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1. Introduction

It is not surprising that he would have been [misled], unsuspicious as he presumably is of
the diabolical malice inherent in the primes.

– Littlewood to Hardy, about Ramanujan

The representation of primes by integer polynomials is one of the chief preoccupations of
number theory. The (closely related) questions are: which polynomials take prime values,
and how frequent are these values? The Prime Number Theorem answers both questions
for the polynomial f(n) = n; Dirichlet’s theorem answers the first for linear polynomials
of the form an + b. Already when we go to the simplest nontrivial quadratic polynomials
f(n) = n2 + 1 we find a major open problem, first proposed by Landau.

When f is allowed to have two or more variables, the theory becomes extremely rich,
tying in intimately with algebraic number theory. The easiest case x2 + y2 already depends
on prime factorization in Z[i] – counting such primes asymptotically is a special case of the
Prime Number Theorem in arithmetic progressions. The representation of primes by many
such special forms relate closely to prime factorization of number fields of the corresponding
degree, and the ideal class group makes an appearance as soon as unique factorization breaks
down.

The question is even richer and almost entirely intractable for nonhomogeneous forms.
The representation of primes by the polynomial f(x, y) = x2 +y3, for example, is closely tied
to the counting of elliptic curves with prime discriminant; as it stands x2 + y3 is considered
hopeless with our current technology. Special values of discriminant polynomials have great
value in arithmetic statistics – it is an active area of research today to count squarefree values
of discriminants, something much more tractable.

Analytic number theory brings (at least) two extremely disparate approaches to these
problems. Historically the first approach to prove the Prime Number Theorem worked via
complex analysis using zero-free regions of the Riemann zeta function and similar L-functions.
The complex analysis approach provides proofs of the prime number theorem and many vast
generalizations thereof – for example to arithmetic progressions or number fields. When
these problems are tractable purely via L-functions, the estimates are often far superior to
those obtainable by any other means.

The historically second approach is the sieve, which always begins via the purely combi-
natorial inclusion-exclusion formula. It took a long time for people to recognize the power of
sieve theory; beyond its technical difficulty was a central problem with sieves called the parity
problem which number theorists long thought rendered a large class of problems completely
out of reach.

Classical sieve theory estimates the number of prime values of f by reducing it to a
much easier problem: how many values of f lie in any given arithmetic progression? In
modern language being able to answer this question is the one of providing Type I estimates.
Unfortunately, using Type I estimates alone is only enough to count almost-primes, numbers
with at most 2 prime factors. As we will see, Type I estimates cannot distinguish between
numbers with odd and even numbers of divisors. In the end these “classical” sieves failed to
provide asymptotic results as the bounds they provide are off by at least, and often exactly,
a factor of two.
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The reason these sieves fail is because they cannot distinguish between numbers between
numbers with an even or odd number of prime factors – this is called the parity problem.
Here are three aspects of the Parity Problem.

(1) The Selberg sieve is off by a factor of 2 when trying to give an upper bound for prime
numbers. If π(X) is the number of primes up through X, then

π(X) ≤ (2 + o(1))X

logX
,

which secretly comes from the fact that we can only use the primes up to
√
X to

sieve, so the bound is more transparently written as

π(X) ≤ (1 + o(1))X

log
√
X

.

(2) It is much easier to count k-almost primes (products of up to k primes) weighted by
the generalized von Mangoldt functions (see Definition 10), as long as k ≥ 2. For
k = 2 the Selberg Symmetry Formula∑

p≤X

log2 p+ 2
∑

p<q≤X

log p log q = 2X logX +O(X)

is disappointingly easy to prove.
(3) Consider the function f(n) which is 2 when n has an even number of prime factors

and 0 otherwise; from the perspective of Type I estimates, this sequence is indistin-
guishable from the constant function. In contrast if f(n) is 3 when n has a multiple
of three prime factors, the sequence is suddenly distinguishable!

We will discuss this phenomenon in much more depth in Section 2.4. Although the parity
problem is now common knowledge, the most exact formulation remains in Selberg’s original
lecture notes on sieves [12]. Our goal is to fully highlight how surprising the parity problem
is and also sketch why there is no corresponding mod n problem for any n 6= 2.

Only recently has the parity problem been broken in a handful of cases by injecting a
second kind of estimate, the so-called bilinear forms or Type II estimates. Fouvry and
Iwaniec were first to do this in order to show x2 +p2 represents infinitely many primes, when
p must also be prime. This method has been extended with some success, most notably to
count primes of the forms x2 + y4 [8] and x3 + 2y3 [10].

A Type II estimate is a guarantee that about an equal number of values of f have an odd
or even numbers of divisors. The motivation for a Type II estimate is a common general
principle in mathematics: prove that the known obstructions to solving a problem are the
only obstructions. The success of the new sieve shows that while the parity problem cannot
be solved by Type I estimates on their own, it is the only obstruction to sieving for primes.

Using these techniques we contribute a new asymptotic count for primes of the form
p2 +Ny2 for fixed N > 0. Let Λ(n) be the von Mangoldt function, and define g(n) to be the
multiplicative function which on prime powers is
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g(pα) =


1+
(
−N
p

)
pα

podd, p - N
1
2

p = 2, p - N,α = 1
1−χ4(N)

2α
p = 2, p - N,α ≥ 2

0 p|N

where χ4 is the nontrivial Dirichlet character mod 4.

Theorem 1. For any A,X > 0,∑
x2+Ny2≤X

Λ(x)Λ(x2 +Ny2) =
πHNX

4
√
N

+OA(X(logX)−A),

where the implied constant depends only on A and

HN =
∏
p-N

(1− g(p))(1− p−1)−1.

We remark that the estimates we refer to as Type I and Type II have close analogies in
the Hardy-Littlewood Circle Method. There Type I bounds refer to major arcs and Type II
bounds refer to minor arcs. Although the analogy between the Asymptotic Sieve for Primes
and the Circle Method is quite interesting, especially since both are related to Vaughan’s
identity, we will make no attempt to flesh out this connection.

1.1. Outline. The goal of this paper is twofold.
First, we revisit the history of the sieve. We trace the development of the earliest sieves –

Brun’s combinatorial sieve and Selberg’s sieve – that fall within the framework of exploiting
only Type I estimates to their maximum potential. From here we move to how the parity
problem came to be understood as the central obstruction to sieve theory, and how Bombieri
perfected the art of getting asymptotic counts for almost-prime values using only Type I
estimates. Only then can we talk about the injection of Type II estimates to count prime
values themselves and the breakthrough of the Friedlander-Iwaniec Asymptotic Sieve for
Primes.

Second, we extend the methods of Fouvry and Iwaniec to prove Theorem 1. While it
doesn’t directly apply the Asymptotic Sieve for Primes, it uses exactly the same tools
and philosophy. When Z[

√
−N ] is still a unique factorization domain, the generalization

is straightforward. However, to deal with quadratic number fields with nontrivial class num-
ber new tools must be introduced to prove both the Type I and Type II estimates required.
As a consequence this section will prove much more technical than the first.

2. An Intuitive Account of Sieve Theory

A detailed and rigorous exposition of all of these results and much more can be found in
Opera de Cribro by Iwaniec and Friedlander [6]. A good exposition of the prime-detecting
sieve in particular can be found in Harman [9]. In contrast to these sources, we dispense
with the full generality of sieve theory in favor of focusing on the core ideas of each sieve by
trying to count primes with them. We define the prime-counting function as

π(X) = |{p prime : p ≤ X}|.
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We have Atle Selberg to thank for the best ideas that follow. In particular, the powerful
Λ2 sieve, the Symmetry Formula, and the clarification of the parity problem are all due to
Selberg.

Henceforth, we use the notations A(X) � B(X) and A(X) = O(B(X)) interchangeably
to mean the two functions A,B satisfy B(X) ≥ 0 for all X and

lim sup
X→∞

|A(X)|
B(X)

<∞.

The following table shows what each sieve proves about the asymptotic behavior of π(X).
We define additionally the function

ψk(X) =
∑
n≤X

Λk(n),

where Λk is the generalized von Mangoldt function (see Definition 10). This function ψk(X)
counts the k-almost primes up through X weighted in a special way – note that in general
it does NOT weight numbers with i prime factors the same, for each 1 ≤ i ≤ k (see Section
2.5.2).

Sieve Bound on Prime Counting Function

Eratosthenes π(X)� X
log logX

Brun’s Pure Sieve π(X)� X log logX
logX

Selberg’s Sieve π(X) ≤ (2+o(1))X
logX

Bombieri’s Asymptotic Sieve ψk(X) = (k+o(1))X
logX

, k ≥ 2

Asymptotic Sieve for Primes π(X) = (1+o(1))X
logX

Remark 2. The above table can be misleading. The more advanced form of Brun’s sieve
does better, getting π(X) � X

logX
with a weaker constant than Selberg’s sieve. Also, the

Asymptotic Sieve for Primes, while it successfully counts the prime numbers, assumes a much
stronger hypothesis than its conclusion (a form of the Prime Number Theorem on arithmetic
progressions) because it requires Type II information. It is doubly unsuccessful in this case
because it achieves a much inferior error term than it assumes.

2.1. The Basics. Sieve theory starts with the tension between what is easy to count: num-
bers in arithmetic progressions, and what we want to count: prime numbers.

For a given sequence of nonnegative reals {an}, which we can think of as the indicator
sequence of a number-theoretically interesting sequence, and assume that the sequence is
well-behaved in the sense that good estimates are available for the summatory functions

A(X) =
∑
n≤X

an

and
Ad(X) =

∑
n≤X,d|n

an,

asymptotically as X → ∞, as long as d grows reasonably slowly compared to X. Usually
the estimate takes the form

Ad(X) = g(d)A(X) + rd(X)

where g is a multiplicative function and rd(X) is very small compared to A(X).
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Definition 3. A Type I estimate is a bound of the form∑
d≤D

|rd(X)| �C A(X) log−C X

which holds for every C. The function D = D(X) is the level of distribution.

What we want to count is the amount of {an} supported on the primes, that is,

S(X) =
∑
p≤X

ap

using only Type I estimates. Henceforth the variables p, q are understood to range only
through primes. Later on, it will be fruitful to consider as a proxy

S(X) =
∑
n≤X

anΛ(n)

where Λ(n) is the von Mangoldt function, but from the perspective of the basic combinatorial
sieve the first definition is more natural.

Our expectations cannot be too high; as we will see in Section 2.4, even with exact closed
forms for A(X) and Ad(X) we can only estimate S(X) to within a factor of two at best. We
will concern ourselves only with deriving upper bounds for S(X); there are many methods
to convert upper bounds to lower bounds and vice versa, e.g. the Buchstab identities .

The idea is to take as small a linear combination of Ad(X) as possible such that each an
appears with a nonnegative coefficient and each ap has coefficient at least one. It is helpful
to add an extra parameter D, which we call the level of distribution, and estimate

S(D,X) =
∑

D<p≤X

ap,

so then we can use the small primes p ≤ D to sieve. For example, if D is very small compared
to X, we can bound

S(D,X) ≤ A(X)−
∑
p≤D

Ap(X) +
∑
p,q≤D

Apq(X)−
∑

p,q,r≤D

Apqr(X) + · · ·

using the inclusion-exclusion principle. This bound is only good up to about D ≈ logX, just
because so many error terms rd(X) accumulate in this expression when we let d = p1p2 . . . pk
for any choice of distinct primes pi ≤ D.

How bad is this? Let’s use it to bound the total number of primes, so an = 1 for all n.
We have Ad(X) = Xd−1 +O(1), so

S(D,X) ≤ A(X)−
∑
p≤D

Ap(X) +
∑
p,q≤D

Apq(X)− · · ·

= X
(

1−
∑
p≤D

p−1 +
∑
p,q

p−1q−1 − · · ·
)

+O(2π(D)),

where π(D) is the number of primes up through D. The first term has a nice Euler product,
so we get

S(D,X) ≤ X
∏
p≤D

(1− p−1) +O(2π(D)).
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Using elementary methods, Mertens was able to estimate the product above as O((logD)−1),
and so we have the bound

π(X)� X(logD)−1 + 2π(D).

The error term grows extremely quickly in D and we can only pick D ≈ logX before it
overwhelms the main term.

Proposition 4. If π is the prime counting function, then

(2.1) π(X)� X

log logX
.

This is very far from the Prime Number Theorem but still nontrivial.

2.2. The Brun Sieve. Viggo Brun was the first person to take the idea of the sieve as a
competitive method for analytic number theory; the conventional wisdom was that bounds
like (2.1) are the best that can be done. There are at least two sieves in the literature referred
to as the Brun sieve; we will develop the simpler one, usually called Brun’s pure sieve. Brun’s
sieve is notable for providing the first nontrivial bounds on the number of twin primes.

We return to the inclusion-exclusion formula

S(D,X) ≤ A(X)−
∑
p≤D

Ap(X) +
∑
p,q≤D

Apq(X)−
∑

p,q,r≤D

Apqr(X) + · · · ,

which we can rewrite conveniently as

S(D,X) ≤
∑
d|PD

µ(d)Ad(X)

where µ is the usual Möbius function, and PD is the product of primes p ≤ D. But instead
of expanding out the entire inclusion-exclusion formula, we truncate it at some stage k and
throw out all the terms with more than k prime factors. In general if we truncate at a step
with k odd, we are under-counting, and if we truncate with k even, we are over-counting;
in combinatorial literature these are known as Bonferroni’s inequalities. The upshot is that
the smallest terms, which also happen to be the most numerous, are thrown out. In this
particular instance we only care for upper bounds for S(D,X), so we pick k even.

Write ω(d) to be the number of (distinct) prime factors of d, so that by Bonferroni’s
inequality,

S(D,X) ≤
∑

d|PD,ω(d)≤k

µ(d)Ad(X)

= X
∑

d|PD,ω(d)≤k

µ(d)

d
+O(Dk),

happily noting that an error term that was once exponential in D is now polynomial. Now
we add back in all the main terms with ω(d) > k that we just threw out, with the exception
that they no longer have O(1) error terms attached. This to get a nicer sum while adding
something tiny:

S(D,X) ≤ X
∑
d|PD

µ(d)

d
+O

(
X

∑
d|PD,ω(d)=k+1

1

d

)
+O(Dk).
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Note that the error bound only needs the terms with ω(d) = k + 1 exactly, by Bonferonni’s
inequalities again. The main term now has a nice Euler product form,∑

d|PD

µ(d)

d
=
∏
p≤D

(
1− 1

p

)
,

and the first error term can be bounded by Rankin’s trick, for a parameter t > 1 to be
optimized later: ∑

d|PD,ω(d)=k+1

1

d
= t−(k+1)

∑
d|PD,ω(d)=k+1

tk+1

d

≤ t−(k+1)
∑
d|PD

tω(d)

d

= t−(k+1)
∏
p≤D

(
1 +

t

p

)
.

Putting this together we get a bound of the form

(2.2) S(D,X) ≤ X
∏
p≤D

(
1− 1

p

)
+O

(
Xt−(k+1)

∏
p≤D

(
1 +

t

p

))
+O(Dk).

Finally, to estimate the leftover products, we have

log
( ∏
p≤D

(
1 +

t

p

))
=

∑
p≤D

t

p
+O(1)

= t log logD +O(1)

by an elementary estimate of Mertens. Thus, the bound (2.2) reduces to

π(X)� X(logD)−1 +Xt−(k+1)(logD)t +Dk,

and it remains to optimize the values ofD, t, k as functions ofX subject to the mild conditions
that D < X and k is an even natural number. Close to optimal values turn out to be

D = exp
(
C1 logX
log logX

)
t = C2

k = C3 log logX

with some suitable constants Ci independent of X.

Proposition 5. If π is the prime counting function, then

π(X)� X log logX

logX
.

This is already close to the Prime Number Theorem. It is possible to optimize Brun’s
argument further by inhomogeneously truncating the inclusion-exclusion, cutting off terms
p1p2 · · · pk depending not only on the number k of them but by the sizes of pi as well – this
sieve is also due to Brun and leads to a correct order of magnitude bound on the prime
counting function.
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2.3. The Selberg Sieve. The next evolution in sieve theory after Brun was the Selberg
“quadratic” or Λ2 sieve, which does away with the combinatorially motivated constraint that
the coefficients of Ad(X) should be in {0,±1} (such sieves are naturally called combinatorial
sieves).

Without this constraint we are left with a pure optimization problem: pick weights ρd ∈ R
for Ad(X) so that for any D < n ≤ X, ∑

d|n

ρd ≥ 0,

and ρ1 = 1, which together imply

(2.3) S(D,X) ≤
∑
d≤D

ρdAd(X).

We can think of {ρd} as the optimal “projection” of the Möbius function onto the space of
functions supported on [1, D].

Selberg’s insight was to guarantee the nonnegativity constraint by setting∑
d|n

ρd =
(∑

d|n

λd

)2

where λd are arbitrary real parameters with λ1 = 1. In this situation, we can solve for
ρd =

∑
[d1,d2]=d λd1λd2 , where [d1, d2] is the lcm of d1, d2. Now the optimal choice of λd is

exhibited by simple Cauchy-Schwarz inequality.
Again, we begin with our example an = 1. Expanding out (2.3) with our choice of ρd,

S(D,X) ≤
∑ ∑

d1,d2≤D

λd1λd2

( X

[d1, d2]
+O(1)

)
≤ X

∑ ∑
d1,d2≤D

1

[d1, d2]
λd1λd2 +O

((∑
d≤D

|λd|
)2)

.

Thus it remains to minimize the quadratic form

Q(λ) =
∑ ∑

d1,d2≤D

1

[d1, d2]
λd1λd2

subject to the constraint λ1 = 1. Now this quadratic form can be diagonalized by repeatedly
completing the square:

Q(λ) =
∑ ∑

d1,d2≤D

gcd(d1, d2)
λd1λd2

d1d2

=
∑
g≤D

ϕ(g)
∑
g|d1

∑
g|d2

λd1λd2

d1d2

=
∑
g≤D

ϕ(g)
( ∑
g|d,d≤D

λd
d

)2

,

where ϕ is the Euler totient function. Let

x(g) =
∑

g|d,d≤D

λd
d
,
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so that we have essentially a free optimization of Q, subject to the single constraint

λ1 =
∑
g≤D

µ(g)x(g) = 1.

By Cauchy-Schwarz, the minimum is

Q(λ) =
∑
g≤D

ϕ(g)x(g)2

≥
(
∑

g≤D µ(g)x(g))2

(
∑

g≤D µ(g)2ϕ(g)−1)

=
(∑
g≤D

µ(g)2

ϕ(g)

)−1

,

the minimum easily achieved using the equality condition of Cauchy-Schwarz. The inner
sum is supported on squarefree numbers, and can be estimated by expanding as a geometric
series and multiplicativity

1

ϕ(p)
=

1

p
+

1

p2
+ · · · ,

so that ∑
g≤D

µ(g)2

ϕ(g)
≥

∑
n≤D

1

n
,

= logD +O(1)

and so we are left with

S(D,X) ≤ (1 + o(1))X(logD)−1 +O
((∑

d≤D

|λd|
)2)

.

The last thing to do is to figure out what the optimal values of λd were; it’s not difficult to
see that they have magnitude at most 1, so the error term is O(D2). Picking D = X1/2−o(1)

is then optimal.

Proposition 6. If π(X) is the prime counting function, then

π(X) ≤ (2 + o(1))
X

logX
.

Not only do we get the correct order of magnitude, the bound is off by exactly a factor of
two! This is the parity problem at work.

Although the Selberg sieve is permanently handicapped by the parity problem, it achieves
results of great uniformity. The most famous application is the Brun-Titchmarsh Theorem.

Theorem 7. (Brun-Titchmarsh) If π(X; q, a) is the number of primes p ≤ X satisfying
p ≡ a (mod q), then

π(X; q, a) <
(2 + o(1))X

ϕ(q) log(X/q)
,

uniformly for all q < X.
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This theorem was proved by Titchmarsh using the Brun sieve for a much weaker constant
in place of 2, and refined to the above form by van Lint and Richert [13] using the Selberg
sieve. For comparison, analytic methods involving L-functions can prove the Siegel-Walfisz
theorem, the exact asymptotic for π(X; q, a) with a much better error term, but it only holds
up to q � (logX)C for fixed C.

2.4. The Parity Problem. Much more can be said about sieve theory relying only on Type
I estimates of the form

Ad(X) = g(d)A(X) + rd(X).

Commonly, sieves are distinguished by two parameters: the level of distribution D they
require, and the “sieve dimension” κ they are best suited for. The sieve dimension measures
the average number of residue classes mod p we are sieving out, defined as the constant κ
(which almost always exists) for which∑

p≤X

g(p) = κ log logX +O(1),

noting that the standard case g(p) = 1/p is of dimension 1. Rosser’s linear sieve, or beta
sieve, provides bounds of the correct order of magnitude in the case of sieve dimension 1.

Sieves with finite dimension are known as small sieves. In contrast, the large sieve is a
family of methods for dealing with the case that g(p) is much larger than 1/p, usually more
like a constant; we will see an application of the large sieve inequality later on in Section 3.3.
Selberg’s sieve as presented above is unique in its generality, competitive with both small
and large sieves.

All of these sieves cannot get asymptotic results because of the so-called parity problem,
which tells us that Type I estimates alone cannot distinguish between primes and almost-
primes, the products of two prime factors.

Remark 8. The exact statement is more delicate than this, as we can see from the Selberg
sieve inequality

π(X)� (2 + o(1))X(logX)−1.

But there are

π2(X) ≈ X log logX

logX
2-almost primes up to X, so most of them are eliminated by the Selberg sieve above. A
correct statement requires either throwing out almost primes with a small prime factor or
weighting the almost-primes by Λ2, the second von Mangoldt function

Λ2(n) =
∑
d|n

µ(d)(log
n

d
)2.

Here is an explicit instance of the parity problem which we steal from the excellent ex-
position of Ford [3]. Let λ(n) be the Liouville function λ(n) = (−1)Ω(n), where Ω(n) is
the number of prime factors of n, counting multiplicity. Define an = 1 + λ(n), so that in
particular ap = 0 on all primes p, and S(X) = 0.

On the other hand, with A(X) = X and g(d) = 1/d, the remainder terms rd(X) are
very small because numbers in any given arithmetic progression have even or odd number
of factors with equal probability. With the Riemann Hypothesis we can show rd(X) =

O(
√
X/d log(X/d)), which is much smaller than needed for classical sieve methods. But
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an = 1 also has A(X) = X and g(d) = 1/d, while S(X) = π(X). Hence, it is impossible
to distinguish with only this information between an = 1 and an = 1 + λ(n), one of which
contains all the primes and the other none of them.

One of the consequences of the parity problem is that these sieves have a hard time proving
the existence of primes in any given sequence – the numbers they found could equally well
be almost-primes. No nontrivial information about the number of primes in a sequence an
can be deduced from Type I information alone.

2.4.1. Perspective From L-functions. There is something very special going on with the par-
ity problem – the Selberg sieve is fully capable of distinguishing primes from products pqr
of three primes, for example. In fact, from the sequence an = 1 +λ(n) above we can see that
the parity problem comes from the square root cancellation of µ(n) (which has basically the
same summatory function as λ(n)).

Because we are not prepared to introduce the whole subject of L-functions in detail, this
section will work purely heuristically.

Dirichlet L-functions provide a general machinery for understanding growth rates of arith-
metic functions; in particular, the summatory function of µ(n) can be related to a certain
contour integral of the inverse of the Riemann zeta function

ζ(s)−1 =
∑
n≥1

µ(n)

ns
.

The Riemann Hypothesis predicts that ζ(s) has no zeroes s with <(s) > 1
2
, which implies

that ζ(s)−1 has no poles past this point. Roughly speaking, a pole of ζ(s)−1 at ρ contributes
to
∑

n≤X µ(n) a term of the form

1

ζ ′(ρ)

Xρ

ρ
,

which has order XRe(ρ). By general principles the asymptotics of this summatory function
can be deduced from the set of zeroes in a bounded region, of which the Riemann zeta
function has only finitely many. Thus to assume the Riemann Hypothesis proves∑

n≤X

µ(n) = O(X1/2 logX).

Instead of µ(n), let ε3 be a primitive cube root of unity and consider the function

µ3(n) =

{
εα3 n = p1p2 · · · pα
0 n squarefree

.

If
∑

n≤X µ3(n) canceled at all significantly, then by a similar construction as in the previous
section, we would have “mod 3” problem and expect all sieves to be off by at least a factor
of 3. This is not the case; µ3(n) cancels much more poorly than µ(n). We state a weaker
form of the result of Selberg and Delange for simplicity.

Theorem 9. If µ3(n) is as above, then there exists a constant C 6= 0 for which∑
n≤X

µ3(n) =
(C + o(1))X

(logX)ε3

infinitely often.
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Here is a heuristic (from communications with Terry Tao and Zeb Brady). Write ε3 = e
2πi
3 .

The L-function of µ3(n) has an Euler product,

L(s) =
∑
n≥1

µ3(n)

ns

=
∏
p

(1 +
ε3
ps

)

≈
∏
p

(1 + p−s)ε3

≈ ζ(s)ε3 .

Now complex exponentiation is multi-valued and there is no way to analytically continue
this function past Re(s) = 1; we must pick a branch cut past this, and the pole at s = 1 can
be checked to contribute an oscillating main term that looks like CX/(logX)ε3 .

The same can be said for any modulus except 2 in place of 3 – the Möbius function has
significant cancellation in comparison and is the reason there is a parity problem.

2.4.2. The Way Forward. Since the parity problem was formulated, one of the major goals
of sieve theory has been to prove that the parity problem is the only obstruction to asymp-
totic sieves, sieves which give asymptotically correct bounds. There are two ways one can
formulate this goal.

Bombieri’s way was to construct an asymptotic sieve using only Type I information which
correctly counts almost primes. By relaxing the question to counting

S2(X) =
∑
n≤X

anΛ2(n)

the parity problem goes away and sieve methods give asymptotic bounds correctly. We will
describe Bombieri’s Asymptotic Sieve in the next section.

Friedlander and Iwaniec were the first to break the parity problem altogether by inject-
ing Type II information, creating their so-called Asymptotic Sieve for Primes. This sieve
successfully counts prime values of x2 + y4 asymptotically, but requires a second condition,
the bilinear forms condition, which is very difficult to prove in practice. Roughly speaking
the bilinear forms condition asks that an never looks like µ(n) (or its cousin λ(n)) on any
arithmetic progression.

2.5. Bombieri’s Asymptotic Sieve. We first define the generalized von Mangoldt function
to give the correct weighting on almost-primes.

Definition 10. The generalized von Mangoldt function Λk(n) is defined by

Λk(n) =
∑
d|n

µ(d)
(

log
n

d

)k
.

Of course the usual von Mangoldt function is just Λ = Λ1. In fact Bombieri’s actual result
generalized this further to arbitrary Dirichlet convolutions of the Λk above, but we will make
do with Λk.
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Note that Λk(n) satisfies the convolution recurrence

Λk+1(n) = Λk(n) log n+
∑
d|n

Λ(d)Λk(
n

d
),

so by induction Λk is supported on integers n with at most k distinct prime factors.
Bombieri’s asymptotic sieve gives asymptotic results, allowing us to estimate

Sk(X) =
∑
n≤X

anΛk(n)

for any k ≥ 2.
Assume for simplicity sieve dimension 1, so that g(p) ≈ 1/p on average. All that is required

is a fairly strong Type I estimate of the form

Ad(X) = g(d)A(X) + rd(X)∑
d≤D

|rd(X)| �C,D
A(X)

(logX)C
,(2.4)

for every level of distribution D = X1−ε, ε > 0. For a simple exposition of Bombieri’s
Asymptotic Sieve, see Opera de Cribro, Chapter 3.

Theorem 11. (Bombieri’s Asymptotic Sieve) Assuming (2.4),

Sk(X) = (1 + o(1))kHA(X)(logX)k−1,

where

H =
∏
p

(1− g(p))(1− 1/p)−1.

The product for H converges to a nonzero constant iff g has sieve dimension 1. Without
the parity problem, we would expect this asymptotic to be true for S(X) = S1(X) as well.

2.5.1. The Selberg Symmetry Formula. In this section we prove the spiritual ancestor of
Bombieri’s Asymptotic Sieve, namely the Symmetry Formula of Selberg, which leads to the
Erdős-Selberg elementary proof of the Prime Number Theorem. We follow the proof given
by Balady [1].

Theorem 12. Let k ≥ 2, and Λk(n) be the k-th von Mangoldt function. Then∑
n≤X

Λk(n) = kX logk−1X +O(X logk−2X).

We first prove this for the case k = 2. Recall that Λ2(n) satisfies the identity

Λ2(n) = Λ(n) log n+
∑
d|n

Λ(d)Λ(
n

d
),

so it weights primes p by (log p)2 and almost primes pq by 2 log p log q. By the Prime Number
Theorem, the sum of Λ(n) log n should be asymptotic to X logX, so the Symmetry Formula
implies that Λ2(n) counts primes and almost primes in approximately equal measure.

The key lemma is an elementary cancellation estimate for sums of the Möbius function.
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Lemma 13. If µ(n) is the Möbius function, then∑
n≤X

µ(n)

n
= O(1),

∑
n≤X

µ(n)

n
log

X

n
= O(1),

∑
n≤X

µ(n)

n
log2 X

n
= 2 logX +O(1).

Proof. The trick is to use the following transformation of the Möbius inversion formula which
Balady [1] uses but never writes down. Let f, g be functions defined on [1,∞), for which

f(x) =
∑
n≤x

g(x/n).

Then ∑
m≤x

µ(m)f(
x

m
) =

∑
m≤x

µ(m)
∑
n≤x/m

g(x/mn)

=
∑
k≤x

g(x/k)
∑
m|k

µ(m)

= g(x).

We pick g(1) ≡ 1 first, so that f(x) = bxc. The identity becomes∑
n≤X

µ(n)
X

n
+O(X) = 1

∑
n≤X

µ(n)

n
= O(1),

which is the first bound.
Next pick g(x) = x, so that

f(x) =
∑
n≤x

x

n

= x log x+ C1x+O(1)

by approximating the integral, where C1 is Euler’s constant, though its exact value is irrele-
vant for this purpose. After Möbius inversion, we get∑

n≤X

µ(n)
(X
n

log
X

n
+ C1

X

n
+O(1)

)
= X

X
∑
n≤X

µ(n)

n
log

X

n
= O(X)

∑
n≤X

µ(n)

n
log

X

n
= O(1)

using the previous bound.
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Finally, pick g(x) = x log x, so that

f(x) =
∑
n≤x

x

n
log

x

n

=
x

2
log2 x+ C2x log x+ C3x+O(log x)

again by approximating the integral. Again C2, C3 are irrelevant constants. Möbius inversion
gives ∑

n≤X

µ(n)
(X

2n
log2 X

n
+ C2

X

n
log

X

n
+ C3

X

n
+O(log

X

n
)
)

= X logX

1

2

∑
n≤X

µ(n)

n
log2 X

n
= logX +O(1),

combining all the previous bounds, and the fact that the sum of log X
n

is O(X). �

Now we can control sums of Λ2(n) by directly expanding the convolution.

Proof. (of Theorem 12.) We expand∑
n≤X

Λ2(n) =
∑
n≤X

µ(n)
∑

m≤X/n

log2m

=
∑
n≤X

µ(n)
(X
n

log2 X

n
+ C4

X

n
log

X

n
+ C5

X

n
+O(log2 X

n
)
)

= 2 logX +O(X),

as desired, by combining all the estimates in Lemma 13. It is in fact straightforward to
continue the inductive application of Möbius inversion and prove for each k ≥ 2,∑

n≤X

µ(n)

n
logk

X

n
= k logk−1X +O(logk−2X)∑

n≤X

Λk(n) = kX logk−1X +O(X logk−2X).

�

The parity problem prevents us from finding such a simple computation of the Möbius
sum for k = 1, since if we had any estimate of the form∑

n≤X

µ(n)

n
log

X

n
= 1 + o(1)

the Prime Number Theorem would immediately follow.

2.5.2. An Easy Misconception about the Generalized von Mangoldt Function. Looking at the
formula ∑

n≤X

Λk(n) = kX logk−1X +O(X logk−2X)

we might expect that just as in the k = 2 case, approximately X logk−1X of the sum comes
from the j-almost primes, for each 1 ≤ j ≤ k. This is decidedly false in general, since it
would break the parity barrier! For k odd this would give an essentially sieve-theoretic way
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to show that there are more k-almost primes with an odd number of prime factors than with
an even number.

For k = 3 we have

Λ3(n) = Λ2(n) log n+
∑
d|n

Λ2(d)Λ(
n

d
),

so since Λ2(p) = log2 p and Λ2(pq) = 2 log p log q, we get

Λ3(p) = log3 p

Λ3(pq) = 3 log p log q log pq

Λ3(pqr) = 6 log p log q log r.

But the sum of log p log q log pq over almost-primes pq ≤ X is approximately

1

2
logX

∑
n≤X

Λ2(n)− Λ(n) log n =
1

2
X log2X +O(X logX),

and so the 2-almost primes pq actually contribute 3
2
X log2X to the sum of Λ3(n), which

is exactly half the weight of the sum, just as the parity problem predicts. The numbers p
contribute X log2X to the sum, the numbers pq contribute 3

2
X log2X, and the numbers pqr

contribute just 1
2
X log2X.

2.6. The Asymptotic Sieve for Primes. Friedlander and Iwaniec [7] finally broke the
parity barrier by injecting a very strong second condition, which they called the bilinear forms
condition. The key tool used in their paper is Vaughan’s identity, a simple combinatorial
identity for the von Mangoldt function that separates what might be called its wavelengths.

The goal of this section is to state the simplest formulation of Vaughan’s identity that we
will need for producing primes of the form p2 +Ny2. The identity [14] allows us to separate
the main term, Type I error term, and Type II error term directly out of S(X).

Lemma 14. (Vaughan’s identity) Choose integers y, z ≥ 1. For any n > z we have

Λ(n) =
∑
b|n,b≤y

µ(b) log
n

b
−

∑
bc|n,b≤y,c≤z

µ(b)Λ(c) +
∑

bc|n,b>y,c>z

µ(b)Λ(c),

and the right hand side is zero if n ≤ z.

Proof. We have

Λ(n) =
∑
b|n

µ(b) log
n

b

=
∑
b|n,b≤y

µ(b) log
n

b
+

∑
bc|n,b>y

µ(b)Λ(c)

=
∑
b|n,b≤y

µ(b) log
n

b
+

∑
bc|n,b>y,c>z

µ(b)Λ(c) +
∑

bc|n,b>y,c≤z

µ(b)Λ(c)

=
∑
b|n,b≤y

µ(b) log
n

b
−

∑
bc|n,b≤y,c≤z

µ(b)Λ(c) +
∑

bc|n,b>y,c>z

µ(b)Λ(c),

since for any fixed c ≤ z < n, the whole second sum over b is Λ(c)
∑

b|nc−1 µ(b) = 0. If n ≤ z,
then the first two sums cancel and the last is empty. �



18 XIAOYU HE

From here, what needs to be done depends on the application. For example, Friedlander
and Iwaniec designed their Asymptotic Sieve for Primes with the application of x2 + y4 in
mind, and broke the last sum in Vaughan’s identity further down into three sums depending
on the ranges of b and c. Heath-Brown also used Vaughan’s identity to break the parity
barrier for primes of the form x3 + 2y3, but the exact calculations were different – in fact
to the author’s knowledge the exact formulation of the Asymptotic Sieve for Primes in
Friedlander-Iwaniec [7] has only been applied to the single case of x2 + y4, despite the fact
that the general method works in a variety of settings.

In general, the Asymptotic Sieve for Primes expects the first two terms, containing the
“small oscillations,” to produce the main term of the sieve using only Type I estimates, whilst
the last term must be bounded more delicately in terms of a bilinear forms condition (see
Section 3.5 below).

If
S(X) =

∑
n≤X

anΛ(n)

as before, then substituting Vaughan’s identity this sum resolves as follows.

Lemma 15. Suppose y, z ≥ 1 and X > yz. Then,

S(X) = S(z) + A(X; y, z) +B(X; y, z)

where

A(X; y, z) =
∑
b≤y

µ(b)
( ∑
b|n,n≤X

an log
n

b
−
∑
c≤z

Λ(c)
∑

bc|n,n≤X

an

)
B(X; y, z) =

∑
bd≤X,b>y

µ(b)abd

( ∑
c|d,c>z

Λ(c)
)
.

We will allow y, z to remain indeterminate for now. The term S(z) will be negligible,
A(X; y, z) will be the main term asymptotically after we prove the level of distribution, and
bounding B(X; y, z) reduces almost immediately into the bilinear forms condition.

3. Primes of the Form p2 +Ny2

Fix squarefree N > 0. Our goal is to count asymptotically the number of primes q =
p2 +Ny2 where p varies through primes and y through all integers. Each q is counted with
multiplicity the number of times it occurs as p2 +Ny2. Write Λ(n) to be the von Mangoldt
function. We will prove Theorem 1, and in particular that there are infinitely many primes
of the form p2 +Ny2.

This result generalizes the theorem of Fouvry and Iwaniec [5] which provides the case
N = 1. We follow their presentation closely, altering the computations where necessary to
accommodate the general case. In fact, Fouvry and Iwaniec proved a more general theorem
for the case N = 1, replacing Λ(x) with any reasonable sequence of complex numbers λx.
However, we chose to specialize to the case Λ(x) as it leads to a number of simplifications in
the ensuing calculations.

Friedlander and Iwaniec [7] provided a general sieve called the Asymptotic Sieve for Primes
to count primes of the form x2 + y4 [8]. In this case applying that sieve is unnecessarily
burdensome and provides a much poorer error term. We will be able to obtain an extremely
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high level of distribution X1−ε, avoiding many of the difficult computations required by them.
Nevertheless our computations are closely related.

We begin with a sequence {an}, which for us is

an =
∑

x2+Ny2=n,(x,Ny)=1

Λ(x).

We add the condition (x,Ny) = 1 to simplify many of the ensuing computations. We wish
to write

S(X) =
∑
n≤X

anΛ(n)

in terms of the much easier sums

Ad(X) =
∑

n≤X,d|n

an.

We write A(X) = A1(X). Each Ad(X) can be approximated by g(d)A(X) + rd(X), where
g(d) is the multiplicative function defined on prime powers as:

g(pα) =


1+
(
−N
p

)
pα

podd, p - N
1
2

p = 2, p - N,α = 1
1−χ4(N)

2α
p = 2, p - N,α ≥ 2

0 p|N
where χ4 is the nontrivial Dirichlet character mod 4. The remainder term rd(X) is relatively
small.

Write F � G if F = O(G). Classical sieve theory tells us that a remainder term bound
(or level of distribution bound)

(3.1)
∑
d≤D

|rd(X)| � A(X)(logX)−A,

with level of distribution D large enough is sufficient for estimating

S2(X) =
∑
n≤X

anΛ2(n),

summing an over 2-almost primes weighted by the second von Mangoldt function Λ2. The
well-known“parity problem” in sieve theory prohibits estimating S(X) directly from only the
level of distribution (3.1). Using Vaughan’s identity, Fouvry and Iwaniec are able to establish
such estimates and break the parity problem with an additional bilinear forms condition:

(3.2)
∑

M<m≤2M

∣∣∣ ∑
N<n≤(1+ε)N

µ(n)amn

∣∣∣� A(X)(logX)−A,

which guarantees that amn does not “conspire” with the Möbius function on average.
It is natural to divide the sieve computation into three steps. First, we apply Vaughan’s

identity to bound S(X) in terms of A(X) and the sums (3.1) and (3.2), and compute the
main term. Then, we separately prove the two bounds (3.1) and (3.2).

At the heart of the remainder term bound (3.1) for x2 +Ny2 is a simple equidistribution
result, namely that the solutions (ν, d) to ν2 + N ≡ 0(d) are well-spaced in the sense that
the fractions ν/d are far apart when d is restricted to a short interval D < d ≤ (1 + δ)D.
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The case N = 1 was proved by Duke, Friedlander, and Iwaniec [2]; the generalization is not
difficult once we first divide the fractions {ν/d} into a finite number of families (depending
only on N). Such a strong well-spacing result gives a correspondingly strong large sieve
inequality. In Section 3.4, we show how to deduce the remainder term bound from this large
sieve inequality.

The bilinear forms condition requires writing amn as a sum over ideals I, J in the ring of
integers of Q[

√
−N ] such that m = N(I), n = N(J). After reformulating the sum in terms of

ideals and conditioning on the ideal class group representative, the sum is essentially identical
to the one Fouvry and Iwaniec treat. It requires a delicate application of the Cauchy-Schwarz
inequality, reducing the inequality to a standard Siegel-Walfisz type bound on Möbius sums
for Q[

√
−N ].

3.1. The Value of A(X). We first compute asymptotically the sum

A(X) =
∑
n≤X

an

=
∑

x2+Ny2≤X,(x,Ny)=1

Λ(x).

This is elementary, depending only on the prime number theorem.

Lemma 16. Let A(X) be as above. Then,

A(X) =
πX

4
√
N

+O
(
X exp

(−c(logX)3/5

(log logX)1/5

))
for a positive constant c.

Proof. We compute:

A(X) =
∑

x≤
√
X,(x,N)=1

Λ(x)
∑

(y,x)=1,Ny2≤X−x2

1

=
∑

p≤
√
X,p-N

log p
∑

p-y,Ny2≤X−p2

1 +O(X3/4 logX)

=
∑
p≤
√
X

log p
(√X − p2

N
+O

(√X
p

))
+O(X3/4 logX)

=
1√
N

∑
x≤
√
X

Λ(x)
√
X − x2 +O(X3/4 logX).

We were free to include and exclude the prime powers pα, α ≥ 2 at will. Also the finite set
of primes p|N fall into the error term. Let

E(X) = O
(
X exp

(−c(logX)3/5

(log logX)1/5

))
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be the best known error term on the prime number theorem, due to Ford [4]. Applying
summation by parts to the main term, we get∑

x≤
√
X

Λ(x)
√
X − x2 =

∑
x≤
√
X

Λ(x)

∫ √X
x

tdt√
X − t2

=

∫ √X
0

∑
x≤t

Λ(x)
tdt√
X − t2

=

∫ √X
0

(t+O(E(t)))
tdt√
X − t2

=
π

4
X +O(

√
XE(

√
X)).

=
π

4
X +O

(
X exp

(−c(logX)3/5

(log logX)1/5

))
.

The constant c in the last line is not necessarily the same as in E(X). �

3.2. Vaughan’s Identity. Using Vaughan’s identity (Lemma 15), Iwaniec and Fouvry are
able to split the sum S(X) into three terms: the main term, a remainder term controlled by
(3.1), and a bilinear term controlled by (3.2). We get

S(X) = S(z) + A(X; y, z) +B(X; y, z)

where

A(X; y, z) =
∑
b≤y

µ(b)
( ∑
b|n,n≤X

an log
n

b
−
∑
c≤z

Λ(c)
∑

bc|n,n≤X

an

)
B(X; y, z) =

∑
bd≤X,b>y

µ(b)abd

( ∑
c|d,c>z

Λ(c)
)
.

3.2.1. Computation of the Main Term. To treat A(X; y, z), we need the level of distribution
estimate (3.1) proved in Section 3.4.

Lemma 17. If (3.1) holds and there exists ε > 0 for which y � X1−ε, then

A(X; y, z) =
πHNX

4
√
N

+OA(X(logX)−A)

for any A > 0, the implicit constant depending only on A.

Proof. We first express A(X; y, z) in terms of Ad(X):

A(X; y, z) =
∑
b≤y

µ(b)
(
Ab(X) logX − Ab(X) log b−

∫ X

1

Ab(t)
dt

t
−
∑
c≤z

Λ(c)Abc(X)
)
,

Now, we have the estimate Ad(X) = g(d)A(X)+rd(X), so we wish to approximate A(X; y, z)
by

M(X; y, z) = A(X)
∑
b≤y

µ(b)
(
g(b) log(X/b)−

∑
c≤z

Λ(c)g(bc)
)
−
(∫ X

1

A(t)
dt

t

)∑
b≤y

µ(b)g(b).
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Since A(X) is approximately linear, integrating against dt/t does nothing except change
constants in the error term:

M(X; y, z) =
πX

4
√
N

(
1+O

(
exp

(−c(logX)3/5

(log logX)1/5

)))∑
b≤y

µ(b)
(
g(b) log(X/b)−g(b)−

∑
c≤z

Λ(c)g(bc)
)
.

To deal with the sum over b, we first extend over all b and show that most of the sum
vanishes: ∑

b≥1

µ(b)g(b) =
∏
p

(1− g(p))

= 0

since for a positive proportion of primes, g(p) = 2p−1. Similarly,∑
b≥1

µ(b)
∑
c≤z

Λ(c)g(bc) =
∑
c≤z

Λ(c)
∑
b≥1

µ(b)g(bc)

=
∑
c≤z

Λ(c)
∏
p-c

(1− g(p))
∏
p|c

(g(c)− g(pc))

= 0.

For the last sum left, the following identity holds:

−
∑
b≥1

µ(b)g(b) log b =
∏
p

(1− g(p))(1− p−1)−1,

assuming only that ∑
p≤X

g(p) = log logX + C +O(log−10X)

for all X [7]. Note that the product on the right is exactly HN , so we get

M(X; y, z) =
πHNX

4
√
N

+O
(
X exp

(−c(logX)3/5

(log logX)1/5

))
+O
(
X
∑
b>y

µ(b)
(
g(b) log(X/b)−g(b)−

∑
c≤z

Λ(c)g(bc)
))
.

We assume that the second error term is O((logX)−A) for any A, for suitable choice of y [5].
It follows that

M(X; y, z) =
πHNX

4
√
N

+OA((logX)−A)

as desired. It remains to handle the remainder term

R(X; y, z) = A(X; y, z)−M(X; y, z)

=
∑
b≤y

µ(b)
(
rb(X) log(X/b)−

∫ X

1

rb(t)
dt

t
−
∑
c≤z

Λ(c)rbc(X)
)
.

In Section 3.4 we show that

RD(X) =
∑
d≤D

|rd(X)|

�ε X1−ε
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for all A ≥ 1, as long as D � X1−3ε. It follows that

|R(X; y, z)| ≤ 2Ry(X) logX +

∫ X

1

Ry(t)
dt

t

�ε X1−ε,

as desired. �

3.3. A Large Sieve Inequality.

3.3.1. Fractions Well-Spaced Mod 1. From the reduction of level-of-distribution results to
large-sieve type inequalities, we are led to consider, for a fixed integer N > 0, the roots of
ν2 + N ≡ 0(d) as d ranges through all positive integers for which −N has a square root
mod d. In fact any well-spacing of these fractions ν/d better than the trivial 1/d2 spacing
of distinct rationals will give a nontrivial large sieve bound. Iwaniec and Friedlander were
able to show an almost perfect well-spacing of ν/d in the case N = 1, in fact that they are
separated by at least about 1/4d when d ∈ [(1− δ)D,D] lies in a short interval.

We will try to show the general case, getting a slightly weaker bound. The first step is to
associate to each ν/d a solution (x, y, T ) to

x2 +Ny2 = Td

satisfying (x, y) = 1, x ≡ νy(d), and 0 < x ≤ |y|
√
N . We call such a triple (x, y, T )

a standard solution for ν/d. The relationship between well-spacedness of ν/d and these
standard solutions is the following lemma.

Lemma 18. If (x, y, T ) is a standard solution for ν/d, then

ν

d
≡ x

yd
− T x̄

y
(mod 1),

where x̄ is the multiplicative inverse of x modulo y. In particular ν/d is within
√
N/d of a

fraction with denominator y ≤
√
Td/N .

Proof. The identity is just combining

νy ≡ x (mod d)

Tdx̄ ≡ x (mod y),

to find the residue class of νy modulo dy. Note that (x, y) = 1 implies (d, y) = 1.

The first fraction x/yd is very small: since 0 < x ≤ |y|
√
N , it is at most

√
N/d. On the

other hand the second fraction has denominator at most y and Ny2 ≤ Td. �

Using Lemma (18), it is possible to partition the fractions ν/d into a small number of
families, each of which is well-spaced.

Lemma 19. Suppose that for every ν/d satisfying ν2 +N ≡ 0(d) with (d,N) = 1 there exists
a standard solution (x, y, T ) for ν/d for which

T < Tmax.

Then there exists a constant C > 0 such that for every dyadic interval I = [D/2, D] of moduli

d, the set of fractions {ν/d, d ∈ I} can be partitioned into at most C max(T 2
max, Tmax

√
N)
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classes and within each class any two fractions ν/d, ν ′/d′ satisfy∣∣∣ν
d
− ν ′

d′

∣∣∣ > √N
D

.

Proof. Every fraction ν/d is within
√
N/d of a fraction with denominator at most dmax =√

TmaxD/N , say f(ν/d). As before, the fibers f−1(a/b) have size bounded by Tmax
√
N .

Now, sort the fractions up to denominator dmax mod 1; each consecutive pair has difference
at least 1/d2

max, so a pair of two such fractions that are k apart are at least k/d2
max apart in

value. If we choose k so that
k

d2
max

>
4
√
N

D
,

then we can partition our set of fractions into O(k) classes first, so that within each class the

fractions either correspond to the same x/y or else are at least 2
√
N/D apart. Split each of

these classes further into O(Tmax
√
N) classes so no two fractions correspond to the same x/y,

and we get the desired result with O(kTmax
√
N) classes. Choosing k = max(1, 4Tmax/

√
N),

we get the exact bound O(T 2
max) on the number of classes. �

With this lemma in hand, we can begin to prove the large sieve inequality we need. All
that is needed now is the construction of standard solutions with bounded T .

3.3.2. Construction of Standard Solutions. Numbers representable as Td = x2 +Ny2 corre-
spond to norms of principal ideals in the ring of integers in Q[

√
−N ]. Write K = Q[

√
−N ]

and O = OK for its ring of integers.

Lemma 20. There exists a constant TN > 0 depending only on N such that for each
(d, 2N) = 1 for which −N has square roots mod d, and each solution ν to ν2 +N ≡ 0(d),
there exists a corresponding standard solution (x, y, T ) for which T ≤ TN .

Proof. Because (d, 2N) = 1 we don’t need to deal with ramified primes. Let G be the ideal
class group of O, and pick a set of generators as a finite abelian group {[I1], [I2], . . . , [Im]},
so that [Ii] has order `i and

G '
⊕
i≤m

Z/`iZ,

where the generator in each component Z/`iZ is [Ii]. Let Ii be arbitrary prime representatives
of [Ii] (there are infinitely many primes in any ideal class).

Now, for a given d, a standard solution x2 +Ny2 = Td is just a principal ideal (x+y
√
−N)

with norm a multiple of d. We can factor d =
∏
qeii q̄i

ei over O. Every integer prime factor
splits since −N has square roots mod d and is coprime to d. A standard solution then
corresponds to an integral multiple of

z =
∏
i

peii ,

where pi is either qi or q̄i. Regardless of the choice of pi, it is possible to pick Ji ∈ {Ii, Īi} so
that Ji 6= p̄i′ for any i, i′, so that {Ji}i≤m is a set of generators for G. It follows that there is
a unique product

z
∏
i≤m

Jαii = x+ y
√
−N
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which is principal, where 0 ≤ αi < `i. We need to verify that (x, y) are coprime, that distinct
choices of z correspond to distinct ν ≡ x/y (mod d), and that all possible ν are attained by
some such x+ y

√
−N .

We chose Ji to be nonprincipal prime ideals which are not conjugate to any of the prime
factors of z, and not conjugate to each other. Therefore, x + y

√
−N has no nontrivial real

integral factors and (x, y) = 1.
If two distinct z, z′ correspond to the same solution ν2 +N ≡ 0(d), then the corresponding

standard solutions satisfy x+y
√
−N ≡ u(x′+y′

√
−N) (mod d) for a real integer u coprime

to d. But factoring d and using the Chinese Remainder Theorem, this means that the same
choice of conjugate of qi divides both z and z′ for every i, and so z, z′ are the same.

There are 2ω(d) distinct solutions ν2 +N ≡ 0(d), where ω(d) counts the number of distinct
(real) prime factors of d, and there are 2ω(d) choices of z. It follows that they are in bijection,
as desired.

In general, elements x+ y
√
−N of ON may have x, y half-integers; since d is odd we may

multiply by 2 to guarantee x, y ∈ Z.
Finally, to make them all into standard solutions, we need to apply the transformation

(x, y) 7→ (Ny, x) to those (x, y) with |x| > |y|
√
N . If y < 0 we multiply this by −1. The

only common factors that can be introduced are ramified primes over ON , so we are free to
divide them out from (Ny, x) until we have a standard solution. Thus, we have constructed
standard solutions satisfying

T ≤ 4N(
∏
i≤m

J `ii )N,

and this is the value of TN we take. �

3.3.3. The Large Sieve Inequality. We have shown that when D/2 < d ≤ D and (d, 2N) = 1,
the maximum value of Tmax for any given d is TN , independent of D. Now we need the large
sieve inequality of Montgomery and Vaughan [11]. We say that a set of points αr ∈ R/Z is
δ-spaced if their pairwise distances mod 1 are at least δ. We state it in the same form as
Theorem 9.1 from Opera de Cribro [6].

Theorem 21. (The Large Sieve Inequality.) For any set of δ-spaced points αr ∈ R/Z and
any complex numbers an with n ≤ N , where 0 < δ ≤ 1

2
and N is a positive integer, we have∑

r

∣∣∣∑
n≤N

ane(αrn)
∣∣∣ ≤ (δ−1 +N − 1)

∑
n≤N

|an|2.

This inequality is a statement about average cancellation of exponential sums, but origi-
nates from the study of sieving problems where the number of residue classes to sieve mod p
is comparatively large, hence the name. Here we do not use it directly as a sieve inequality.

Lemma 22. For any squarefree N > 0,∑
d≤D

∑
ν2+N≡0(d)

∣∣∣ ∑
m≤M

αme(νm/d)
∣∣∣� D1/2(D +M)1/2 logD‖α‖2

for any complex numbers {αm}m≤M . The first sum is over (d,N) = 1.

Proof. By the large sieve inequality, we have immediately∑
D/2<d′≤D

∑
ν2+N≡0(d′)

∣∣∣ ∑
m≤M

αme(νm/d
′)
∣∣∣2 � (D +M)‖α‖2

2
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when summed over (d′, 2N) = 1. Summing over dyadic intervals, we get∑
d′≤D

∑
ν2+N≡0(d′)

∣∣∣ ∑
m≤M

αme(νm/d
′)
∣∣∣2 � (D +M) logD‖α‖2

2,

and it remains to remove the parity condition on d, assuming N is odd. In this case, any
given d can be written d = 2td′ where d′ is odd, and an inner sum for d can be split into 2t

sums for d′:∑
d≤D

∑
ν2+N≡0(d)

∣∣∣ ∑
m≤M

αme(νm/d)
∣∣∣2 =

∑
d′≤D

∑
2td′≤D

∑
ν2+N≡0(2td′)

∣∣∣ ∑
m≤M

αme(νm/2
td′)
∣∣∣2

≤
∑

t≤log2 D

∑
d′≤D

∑
ν2+N≡0(d′)

∣∣∣ ∑
m≤M

αme(νm/2
td′)
∣∣∣2

≤
∑

t≤log2 D

∑
k≤2t

∑
d′≤D

∑
ν2+N≡0(d′)

∣∣∣ ∑
m′≤M/2t

α2tm′+ke(νk/2
td′)e(νm′/d′)

∣∣∣2
�

∑
t≤log2 D

∑
k≤2t

(D +M) logD
∑

m′≤M/2t

|α2tm′+k|2

� (D +M)(logD)2‖α‖2
2.

Finally, Cauchy-Schwarz gives the desired inequality. �

In the level of distribution calculation, however, the harmonics we use will not be e(νm/d)
but instead the related sum

ρ(k, `; d) =
∑

Ny2
0+`2≡0(d)

e
(y0k

d

)
.

For (d,N) = 1, we can multiply the condition by N−1 and write

ρ(k, `; d) =
∑

ν2+N(N−1`)2≡0(d)

e
(νk
d

)
=

∑
ν2+N≡0(d)

e
(νN−1k`

d

)
.

Thus, ∑
d≤D

∣∣∣∑
k≤K

∑
`≤L

αk,`ρ(k, `; d)
∣∣∣ =

∑
d≤D

∣∣∣∑
k≤K

∑
`≤L

αk,`
∑

ν2+N≡0(d)

e
(νN−1k`

d

)∣∣∣
≤

∑
d≤D

∑
ν2+N≡0(d)

∣∣∣∑
k≤K

∑
`≤L

αk,`e
(νN−1k`

d

)∣∣∣.
Write

α̃n =
√
τ(n)

∑
k`=n

αk,`,

so that ‖(αk,`)‖2 ≤ ‖(α̃n)‖2. Thus, we get a large sieve bound on sums involving ρ(k, `, d).∑
d≤D

∣∣∣∑
k≤K

∑
`≤L

αk,`ρ(k, `; d)
∣∣∣� D1/2(D +KL)1/2 logD‖(α̃n)‖2.



PRIMES OF THE FORM p2 +Ny2 27

On the other hand,

‖(α̃n)‖2
2 =

∑
k

∑
`

τ(k`)|αk,`|2

� log(KL)‖(αk,`)‖2
2.

We write ‖α‖2 = ‖(αk,`)‖2 henceforth.

Lemma 23. For any squarefree N > 0,∑
d≤D

∣∣∣∑
k≤K

∑
`≤L

αk,`ρ(k, `; d)
∣∣∣� D1/2(D +KL)1/2(log(KL))1/2 logD‖α‖2.

for any complex numbers αk,`. Here the sum is over (d,N) = 1.

3.4. The Level of Distribution. The sums Ad(X) should be approximable by a multi-
plicative function times A(X):

Ad(X) = g(d)A(X) + rd(X).

In this section we show that |rd(X)| is small on average; write

RD(X) =
∑
d≤D

|rd(X)|.

Lemma 24. For any ε > 0, if D = X1−3ε, then

(3.3) RD(X)� X1−ε,

where the implicit constant depends only on ε.

3.4.1. Preliminaries. Pick δ > 0. It is possible to construct f : R → [0, 1] to be a smooth
function approximating the indicator function of [0, X] satisfying the following conditions: f
is supported on [0, X], identically 1 on [δ,X−δ], and the n-th derivative of f scales inversely
with δ:

dnf

dtn
� 1

δn
,

uniformly in t, the implicit constant depending only on n. Define

Ad(f) =
∑
d|n

anf(n).

But expanding the definition of an, the sum Ad(f) can be divided into many sums of smooth
functions over arithmetic progressions. Thus we can apply Poisson summation; write e(t) =
e2πit.

Ad(f) =
∑

(x,N)=1

Λ(x)
∑

Ny2
0+x2≡0(d)

∑
y≡y0(d)

f(x2 +Ny2)

∑
y≡y0(d)

f(x2 + ny2) =
1

d

∑
k

e
(y0k

d

)∫ ∞
−∞

f(x2 +Nt2)e
(tk
d

)
dt

Ad(f) =
1

d

∑
(x,N)=1

Λ(x)
∑

Ny2
0+x2≡0(d)

∑
k

e
(y0k

d

)∫ ∞
−∞

f(x2 +Nt2)e
(tk
d

)
dt.

=
1

d

∑
(x,N)=1

Λ(x)
∑
k

ρ(k, x; d)I(k/d, x),
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where

ρ(k, x; d) =
∑

Ny2
0+x2≡0(d)

e
(y0k

d

)
I(α, x) =

∫ ∞
−∞

f(x2 +Nt2)e(tα)dt.

The frequency k = 0 is the main term, as usual.

Md(f) =
1

d

∑
(x,N)=1

Λ(x)ρ(0, x; d)I(0, x).

The other frequencies form the remainder term.

rd(f) =
1

d

∑
k 6=0

∑
(x,N)=1

Λ(x)ρ(k, x; d)I(k/d, x).

Here we show that Ad(f) and Md(f) (and therefore rd(f)) are good approximations for
Ad(X),Md(X) (and rd(X)) respectively, at least on average. We take

Md(X) = g(d)A(X)

to be the expected value of Ad(X).

Lemma 25. Let X1/2+ε � δ ≤ X and D ≤ X. Then∑
d≤D

|Ad(f)− Ad(X)| � δXε

∑
d≤D

|Md(f)−Md(X)| � δ1/2X1/2 log2X.

Proof. For the first claim, note that |anf(n) − an| appears in at most τ(n) (where τ is the
divisor function) terms, and each is bounded by an � nε on the two intervals where f 6= 1.

To estimate Md(f), we note that for most x, (x, d) = 1 and therefore ρ(0, x; d)d−1 = g(d).
The others are powers of primes p|d, of which there are at most O(ω(d) logX) = O(log2X).

Further, for individual x, I(0, x)�
√
X. Thus

Md(f) = g(d)
∑

(x,d)=1

Λ(x)I(0, x) +O
(1

d
X1/2 log2X

)
.

Meanwhile, I(0, x) is a good approximation for the number of y satisfying x2 + ny2 ≤ X:

I(0, x) =

∫ ∞
−∞

f(x2 +Nt2)dt

=
∑

x2+Ny2≤X

1 +O(δ(X + δ − x2)−1/2),

implying

Md(f) = g(d)A(X) +O
(
g(d)δ1/2X1/2 logX +

1

d
X1/2 log3X

)
∑
d≤D

|Md(f)−Md(X)| � δ1/2X1/2 log2X +X1/2 log4X,

as desired. �
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For a final simplification, we show that the tail of the sum rd(f) is negligible. This is the
reason why we need a smoothed approximation with small derivatives; picking δ as large as
possible will allow us to cut off as large a tail as possible in rd(f).

Lemma 26. If ε > 0 and K satisfies K ≥ DX1/2+εδ−1, then for any k ≥ K,

Λ(x)ρ(k, x; d)I(k/d, x)� X−jε

for any j ≥ 1, the implicit constant depending only on j.

Proof. Note that

∂j

∂yj
f(x2 +Ny2) =

∑
0≤2i≤j

cijy
j−2if (j−i)(x2 +Ny2)

�
(√X

δ

)j
for some positive constants cij. It follows by repeated integration by parts that

I(k/d, x)�
√
X
(d√X

kδ

)j
,

so if k ≥ DX1/2+εδ−1 then I(k/d, x) is smaller than X−jε for any j ≥ 0. �

3.4.2. The Smoothed Remainder Term. Using Lemmas 25 and 26, it suffices to show that
the truncated smoothed remainder term is small. Note that ρ(k, x; d) and I(k/d, x) are both
even in k.

Lemma 27. If

r∗d(f) =
2

d

∑
0<k≤K

∑
x

Λ(x)ρ(k, x; d)I(k/d, x)

is small, where K = DX1/2+εδ−1, then∑
d≤D

|r∗d(f)| � D1/2X3/2+εδ−1(logX)2.

Proof. Now it is time to change variables in I(k/d, x) to remove dependence on k from the
phase of the integral, so that we can interchange summation and integration:

I(k/d, x) =

∫ ∞
−∞

f(x2 +Nt2)e(td−1k)dt

= k−1
√
X

∫ ∞
−∞

f(x2 +Nk−2Xt2)e(td−1
√
X)dt.

r∗d(f) =
2
√
X

d

∫ K

0

∑
0<k≤K

∑
x≤
√
X

Λ(x)k−1f(x2 +Nk−2Xt2)ρ(k, x; d)e(td−1
√
X)dt

≤ 2
√
X

d

∫ K

0

∣∣∣ ∑
0<k≤K

∑
x≤
√
X

Λ(x)k−1f(x2 +Nk−2Xt2)ρ(k, x; d)
∣∣∣dt.
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Averaging over d,∑
d≤D

d|r∗d(f)| ≤ 2
√
X

∫ K

0

∑
d≤D

∣∣∣ ∑
0<k≤K

∑
x≤
√
X

Λ(x)k−1f(x2 +Nk−2Xt2)ρ(k, x; d)
∣∣∣dt.

The integrand is set up to apply the large sieve inequality from Section 3.3. To apply Lemma
23 to maximum effect, we can take advantage of the support of f to note that k > t

√
N for

the integrand to be nonzero.∑
d≤D

∣∣∣ ∑
t
√
N<k≤K

∑
x≤
√
X

Λ(x)k−1f(x2 +Nk−2Xt2)ρ(k, x; d)
∣∣∣ � D1/2(D +K

√
X)1/2X1/4t−1/2(logX)2

� DX5/4+εt−1/2δ−1/2(logX)2.

Integrating over t now, we find that∑
d≤D

d|r∗d(f)| � D3/2X3/2+εδ−1(logX)2

∑
d≤D

|r∗d(f)| � D1/2X3/2+εδ−1(logX)2,

where we removed the factor of D by summing over dyadic intervals. �

Corollary 28. For any ε > 0, if f is smooth with parameter δ = X1−ε, then

RD(f)� X1−ε

whenever D � X1−3ε.

Combined with Lemma 25, we get the level of distribution required, proving Lemma 24.

3.5. The Bilinear Forms Condition. Controlling the bilinear forms condition has three
main ingredients.

The first step is to massage the double sum by expanding amn as a sum over factorizations
of m and n over Gaussian integers and thereby “unfold the multiplicity” present in the sum
– otherwise, some terms may be much larger than others. Once this expansion is achieved
we can apply Cauchy-Schwarz while losing only a log factor.

The next step is to apply two-dimensional Fourier analysis to estimate the various sums
that result from Cauchy-Schwarz in terms of weighted sums of the Möbius function over
congruence lattices in Z[i].

Finally, these sums are treated with standard techniques from the theory of zero-free
regions of L-functions of quadratic fields, although this part is omitted altogether from
Fouvry-Iwaniec.

The main difference in our problem will be to work in a general imaginary quadratic field
Q[
√
−D] with ring of integers O, and we will not have the luxury of unique factorization.

Fortunately, for any fixed D the class group is finite and we can split the resulting sums
along individual ideal classes; after this each individual sum is completely analogous to those
in Fouvry-Iwaniec.

The last part of this calculation is extremely standard and Fouvry and Iwaniec already
skipped a much of it – we will skip even more, only sketching the reductions and focusing
on how to deal with the class group.
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3.5.1. Preliminaries. In this section we replicate the calculations of Fouvry and Iwaniec to
reduce B(X; y, z) to a manageable form for Cauchy-Schwarz. Recall the bound we need to
finish the proof of Theorem 1. With

B(X; y, z) =
∑

bd≤X,b>y

µ(b)abd

( ∑
c|d,c>z

Λ(c)
)
,

then we want

|B(X; y, z)| �A X(logX)−A

for any A > 0. Write ∆ = (logX)−A. We first simplify the sum we want to handle.

|B(X; y, z)| ≤ logX
∑
d>z

∣∣∣ ∑
y<b≤X/d

µ(b)abd

∣∣∣.
It suffices to show cancellation in the latter sum when we break up the ranges of b and d
into short intervals. Write

B(M,N) =
∑

M<m≤2M

∣∣∣ ∑
N<n≤N ′

µ(n)amn

∣∣∣,
where N ′ = e∆N . The original ranges on b and d can be split up into these intervals with
negligible error, M varying over 2jz and N varying over e∆ky.

|B(X; y, z)| ≤ logX
∑

M>z,N>y

∑
∆X<MN<X

B(M,N) +O(∆X(logX)2),

where the few terms µ(n)amn not covered by these intervals are bounded trivially. Note that
M and N range through at most O(logX) and O(∆−1 logX) values, respectively. It suffices
to prove that for any M,N satisfying M > z,N > y,∆X < MN < X,

B(M,N)� ∆2MN(logX)−3.

Next, we would like to reduce to the case (m,n) = 1. Write

Bd(M,N) =
∑

M<m≤2M

∣∣∣ ∑
N<n≤N ′,(m,n)=d

µ(n)amn

∣∣∣,
noting that

amn ≤ logX
∑

x2+Ny2=mn

1

≤ τ(mn) logX,

where the divisor function τ(n) is an upper bound bound on the number of x+ y
√
−N with

norm n. Thus,

Bd(M,N) � logXτ(d2)
∑

M/d<m≤2M/d

τ(m)
∑

N/d<n≤e∆N/d

τ(n)

� (logX)τ(d2)(M logM)(e∆ − 1)(N logN)d−2

� τ(d2)

d2
∆MN(logX)3.
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Also, Bd(M,N) ≤ B1(dM,N/d), simply by moving the factors in n to m. Thus

B(M,N) =
∑
d≤∆−2

Bd(M,N) +O
(

∆MN(logX)3
∑
d>∆−2

τ(d2)

d2

)
=

∑
d≤∆−2

Bd(M,N) +O
(

∆3−εMN(logX)3
)

=
∑
d≤∆−2

B1(dM,N/d) +O(∆2MN(logX)−3),

for ∆ sufficiently large, and it suffices to show ∆5 cancellation in B1(M,N) over a slightly
larger range of M,N . We need to show that if M > z,N > ∆2y, and ∆X < MN < X, then

B1(M,N)� ∆5MN.

Next, we expand amn as a sum over factorizations of m and n as ideals over ON , the ring of
integers of Q[

√
−N ]. We can write amn as

amn =
∑

N(I)=m

∑
N(J)=n

∑
(z)=IJ

Λ(Re(z)),

where for two ideals I, J whose product is principal, we pick every possible generator for
the product IJ and sum Λ over their real parts (we extend Λ by zero over the nonpositive
integers). Since m,n are coprime the factorization (z) = IJ is unique for any given z whose
norm is mn.

Now, we can rewrite B1(M,N) in terms of pairs of ideals in conjugate ideal classes. There
are only a fixed finite number of choices of generator for a principal ideal, so let’s write

Λ(I) =
∑
(z)=I

Λ(Re(z)).

With this notation, we can expand out B1(M,N) for some complex numbers β(m) of norm
1:

B1(M,N) =
∑

M<N(I)≤2M

∑
N<N(J)≤N ′,(N(I),N(J))=1

β(N(I))µ(N(J))Λ(IJ).

Of course, there is a hidden restriction in the second sum, namely that JI must be prin-
cipal. To remedy this situation, we fix representatives I1, I2, . . . , Ih of the elements of the
ideal class group of OD, and break up the sum into h = h(D) pieces:

B1(M,N) =
∑
i≤h

Bi
1(M,N)

Bi
1(M,N) =

∑
I∈[Ii]

∑
J∈[Ii]−1,(N(I),N(J))=1

β∗(N(I))µ∗(N(J))Λ(IJ).

In preparation for future manipulations we folded the bounds on N(I), N(J) into the support
of µ, β – that is, β∗ is β cut off outside of (M, 2M ] and µ∗ is µ cut off outside (N,N ′].

For a fixed ideal class [Ii], all (fractional) ideals in the class can be written in the form
(w)Ii, where w ranges through K× = Q[

√
−D]×. The choice of w is unique up to the number

of units uK in K, of which there will be either 4 (if D = 1), 6 (if D = 3), or 2. We only care
about integral ideals appearing in this class, but this is not the same as the set of (w)Ii where
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w itself is in O. In fact, the set will be of all w ∈ I−1
i , the inverse ideal of Ii. Thus, we can

rewrite, where Λ is now the regular von Mangoldt function (extended by zero to negatives):

Bi
1(M,N) =

1

uK

∑
w∈I−1

i

∑
z∈Ii,(N(wIi),N(zI−1

i ))=1

β∗(N(wIi))µ
∗(N(zI−1

i ))Λ(Re(wz)).

Note that IiI
−1
i = (1) so [Ii]

−1 is the same ideal class as [I−1
i ] and we may assume we

picked our class representatives in such a way that the representative of [I]−1 is the ideal
inverse I−1. Also, the term in front comes from the fact that any given generator of (wz) is
represented in the sum uK times.

We are led to bound general double sums of the form

BI(M,N) =
∑
w∈I−1

∑
z∈I,(N(wI),N(zI−1))=1

β∗(N(wI))µ∗(N(zI−1))Λ(Re(wz))

where µ∗ is Möbius cut off to the interval (N,N ′] and β∗ is a complex-valued function
supported on (M, 2M ] with values of norm 1.

The sole purpose of introducing the condition (m,n) = 1 was to separate w and z; this
being done, we would like to remove it again. We use the identity∑

r|(m,n)

µ(r) =

{
1 (m,n) = 1

0 otherwise
,

which gives, for a fixed w,∑
z∈I,(N(wI),N(zI−1))=1

µ∗(N(zI−1))Λ(Re(wz)) =
1

uK

∑
r|N(wI)

µ(r)
∑

N(ζ)=r

∑
z∈I

µ∗(N(ζzI−1))Λ(Re(wζz)),

We insert this into BI(M,N) and expand as a sum over r, bounding the number of choices
of ζ ∈ O with norm r trivially by τ(r), and folding ζ into w:

BI(M,N)�
∑
r

τ(r)
∑

w∈I−1,r2|N(wI)

∣∣∣∑
z∈I

µ∗(rN(zI−1))Λ(Re(wz))
∣∣∣.

Next we cut off the tail above r > ∆−5, which contribute at most

∆MN
∑
r>∆−5

τ(r)2r−2 � ∆6−εMN(logX)2,

smaller than the bound on the whole of BI that we need. Put

CI(M,N ; r) =
∑
w∈I−1

∑
z∈I

β∗(N(wI)/r2)µ∗(rN(zI−1))Λ(Re(wz)),

where we replaced the condition r2|N(wI) by the weaker condition of N(wI)/r2 lying in the
support of β∗. It will suffice to show that for each r ≤ ∆−5,

CI(M,N ; r)� ∆11MN,

for every M ≥ z,N ≥ ∆5y, and ∆X < MN < X.
Finally, it is not difficult to reduce bounding C∗I (M,N ; r), where we restrict the variable

w to be primitive in I, that is to say w 6∈ cI for any rational integer c > 1.

CI(M,N ; r) =
∑
c≥1

C∗cI(c
−2M,N ; r),
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and for large c� ∆−K the terms in the sum are negligible.
At this point we can forget about the exact power of ∆ needed. It suffices to show the

following.

Lemma 29. Let A > 0 be a positive constant. Then, for all M ≥ z,N ≥ y(logX)−A and
X(logX)−A < MN < X, and r ≤ (logX)A,

C∗I (M,N ; r)�MN(logX)−A,

where the implicit constant depends only on A.

3.5.2. Cauchy-Schwarz. We will perform slight generalizations of the argument of Fouvry
and Iwaniec to lattices beyond Z[i] in the complex plane. Write w∗ ∈ I−1 to mean w is
primitive in the fractional ideal I−1. We have

C∗I (α, β, λ) =
∑
z∈I

∑
w∗∈I−1

α(z)β(w)λ(Re(zw))

=
∑
l

λ(l)
∑
z∈I

∑
Re(zw)=l

α(z)β(w)

≤
∑
l

|λ(l)|
∑

w∗∈I−1

|β(w)|
∣∣∣ ∑
Re(zw)=l

α(z)
∣∣∣

≤ ‖λ‖ · ‖β‖
( ∑
w∗∈I−1

g(w)
∑
l

∣∣∣ ∑
Re(zw)=l

α(z)
∣∣∣2)1/2

.

The last step is Cauchy-Schwarz, where g is the indicator function of the support of β,
and we cut off λ to be finitely supported so that its norm is finite. For the purposes of later
Fourier analysis it will be better to replace g with a smooth approximation; as long as it is
at least 1 on the support of β the inequality still holds.

All cancellation we need will come from average cancellation of the inner sum, which in
our case α(z) = µ∗(N(zI−1)), over the set of z ∈ I for which Re(zw) = l. Write

DI(α) =
∑

w∗∈I−1

g(w)
∑
l

∣∣∣ ∑
z∈I,Re(zw)=l

α(z)
∣∣∣2,

so that

DI(α) =
∑

w∗∈I−1

g(w)
∑

z∈I,Re(zw)=0

( ∑
z1−z2=z

α(z1)ᾱ(z2)
)
,

when we expand the square. This is because two values of z satisfy Re(z1w) = Re(z2w) iff
Re((z1 − z2)w) = 0.

At this point, the primitivity for w allows us to explicitly determine the values of z which
satisfy Re(zw) = 0. In general, this is equivalent to having z = cw

√
−N for some rational c.

However, since I−1 = Ī/N(I), we see that cw̄
√
−N ∈ I iff −cwN(I)−1

√
−N ∈ I−1. Since w

is assumed to be primitive in I−1, the constraint that z ∈ I resolves to c ∈ cI(w)Q for the
rational constant cI(w) = N(I)gcd(Re(w), N)−1. Rearranging the sum above, we get

DI(α) =
∑
n

∑
w∗∈I−1

g(w)
( ∑
z1−z2=ncI(w)w

√
−N

α(z1)ᾱ(z2)
)

= D0
I (α) + 2D+

I (α).
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Here D0
I (α) is the term n = 0 and D+

I (α) is the sum over n > 0. We have

D0
I (α) =

∑
w∈I−1

g(w)‖α‖2 � N2‖α‖2,

since we pick g to be supported on an annulus of area O(N2) and bounded by a constant.
It remains to bound D+

I .

3.5.3. Controlling D+
I . Because the original sum is over primitive w we can rewrite D+

I as

D+
I (α) =

∑
w∗∈I−1

g(w)
∑
n≥1

(α ∗ α)I(nw),

where the convolution is defined

(α ∗ α)I(w) =
∑

z1−z2=cI(w)w̄
√
−N

α(z1)ᾱ(z2)

over z1, z2 ∈ I. Next, we unfold the primitivity constraint on w via Möbius inversion:

D+
I (α) =

∑∑
b,c>0

µ(b)DI(α; b, c),

where

DI(α; b, c) =
∑

w∈bcI−1

g(w/c)(α ∗ α)I(w).

Note that N(w) � N since α = µ∗ ◦ N and µ∗ is supported on [N,N ′), and also N(w) =
Θ(cM) since g is supported on essentially the same annulus that β∗ is. Incidentally this
shows that the sum is nonempty only when c � NM−1; write C for the largest such value
of c.

It is fruitful to cut off the largest values of b as well as the values of c significantly smaller
than C; note that the trivial bound is

DI(α; b, c)� ‖α‖2M2b−2,

since there are O(M2b−2) lattice points in bcI−1 with norm N(w) = Θ(cM). Then, for a
parameter 1 ≤ Λ ≤ C that we will pick later, whenever b ≥ Λ or c ≤ CΛ−1, the contribution
to D+

I (α) is O(‖α‖2MNΛ−1), so

D+
I (α) =

∑
b≤Λ

µ(b)
∑

CΛ−1<c<C

DI(α; b, c) +O(‖α‖2MNΛ−1).

3.5.4. Controlling DI(α; b, c). Fouvry and Iwaniec deal with the convolution in DI using
Fourier inversion. Here because of the change in lattice, w runs through an congruence
condition in I−1 ∈ Q[

√
−N ] instead of Z[i]. The goal of this section will be to reduce

bounding DI(α; b, c) to that of

DI(α; d) = 2πN−2
∑

z1−z2∈dI

α(z1)ᾱ(z2) exp(−2π|z1 − z2|N−1).

Finally, getting nontrivial cancellation in this latter sum is standard for α(z) = µ(N(zI−1)),
reducing essentially to a Siegel-Walfisz type theorem involving zero-free regions of L-functions
of certain Hecke Grossencharacters related to imaginary quadratic number fields. Such a
result was already standard in the time of the Friedlander-Iwaniec theorem.
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