0C5R].

Write h as a composite h2 ◦ h1, where h1 : Y → T and h2 : T → X are proper

birational morphisms, T is regular, and h1 is given by a blow-up at a regular, closed

point p ∈ T . Note that h1 is a morphism between regular schemes, and is hence a

local complete intersection morphism. As a result, T/X has a dualizing sheaf that is

invertible by [76, Tags 0BR0 and 0BRT]. By Part (a) and Proposition 3.11, T/ SpecR

also has a dualizing sheaf that is invertible.

Applying the results of [76, Tag 0AU3] on the dualizing sheaves of blow-ups regular

two-dimensional Noetherian schemes, we see that ωP1
T
' π∗ωT ⊗ OP1

T
(−2), where

π : P1
T → T is the projection. Regarding Y as an effective Cartier divisor on P1

T and

applying the adjunction formula for dualizing sheaves [76, Tag 0AU3], we have that

ωY/T ' j∗OP1
T
(−1). By Proposition 3.11, it follows that ωY/ SpecR ' j∗OP1

T
(−1) ⊗

h∗1ωT/ SpecR. Taking E to be the exceptional curve of h1, we have that ωY/SpecR
∣∣
E
'

j∗P1
T
O(−1)

∣∣∣
E
, which defines a non-torsion class in PicE. As j∗ : PicX → PicE is

well-defined, the class of ωY/SpecR in PicY must also be non-torsion, as desired.
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