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1 Introduction

This paper discusses punctual Hilbert schemes, Hilbert schemes that parametrize collec-
tions of points. When the points lie on a two dimensional surface, these schemes are well
understood. Section 2 of this paper briefly describes such schemes, and motivates what
will be this paper’s central topic: Understanding schemes of degree d supported at a point.
Section 3 and 4 deal with some examples. Section 3 describes the variety parametrizing
schemes of degree 3 supported at a point, and section 4 examines the spaces parametrizing
schemes supported at a point and contained in a curve. Sections 5 and 6 generalizes a result
from section 4 and describes an affine cover for schemes supported at a point when degree
and hilbert function are fixed. Section 7, using earlier results, computes the dimension of
the varieties from sections 5 and 6, and, by extension, the dimension of Hilbn P2, showing
it to be 2n.

2 Punctual Hilbert Schemes of the Plane

Definition 2.1. For a fixed scheme X, and a polynomial f such that f(n) ∈ Z for any
integer n the Hilbert Scheme Hilbf (X) is the scheme that parametrizes all subschemes
of X with Hilbert polynomial f .

When X is projective, this scheme always exists, see [2] for a construction.
The purpose of this thesis is to study a specific type of Hilbert scheme. For our purposes,

the fixed scheme X will be P2 (or really any smooth surface) over an algebraicly closed
field of characteristic 0, to be called k. We will parametrize schemes with constant Hilbert
polynomial, i.e those supported at a point Hilbn(P2) parametrizes schemes of dimension
0, and degree n. If such a scheme is also reduced, then it is a collection of n distinct
points. If such a scheme is not reduced it is supported at m points in P2 for m < n. Since
the schemes parametrized are supported on finite sets of points, the space is called the
Punctual Hilbert Scheme.

There is a map from Hilbn(P2) → (P2)n/Sn. The target space is an n-fold product
of copies of P2 modulo the action of the symmetric group on n letters permuting the
coordinates. The map sends a punctual scheme to the closed points of its support, counted
with multiplicity. The map is surjective, and on the open set excluding the diagonal (tuples
of points in P2 where at least two of the points are nondistinct) the map is one-to-one,
because there is exactly one scheme of degree n supported at n distinct points, the collection
of points themselves.

This map from Hilbn(X) → (X)n/Sn for smooth projective varieties X is known as
the Hilbert-Chow Morphism. In the case of X = P2 this map is a desingularization, but
that will not be shown here.

Understanding the fibers away from the open set of distinct points will allow us to
understand Hilbn P2. This paper will spend most of its time studying fibers over the small
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diagonal, tuples of points in P2/Sn where every point is the same. The main theorem, that
a fiber over such a point has dimension n−1 allows us to conclude that dim Hilbn P2 = 2n.
This does not seem surprising, but the analogous result for P3 or higher is false!

If a point is in the small diagonal of (P2)n, its pre-image under the Hilbert-Chow
morphism is the set of degree n schemes supported at a single point.

This set can be understood as a variety and as a Hilbert scheme by replacing P2 with
Spec k[[x, y]]. This is easier to work with because Spec k[[x, y]] is affine, schemes of degree
n are in bijection with ideals I in k[[x, y]] with dimk k[[x, y]]/I = n. Since the rest of the
paper will study this construction it will be helpful to abbreviate and set R = k[[x, y]], and
in an abuse of notation write Hilbn Spec k[[x, y]] as HilbnR.

2.1 Ideals of k[[x, y]]

First, some preliminary notions and definitions that will appear throughout the paper. If
I is an ideal in R then denote by Ij the elements in Rj that are initial forms of elements
in I, i.e. the u ∈ Rj such that there is some v ∈ mj+1 with u+ v ∈ I.

Next, and ideal I is graded if it can be generated by homogenous polynomials. To each
ideal I, we define the associated graded ideal I∗ as the ideal generated by the initial forms
of elements in I.

Definition 2.2. The type of I is the tuple (t0(I), t1(I), t2(I), ...) where tj = dimk Rj/Ij .

There are several important but simple claims to be made about the type of and ideal.

1. If I has colength n, then
∑

j tj(I) = n.

2. t(I) = tj(I
∗)

3. Say that dimRj − tj(I) = j + 1 − tj(I) is greater than 0. This means that Ij 6= 0.
Since dimRj+1 = j+2 and multiplying by x and by y gives that dim Ij+1 ≥ dim Ij+1
it is the case that tj+1(I) ≤ tj(Ij). This means that the set of possible types is must
be of the form (1, 2, 3...d, td(I), td+1(I), ...). d is the largest integer with I ⊂ md+1,
and for k > d we have tk(I) ≤ tk−1(I).

4. It is also true that for any tuple of the form (1, 2, 3...d, nd, nd+1, ...) with nk > nk+1 for
k ≥ d there is an ideal I in R with exactly this tuple as its type. This is relatively easy
to construct. Generate I by choosing d + 1 − nd elements in Rd, and in successive
graded piece of R pick new generators not already contained in I to produce the
proper codimension.

Later, it will be convenient to have defined the jump index of a type T as the following
sequence of numbers. For fixed T and an integer j ≥ d, define the jump index at j as
ej = tj − tj−1.
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Finally, let ZT denote the locally closed subscheme of Hilbn(R) consisting of ideals of
type T . It is clear that

Hilbn k[[x, ] =
⋃
|T |=n

ZT

2.2 Variety Structure and Inclusion into the Grassmanian

Theorem 2.3. Hilbn(R) is a variety (i.e. it is reduced)

This will be done by constructing Hilbn(R) as a subvariety of a grassmanian.

Lemma 2.4. Every ideal in R of colength n is contains mn where m is the maximal ideal
(x, y).

Proof. This is shown by induction. First, as a base case, R itself is the only ideal of colength
0, and it contains m0 = R. Now assume the theorem holds true for ideals of colength n− 1
and less. Let I be an ideal of colength n that does not contain mn. Pick some f in mn and
not in I. Then the ideal generated by I and f is strictly bigger than I so has colength less
than n, so it contains mn−1. Since mn−1 = (I, f)n−1 = In−1 we conclude that I contains
mn−1. Contradiction.

This lets us realize the punctual Hilbert scheme as a variety within a grassmanian. We
know that

dimk R]/mn =
m2 +m

2

Then every ideal of colength n can be realized as a point within the grassmanian
G(R/mn, m

2+m
2 − n).

Not every n-dimensional subspace of k[[x, y]]/mn is an ideal. The subspaces V that are
ideals satisfy the constraint that xVi−1 ∪ yVi−1 ⊂ Vi for all i. But this can be expressed as
an algebraic constraint, so the subspaces that are ideals form a subvariety.

3 The case where n = 3

Without too much work, Hilb3(k[[x, y]]) admits an explicit description, and can be recog-
nized as a cone over a cubic curve.

First, we describe its stratification.

Definition 3.1. A scheme supported at a point is called curvilinear if it is contained in a
smooth curve passing through its support

Now we give a more algebraic characterization

Proposition 3.2. The ideals in k[[x, y]] characterizing curvilinear schemes are exactly the
nontrivial ideals (of finite colength) that are not contained in m2.

4



Proof. Let S be a scheme supported at the origin in A2 and C be a smooth curve containing
S. Let S correspond to the ideal I ⊂ k[[x, y]] and I(C) = J . The image of J localized to
k[[x, y]] is not contained in m2, and since J ⊂ I neither is I.

In the other direction let I be a nontrivial ideal of k[[x, y]] not contained in m2. If
I = m, then we are done. Suppose I 6= m we must have t1(I) = 1. This means tn(I) ≤ 1
for n > 1. Since I has finite colength this means the type of I is (1, 1, 1, ...1, 0, 0, 0, ...). This
means I/mn is a principle ideal, generated by some polynomial f . f cuts out a smooth
curve passing through the origin, containing Spec I.

Notice now that if an ideal in k[[x, y]] has colength 3 and is contained in m2 it must be
m2. So there is only one point in Hilb3(k[[x, y]]) that is not curvilinear. Every other ideal
is contained in a smooth curve. In particular, it is of the form (f,m3) for f a curve that is
smooth at the origin, and of degree at most 2.

The subvariety of curvilinear schemes, which will be called C3, has a nice description:
it is the total space of OP1(3), the degree 3 line bundle on P1. First note that there is a
natural inclusion of i : P1 → C3. Interpret P1 as the space of lines through the origin in
P2, and send every line ` to the ideal (I(`),m3) where I(`) is the linear form cutting out `.

We also have a projection map p : C3 → P2. Send an ideal of the form (f,m3) to the
line tangent to f at the origin. This is equivalent to deleting the degree 2 terms in f , so it
is clear that p ◦ i = id.

Proposition 3.3. C3 is the total space of the line bundle OP1(3), with i being the zero
section.

Proof. Let I be a curvilinear ideal written as (f,m3). Say the linear part of f is ax+by and
assume without loss of generality that a 6= 0. Then it is clear that x2 + b

axy, and xy+ b
ay

2

are contained in I, so we can pick a new generator for I and write it as (x+ a
b y+ cy2,m3).

This form (x has coefficient 1, no x2 or xy term) is unique. Let ` be the point in P1 that i
sends to (x + a

b y,m
3). Then the fiber of p over ` is identified with A1 by the coefficient c

of y2.
The fibers are locally trivial over the two open sets of Dx and Dy, by construction.

Further, we can write down the explicit transition functions. If I can be written as (x +
c0y + c1y

2,m3), then modulo I we have the equivalences

x2 + c0xy ≡ 0 and xy + c0y
2 ≡ 0

so I can be rewritten as (y+ 1
c0
x+ c1

c30
x2,m3). This is the transition function for O(3).

The fact that this bundle is O(3) can be seen in one other way. Pick 3 general points
pi in A2. Then if ` is a line through the origin there is a unique conic containing the three
points tangent to ` at the origin. By taking ` to the curvilinear scheme contained in that
conic at the origin, the three points determine a section of C3, as seen in figure 1. The
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Figure 1: The points P,Q,R, and the points 2P, 2Q, 2R determine two conics through the
origin with identical slope.

section has a zero whenever the curvilinear scheme produced is contained in a line through
the origin, and that happens whenever ` = 0pi, so it happens three times.

Now, fixing `, we can explore the fiber by looking at tp1, tp2, tp3 and letting t vary. Let
St be the scheme associated to t in this set up. To compute limt→∞St make the same setup
in P2, define [1 : 0 : 0] as the origin and take pi to the line at infinity. Once the pi are
collinear, the only conics containing them are unions of two lines, one through the pi and
on through the origin. So limt→∞ St is a scheme contained in a line.

To compute limt→0 it is easier to take the limit in G(3, k[[x, y]]/m3). The subspace
corresponding to the ideal (x+ c0y + cy2,m3) has x+ c0y + cy2, xy + c0y

2, x2 + c0xy as a
basis.

If the points p1, p2, p3 and the line ` determine the ideal (x + c0y + cy2,m3) then
the points tp1, tp2, tp3 determine the ideal (tx + tc0y + cy2,m3). This corresponds to the
subspace 〈tx + tc0y + cy2, xy + c0y

2, x2 + c0xy〉. We take t → 0 to see the limit is the
subspace 〈y2, xy, x2〉 which of course is the ideal m2.

G(3, 6) is embedded in P(
∧3 k6). In this embedding the curve parametrized by

t 7→ 〈tx+ tc0y + cy2, xy + c0y
2, x2 + c0xy〉

is in fact a line. So the variety Hilb3K[[x, y]] is a cone over the image of P1 as the curvilinear
schemes contained in a line. To find the degree of this image, take an arbitrary hyperplane
that does not contain the point corresponding to the ideal m2. The intersection of this
hyperplane with Hilb3K[[x, y]] defines a section of the bundle O(3) so the hyperplane
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meets the graded curvilinear ideals 3 times, so the graded curvilinear ideals are a curve of
degree 3. Thus Hilb3 k[[x, y]] is a cone over a curve of degree 3.

4 Curvilinear schemes of higher degree

When n > 3, curvilinear schemes become more complicated. The ideal corresponding to a
curvilinear scheme of degree n can be written as (f,mn) for f a degree n − 1 polynomial
in x and y that is smooth at the origin. Denote by Cn the variety of curvilinear schemes
of degree n supported at a point.

Similarly to the first part of the proof of theorem 3.3, if we assume without loss of
generality that the linear part of f is x+ c1y, we can write the ideal as

(x+ c1y + c2y
2 + · · · cn−1yn−1,mn)

Once again there are the natural maps from i : P1 → Cn taking a line through the origin
to the degree n scheme it contains, and p : Cn → P1 taking a curvilinear scheme to its
tangent line. The fibers of p are An−2, since for i > 1 ci can be freely determined.

Cn is then an affine bundle over P1 with a distinguished section. However, for n > 3,
Cn is not algebraic vector bundle.

Proposition 4.1. For each n, and any k > n, the line bundle over P1 corresponding to
ideals of the form (ax+ by + cyn,mk) is O(n).

Proof. Reduce to the case k = n+1 by noting that for f and g two polynomials in x and y of
degree n and k > n it’s the case that (f,mk) = (g,mk) if and only if (f,mn+1) = (g,mn+1)

It suffices to describe the transition functions on the open set in P1 where neither x or
y is 0. The ideal (x− c0y+ cyn,mn+1) contains xiyn−i + c0x

i−1yn−i+1 for all i. Therefore,
cyn ≡ c

c0
xyn−1. We can continue this process, trading powers of y for powers of x and

picking up additional 1
c0

terms to see that the ideal can be rewritten as can be rewritten

as (y − 1
c0
x− c

cn0
xn,mn+1). This is the transition function for O(n)

For each n there is a map pn : Cn → Cn−1 coming from the map I 7→ I + mn. There
is also a map in : P1 → Cn as usual coming from the inclusion of linear forms among
polynomials of degree at most n− 1. Then p−1n (in−1(P1)) is the On just described. Hence
it is sufficient to show that C4 is not a vector bundle. The rest of the proof follows from
induction. If Cn were a vector bundle, it would contain O(n), and, as a vector bundle over
P1, it would split. Then Cn−1 would be isomorphic to Cn/O(n) and thus a vector bundle
as well.

Theorem 4.2. C4 is not a vector bundle
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Proof. Assume for the sake of contradiction that C4 is a vector bundle. We first show it
must be isomorphic to the bundle O(4)⊕O(3). Note that it sits in the middle of

0 O(4) C4 C3 0
p

We will show that,assuming C4 is a vector bundle, then p is a map of vector bundles,
so this will be a bonafide short exact sequence of vector bundles, and hence must split.

Restricted to the inclusion of O(4) → C4 the map p is the zero map. Then if u is a
section of O(3), and w a section of O(4), viewed as a section of C4 we have p(u + w) =
p(u) + p(w) = p(u) since a map sending w 7→ p(u+ w)− p(u) is a fiber bundle map from
O(4)→ O(3) and must be zero. Similarly, since the only fiber bundle maps from O(3) to
itself are vector bundle homomorphisms p|O(3) must be a vector bundle isomorphism.

This derives a contradiction because there is no section from C3 → C4. This becomes
apparent when the transition functions for C4 are written out. If (x+c1y+c2y

2+c3y
3,m4)

and (y+b1x+b2x
2+b3x

3,m4) define the same ideal I then substituting y ≡ −(b1x+b2x
2+

b3x
3)(mod I) shows that

x− c1(b1x+ b2x
2 + b3x

3) + c2(b1x+ b2x
2 + b3x

3)2 − c3(b1x+ b2x
2 + b3x

3)3 ∈ I

This polynomial is also in (x), but I∩x ⊂ x4, or else I contains x3 and y+b1x+b2x
2+b3x

3,
contradicting the fact that it is codimension 4. By setting the linear through cubic terms
of this polynomial equal to 0, we derive the transition functions

1. 1− c1b1 = 0

2. c2b
2
1 − c1b2 = 0

3. 2c2b1b3 − c1b3 − c3b31 = 0

Combining these equations we can write b3 = b−11 b22 − c3b41. Now say c3 can be written
as a polynomial function of c1 and c2, or as a polynomial function g of b−11 and b−31 b2. That
means b3 = b−11 b22 − g(b−11 , b−31 b2)b

4
1. But it is impossible for a term of g(b−11 , b−31 b2)b

4
1 to

cancel b−11 b22, so this section g cannot be extended over b1 = 0.
This completes the proof

This concludes the bulk of the examples for the paper. The rest will be devoted to
computing the dimension of Hilbn k[[x, y]] and, in order to do this, proving that for any
type T , the ideals of that type form an affine bundle over the graded ideals of this type.

5 Affine Bundle Structure for Ideals with Fixed Pattern

The plan of attack, drawn from [1], is as follows. First, instead of looking at all the ideals
of type T , we will first look at the ideals of type T that are disjoint from a fixed, large-
as-possible subspace of R/mn. When this is assumed, it is possible to straightforwardly
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produce generators for an ideal. Upon further examination, some terms in the generators
can be freely chosen, and the other parts are then uniquely determined. This shows that
the subscheme of ideals disjoint from the fixed vector space is actually an affine space and
lets us determine its dimension.

After showing this for a fixed vector space. It will be shown that after selecting only
finitely many such vector spaces, every ideal will be disjoint from at least one of the vector
spaces chosen, i.e. ZT can be covered by a finite union of affine spaces.

5.1 The structure of ideals in k[[x, y]]

Definition 5.1. For T a type, A pattern of type T is a set P of polynomials in x and y
with |Pj | = tj . The normal pattern of type T is the pattern of type T where terms are
chosen to have highest possible x degree.

Definition 5.2. An ideal I ⊂ R has pattern P if one of the following equivalent formula-
tions holds:

1. For all j ∈ N it is the case that 〈P ∩mj〉 ⊕ (I ∩mj) = mj

2. For all j ∈ N it is the case that 〈Pj〉 ⊕ 〈Ij〉 = Rj

3. 〈P 〉 ∩ I = 0 and |Pj | = tj(I)

Of course, equivalence needs to be proven.

Proof. 1→ 2) Given that (I∩mj)⊕〈P ∩mj〉 = mj and that (I∩mj+1)⊕〈P ∩mj+1〉 = mj+1

it follows that

Rj = mj/mj+1 =
(
(I ∩mj)⊕ 〈P ∩mj〉

)
/
(
(I ∩mj+1)⊕ 〈P ∩mj+1

)
=
(
(I ∩mj)/(I ∩mj+1)

)
⊕
(
〈P ∩mj〉/〈P ∩mj+1〉

)
= Ij ⊕ Pj

2→ 3) Since tj(I) is defined as dimRj−dim Ij it is clear that dimPj = tj(I), and that
〈Pj〉 ∩ Ij = 0. Say the intersection 〈P 〉 ∩ I has some nonzero element. Then that element
has an initial form of degree j, but this contradicts 〈Pj〉 ∩ Ij = 0.

3→ 1) If 〈P 〉∩ I = 0 and |Pj | = tj(I) then 〈P ∩mj〉∩ (I ∩mj) = 0. Quotienting out by
mn, where n = codim I we have that the two subsapces are disjoint and of complementary
dimension, so for all j < n 〈P ∩mj〉/mn ⊕ (I ∩mj)/mn = mj/mn. We know that for k ≥ n
Pk = 0 and Ik = Rk, so this result lifts to what is desired

It will frequently be helpful to think of R, and ideals and patterns in R as arranged in
a sort of Pascal’s Triangle, as in figure 2.

Now, pick a pattern P that is a valid pattern for an ideal, it can be used to determine
a generating set for I. Let vj be the monomial in Rj with the highest x-degree that is not
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Figure 2: In a pattern of type (1, 2, 2, 1, 0...). By our notation u0 = X4, u1 = X2Y , and
u2 = Y 2

in Pj . For convenience when Pj = Rj say vj = 0. It is clear that, the x-degree of xvj is
less than or equal to the x-degree of vj+1.

Let U be the set of monomials such that Uj = {xj−iyi|degx vj ≤ j − i < degx xvj−1}.
The set U is highlighted in figure 2.

Proposition 5.3. Some simple facts about U :

1. If d is as above, the largest integer for which Pd−1 = Rd−1, then Uk = ∅ for k ≤ d.

2. U has exactly d+ 1 elements

3. Distinct elements have distinct y degrees going from 0 to d. For the future, ui will
refer to the monomial xkiyi contained in U . Note that u0 is a power of x, and ud = yd

4. Define Uk as the subset of U consisting of elements of degree k. Letting T =
(1, 2, 3, ...d, td, td+1, ..) then Ud has size equal to ed + 1, and for j > d Uj has size
equal to ej.

As a vector space 〈P 〉 spans R/I, since it is disjoint from I and dimensions check out.
Thus for every ui ∈ U there is an hi ∈ 〈P 〉 such that fi = ui − hi ∈ I. These fi will be
called the standard generators for I, and now we prove this name has merit.

Theorem 5.4. Defined as above, I = (f0, ...fd)

Proof. This is first shown in the case that I is graded. Let J = (f0, ...fd) Clearly J ⊂ I.
The fact that J = I will follow from the claim that for all k Jk + 〈Pk〉 = Rk.
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Figure 3: The set S(xy)

The proof of this claim goes by induction. Clearly for k < d Jk + 〈Pk〉 = 0 + Rk and
for k = d Jd + 〈Pd〉 = 〈Ud〉+ 〈Pd〉 = Rd.

Now assume Jk + 〈Pk〉 = Rk. Then

Rk+1 = 〈yk+1, xRk〉
= 〈yk+1, xJk, xPk〉
= 〈yk+1−dfd, xJk, Pk+1, Uk+1〉

By definition 〈Pk+1, Uk+1〉 ⊂ 〈Pk+1, Jk+1〉, so Rk+1 = 〈Pk+1, Jk+1〉
This shows the result if I is graded. Suppose that I is not graded, and let f1, ...fd be

the standard generators for I. Denote by Fi the initial form of fi. It is not hard to see that
F1, ...Fd will be the standard generators for I∗. Since I∗ is equal to I/mI we can apply
Nakayama’s lemma to see that I = (f1, ...fd)

Definition 5.5. If u is a monomial, then S(u), called the shadow of u, is the set of all
monomials of degree greater than or equal to the degree of u, and x degree greater than or
equal to the x degree of u.

In the Pascal’s triangle arrangement, S(u) is all monomials in or to the left of the
triangle extending below u. Figure 3 shows S(xy) below the dotted line.

Now we show an alternate way to generate S(u)

Lemma 5.6. For a fixed pattern P , let U be as above, and let fi be equal to ui − hi for
hi ∈ 〈P ∩mdeg ui〉.

Then (f0, ...fs) + 〈P ∩mdeg us〉 = 〈S(us)〉

Proof. The proof proceeds by induction. In the case s = 0 f0 = u0 = xk0 , P ∩ mk0 = ∅,
and S(x0) = (x0) = (f0).
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Now assume the theorem holds for s − 1. It is pictorially clear that 〈S(us)〉 = (us) +
〈S(us−1)〉+ 〈P ∩ mdeg us〉. Take g ∈ 〈S(us)〉, and write g as α0us + k for k ∈ 〈S(us−1)〉+
〈P ∩mdeg us〉. Then

g − α0fs = α0us − α0fs + k = α0hs + k

Examining αh2, it is possible to express α0 as β + γ so that γhs ∈ 〈S(us−1)〉 + 〈P ∩
mdeg us〉, and βhs ∈ (us). This means βhs = α1us and it is neccessary that the highest
power of x dividing α1 is greater than the highest power dividing β, which is in turn greater
than or equal to the highest power of x dividing α0 We then can rewrite g−α0f = α1x+k′

for k′ ∈ 〈S(us−1)〉+ 〈P ∩mdeg us〉
This can be repeated until xks−1−ks divides the resultant αn. This means

g − (α0 + α1 + · · ·αn−1)fs ∈ xks−1−ks(us) + 〈S(us−1)〉+ 〈P ∩mdeg us

From the definition xks−1−ks(us) ⊂ 〈S(us−1)〉 so that means

g ∈ (fs) + 〈S(us−1)〉+ 〈P ∩mdeg us

Apply the induction hypothesis to see g ∈ (f0, ...fs) + 〈P ∩mdeg us〉.

As a corrollary of this, if (f0, ...fs) ∩ 〈P 〉 = 0 then 〈S(us)〉 = (f0, ...fs)⊕ 〈P 〉.
This concludes the helpful lemmas and allows us to state and prove the main result.

5.2 Relations on Generators

The goal is to prove that the subvariety of ideals with pattern P is affine. From earlier
results, we know that to specify and ideal with pattern P , it is enough to specify all the
coefficients of the monomials in P for each fi. Now we show that the relations on such
coefficients are particularly nice.

Theorem 5.7. Let P be a normal pattern, and f0, ...fs be polynomials of the form fi =
ui + hi for hi ∈ 〈P ∩mdeg ui〉 so that (f0, ...fs) ∩ 〈P 〉 = 0. We want to choose fs+1 so that
(f0, ...fs, fs+1) ∩ 〈P 〉 = 0. Write

fs+1 = us+1 +
∑

aiαi +
∑

bjβj

so that αi, βj ∈ P ∩ mdeg ui and xks−ks+1αi 6∈ P while xks−ks+1βi ∈ P . Then the set of ai
uniquely determine the set of bj and moreover, the set of ai can be chosen arbitrarily.

Proof. Say

g = xks−ks+1
∑

aiαi and h = xks−ks+1
∑

bjβj

Then, g + h = xks−ks+1fs+1 ∈ 〈S(us)〉. So modulo (f0, ...fs), g is equivalent to some
h′ ∈ 〈P ∩mdeg us〉.
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This means that xks−ks+1fs+1 ≡ h′+hmod(f0, ...fs). To enforce that (f0, ...fs+1)∩P =
0, it must be the case that xks−ks+1fs+1 ≡ 0 mod(f0, ...fs). Since h′ and h are contained in
〈P ∩mdeg us〉, that means h′ = −h. Since h′ is clearly determined by g, so is h.

Moreover, suppose the ai are determined. Then we can solve for h, and dividing
by xks−ks+1 , uncover the bj . This gives us a candidate fs+1. We need to show that
(f0, ...fs+1) ∩ 〈P 〉 = 0. First note that (fs+1) ∩ 〈P 〉 = 0, since fs+1 = us+1 + hh+1 and
(us+1) ∩ 〈P 〉 = 0, while hs+1 ∈ 〈P 〉.

Now observe that (f0, ...fs+1) ∩ 〈P 〉 ⊂ 〈P ∩ mdeg us〉 : Let
∑s+1

i=0 gifi = h0 + h1 be in
(f0, ...fs+1) ∩ 〈P 〉 with deg h0 < deg us. Then modding out by mdeg us we have gs+1fs+1 ≡
h0(modmdeg us). But this is impossible unless h0 = 0, since fs+1 contains us+1 and no
terms of lower degree.

Now suppose
∑s+1

i=0 gifi ∈ (f0, ...fs+1) ∩ 〈P 〉. Since 〈S(us)〉 = (f0, ...fs)⊕ 〈P ∩mdeg us〉
then gs+1fs+1 ∈ 〈S(us)〉. But (fs+1) ∩ 〈S(us)〉 = (xks−ks+1fs+1) ⊂ (f0, ...fs). This means

(f0, ...fs+1) ∩ 〈P 〉 ⊂ (f0, ...fs, x
ks−ks+1fs+1) ∩ 〈P 〉 = (f0, ...fs) ∩ 〈P 〉 = 0

This completes the proof.

This theorem is the most important result of this section and the rest follows straight-
forwardly.

For one thing, consider graded ideals. The following propositions show that the gener-
ators described above work well for graded ideals

Proposition 5.8. Say I has pattern P . I is a graded ideal if and only if the standard
generators fi are homogenous

Proof. Since (f0, ...fd) = I the ⇐ direction is clear.
Now suppose I is graded. Then fi = hj + hj+1 + · · · with hk in the kth graded piece

of I, and j = deg(ui). But this means hj+1 + hj+2 + · · · ∈ I ∩ 〈P 〉, so it is 0, so every term
is 0 so fs = hj .

This lets us show a similar result for graded ideals

Theorem 5.9. Let f0, ...fs be chosen to be homogenous, of the form fi = ui + hi for
hi ∈ 〈P ∩mdeg ui〉 so that (f0, ...fs) ∩ 〈P 〉 = 0. Also, let ai, αi, bj, and βj be as above.

Then say that the ai of fs+1 are determined so that ak = 0 whenever degαk 6= deg us+1.
The bi are uniquely determined so that (f0, ...fs+1) ∩ 〈P 〉 = 0, but in addition to this, fs+1

will be homogenous of degree deg us

Proof. It suffices to show, in the language of the earlier result, that h is homogenous of
the same degree as g, since we can then divide by xks−ks+1 . But g − h ∈ (f0, ...fs) which
is graded, so it can be written as g − hj − hj+1 − · · · with hi in the ith graded piece of
(f0, ...fs). But then hj+1, hj+2, ... are contained in (f0, ...fs) and also 〈P 〉 so they are 0.

13



This shows that for a fixed pattern P , the ideals of pattern P form a trivial affine
bundle over the graded ideals of pattern P . Once we write ZT as a union of finitely many
such open sets, this will show that ZT is a locally trivial affine bundle over GT . This is
because if an ideal I has pattern P , its associated graded ideal has pattern P as well., so
we can check local triviality over the open sets corresponding to a fixed pattern.

6 Finite covering

This will only proves the result for ZT one we show that ZT can be written as a union of
finitely many ZP with different patterns P .

A pattern corresponds to a particular parametrization of R. Any polynomial in x and
y can be rewritten as a polynomial of the same degree in x′ = x − ay and y. When the
generators of an ideal are rewritten, we can check whether or not they satisfy the normal
pattern of the same type in x′ and y.

We will show that for a fixed type T there are finitely many a1, ..aN such that every
ideal of type T satisfies the normal pattern in the parametrization x− aiy, y.

A stronger claim, which will prove the above is that there is some M such that for any
ideal I there are at most M choices of a so that I does not satisfy the normal pattern in
x− ay, y. Then any choice of a1, ...aM+1 will be acceptable.

First, we restate what it means to have a normal pattern.

Proposition 6.1. I has normal pattern in the parametrization x, y if and only if for all j
(xj+1−tj ) ∩ 〈Ij〉 = 0.

Proof. From Definition 5.2, I has normal pattern P if and only if 〈Pj〉 ∩ 〈IJ〉 = 0.
The elements of Pj are xj , xj−1y, ...xj+1−tjytj . Thus 〈Pj〉 = (xj+1−tj ) ∩Rj , so

〈P 〉 ∩ Ij = (xj+1−tj ) ∩Rj ∩ Ij = (xj+1−tj ) ∩ Ij

Now we prove the main result of this section

Theorem 6.2. ZT is a union of finitely many ZP

Proof. When tj = 0 it is immediate that (xj+1−tj )∩ Ij = 0, because the two things we are
intersecting live in different degrees. Also if I has codimension n, then tj = 0 for j > n.
So it is enough to find an Mj such that for any ideal I and any j ((x− ay)j+1−tj )∩ Ij 6= 0
for at most Mj values of a. For j > n Mj will be 0 so we can then take M =

∑∞
i=0Mj .

If Ij = 0 we can take Mj = 0, so assume otherwise. Since dimRj = j+1 and dimPj = tj
we have dim Ij = j + 1 − tj . Say that I = 〈f1(x, y), ...fj+1−tj (x, y)〉. Let V be a k vector
space that is a subspace of k[x] generated as 〈f1(x, 1), ...fj+1−tj (x, 1)〉. It is clear that
((x− ay)j+1−tj ) ∩ Ij 6= 0 if and only if there is some f ∈ V with (x− a)j+1−tj dividing f .
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In this case there is a neat way of determining if there is such an f . This is equivalent to
x− a dividing the Wronskian of f1, ...fj+1−tj . The Wronskian is equal to the determinant
of 

f1 · · · fj+1−tj
Df1 · · · Dfj+1−tj

...
. . .

...
Dj−tjf1 · · · Dj−tjfj+1−tj


where Di is the ith derivative.

If (x − a)j+1−tj divides some element in f ∈ 〈f1, ...fj+1−tj 〉 then we can change basis

for V and rewrite the above matrix so one column is f, d
dxf, .... Then (x − a) will clearly

divide the wronskian.
Since fi has degree no greater than j, the wronskian is a polynomial of bounded degree.

Furthermore, since the fi are linearly independent the Wronskian is not uniformly 0, and
thus has a bounded number of roots. This will be proven as a separate lemma.

This completes the proof.

Lemma 6.3. If f1, ...fn are linearly independent polynomials, their wronskian is not uni-
formly 0.

Proof. Since differentiation is linear we can replace fi with linear combinations as long
as we preserve linear independence. Then we assume, without loss of generality, that f1
has the highest degree and the degree of f2, ...fn is strictly smaller. Then we make it so
f2 has the highest degree of f2, ...fn and the degrees of f3, ...fn are strictly smaller, and
so on. This means that when we compute |Djfi|, there is a unique monomial of highest
degree found in the product of the terms along the diagonal, so the polynomial cannot be
uniformly 0.

Returning to Hilbert Schemes, this finite union is connected. In fact, the combined
intersection of all the open sets in the cover is nonempty. Let P be the normal pattern in
x and y, and let I be the ideal generated by (u0, ...ud) as before. Then I has every normal
pattern in every parametrisation.

This is clear because Ij = 〈yj , xyj−1, ...xj−tjytj 〉 so Vj = 〈1, x, ...xj−tj 〉 which has an
upper triangular wronskian with diagonal 1. Since x − ay never divides 1, I has every
normal pattern.

7 Dimension

Recall the properties listed about the set U in Proposition 5.3. In particular, |Ud| = ed + 1
and for j > d |Uj | = ej

We can now compute dimensions. Since ZT can be covered by finitely many ZP , it
suffices to compute dimension for ideals having a fixed pattern.
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Figure 4: s = 3 and with the given pattern k2 − k3 = 2. The highlight terms are the
elements of P that land outside when multiplied by x2. Those in red are of degree less
than deg u3

7.1 Dimension of the space of all ideals of type T

Let P be a pattern with type T . For each fs there are s(ks−1 − ks) monomials in P with
x-degree no less than us such that multiplying by xks−1−ks brings them out of P . (For
s = 0 ks−1 is incoherent, but this term is 0 anyway so it doesn’t matter). See figure 4 for
an example where us = u3 = y3 and u2 = x2y2.

Also note that
d∑

s=0

s(ks−1 − ks) =
d∑

s=0

ks = n

This however, overcounts the total number of terms. For each fs we have counted terms
of degree less than the degree of us. These should not contribute to fs. One such term in
the excess is produced for every ua with a < s and deg ua = deg us−1, and all such terms
are produced this way.

Say j > d. We will compute the number of overcounted terms when deg us−1 = j. Let
Uj = {ua, ua+1, ...ua+ej−1}. fa+ej contributes |Uj | overcounted terms, fa+ej−1 contributes
|Uj | − 1 overcounted terms, and so on. Remembering that |Uj | = ej this gives a total of

ej∑
i=1

i =
ej(ej + 1)

2

Now say that j = d This is the same as before except there is no us of degree less than

d with deg us−1 = d, so the sum is instead
∑|Ud|−1

i=0 i. However, since |Ud| − 1 = ed, this is

exactly ed(ed+1)
2 .
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This gives the total dimension of ZP , and thus ZT as n−
∑n

j=d
ej(ej+1)

2 .
This proves that the dimension of HilbnR is equal to n − 1, since curvilinears have

dimension n−1 and are the highest-dimensional component. In fact, HilbnR is irreducible
of dimension n− 1, but that takes more work to show.

7.2 Dimension of graded ideals of type T

For graded ideals, it is easier to count exactly the number of terms. For each s, we want
to count elements of P that have degree equal to deg us such that multiplying the element
by xks−1−ks sends it outside of P . This is equivalent to the number of a such that

deg ua > deg us, and deg us−1 ≤ deg ua ≤ deg us−1 + 1

Fix ua with deg ua. = j. How many allowable options are there for us−1 so that the
above relation holds? us−1 could be any element of Uj−1, unless j − 1 = d in which case
us−1 could be all elements except ud. If j 6= d us−1 could also be the element of Uj with
highest possible y-degree, guaranteeing that deg us < deg ua. Thus the total number of
terms coming from ua is

0 if deg ua = d

|Ud| if deg ua = d− 1

|Uj−1|+ 1 otherwise

This simplifies because |Ud| = ed + 1 and |Uj | = ej for j > d. The total is then∑
j=d+1

∑
|Uj |

ej−1 + 1 =
∑

j=d+1

ej(ej−1 + 1) =
∑
j=d

(ej + 1)ej+1

As a final note, this shows that dim Hilbn[[x, y]] = n− 1, since this is the dimension of
the subscheme parametrizing curvilinear schemes. This shows that in Hilbn P2, nothing has
higher dimension than the open set parametrizing n distinct points, so dim Hilbn P2 = 2n

8 Conclusion

That concludes the results for this paper. There are many other related areas of interest.
When P2 is replaced with P3, the above methods fail to generalize easily. For large enough
n, Hilbn P3 is not irreducible and has unknown dimension. In a different direction, affine
bundle that are not vector bundles are not well understood. The ones constructed in this
paper can be distinguished by looking at the tangent bundle of the ’zero section’. For
example, the tangent bundle of P1 included in C4 is O(4)⊕O(3).
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