
Formal Properties of Categorial Grammars

Gabriel D. Carroll

Submitted in partial fulfillment of the requirements
for the degree of Bachelor of Arts with Honors

Department of Mathematics
and Department of Linguistics

Harvard University

May 31, 2005



Abstract

We discuss two standard formal tools used to study models of grammar. One of these
is formal language theory, which provides a way to describe the complexity of languages in
terms of a sequence of standard language classes known as the Chomsky hierarchy. The
other tool is learnability theory, which can describe, for a given class of languages, whether
or not there exists a single learner that can learn every language in the class; we use a
particular model for learning developed by Gold. These two tools can be used to obtain
formal properties of a grammar system, and to evaluate the validity of a theory of natural
language. After presenting the tools, we show how they can be applied to the linguistic
theory of categorial grammars, and we discuss the results.



1 Introduction

Suppose you are a linguist, with a theory of the human language faculty — that is, a system of
principles that makes some predictions (not necessarily comprehensive) about how language
works — and you would like to evaluate this theory. Or perhaps you have several different
theories, and you would like to compare them. How do you go about doing this?

The most basic approach you employ is to see whether the theory can account for empir-
ical data about what sentences are grammatical or ungrammatical in particular languages,
and whether it provides reasonable ways of accounting for differences between languages.
Depending on the nature of the theory and the predictions it makes, you may have other
tools available: psycholinguistic experimentation, for example, or evidence from child lan-
guage acquisition, or theoretical considerations of parsimony. The purpose of the present
paper is to present some of the purely formal tools that are also of use in evaluating a theory
of language.

The general setup is as follows: The cognitive faculty known as universal grammar, which
is shared by all humans and provides the basis for acquisition and use of languages, delimits
some set L∗ of possible human languages; the exact nature of this set is not known to us.
Any linguistic theory predicts some class L of possible human languages (or at least makes
some predictions about L, even if it does not completely determine the class). The theory is
a good one insofar as L is a good approximation to L∗. Therefore, if there are certain formal
properties that are believed, for independent reasons, to hold for L∗, then we can evaluate
the theory by determining whether or not its L also has these properties.

We will describe two of the formal tools along these lines — formal complexity and
learnability theory — and will apply them to a particular theory of the syntactic component
of language, known as categorial grammar (see e.g. [38], [68], [77]). More precisely, there have
been various different versions of categorial grammar proposed in the linguistic literature
(classical categorial grammar, combinatory categorial grammar, and so forth). We define
a sort of “meta-grammatical” framework, within which we can define specific theories of
categorial grammar; one would then add a lexicon in order to obtain a grammar for a
specific language. We then use these formal tools to compare some of the various forms
of categorial grammar that can be obtained by instantiating this framework. Although the
questions we are studying are too broad to obtain anything like an exhaustive analysis, we
can at least hope to have demonstrated that the tools themselves are interesting and merit
further development, and that the concepts we have introduced might be of use in future
investigation of these questions.

In the direction of formal complexity, we will show that some versions of categorial
grammar are inadequate for describing natural language, others are excessively general and
allow for languages that are more complex than any human language is believed to be, while
others seem to strike a reasonable middle ground. In the direction of learnability, under the
particular model we use (the Gold framework of learning from text, [31]), we will show that,
while even the most basic version of the theory gives a set L of languages that is too large
to be learned by any one learner (and is therefore unrealistic), imposing a simple restriction
known as “rigidity” on a categorial grammar system results in a class of languages that can
be learned, and in a very elegant and natural manner.

Although there are some new concepts and new results, the main purpose of the present

1



work is expository. We are interested in presenting tools at the intersection of mathematics
and linguistics, for the benefit of the reader in either discipline who may be unfamiliar with
them; surely the insight that is gained when scholars are exposed to ideas from outside
their field is justification enough for the endeavor. In particular, we seek to show that the
application of mathematical methods can provide concrete and meaningful results of interest
in linguistics. Another goal, in the course of the exposition, is to develop the relevant
definitions and results from the ground up; currently, essentially all of the non-book-length
literature in this field is either vague and fuzzy or extremely technical. For practical reasons,
the writer must choose his audience, and so this paper is directed primarily at mathematicians
with no background in linguistics, rather than vice versa. Consequently, it will be necessary
to spend some time on basic notions that will be tediously familiar to the linguist (including
much of this introduction), whereas standard concepts from set theory and algebra will be
used without comment. Should the latter cause any trouble, the reader is generally referred
to [49] for basic mathematical ideas that are used in linguistics; a few of our mathematical
examples use terms not found in that book, but they will not be crucial to the exposition
here.

In view of the impossibility of appealing equally to every reader, the least we can do is to
provide an outline to guide the reader to the sections he or she will care the most about. In
Section 2, we lay out the tools of formal language theory for describing the complexity of a
class of languages, and we discuss their relevance to the complexity of the natural languages
(L∗); although the ideas of the first few pages are essential, the reader who is less interested
in these questions can skim the rest of the section. In Section 3, we describe the framework
of categorial grammars. Much of the section is devoted to examples from human languages
and can be skimmed by the mathematical reader interested only in the formalism instead
of the motivation; the crucial definitions are at the end of the section. Section 4 applies the
ideas of formal language theory to categorial grammars and produces general results about
the complexities of various versions of the categorial grammar framework. Section 5 is a brief
overview of learnability theory and should be relatively interesting for everyone. In Section
6, we apply learnability to categorial grammars; the ideas of this section probably have the
most inherent interest to the mathematician, although much of it is somewhat technical, and
some readers may want to focus on results and skip the proofs. Although the mathematical
theory here is more interesting, the results are less general than those of Section 4, and we
close the section with a discussion of some of their shortcomings. Section 7 summarizes our
results and discusses their overall relevance. Finally, in some places, including a proof of
a particular result would needlessly interrupt the discussion; these proofs are included in
the appendix. We also include, after the references, an index listing the most important
terms we introduce and the pages on which they are defined, for when the jargon becomes
overwhelming.

Having now provided the requisite general orientation, we will spend a bit more time
discussing the methodological and philosophical basis of our approach. We make a number
of basic assumptions that are common to the generative grammar tradition (e.g. [16, ch. 1]),
and these assumptions (and the reasons for them) had better be on the table in order for
our work to make any sense. Some of the ideas are elaborated in more detail in the popular
treatment [53].

To have a description of a language, we must have a “grammar” that encapsulates suf-

2



ficient information to determine what strings are and are not grammatical sentences of the
language. The most basic maxim is that languages’ grammars are not completely indepen-
dent of each other but rather are built on a foundation of “universal grammar” that captures
the similarities across all human languages. Some of these similarities are so basic as to es-
cape everyday notice: for example, the expressions of a language are temporally ordered
strings, not unordered sets or three-dimensional arrays; these strings contain hierarchically
structured units, such as sounds, morphemes, words, phrases, and sentences. Some are less
blindingly obvious but still require expression and explanation: no language has a rule where
one says “Cow!” at the end of a sentence to indicate that the subject is gray; every lan-
guage has nouns, verbs, and adjectives. These commonalities comprise universal grammar.
Universal grammar then provides a framework for specifying the grammar of a particular
language; such a grammar is now a finite system of rules or parameter values. The rules of
universal grammar, together with the details of a grammar for a language L, define L. Thus,
universal grammar demarcates a set L∗ of possible human languages L.

One of the major guiding goals of modern linguistics is to understand universal grammar,
as an abstract description of language, in the same way that, say, the Standard Model is a
description of the physical universe. Various theories of universal grammar are out there in
the literature. As already described, each theory predicts a class L of possible languages,
which is intended to approximate the actual class L∗. We apply formal tools to these theories
(in our case, categorial grammar) to see if L has certain properties that are known or believed
to hold for L∗.

Formal language theory ([33], [59]) is an active area on the border of mathematics and
computer science, although much of the founding work in the area actually grew out of
linguistics. Among other things, it provides a way of talking about desirable properties a
class of languages should have and defines several canonical classes that form a hierarchy of
complexity levels. These provide a yardstick for making statements about the complexity of
languages, and in particular one can make non-vacuous statements about the complexity of
human languages. From empirical data about acceptable and unacceptable sentences, one
can establish lower bounds on the complexity of languages in L∗ in terms of this hierarchy.
Upper bounds are harder to talk about with confidence, but there are reasons for us not to
ascribe any higher complexity to L∗ than we have to: “most” of the constructions of natural
languages can be accounted for by context-free languages (this being one of the levels of the
standard hierarchy); there are particular structural properties that human languages seem
to have that languages at higher complexity levels seem to lack; on the non-empirical side,
the human brain must be able to parse utterances reasonably efficiently, and more complex
languages potentially produce parsing problems of greater time and space complexity. Hence,
formal language theory gives us means by which to compare L and L∗. We should be wary
of a theory of language that predicts higher levels of complexity for languages in L than are
known to be needed for human language. We should also reject (or revise) a theory that
restricts L to low levels that are known to be inadequate.

Learning and learnability theory, an area that today receives attention predominantly
in artificial intelligence, also provides a way to reject theories of language that predict an
excessively large L. Any normal child, in its period of language acquisition, can learn any
possible human language. Therefore, L∗ must be small enough that there exists a single
learning mechanism capable of learning every language L ∈ L∗. Thus, we have a property

3



of L∗ that holds on purely theoretical grounds, without even any need for data to support
it. We then have a test for theories of language: if a theory predicts an L so large that no
one mechanism can learn every language in the class, then the theory does not adequately
delimit the space of human languages. Of course, it remains to fill in exactly what it means
to learn a language, what kind of learning mechanism is allowed, the form of its input and
output, and so forth; numerous models for learning exist in the literature. We use one of
the simplest models, basically for reasons of tractability rather than empirical validity, but
it will still give us interesting and nontrivial results.

Linguistics is not currently at a stage where anyone seriously claims to have a compre-
hensive theory of universal grammar. The use of these tools, then, is to compare the various
approximations and partial theories that research has thus far discovered, and determine
which of the various paths that have been explored are most promising for future under-
standing of language. And what, one might ask, happens next? In fact, understanding
language is not only an end in itself but also a window into understanding of the human
mind. Basic developments in linguistics have already contributed to major insights in other
areas of cognitive science (see [15], [28], [34]).

Indeed, universal grammar cannot exist in an abstract vacuum but must be reflected,
in some form, in the human brain. The hypothesis that the brain is hard-wired with a
framework for language is necessary to explain many of the universal commonalities among
all languages; it is also necessary to explain how it is possible for the human child to acquire
language, as the data available to the child are grossly inadequate to learn a language if no
information is available a priori (this is the so-called logical problem of language acquisition,
[6], [21], [36]).

It is important to keep in mind, however, that the grammar is not the same thing as
the neural system underlying language. A grammar is a passive system of rules determining
well-formedness of sentences, whereas the neural system (the computation) must operate
temporally to create and interpret sentences; the neural system produces only an approx-
imation of the language given by the grammar (see below on the competence-performance
distinction); and even if this were not the case, we should pursue the descriptive goal of
constructing grammars because it is more accessible than the goal of neurologically under-
standing how sentences are produced and understood. Chomsky, in [18, ch. 5], compares a
grammar to a theory of chemistry that describes what chemical compounds are structurally
possible; such a theory does not directly give processes for synthesizing these compounds,
but it could provide the basis for such processes. Similarly, we study grammars in order to
provide the basis for future understanding of the cognitive process; although the two are not
identical, there is surely some relation between them.

Since it must be represented in the mind, the language faculty is basically a biological
mechanism. If one accepts the argument that language has been shaped by adaptive pressures
over the course of evolution (see [52]), then the broad questions we are asking will help us
understand not only how language works, but in some sense why it works as it does. Among
adaptive constraints, there is a tension between pressures toward communicative versatility
and flexibility (which tend to make the set L∗ large and the languages in it complex), and
considerations of parsing speed and learnability (which make L∗ small and simple). In
the course of establishing a theory of universal grammar, these considerations may help us
understand not only whether our theory is correct but why our universal grammar came

4



to be this way and not some other way. Of course, we should not exaggerate the depth of
evolutionary understanding that is available at present. Much of evolution is random, and
constraints may arise from outside language proper. However, it is the task of linguistics to
explain as much of language as possible without recourse to external forces, and the task of
other sciences to contribute the external parts of the explanation.

Having finished digressing to explain the long-term goals of understanding language, we
should continue to state the methodological assumptions that we make. One basic assump-
tion is the competence-performance distinction. Linguistic competence refers to the subcon-
scious knowledge possessed by an idealized speaker, knowledge that is necessary in order to
produce and understand utterances correctly. Performance is the speaker’s (or hearer’s) use
of that knowledge, which is subject to limitations of memory or time, distractions, physical
constraints, and so forth. The grammars we study are objects of competence, not of per-
formance. Thus, for example, even though there are only finitely many sentences a person
can ever physically utter (because an excessively long sentence would cause the speaker to
starve to death), a competence grammar is in theory capable of generating infinitely many
sentences. Conversely, because of stuttering, false starts, or sudden shifts of attention, a
person may produce utterances which we do not want to consider grammatical.

We study competence, but the only data empirically available to us are filtered through
performance. Noisy data is a property of any empirical science, and although some data can
be considered faulty for this reason, we have more than enough robust data to formulate
interesting questions that any theory of competence should be able to answer. The reason
we focus on competence here is the same reason that any science makes idealizations: the
ideal object is more tractable than the real and directly observable one.

Another assumption we make is that a grammar classifies every string (sentence) as
grammatical or ungrammatical. In practice, there are various shades of acceptability. (Note
that there is a distinction between “grammaticality,” which is determined by the abstract
grammar, and “acceptability,” which is a performance judgment, [19].) But we use this
black-and-white system, again, as an approximation to make the objects of study more
tractable. There are plenty of data on sentences that are clearly grammatical or clearly
ungrammatical, so that accounting for these data poses interesting problems, and we need
not further muddy the waters by allowing ourselves to use data about intermediate levels.

One more assumption that we implicitly make is that children accurately learn the lan-
guage of their parents or their community. This is clearly not entirely true — if it were,
languages would never change over time — but once again is assumed for the sake of sim-
plicity.

Having now spent enough time channeling the voice of Noam Chomsky, we will make
some brief remarks about categorial grammar, the theory we plan to study (it will be de-
scribed more fully in Section 3). Categorial grammar, insofar as we will be concerned with
it, is a theory of the syntax of natural language: it makes claims about what sentences
are syntactically well-formed or ill-formed; we will have nothing to say about phonology,
semantics, discourse structure, or these various other subunits of linguistics. (This means,
of course, that we are assuming that sentences can be empirically classified as syntactically
grammatical or ungrammatical; we have the intuition that a sentence may make no semantic
sense but be syntactically fine, or vice versa. For the data we use, these assumptions are
reasonable.) It is important to be explicit about this distinction because it is not always

5



observed in the literature; for example, the discussion of programming languages in [33, ch.
6] or of number names in [56], which give conclusions that are irrelevant because they ascribe
to syntax some judgments that properly belong to the domain of semantics or pragmatics.

Categorial grammar ([38],[68],[77]) is somewhat of a dissident tradition that differs in fun-
damental ways from mainstream work in syntax. Nonetheless, it stands as a well-developed
linguistic theory. A major source of its appeal in linguistics is that it provides a tight and
clean interface between the syntax and the semantics. It also gives an intuitively believ-
able description of the process of producing sentences, constructing them gradually from the
ground up, simultaneously applying syntactic rules to assemble constituents and semantic
rules to combine their meanings into a meaning for the longer string. Although, as we have
already remarked, the grammar and the computation are distinct entities, there is nonethe-
less a certain appeal to a form of grammar that naturally lends itself to producing theories
about the possible nature of the computation. Indeed, as argued in [10], the minimalist
research program ([22]) that has become popular in recent years is actually founded on some
of the same principles that drive interest in categorial grammar, leading to some basic sim-
ilarities between the two grammatical frameworks, even though they are superficially quite
dissimilar. All this said, we will not need to concern ourselves further with the reasons that
categorial grammar is interesting to linguists and will focus on the formal properties of the
system itself.

There is also a more basic reason that we choose categorial grammars for our focus: the
general framework is relatively simple and elegant to state, which makes it both suitable
for an exposition of the tools of mathematical linguistics and relatively tractable in terms
of obtaining some actual results. We do not wish to exaggerate the immediate significance
of our results — any real convincing theory of universal grammar would have to be much
more detailed and complex than the framework we provide here — but they can at least
provide some direction to study, and a foundation for further results about more sophisticated
linguistic models.

We should remark that the corpus of literature on categorial grammar is sufficiently broad
and diverse that it is impossible for us to give here a fair exposition of the various versions
of the theory that have cropped up, let alone a unified formalism to cover all of them (the
reader is referred to [77] for such an overview). The framework we will develop is intended
to generalize cleanly many of the main ideas that have been developed in different versions
of categorial grammar, but inevitably some ideas that have been fruitful in the linguistic
theory will have to be shortchanged. To those whose relevant ideas have been omitted here:
sorry about that, better luck next time.

2 Basic formal language theory

In this section, we introduce the basics of formal language theory and discuss its applications
to natural language. Formal language theory is a well-developed field in its own right, with
connections to programming languages, logic, and even biology. The material here, except
for a few of the applications we mention, is entirely standard; see [33] or [59] for more detailed
exposition of the theory.

Given a (generally finite) set of symbols Σ, let Σ∗ be the set of all finite sequences of

6



symbols from Σ. This is a monoid under the operation of concatenation; the identity is the
empty string, which we refer to as ε. If v, w ∈ Σ∗, we write vw for their concatenation; vn

is the n-fold concatenation of v. We also let Σ+ denote the set Σ∗ \ {ε} of all nonempty
sequences of symbols from Σ. The length of an element w ∈ Σ∗ is denoted |w|. A language
over Σ is any subset L ⊆ Σ∗.

For purely formal examples, we will use Roman letters a, b, c, . . . to denote elements of
Σ. (Note that we use non-italic letters as specific terminal symbols; italics such as a will be
variables ranging over Σ.) In linguistic applications, we think of Σ as some lexicon of words
or morphemes, and L as the set of grammatical sentences of the language. The elements of
Σ may be thought of as abstract lexical entries rather than phonological forms. We will refer
to sequences from Σ∗ as sentences or strings and elements of Σ as terminals . Σ is sometimes
also called the vocabulary . Notice again that we are making the idealizing assumption that
a language classifies every string as being either a grammatical sentence (i.e. in L) or not.
Also, we are considering a language to be only a set of strings, ignoring (for now) their
internal structure and meaning; we will return to this point at the end of the section.

In general, a language is an infinite set. Informally speaking, the term grammar is used to
refer to a finite “recipe” that describes a language, and a grammar system is a function that
maps grammars into languages. We say that a grammar generates a language; sometimes
we also speak of the grammar generating each individual string in the language. Similarly,
we can speak of the grammar system as generating a class of possible languages (or as
generating each language in the class). The class of languages that can be generated by
grammars within a given system is called the generative capacity or expressive power of the
system.

Here is an example. Suppose we have a finite set V of symbols, which we call non-
terminals , disjoint from Σ, and a finite set P of productions (or rules), which are ordered
pairs (v, w) where v, w ∈ (V ∪ Σ)∗. A production is normally notated as v → w. For
x, y ∈ (V ∪Σ)∗, we write x ⇒ y if there exist s, t, v, w ∈ (Σ∪V )∗ such that x = svt, y = swt,

and v → w is a production. We write x
∗⇒ y if there exists a sequence x = x0, x1, . . . , xn = y

such that xi ⇒ xi+1 for each i. Thus, x
∗⇒ y if we can obtain y from x by successively

rewriting substrings according to the productions in P . Such a sequence x0, . . . , xn is called
a derivation of y from x.

If S ∈ V is a distinguished “start” symbol, then the triple (V, S, P ) is a grammar, called
an unrestricted rewrite system over the terminal alphabet Σ. We define the rewrite language
generated by this grammar to be the set

L = {x ∈ Σ∗ | S ⇒ x}.
Thus, the language is the set of all strings of terminals that can be obtained from S by
successively applying the productions of P . (This explains the names “terminal” and “non-
terminal” — in the process of applying productions, we have arrived at a sentence of L if
there are no nonterminals left.)

For example, if Σ = {a, b, c}, V is just {S}, and P consists of the productions

S → aSbc S → ε ab → ba ac → ca bc → cb cb → bc

then the corresponding rewrite language consists of all terminal strings containing an equal

7



number of a’s, b’s, and c’s, as is easy to check. P also generates strings such as aaSbccb,
but this is not in the language because it contains the nonterminal S.

Arbitrary rewrite languages can be extremely complex, so one generally studies more
restricted classes of rewriting systems. For example, (V, S, P ) is called a right linear grammar
if every rule in P is of the form

X → aY or X → ε (1)

with X, Y ∈ V , a ∈ Σ. Languages generated by right linear grammars are called regular
languages.

Regular languages come up in many places in mathematics. The set of strings containing
the substring abb is a regular language (take nonterminals S, T, U, V , and the rules S → aT ,
T → bU , U → bV , V → ε, as well as S → aS, V → aV , for all a ∈ Σ). More generally, the
set of strings containing any given substring is regular, as is the set of strings not containing
any given substring. If Σ is a generating set for a finite group H, then the set of strings
a1 · · · an, where the product a1 · · · an equals the identity of H, is regular (just have one
nonterminal Xh for each h ∈ H, and have the rules S → hXh, Xg → hXgh, Xe → ε). If
natural numbers in decimal representation are viewed as strings over Σ = {0, 1, . . . , 9}, the
set of multiples of 23 is a regular set.

One can also try to use regular languages to generate sentences of human languages. For
example, consider the following grammar (where the English words represent terminals and
uppercase letters are nonterminals):

S → the T S → a T

T → big T T → sleepy T T → red T

T → boy U T → girl U T → raccoon U

U → walks V U → reads V U → thinks S V → ε

This gives us derivations such as

S ⇒ the T ⇒ the sleepy T ⇒ the sleepy girl U ⇒ the sleepy girl reads V

⇒ the sleepy girl reads

or (abbreviating a few steps now)

S ⇒ a T ⇒ a boy U ⇒ a boy thinks S
∗⇒ a boy thinks a raccoon walks.

As we shall see, there are convincing reasons why this is not an adequate model of natural
language.

Regular languages are relatively simple-minded creatures. The following result shows one
way in which they are simple:

Lemma 1 (Iteration Theorem) If L is a regular language, there exists a constant k with the
following property: whenever x ∈ L and |x| > k, then there exists a factorization x = uvw,
with 0 < |v| ≤ k, such that uvnw ∈ L for all n ≥ 0.

8



Proof: Let (V, S, P ) be a right linear grammar for L, and put k = |V |. If x ∈ L, consider
the derivation

S = x0 ⇒ x1 ⇒ · · · ⇒ xn = x.

We readily see by induction that xi consists of i terminals followed by a nonterminal, for
each i < n, and xn is just a string of n − 1 terminals. If n − 1 > k, then some two steps
of the derivation, that are at most k steps apart, must end in the same nonterminal X. It
follows that our derivation can be broken into subderivations of the form

S
∗⇒ uX

∗⇒ uvX
∗⇒ uvw = x

for some strings u, v, w ∈ Σ∗, where 0 < |v| ≤ k, and in particular the middle subderivation

tells us that X
∗⇒ vX. Then we have the derivation

S
∗⇒ uX

∗⇒ uvX
∗⇒ uvvX

∗⇒ · · · ∗⇒ uvnX
∗⇒ uvnw

for any n, so uvnw ∈ L. ¤
So, for example, while {anbm | n,m ≥ 0} is a regular language (consider the productions

S → ε, S → aS, S → aT, S → bT, T → bT, T → ε), one finds by an easy application of the
preceding theorem that {anbn} is not a regular language. (The subword v, if it exists, either
consists entirely of all a’s, consists entirely of b’s, or crosses the a-b border; we readily check
that each of these cases gives a contradiction.) Informally speaking, the iteration theorem
tells us that the strings of a regular language L cannot be governed by a constraint that
requires some relationship between arbitrarily long substrings.

A more general class of languages is given by the context-free grammars . These are
rewriting systems in which every rule is of the form

A → w for some A ∈ V, w ∈ (V ∪ Σ)∗. (2)

Thus we impose only the condition that every rule should rewrite a single nonterminal. The
languages generated by these grammars are context-free languages. Clearly every regular
language is context-free, but not conversely; for example, the productions S → aSb, S → ε
give us that {anbn | n ≥ 0} is a context-free language.

Context-free languages are worth dwelling on, because they have long been used to model
natural language; what have classically been called “phrase-structure grammars” are context-
free grammars in our parlance. The idea is that the nonterminals denote grammatical cate-
gories (this corresponds to the lay term “parts of speech,” not to be confused with the usual
mathematical sense of “categories”), such as sentence, noun, noun phrase, verb phrase, de-
terminer, and so forth. A grammar would consist of rules specifying how categories combine
to form other categories, such as

S → NP VP

VP → V NP

NP → D N

and rules assigning individual lexical items (terminals) to categories, such as

V → ate N → cake N → crocodile D → a D → the

9



(Note that we will use non-italicized letters to represent grammatical categories in natural-
language examples.)

We then get a derivation for an English sentence such as the crocodile ate the cake:

S ⇒ NP VP ⇒ D N VP ⇒ D N V NP ⇒ D N V D N
∗⇒ the crocodile ate the cake (3)

For succinctness, we have not explicitly shown the last five steps (in which the terminals are
substituted for D, V, N, one at a time). Similarly, a crocodile ate the cake, the cake ate a
cake, a cake ate the crocodile and so forth are all sentences in the language.

The language described above contains only finitely many strings, but as with our regular-
language example, we can spice things up; just add a couple rules:

VP → V S V → thinks

Now notice that we have the derivation S ⇒ NP VP ⇒ NP V S ⇒ NP thinks S, which gives
us embedded sentences. Hence, our grammar now generates sentences such as the crocodile
thinks a crocodile ate the cake, a cake thinks the crocodile thinks a cake ate a cake, and
so forth. Unfortunately, we also get misfits such as a cake ate the crocodile thinks a cake
sneaking into our language. We could rectify this by having a new nonterminal for verbs
that take a sentence as complement, or more simply by replacing our two newest rules with
VP → thinks S. But for now, we have developed this example far enough.

Context-free languages are motivated primarily by linguistic examples like the above,
but they also come up independently in mathematics (although not as often as regular
languages). For example, one frequently occurring language in combinatorics is the semi-
Dyck language over {a, b} ([33, ch. 10]), consisting of all strings containing equal numbers of
a’s and b’s such that no initial segment contains more b’s than a’s. (It may be more familiar
as the set of sequences of left and right parentheses that match properly.) This language is
generated by the context-free grammar with rules S → SS, S → aSb, S → ε. Over a free
group, with Σ the set of generators and their inverses, the set of strings a1 · · · an where the
product equals the identity is a context-free language (generated by S → SS, S → aSa−1

for a ∈ Σ, and S → ε). In fact, it has been shown that a group has the property that the
“cancellative words” form a context-free language if and only if it has a free subgroup of
finite index ([47]). Context-free grammars can also be used in logic, to describe well-formed
formulas; for example, one can describe well-formed arithmetical expressions by rules such
as S → (S +S), S → (S ·S), S → a (where a can be any variable and (, ), +, · are terminals).

Suppose we have a fixed context-free grammar. To any derivation of a string from a
single nonterminal, we can associate a parse tree; this is an ordered tree whose leaves are
labeled by terminals (or ε) and whose intermediate nodes are labeled by nonterminals, so
that for each intermediate node labeled X, the children (in order) spell out some w such that
X → w is a production used in the derivation. For example, the derivation for (3) above
gives us the following tree:

10



S
PPPPP

³³³³³
NP

b
bb

"
""

D

the

N

crocodile

VP
b

bb
"

""
V

ate

NP
cc##

D

the

N

cake

(4)

In general, for each sentence w ∈ L, we have at least one parse tree whose root is labeled
S and whose leaf labels, in order, spell out w. (A parse tree whose root is labeled with the
start symbol will be called an S-parse tree.) Notice that a parse tree does not, in general,
uniquely determine a derivation: for example, to recover a derivation from the above tree,
we must first use the production S → NP VP, but then we have the choice as to which of
the rules NP → D N, VP → V NP to apply next.

In showing how context-free grammars (or rewriting systems more generally) can be used
to model natural language, it should be mentioned that the symbol → is merely a notational
device; it does not describe any temporal process by which sentences are constructed. Thus,
the derivations above should not be taken to mean that a human speaker begins with the
symbol S, decomposes it into other nonterminals, and finally inserts words; indeed, we would
expect the process to be the opposite — the speaker starts with the words and gradually
assembles them into larger constituents. Remember, as discussed in Section 1, that the
grammar is not the same thing as the computational process that produces sentences.

We have seen that the context-free languages are a proper superset of the regular lan-
guages. However, the context-free languages satisfy an analogue of the Iteration Theorem,
giving a tight constraint on their complexity:

Theorem 2 (Pumping Lemma) If L is a context-free language, then there exists a constant
k with the following property: for any z ∈ L with |z| > k, there exists a factorization
z = uvwxy, with 0 < |vx| ≤ |vwx| < k, such that uvnwxny ∈ L for every n ≥ 0.

Proof: Call a parse tree “loopless” if there is no nonterminal X such that some node
labeled X strictly dominates another node labeled X. For any fixed context-free grammar,
there exist only finitely many loopless parse trees. (This can be seen by induction on the
number r of nonterminals in the grammar: there are only finitely many choices for the root
nonterminal X, and finitely many choices for the rule that gives its immediate descendants;
each of these descendants then dominates a loopless parse tree that contains no X’s and
so is generated by a context-free grammar with r − 1 nonterminals, and we can apply the
induction hypothesis.) Hence, if we choose l large enough, then any derivation of a string z
with |z| > l, from any nonterminal, has no loopless parse trees. Let m be the largest number
of terms on the right-hand side of any production, and let k = lm.

For any z with |z| > k, let T be an S-parse tree with as few vertices as possible. By the
above, there is some nonterminal X such that one X node of T dominates another X node.
Choose some two such nodes such that the upper one is as low as possible. Let the terminal
string dominated by the lower X be w; then the terminal string dominated by the upper X

11



is vwx and the terminal string dominated by the root S is uvwxy, for some u, v, x, y ∈ Σ∗.
It follows that S

∗⇒ uXy, X
∗⇒ vXx, and X

∗⇒ w, so we have

S
∗⇒ uXy

∗⇒ uvXxy
∗⇒ uvvXxxy

∗⇒ · · · ∗⇒ uvnXxny
∗⇒ uvnwxny

for any n ≥ 0. Moreover, at least one of v, x is nonempty, since otherwise we could replace
the subtree dominated by the upper X with the subtree dominated by the lower X, thus
creating a parse tree of z with fewer nodes than T , a contradiction. And by our choice
of the X nodes, each of the immediate descendants of the upper X dominates a loopless
subtree; each such subtree yields a substring of length ≤ l, and there are at most m of
these immediate descendants, so that the string vwx dominated by the upper X has length
≤ lm = k, as required. ¤

u

X

X

X

X

X

X

u y

S

w

v x

xv

v x

S

yxwv

Figure 1: The Pumping Lemma

This basic result can be used to show, for example, that although the language {anbn}
is context-free, the language {anbncn} is not: as with the proof of the non-regularity of
{anbn}, we consider the various possible locations of the subwords v, x and check that every
case gives a contradiction. The result can also be used to show that the “copy” language
{ww | w ∈ Σ∗} is not context-free, as long as |Σ| ≥ 2 (for example, consider the strings
z = anbnanbn, where n is sufficiently large). On the other hand, the language {wwR} is
context-free, where wR denotes the string obtained by reversing w. Indeed, such a language
is generated by the productions S → aSa (for each a ∈ Σ) and S → ε. One often says that
the language {wwR} contains “nested dependencies”, whereas the language {ww} contains
“crossing dependencies.” See the figure.

c ba cbacba ab c

Figure 2: Nested (left) and crossing (right) dependencies

Now, let’s move on in our classification of the rewriting systems, because there is more
to be done. The next stop is the context-sensitive grammars . These are grammars in which

12



every rule is of the form
sAt → swt, (5)

where A ∈ V , s, t ∈ (V ∪ Σ)∗, and w ∈ (V ∪ Σ)+. Thus, we can see the motivation for the
terms “context-free” and “context-sensitive”: a production of a context-sensitive grammar
can allow us to rewrite A as the string w, but only in a certain “context” of neighboring
symbols; context-free rules contain no such restrictions. These rules were originally motivated
by the desire for a concise expression of subcategorization restrictions for lexical items; for
example, one might allow the rewrite NP → John immediately before an animate-subject
verb like sat, but not before happened ([17]). Admittedly this is a somewhat crude way to
express such restrictions, but at least it’s a first shot.

Context-sensitive languages are, as one would expect, more general than the context-free
languages; for example, {anbncn | n > 0} is not a context-free language, but it is generated
by the following context-sensitive rules:

S → aSBC S → aBC CB → DB DB → DC DC → BC

aB → ab bB → bb bC → bc cC → cc.

Notice that we have allowed only rewriting rules sAt → swt where w 6= ε; in particular,
a context-sensitive grammar as defined above can never generate the string ε. More con-
ventionally, context-sensitive grammars are allowed to contain the rule S → ε, but only on
the condition that S never appears on the right side of any production. If instead we allow
rules of the form sAt → swt for any s, w, t ∈ (V ∪ Σ)∗, the resulting grammars are called
context-sensitive with erasing. It turns out that there exists a context-sensitive-with-erasing
grammar for any recursively enumerable language (i.e. any L for which there exists a Turing
machine that will successively print all the strings of L in some order). In fact, it is not too
difficult, given a Turing machine, to construct a context-sensitive-with-erasing grammar that
simulates the machine’s operation. Conversely, any context-sensitive-with-erasing language
must be recursively enumerable — in fact, any rewriting system at all determines a recur-
sively enumerable language, since one can simply enumerate all possible finite sequences of
rule applications.

In contrast, we can see that context-sensitive grammars can determine at most decidable
languages (i.e. languages L for which there exists a Turing machine that determines, in a
finite amount of time, whether or not a given string w is in L). Indeed, the rules of a
context-sensitive grammar cannot shorten a string (except for the trivial S → ε), so for
any string, there are at most finitely many sequences of rule applications that need to be
checked. One can also show, by a Cantor-style diagonalization argument, that there are
decidable languages that are not context-sensitive.

The classes of languages we have described make up what is often referred to as the
Chomsky hierarchy , shown in Figure 3. This hierarchy is widely used as a measurement of
the complexity of formal languages. (Sometimes further intermediate levels, not discussed
here, are also included, see [33, ch. 1].)

Now that we have defined all of these language classes, we should give some indications of
why they are interesting. We have seen that there are linguistic motivations for the forms of,
say, context-free and context-sensitive rules. But why should a mathematician be interested

13



Context−sensitive languages

Recursively enumerable languages

Context−free languages

Regular languages

Figure 3: The Chomsky hierarchy

in these classes of languages, as opposed to others that someone might come up with? One
reason is that each class has a variety of closure properties that make it a natural class of
languages to look at. For example, given a fixed alphabet Σ, and languages L1, L2 over Σ,
one can define the following operations:

• union: L1 ∪ L2,

• concatenation: L1L2 = {vw | v ∈ L1, w ∈ L2},
• Kleene star : L∗1 = {w1 · · ·wn | n ≥ 0; w1, . . . , wn ∈ L1} (i.e. the smallest submonoid

of Σ∗ containing L1; note that this is distinct from the free monoid generated by L1).

Then we have

Theorem 3 (Kleene’s Theorem) The class of (nonempty) regular languages over Σ is the
smallest class of languages containing {a}, for each a ∈ Σ, and closed under union, concate-
nation, and Kleene star.

The regular languages are also closed under complementation (in Σ∗). We will not give the
proofs of these statements here, as we have other things to do right now.

Having thus provided a reason to like the class of regular languages, we can define some
more desirable properties of a class of languages. Such a class F is a full Abstract Fam-
ily of Languages (AFL) [59] if it contains some nonempty language, and is closed under
concatenation and union, as well as the following operations:

• homomorphism: if L is a language over Σ, and φ : Σ∗ → Σ′∗ is a homomorphism of
monoids (for some alphabet Σ′), then the language φ(L) over Σ′ is in F whenever L
is;

• inverse homomorphism: if φ : Σ′∗ → Σ∗ is a homomorphism of monoids, then φ−1(L)
(a language over Σ′) is in F whenever L is;

14



• regular intersection: if L ⊆ Σ∗ is in F and R is any regular language over Σ, then
L ∩R ∈ F .

Note that we do not require an AFL to be closed under intersection or complementation.
The upshot is that the regular languages, context-free languages, and recursively enu-

merable languages are all full AFLs. In fact, one can show ([59, ch. IV]) that these classes
are all principal full AFLs; a full AFL F is principal if there exists L ∈ F such that F is the
smallest full AFL containing L. The class of context-sensitive languages is not a full AFL,
but if we weaken the homomorphism condition to closure under homomorphisms satisfying
φ−1(ε) = {ε}, then the conditions are met (such a family of languages is often simply called
an AFL). Although some of the AFL conditions are easy to see (for example, that each class
of languages is closed under unions), the full proof that these classes have all of the AFL
properties is fairly substantial, and it would be a digression for us to present it here. How-
ever, we will make crucial use of some of the AFL properties in the subsequent application
of formal language theory to natural language, so we refer the reader to [33] or [59] for the
proofs.

The development of formal language theory has been tightly bound up with the the-
ory of automata, and so a second reason that the classes of the Chomsky hierarchy are of
mathematical interest is that each is associated with a standard class of formal automata.
Any reader acquainted with these automata is probably already sufficiently familiar with
this whole theory not to be reading this section, but for the sake of completeness we will
at least outline the correspondence. A language L (over a fixed alphabet) is regular if and
only if there is some finite-state automaton that accepts the strings of L and no others. A
finite-state automaton may be envisioned as a machine that moves in one direction along a
read-only tape, possibly changing states at each step in a manner determined by its previous
state and the symbol it reads on the tape. Some of the states are designated as “accepting
states,” and the machine accepts a string precisely if it is in an accepting state just after
passing the end of the string. The context-free languages are precisely the sets of strings
accepted by pushdown automata, automata that can move in one direction along a read-only
tape and are equipped with a memory stack, so that symbols may be pushed onto or read off
of the top of the stack. Recursively enumerable languages, of course, correspond to Turing
machines, and context-sensitive languages correspond to Turing machines that operate in
linear space (with respect to the size of the input string).

Given this connection with the theory of computation, it is not surprising that the classes
pose parsing problems of different degrees of complexity. It is relatively easy to show that,
for any regular language L, there exists a decision machine for L (i.e. a Turing machine that
determines whether or not its input is in L) that operates in linear time. If L is context-
free, then there exists a decision machine — in fact, a parser (a machine that computes, in
suitable form, an S-parse tree) — operating in polynomial time. If L is context-sensitive, a
decision machine operating in exponential time exists. For arbitrary recursively enumerable
languages, a decision machine does not necessarily exist at all.

Now that we have given some indication as to why the classes of the Chomsky hierarchy
are standard landmarks for measuring the complexity of formal languages, it is time to see
how to apply this business to human languages. We will try to see where on this scale
the class L∗ of human languages lies; this will enable us to assess a theory of language by

15



determining where the L it generates lies, and seeing how well the two match up. Of course
we do not ultimately expect L∗ to coincide with any level of the Chomsky hierarchy, or even
with any class of formal languages that can be given a reasonably succinct description, since
Universal Grammar is a rich and complex device. However, we can at least attempt to find
upper and lower bounds — the smallest “reasonable” class of formal languages that contains
L∗, and the largest “reasonable” class that is disjoint from it. We will thus give a brief
survey of the arguments that have been advanced toward this goal. Our exposition here is
loosely modeled on that of [64].

It is safe to say that natural languages are not regular. As we have seen from the Itera-
tion Theorem, regular languages cannot capture unbounded numbers of nested dependencies,
which occur in every natural language. For example, consider the following sentences (em-
bedded sentences are bracketed for clarity):

the cat is gray
the cat that [the dog chased] is gray

the cat that [the dog that [the platypus heard] chased] is gray
...

These sentences are all grammatical, even if longer ones rapidly lead to performance judg-
ments of unacceptability. Sentences of this form require that the number of nouns equal
the number of verbs, but allow this number to be unbounded; this is a constraint that a
regular language cannot satisfy. Using the closure properties of regular languages, one can
even prove (granting the data) that English is not regular: if we intersect English with the
regular language

the cat { that the dog, that the platypus }∗ { heard, chased }∗ is gray

and then apply the homomomorphism sending each noun to a, each verb to b, and everything
else to ε, the resulting language is {anbn | n ≥ 1}. As we have seen, this language is not
regular, so English cannot be regular either. (For some entertaining examples of nested
dependencies in natural language, see [53, ch. 4].)

The question of whether natural languages are context-free is more interesting. Context-
free grammars seem to be a natural model for much of human language, as illustrated by
our earlier example (4). However, it seems equally clear that plenty of linguistic phenom-
ena are not readily accounted for by context-free rules — namely, the phenomena that are
instead described using movement in mainstream generative grammar. For example, it is
not apparent how to account for the position of (say) the object what in What do you think
is going to happen next? or What do you think she said he was hoping for you to buy?
using a context-free grammar for English. However, it also is not at all immediate that such
phenomena prevent the language from being context-free. A number of fallacious arguments
were advanced early on to claim that natural language was not context-free; Pullum and
Gazdar, in their classic paper [55], debunked all of the diverse arguments that had been
made until that time.

The standard argument now used against natural language being context-free uses data
from Dutch and is originally credited to Huybregts (see [37], [11]). Embedded clauses in
Dutch have subject-object-verb word order:

16



Jan zegt dat Piet Marie zag
Jan says that Piet Marie saw

‘Jan says that Piet saw Marie’

The relevant finding is that a verb that takes both an NP and VP as complement comes
before, not after, its VP complement:

Jan zegt dat Piet Marie zag zwemmen
Jan says that Piet Marie saw swim

‘Jan says that Piet saw Marie swim’

Moreover, this construction can be applied recursively:

. . . dat Piet de leraar Marie zag helpen zwemmen
. . . that Pier the teacher Marie saw help swim

‘. . . that Piet saw the teacher help Marie swim’

Evidently, then, we obtain strings consisting of n noun phrases followed by n verbs, for
arbitrarily large n, such that the ith NP is the subject of the ith verb. Thus we have
unbounded crossing dependencies, which is impossible for a context-free language.

As noted by Pullum and Gazdar, this argument is not really quite adequate: because
the verbs (except for the first) are infinitives and so have no agreement restrictions, there
are no real crossing dependencies at the string level — they exist at the level of parse trees,
but we are not considering these to be part of the language. We thus get a language that is
basically of the form {anbn} (ignoring the Jan zegt dat at the beginning), which is context-
free. However, Shieber [62] patched this up with an analogous argument from the Swiss
dialect of German. Swiss German embedded clauses have the same word order as in Dutch,
but in addition, Swiss German, like standard German, has case-marking on nouns. Verbs
may select whether their objects are accusative case or dative case. Thus, Shieber gives
examples such as

Jan säit das mer em Hans es huus lönd aastriiche
Jan says that we Hans-DAT the house-ACC help paint

‘Jan says that we help Hans paint the house’

Now we have genuine syntactic dependencies; the case of the (i+1)th noun is determined by
the ith verb. This enables us to conclude that Swiss German is not context-free. A formal
argument can be given using regular intersection and homomorphisms to reduce to the copy
language {ww}, analogous to the argument given for regular languages above.

Other arguments for the non-context-freeness of natural language have been made; for
example, Culy ([23]) gave a similar copy-language-reduction argument for the morphology
of Bambara, a Mande language of Mali. On the basis of these arguments, it is now generally
believed that human languages are not context-free (or at least not all of them are). In gen-
eral, however, any persuasive evidence that has been mustered against the context-freeness
of natural language has come from relatively small pockets of specific languages, and has
involved copy languages, but not other, more complex violations of context-freeness. This
fact (as well as other considerations such as parsing efficiency) has led computational lin-
guists to believe that one need not look “too far” beyond context-free languages to find a

17



suitable upper bound for the complexity of languages in L∗, and in particular that there
should be some reasonable class of languages containing L∗ but properly contained in the
context-sensitive languages.

In 1985, Joshi ([40]) loosely described three desirable properties for any language that is
purported to be in L∗ (or some approximation thereto). Such a language L should

• have limited crossing dependencies — it is not clear exactly what this means, but Joshi
gives the example of a grammar system that can generate the language {ww} but not
the language {www};

• satisfy the constant growth property: that is, there is some constant k such that for
any w ∈ L, there exists v ∈ L with |w| < |v| < |w|+ k;

• be parsable in polynomial time (the definition here is again open to interpretation).

Languages satisfying these conditions are (again, loosely) termed mildly context-sensitive
languages .

So the hunt is on for grammar systems that give a suitable level complexity to describe
natural language. One current prominent candidate is linear indexed grammars ([29], a
special case of indexed grammars, [2]). These are an extension of context-free grammars
wherein each nonterminal is equipped with a form of memory called a stack, a finite list of
symbols (distinct from the terminals and nonterminals); rules can add to or delete from the
end of the stack, and can also apply conditionally depending what symbol is at the end of
the stack.

Since we will be using LIG’s later, we had better give a full definition. Let V be a finite
set of nonterminals, and let I be a finite set of stack symbols. Let W = V × I∗; a pair
(X, η) ∈ W is notated X[η], thought of as a nonterminal X with the stack η attached to it.
We can then have a finite set P of productions, all of which are of the forms

X[◦◦η] → sX ′[◦◦η′]t (X, X ′ ∈ V ; η, η′ ∈ I∗; s, t ∈ (W ∪ Σ)∗) (6)

X[η] → w (X ∈ V ; η ∈ I∗; w ∈ Σ∗). (7)

(The ◦◦ in (6) is to be thought of as just a notational device, just like the →.) Now we say

that x
∗⇒ y iff there exists a sequence x = x0, x1, . . . , xn = y such that for each i, either

xi = rX[ζη]u, xi+1 = rsX ′[ζη′]tu

(some r, u ∈ (W ∪ Σ)∗, ζ ∈ I∗, and X[◦◦η] → sX ′[◦◦η′]t in P )

or
xi = rX[η]u, xi+1 = rwu (r, u ∈ (W ∪ Σ)∗, and X[η] → w in P ).

Thus, rules of type (6) rewrite X as the string sX ′t, conditional on the last few symbols in
X’s stack, and pass on the rest of the stack to the designated successor X ′. Rules of the
type (7) simply rewrite X as a particular terminal string, conditional on the exact value of
X’s stack. Finally, if S ∈ V is a designated start symbol, then the quadruple (V, I, S, P ) is

a linear indexed grammar , and the language it generates is {w ∈ Σ∗ | S[ ]
∗⇒ w}.

18



An example, from [29], will help to elucidate why this kind of grammar system is relevant
to human languages. The following indexed grammar can be seen to generate the copy
language {ww} over the alphabet {a, b}, and thus captures the kind of crossing dependencies
we see in Dutch and Swiss German. There are two stack symbols, call them α, β, and
nonterminals S, T . The rules are

S[◦◦] → aS[◦◦α] S[◦◦] → bS[◦◦β] S[◦◦] → T [◦◦]

T [◦◦α] → T [◦◦]a T [◦◦β] → T [◦◦]b T [ ] → ε.

After some doubt over their relevance to natural language ([29]), linear indexed grammars
came into the limelight in 1988. The crucial event was when Vijay-Shanker and Weir showed
that they generated the same class of languages as several other grammar systems, which
had been developed independently by various linguists and computer scientists ([74], [73];
see also [41] for a less precise but more readable exposition). Each of these grammar systems
generates a proper superset of the context-free languages, but also meets the three mildly
context-sensitive conditions given by Joshi; they all generate the language {ww} over any
finite alphabet, but not {www} — indeed, they can be shown to satisfy a version of the
pumping lemma in which the factorization has nine terms rather than five, and the four
even-positioned factors are pumped ([71]; see also [48] for a further generalization).

We will briefly mention the other grammar systems studied by Vijay-Shanker and Weir.
One of these other systems is head grammars ([57]), which are similar to context-free gram-
mars except that each string (of terminals or nonterminals) is equipped with a division point
between two symbols. In addition to the usual context-free rewrite rules, which concatenate
substrings and inherit the division point from one of the substrings, we also allow wrapping
rules, which take two strings and insert the first into the second at the location specified by
the division point of the second string. Another system is tree-adjoining grammars ([39],
[71]), which give a finite set of initial (ordered, labeled) trees and auxiliary trees, and gener-
ate new trees by splicing the auxiliary trees into initial trees; strings of the language are then
produced by reading off the leaves of these trees. The last grammar system is (a particular
version of) combinatory categorial grammars, which we shall describe in detail soon enough
since it will be our focus.

We shall call the languages generated by these systems linear indexed languages, for lack
of a more neutral term in the literature. The fact that four independently devised (and
linguistically motivated) grammar systems all generate the class of linear indexed languages,
and that this family properly contains the context-free languages and satisfies Joshi’s cri-
teria, strongly suggests that this family is a reasonable approximation to at least an upper
bound for L∗. Weir constructed, in [76], an infinite hierarchy (ordered by inclusion) of full
AFL’s, all properly contained in the context-sensitive languages and containing the context-
free languages. The lowest level of Weir’s hierarchy consists of precisely the linear indexed
languages.

As a result, it is widely believed that the linear indexed languages form the best known
upper bound for L∗ in terms of complexity. In keeping with this school of thought, we will
consider it to be a desirable trait of a grammar system, for purposes of modeling natural
language, that it should generate at most linear indexed languages.

19



It should be pointed out that there are some who believe that natural languages can fall
outside of the linear indexed class. Radzinski ([56]), among others, makes an argument in
this direction using names of cardinal numbers, and Kac ([42]) gives an argument based on
the use of the word respectively in English that could be used to assert that English does not
lie in any of the classes of the Weir hierarchy. However, in this author’s view, both of these
arguments depend on the ungrammaticality of sentences that are not syntactically ill-formed,
but rather are judged unacceptable for reasons of arithmetic, semantics, or pragmatics.
It also seems, particularly in the case of Kac’s argument, that the empirical data are so
questionable as to lie in the realm where idealizations about language break down, and
natural-language acceptability judgments should no longer be applied to the formal languages
used as models. Therefore, we will disregard these arguments and continue to treat the linear
indexed languages as an appropriate estimate for the complexity of L∗.

A very important point is that our discussion of the complexity of natural language has
focused on the weak generative capacity of various grammar systems — we treat a language
only as a set of strings. One can also compare some grammar systems in terms of strong
generative capacity, where one treats a language as a set of parse trees, so that in order to
be equivalent two grammar systems must not only generate the same sets of strings but also
generate the same sets of trees for those strings (under a suitable definition of “sameness”).
It is often argued (e.g. [16], [29]) that strong capacity is ultimately more important in
linguistics, as generative grammarians strive to accurately describe the structures assigned
to natural-language sentences. However, we will focus mainly on weak generation here
(although structures will play an important role later, in Section 6). We do this not only
because weak generation results are more accessible but also because we do not currently want
to presuppose that we know the “correct” tree structure(s) for any given sentence; string
acceptability judgments provide much more robust data. We mention strong generative
capacity now only to point out that, in principle, the formal tools we use are not necessarily
the most powerful ones available for evaluating a linguistic theory.

3 Categorial grammars

In this section, we describe the framework of categorial grammars (CG). We begin by out-
lining the major differences between CG and more mainstream theories of syntax, in order
to place it in a proper linguistic context, and then we present a formal statement of the
theory. Categorial grammar traces its origins to the work of the logician Ajdukiewicz ([3])
and of Bar-Hillel ([8], [9]), and it has since evolved into a serious approach to syntax on
even footing with standard transformational theories. We give a very brief exposition; see
[38], [68], [77] for more extensive treatments of the theory itself as well as the ideas and
methodology behind it.

The most distinctive property of categorial grammar that separates it from most of
the generative grammar tradition (e.g. the GB program [20], Minimalism [22]) is that it
is a non-transformational theory. CG eschews the notion of a fixed number of different
levels of representation for sentences. Instead, the grammar puts together successively larger
constituents with rules akin to the context-free rules we have seen above, and when it is
finished, the resulting string is a sentence. In particular, the grammar does not explicitly

20



operate on trees, unlike essentially all transformational grammars that have been proposed;
it only assembles strings. We may use parse trees as a notational device to describe the
process by which strings are put together (again, as in the example of context-free grammars
in the previous section), but they are not data structures available to the grammar.

Expositions of CG also emphasize the production of sentences as a dynamic process,
wherein the constituents are successively put together (although this is a property of the
grammar, not necessarily of the computation). A distinct benefit of the theory is that the
syntax is accompanied by a model-theoretic compositional semantics, and semantic rules
apply in tandem with the syntactic rules, so that each constituent is naturally assigned a
meaning at the time it gets assembled. However, this will not concern us here, since our
focus is exclusively on syntax.

Prohibiting transformations seems at first glance to be extremely restrictive, but as we
shall see, CG provides means of accounting for all sorts of linguistic phenomena that are com-
monly explained via movement. For example, passive sentences are not derived by the usual
method of first constructing their active counterparts and then applying transformations.
Instead, passivization occurs at the lexical level; thus a verb such as English smush gives
rise to a verb be smushed, with concomitant changes to the syntactic subcategorization, the
semantics (rearranging argument structure), and the morphology (requiring by-case-marking
on the agent). The similarity in meaning between Lenny smushed the banana and The ba-
nana was smushed by Lenny then arises from the semantic relationship between smushed and
was smushed. (This idea was originally proposed by Dowty [25] in a different grammatical
framework.)

Similarly, CG does not make use of filters applying at specific derivational levels, such as
the Case filter, θ-criterion, Extended Projection Principle, and so forth from GB. Sentences
that are ruled ungrammatical in GB because they fail to meet these criteria are ungrammat-
ical in CG simply because, at some point in the desired derivation, two constituents cannot
to be put together.

Another distinguishing property of gategorial grammar is its heavy reliance on the lexicon
as the locus of syntactic information. The basic motivation here is the realization that this use
of the lexicon is often inevitable. For example, consider the subcategorization requirements
of the verbs like and dislike. The former can take a noun phrase or an infinitival phrase as
complement, but the latter can only take a noun phrase: I like to tip cows is grammatical;
*I dislike to tip cows is not. This sort of information does not seem to be predictable on the
basis of meanings, which means that it needs to be stored in the lexicon. One can come up
with plenty of further examples along these lines.

Categorial grammar is a framework that can express this kind of subcategorization ef-
ficiently. Briefly put, the categories assigned to lexical items consist of a few primitive
categories, and of compound categories of the form X/Y ; an item of category X/Y can
combine with an expression of category Y to form an expression of category X. Thus, for
example, verbs can select for different kinds of complements, depending on what argument
category (i.e. what value of Y ) they are assigned. So, if VP were one of our primitive cate-
gories, we might represent the like-dislike distinction by assigning like the categories VP/NP
and VP/InfP, but giving dislike only VP/NP. In fact, as we shall soon see, this idea of
creating categories using slashes can be taken much further, and ultimately we have a fully
lexicalized theory of syntax — one in which all variation between languages is contained in

21



the lexicon, with the rules themselves few, elegant, and universal.
Now then, let’s give a full statement of the formalism. We begin with a simple form that

is sometimes called classical categorial grammar (more or less the formulation given in [8];
these systems are also sometimes called AB systems, after Ajdukiewicz and Bar-Hillel). Our
definitions are modeled on those used by Kanazawa in [43].

Given a finite set C of symbols, called primitive categories , we define the category space
over C to be the set V generated by taking the closure of C under two generic binary
operations, notated /L and /R. More formally, we may model V as follows: let /L and /R be
two symbols; recursively define sets Vi by taking

V0 = C, Vi+1 = Vi ∪ (Vi × {/L, /R} × Vi).

Then let
V = ∪∞i=0Vi.

We then use notation such as X/LY to represent the triple (X, /L, Y ) ∈ V . (Our slash
notation comes from [38]; the slashes \ and / are more conventional, but also more confusing,
since some authors use X\Y where others write Y \X.) Note that these operations are
nonassociative — (X/RY )/RZ is different from X/R(Y/RZ) — and certainly noncommutative.
Elements of V will be called categories , or types .

For a given terminal alphabet Σ, suppose that f is any function from Σ to the set of finite
subsets of V ; we will call it the assignment function. Also suppose that S is a distinguished
element of C (the start symbol). Then the triple (C, S, f) is a classical categorial grammar
over Σ. The language it generates is defined as follows: imagine that we have an infinite set
of context-free rules,

X → X/RY Y, X → Y X/LY (8)

for all X, Y ∈ V , and also the rule
X → a (9)

whenever a ∈ Σ and X ∈ f(a). Then the language generated by the classical categorial

grammar (C, S, f) is just {w ∈ Σ∗ | S
∗⇒ w}. (In the definition of rewriting systems in

Section 2, we required the set of rules to be finite, but clearly the definition extends to infinite
sets of rules.) We should mention that in the categorial grammar literature the convention
is to notate these rule schemata in the reverse direction, thus writing X/RY Y → X; this
practice will be ignored here, in favor of consistency with the conventions for other types of
rewrite systems.

For an example, here is a classical categorial grammar for a small fragment of English.
Let C = {S, NP, N}. (In linguistic examples, the start symbol S will always be the sentence
category S.) Let Σ = {John,mouse, a, the, slept, poked}. Let f be defined as follows:

f(John) = {NP} f(mouse) = {N} f(a) = {NP/RN} f(the) = {NP/RN}
f(slept) = {S/LNP} f(poked) = {(S/LNP)/RNP}

Then we have derivations such as the following (where, for succinctness, we have skipped
over the terminal substitution rules):

S ⇒ NP S/LNP ⇒ NP/RN N S/LNP
∗⇒ The mouse slept

22



S ⇒ NP S/LNP ⇒ NP (S/LNP)/RNP NP ⇒ NP (S/LNP)/RNP (NP/RN) N
∗⇒ John poked a mouse

and so forth.
As in our earlier context-free example, it is easy to obtain recursion in categorial gram-

mars. For example, we can introduce a terminal thinks and set f(thinks) = {(S/LNP)/RS}.
Then using the derivation

S ⇒ NP S/LNP ⇒ NP (S/LNP)/RS S

we can embed sentences in other sentences. We thereby can describe sophisticated cogitations
on the part of man and mouse, generating strings such as John thinks a mouse thinks John
poked the mouse. Notice also that so far we have only assigned one category to each terminal
via f . This is not obligatory. For example, by setting

f(thinks) = {(S/LNP)/RS, S/LNP}

we can include both transitive and intransitive thinks in our lexicon. (In actuality, though,
we may want to think of these as distinct lexical items — thus as distinct terminals — that
happen to be phonologically identical.)

If w is a string and X a category, we say that w is an X (or w is of category X) to mean

simply that X
∗⇒ w. This expresses the intuition that (for example) the mouse is a noun

phrase (NP), just like John, even though one is specified that way directly in the lexicon
(i.e. by the assignment function f) and the other is not.

The resemblance between classical CG rule schemata and context-free rules — and, per-
haps, between the derivations of strings in our CG example above and the derivations of
strings in our earlier context-free example — suggests that the two systems should generate
similar languages. In fact, as we shall see (Theorem 4), the class of languages generated by
classical categorial grammars consists precisely of the context-free languages not containing
ε. This quite simple result is a good sign for the formal tractability of the classical CG
framework, but not a good sign for its linguistic adequacy.

Accordingly, numerous further rules have been proposed, generally motivated by specific
natural-language phenomena; these rules, we will later see, enable the generation of non-
context-free languages. The broad term combinatory categorial grammars (CCGs) is used
to describe systems similar to classical CGs but also encompassing some or all of these
rules. The examples we will discuss come largely from [69]. We have included examples
of constructions from natural languages, mostly English, to indicate why these rules have
been proposed; if we were to bring them blindly out of thin air, it might be unclear why
we introduced these rules and not others, and hopefully the examples will provide some
motivation. In our examples, we will not spell out explicitly the category of every word; we
will expect these to be clear from context, e.g. count nouns are N; determiners such as the
are NP/RN; intransitive verbs are S/LNP; transitive verbs are (S/LNP)/RNP, (S/LNP)/RS, and
so forth according to their type of complement. We will also somewhat informally talk about
“applying” a rule of the form, say, X → Y Z in order to obtain an expression of category X
from two expressions of categories Y , Z; as previously noted, the arrow is merely a notational

23



device, and we sometimes find it easier to conceptualize the derivation of a sentence via steps
going from the right side of a rule to the left side, rather than vice versa.

The basic rule schemata we have already given in (8) are generally known as function
application rules (the origin of the name has to do with the corresponding semantics). We
next introduce two types of rules: we have the function composition rules

X/RZ → X/RY Y/RZ X/LZ → Y/LZ X/LY, (10)

for all categories X,Y, Z, and the type-lifting rules

X/R(X/LY ) → Y X/L(X/RY ) → Y. (11)

In isolation, these rules are not terribly useful. However, when used in combination, they
can account for a wide range of what are commonly called “extraction” phenomena. For
example, we can use them to provide a natural description of relative clauses in English. Let
that have type (N/LN)/R(S/RNP); then we can derive a noun phrase such as the mountain
that you climbed as

SXXXXX
»»»»»

NP/RN

the

NXXXXXX
»»»»»»

N

tree

N/LNXXXXX
»»»»»

(N/LN)/R(S/RNP)

that

S/RNP
PPPP

³³³³
S/R(S/LNP)

NP

you

(S/LNP)/RNP

climbed

(12)

(One could then incorporate this into a longer sentence such as I saw the mountain that
you climbed by the usual function application rules.) The crux of the derivation is that you
climbed needs to be of category S/RNP; this is impossible using function application alone
but can be accomplished by type-lifting you and applying composition.

The S/RNP construction can be used to account for other cases of extraction, such as
wh-questions. For example, we can derive the Spanish question ¿Qué piensas comprar?
‘What do you plan to buy?’ if we give qué the category SQ/R(S/RNP). (Here SQ represents
a question, and InfP represents an infinitival verb phrase.)

SQXXXXXX
»»»»»»

SQ/R(S/RNP)

qué
what

S/RNP
PPPP

³³³³
S/RInfP

piensas
you plan

InfP/RNP

comprar
to buy

(13)

24



Here we have only needed to employ composition, since there is no overt subject to type-
lift. In English direct questions (and in Spanish questions where there is an overt subject),
the situation is messier because of subject-auxiliary inversion. However, for now we at least
have the apparatus to handle embedded questions in English: if know subcategorizes for an
SQE argument (QE for “embedded question”) and what is of type SQE/R(S/RNP), then we
get sentences like

S̀
`````̀

ÃÃÃÃÃÃÃ
NP

they

S/LNPhhhhhhh
(((((((

(S/LNP)/RSQE

know

SQÈ````̀
ÃÃÃÃÃÃ

SQE/R(S/RNP)

what

S/RNP
PPPP

³³³³
S/R(S/LNP)

NP

you

(S/LNP)/RNP

wrote

(14)

It is worth pointing out that these new rules also give many new derivations for sentences
that were already derivable in classical-land. For example, a parse tree for a simple sentence
such as Camille eats Camembert can now be “left-branching” or “right-branching”:

SXXXXX
»»»»»

S/RNP
PPPP

³³³³
S/R(S/LNP)

NP

Camille

(S/LNP)/RNP

eats

NP

Camembert

S
PPPP

³³³³
NP

Camille

S/LNP
aaa

!!!
(S/LNP)/RNP

eats

NP

Camembert

(15)

In fact, with an unbounded number of applications of type-lifting, we can construct
infinitely many parse trees for a single sentence such as Fred frets:

S
bb""

NP

Fred

S/LNP

frets

S
aaa

!!!
S/R(S/LNP)

NP

Fred

S/LNP

frets

S
PPPPP

³³³³³
S/R(S/LNP)

NP

Fred

S/L(S/R(S/LNP))

S/LNP

frets

· · ·

(16)

However, this will not concern us, since we are interested only in knowing whether or not
a string is derivable, not how many derivations it has. (It might seem distasteful that there

25



are infinitely many possible parses, and indeed it does pose a problem for the construction
of parsers. However, it turns out that there is no ambiguity in meaning; the workings of the
semantics are such that all the trees for Fred frets above give logically equivalent meanings.
The standard approach to the parsing problem in this situation involves giving just the most
parsimonious parsings. While eating parsley.)

Coordination is usually accounted for by letting and and or be assigned the categories
(X/LX)/RX, for some large collection of possible values of X (some authors, such as [69],
even seem to allow a special rule schema allowing any arbitrary X to be used). Thus we can
give Camille a more balanced diet:

Shhhhhhh
(((((((

NP

Camille

S/LNPhhhhhhh
(((((((

(S/LNP)/RNP

eats

NP̀
`````

ÃÃÃÃÃÃ
NP

Camembert

NP/LNP
PPPP

³³³³
(NP/LNP)/RNP

and

NP

cauliflower

(17)

A further benefit of composition and type-lifting rules is that they allow easy descriptions
of what are usually known as “right-node raising” constructions ([54]). In most versions of
generative grammar, the analysis of a sentence such as Bill baked and Deborah devoured
the cake is nontrivial; but in a CCG framework it is straightforward, since Bill baked and
Deborah devoured are ordinary constituents. (To make the tree fit on the page, we write Z
for S/RNP.)

Shhhhhhhhhhh

(((((((((((
Zhhhhhhhhh

(((((((((
S/RNP

PPPP
³³³³

S/R(S/LNP)

NP

Bill

(S/LNP)/RNP

baked

Z/LZXXXXXX
»»»»»»

(Z/LZ)/RZ

and

S/RNP
PPPP

³³³³
S/R(S/LNP)

NP

Deborah

(S/LNP)/RNP

devoured

NP
b

bb
"

""
the cake

(18)

Composition is also used to handle auxiliaries. For example (ignoring verb tensing for
simplicity), English might could be regarded as an (S/LNP)/R(S/LNP), combining with a verb
phrase such as buy the car to give might buy the car, again of category S/LNP. However, it
seems as though there should also be a derivation for might buy that treats it as a transitive
verb, e.g. so that it can coordinate in a sentence such as Irwin likes and might buy the

26



car. This is no problem if we have a composition rule; the (S/LNP)/R(S/LNP) might and
(S/LNP)/RNP buy combine to give (S/LNP)/RNP might buy immediately.

We would like to generalize this to, say, ditransitive verbs; for example, give has assigned
category ((S/LNP)/RNP)/RNP, and we would like to apply composition to obtain might give
of this same category (without needing to give might a new category). We can do this with
an extension of the usual composition rules. Accordingly, generalized function composition
schemata have been proposed: these give rules of the form

(· · · ((X/RZ1)/RZ2) · · · /RZn) → X/RY (· · · ((Y/RZ1)/RZ2) · · · /RZn) (19)

(· · · ((X/LZ1)/LZ2) · · · /LZn) → (· · · ((Y/LZ1)/LZ2) · · · /LZn) X/LY (20)

for arbitrary categories X, Y, Z1, . . . , Zn ∈ V .
The composition rules (19) are more precisely referred to as harmonic composition rules.

There are also crossed composition rules, which combine slash types:

X/RZ → Y/RZ X/LY X/LZ → X/RY Y/LZ (21)

These can be used, for example, to account for the the phenomenon known as “heavy NP
shift” in English, if one also allows generalized harmonic composition. The verb persuaded
is assigned the category ((S/LNP)/RInfP)/RNP, as in the sentence I persuaded him to leave.
However, one sometimes finds the NP complement rightmost, and such sentences can be
derived as follows:

Shhhhhhhhh
(((((((((

S/RNP̀
`````

ÃÃÃÃÃÃ
(S/RInfP)/RNPXXXXX

»»»»»
S/R(S/LNP)

NP

I

((S/LNP)/RInfP)/RNP

persuaded

S/L(S/RInfP)

InfP
bb""

to leave

NPhhhhhhhh
((((((((

the uncouth scoundrel
with the threadbare trousers

(22)

where crossed composition is used to derive the constituent I persuaded to leave. (We
leave aside the question of how to ensure this happens only when the NP is heavy.)

We can generalize both the harmonic and crossed composition rules to obtain generalized
mixed composition schemata:

(· · · ((X|1Z1)|2Z2) · · · |nZn) → X/RY (· · · ((Y |1Z1)|2Z2) · · · |nZn) (23)

(· · · ((X|1Z1)|2Z2) · · · |nZn) → (· · · ((Y |1Z1)|2Z2) · · · |nZn) X/LY (24)

for any categories X,Y, Zi ∈ V and any |1, . . . , |n ∈ {/L, /R}. These rules enable us to describe
the word order in Dutch embedded clauses (see Section 2):

27



S̀
````̀

ÃÃÃÃÃÃ
NP

Piet

S/LNPhhhhhhhh
((((((((

NP
HHH

©©©
de leraar

(S/LNP)/LNPhhhhhhhhhh
((((((((((

NP

Marie

((S/LNP)/LNP)/LNPhhhhhhhh
((((((((

(((S/LNP)/LNP)/LNP)/R(S/LNP)hhhhhhh
(((((((

((S/LNP)/LNP)/R(S/LNP)

zag

((S/LNP)/LNP)/R(S/LNP)

helpen

S/LNP

zwemmen

(25)

Here mixed composition is used to obtain the constituent zag helpen. (We have omit-
ted the initial Jan zegt dat, and have also treated infinitival embedded sentences as S for
simplicity.) We can extend this structure to obtain derivations for embedded clauses with
arbitrarily many helpen-style verbs, using instances of the composition rule only for n ≤ 2.
(The derivation given on [68, p. 141], and reused e.g. by [7, p. 117], requires the use of the
composition rule for unbounded n; as we will later see, there are reasons to prefer a structure
in which n is bounded.)

Crossed type-lifting rules have also been proposed:

X/R(X/RY ) → Y X/L(X/LY ) → Y (26)

In particular, the first of these can describe topicalization, by lifting the topicalized expression
([66]). An example is the English sentence That banana, I especially like:

Shhhhhhhh
((((((((

S/R(S/RNP)

NP
HHH

©©©
NP/RN

that

N

banana

S/RNPhhhhhhh
(((((((

S/R(S/LNP)

NP

I

(S/LNP)/RNPXXXXX
»»»»»

(S/LNP)/R(S/LNP)

especially

(S/LNP)/RNP

like

(27)

The above are the main rule schemata that have been proposed in CCG frameworks,
although there are others (see e.g. [66], [49, ch. 21]). In view of the profusion of rules, one
might expect that, in a CCG system using many of them, it would be necessary to somehow
restrict the applicability of the rules in order to avoid generating sentences that should be
disallowed. Pursuing this direction, the version of CCGs presented in [73] allows the use
of rule schemata in which some of the variables are restricted to (finite sets of) specific
categories. For example, a CCG system might include the crossed lifting rule X/R(X/RY ) →
Y only when Y is one of the types NP, InfP, PP. This would prevent the topicalization of

28



arbitrary categories as in *Animal, a llama is an. A further extension allowed in [73] is to
allow rule schemata in which some variables are restricted only to have their targets be in
certain categories; the target τ(X) of a category X ∈ V is defined recursively by

τ(X) = X (X ∈ C); τ(X/LY ) = τ(X/RY ) = τ(X).

Thus, we might restrict the possible values of Y in the rule (26) not by specifying a finite
list of possible values for Y but by specifying a list of possible values for τ(Y ). Although
such a restriction is not uncommon in the categorial grammar literature ([1], [65], [7]), a
certain amount of clutter would be necessary in order to accommodate it in our definitions
and proofs. We will only remark now that many of our results on generative power can be
easily extended to cover rule schemata with target-restricted categories, but the details are
omitted for the sake of space and clarity.

A further major concern is with features. Any theory of syntax worth its salt needs
to have not only major categories but also features — gender, number, person, tense, and
so forth need to be tracked and checked for agreement. For example, the grammaticality
difference between he walks and *I walks is expressed using gender features, for which the
subject and verb have to agree. The formal theory and computational modeling of feature
systems is a field of research in itself ([61], [30]). The basic treatment is as follows: one
operates with a fixed set of features (attributes) and a fixed set of possible values for each
feature; a feature structure then is an assignment of values to some (not necessarily all, and
possibly none) of the features. Two feature structures F1, F2 can be unified to form a new
feature structure, whose value for each feature is that given by F1 or F2 (if such a value
exists); if F1 and F2 give inconsistent values for some feature, the unification fails.

Linguistic applications of CCGs follow this methodology for handling features. Ev-
ery appearance of a primitive category is assigned a feature structure, which is written
subscripted in brackets. Then, for example, one writes the function application rule as
X[F1] → X[F1]/RY[F2] Y[F3], and the rule applies only for feature structures such that F2 and
F3 unify successfully. Thus certain derivations that would otherwise be grammatical will
become impossible on account of feature disagreement. For example, the pronoun I would
be listed in the lexicon as NP[1s]; this feature structure is shorthand for an assignment of 1
to the feature “person” and singular to the feature “number” (we ignore all other features
for simplicity). Similarly, he would be listed as NP[3s], while the verb form walks would be
S/LNP[3s]. Thus we have the derivation

S ⇒ NP[3s] S/LNP[3s]
∗⇒ he walks

but not
S ⇒ NP[1s] S/LNP[3s]

∗⇒ I walks,

since the latter derivation is blocked by the inability of [1s] and [3s] to unify.
Again, the subject goes much deeper. For example, the need to handle long-distance

agreement phenomena is addressed by categorizing some items as lexical inheritors, which
propagate features of their arguments. Thus, [38] shows how we may address the gender
agreement in sentences like He tried to kill himself vs. *She tried to kill himself by assigning
to tried the “category” (S/LNPα)/RInfPα. This is really a shorthand for assigning tried to

29



two categories, one in which both α’s are replaced by [M ] and one in which both α’s are
replaced by [F ] (again, ignoring many other features).

Once one integrates features and unification into a CCG framework as described here, the
resulting formalism is uncomfortably elaborate for purposes of proving theorems. However,
for our formal purposes, there is at least a brute-force way of accommodating features without
adding anything to the category apparatus we have already constructed. The idea is as
follows: suppose that we have a categorial grammar (C, S, f) (and some fixed set of CCG
rule schemata). We would like to rule out certain derivations based on feature agreement.
If we have finitely many features, and finitely many possible values for each, then let D
be the set of possible feature structures, and let C ′ = C × D (which is evidently finite).
We then think of an element (X,F ) ∈ C ′ as the feature-marked category X[F ]. Our new
grammar then assigns each terminal a various categories over C ′, obtained by attaching
feature specifications to the categories originally in f(a).

Thus, for example, if our features include person, number, and case, the would be assigned
all of the categories NP[3s,Nom]/RN[3s,Nom], NP[3s,Acc]/RN[3s,Acc], NP[3p,Nom]/RN[3p,Nom], and so
forth. This approach shows that, as far as formal language theory is concerned, we need not
change our operational definition of categorial grammars in order to accommodate feature
agreement.

The reader is probably starting to get tired of all these various extensions to CCG, but
we should include one more kind of extension here, because it is one that we will be able to
cover with our upcoming formalism. It is widely believed that CCGs should be formulated
with more slash operators than just /R and /L. Thus, many recent formulations of CCG, such
as [69] and [7], also make use of modalized (or “typed”) slashes: each slash is equipped with
not only a direction but also one of a finite set of modalities ; rules can specify the particular
slashes to which they apply. These modalized slashes are quite useful in describing languages
with free or partially free word order (see [7]). In the reverse direction, there have been some
attempts ([1], [65]) to do away with direction and have just one slash, with the CCG rules
bearing the burden of specifying the order in which constituents combine. We will not have
the space here to provide a detailed exposition of these theories, or to take up the question
of whether having more slashes genuinely increases the expressive power of the system or
merely provides a notational convenience. However, we will find that we can generalize our
formal apparatus to one that allows arbitrary slashes without added complexity, and so we
will take the liberty of doing so without explicitly giving further motivation.

We have now finished our whirlwind tour of the ideas of categorial grammar, giving the
basic motivating ideas for the theory, numerous examples for particular rules, and a few of
the possible extensions. Now it is time at last to give a formal framework for CCGs; this
framework that can handle various types of rules, as well as modalized or non-directional
slashes. The grammar system we will define here is a synthesis of ideas from [43, ch. 9] and
[73]. It is also somewhat like the type-logical system of [45] in that it provides a general
framework in which CCG rules can be defined. We will call our grammars generalized
combinatory categorial grammars (GCCGs); the structures given here are much more general
than any extant linguistic theory actually requires.

Let O be a finite set of symbols, which will be used to represent binary operators. For any
finite set C (whose elements are called primitive categories), we let the (O-)category space
over C be the set V obtained by taking the closure of C under the operations in O without

30



any relations, just as in the case of classical CGs. (Thus, we can again formally construct V
by setting V0 = C, Vi+1 = Vi∪ (Vi×O×Vi), and V = ∪∞i=0Vi.) For example, in the definition
of classical CGs given above, O is just {/L, /R}. We will usually find it convenient to use | as
a variable ranging over the set O, and write X|Y rather than (X, |, Y ).

If V1 and V2 are category spaces over primitive sets C1 and C2, then we have the natural
notion of a homomorphism φ : V1 → V2, a map such that φ(X|Y ) = φ(X)|φ(Y ) for all
X,Y ∈ V1, | ∈ O. It is clear that a homomorphism is uniquely determined by its values on
elements of C1.

Let Ω be an arbitrary set disjoint from C, whose elements we call variables . (In general,
we will be somewhat sloppy and may use the same letters to denote members of C and Ω;
the meaning should be clear from context.) Let V be the O-category space over C, and
let V ′ be the O-category space over C ∪ Ω; elements of V ′ are thus categories composed of
primitive categories (in C), variables, or both. A rule schema is any statement of the form

A → ω, A ∈ V ′, ω ∈ (V ′)+. (28)

For example, if the symbols X, Y are in Ω and /R ∈ O, then X → X/RY Y is a rule schema.
If K is an element of C, then X → X/RK Y is also a rule schema.

If R is a rule schema,
A → A1 A2 · · · An,

then a ground instance of R is any expression of the form

X → X1 X2 · · · Xn

such that there exists a homomorphism φ : V ′ → V satisfying φ(Q) = Q for all Q ∈ C, and
φ(A) = X, φ(Ai) = Xi for each i. In other words, a ground instance of R is obtained by
taking the schema R and replacing each variable with some category in V , where different
occurrences of the same variable must be replaced by the same category. Notice that we
are henceforth making a firm distinction between rules and schemata: a schema can involve
variables; a rule is a ground instance of a schema and uses only categories over C.

Finally, suppose that we have some fixed O, C, Ω, and some set Φ of rule schemata (we
refer to the set Φ as a rule system). Let P be the set of all ground instances of the rule
schemata in Φ. Then we can treat the elements of P as productions over the infinite set of
nonterminals V . If f is an assignment function mapping the terminals (elements of Σ) to
finite subsets of V , and S ∈ C is a distinguished element, then the sextuple (O, C, S, Ω, Φ, f)
is a generalized combinatory categorial grammar over the terminal alphabet Σ. The language
generated by this grammar is simply the set {w ∈ Σ∗ | S ∗⇒ w}, using as rules all the elements
of P together with the rules

X → a (a ∈ Σ, X ∈ f(a)).

By setting O = {/L, /R}, Ω = {X, Y }, and Φ = {X → X/RY Y, X → Y X/LY }, we recover
the original definition of classical categorial grammars. In general, we can think of the set
Φ (together with the sets O and Ω that are needed to define it) as specifying a theory of
universal grammar, such as classical categorial grammar. An individual language’s grammar
within such a theory is then determined by a triple (C, S, f).

31



4 Generative capacity of categorial grammars

Now that we have defined the grammar frameworks that interest us, it is time to start ob-
taining some results. We should begin with a few clarifying comments on our motivating
goals: we would like to obtain results about GCCG systems that are as general as possible.
Although much work to date has naturally focused on the particular combinatory rules that
have actually been proposed for natural language, we would like to begin to consider imagin-
able rule systems rather than merely plausible ones. The goal is not only the mathematical
idea of greater generality but also more powerful explanation in the linguistic sphere (remem-
ber the discussion of evolutionary constraints in Section 1): if we can show that some classes
of rules generate extremely restricted classes of languages while others generate excessively
complicated languages, we will be in a better position to try to understand why human
language is governed by some rules and not others, just as how Gold’s Theorem (see Section
5) is often pointed to as a demonstration of the logical necessity of Universal Grammar.
Conversely, if we find that many different rule systems all have equal generative power, we
are allowed to be somewhat confused. Of course, a general classification and understanding
of possible CCG rule systems (let alone of possible linguistic theories) is still a long way off,
but we can at least adopt this mindset in driving our presentation.

We might point out that studying generative power is not the only possible way, within
the CCG framework, to approach the question of why language behaves according to one
set of rules and not another. Steedman ([67]) gives an intriguing argument, using ideas from
combinatory logic ([24]), as to why natural language should prefer to use a certain basic
repertoire of semantic operations, and insofar as categorial grammar supposes a tight fit
between semantics and syntax, the range of syntactic operations is accordingly constrained.
However, because his argument is not totally conclusive and still leaves the choice of rules
somewhat underdetermined, it is worth investigating the question from other perspectives,
so we will.

Another caveat is that we are still restricting our attention to weak generative capacity
— looking only at languages as sets of strings, for the reasons outlined at the end of Section
2. There has, however, been some work on the strong generative capacity of various versions
of categorial grammar; see [13], [72].

Now then, what does the (weak) generative power of CCG systems look like? Because CG
rule schemata code for context-free rules, it intuitively seems that one should often expect
them to generate context-free languages. If there are only finitely many different ground
instances of rule schemata that ever actually occur in any derivations of the grammar G,
then this will certainly be the case, since one can treat these ground instances as productions
of a context-free grammar. But if G makes use of infinitely many different ground instances,
then we may not get a context-free language.

Classical CGs, with just the rules (8), fall into the former category, and we thus have the
following basic result:

Theorem 4 [9] A language L (over a fixed Σ) can be generated by a classical categorial
grammar if and only if L is a context-free language and ε /∈ L.

(For now we will give an overview of the results; the proofs will follow later.)

32



The proof of the forward direction of the preceding theorem will entail showing that only
finitely many ground instances of rule schemata are ever needed. One might guess that this
idea could be generalized to other types of GCCG rule systems. We give one generalization
which, to our knowledge, has not been noticed, but which there is no reason not to prove
since it will turn out to be a straightforward extension of the proof of Theorem 4.

We first need to define the relevant class of rule schemata. Let C be a space of primitive
categories, and let V be an O-category space over C. If X, Y ∈ V , we say that X is a
subtype of Y if there is a sequence of categories X = X0, X1, . . . , Xn = Y so that, for each
i, Xi+1 = Xi|Z or Z|Xi for some | ∈ O and some Z ∈ V . We say n is the depth of X as a
subtype of Y . Thus, for a linguistic example, in (S/LNP)/RNP, the subtypes of depth 1 are
S/LNP and NP; also, S and NP are subtypes of depth 2.

Suppose we have a set of variables Ω. Then a rule schema A → A1 · · ·An will be called
depth-preserving if the following holds: every variable that occurs as a subtype of A with
some depth d must also occur as a subtype of some Ai with depth ≥ d. The relevant result
is then as follows:

Theorem 5 If G = (O, C, S, Ω, Φ, f) is a GCCG over the alphabet Σ, such that Φ is finite
and every rule in Φ is depth-preserving, then the language generated by the grammar is
context-free.

The abstraction may be distracting, but a few examples should illustrate the cut of the
result’s jib. We will assume that O is the usual set {/L, /R}. The functional application rules
(8) are both depth-preserving (X has depth 0 on the left side, and depth 1 on the right).
The simple composition rules (10) are also depth-preserving. Hence, any GCCG using these
four rule schemata (or any proper subset of them) generates a context-free language. Rule
schemata such as

X/LX → Y/R(Z/RX) Z/LY

X/LI → Y/LX X J/LX

(where I, J ∈ V are specific categories) are also depth-preserving, so including these schemata
also keeps us within context-free expressive power.

The crossed composition schemata (21) are also depth-preserving. In a sense, this contra-
dicts the intuitive statement made in [69] that crossed composition is responsible for giving
CCG greater than context-free expressive power. In fact, among the standard CCG rule
schemata described in the preceding section, one needs type-raising or generalized (multi-
layer) composition to generate non-context-free languages. (This observation is also made
in [77, ch. 4].) For example, the composition rule

(X/RZ1)/RZ2 → X/RY (Y/RZ1)/RZ2

is not depth-preserving, since X has depth 2 on the left side but only depth 1 on the right
side.

Of course, it is really an oversimplification to credit a single schema with generating non-
context-free languages, since the language generated by a grammar depends on all of the
rules used. Indeed, adding more rules can even lower the expressive power of the system (as
measured by the Chomsky hierarchy). For example, if we start with some GCCG system and

33



then add the rule schema X → Y Z, where X, Y, Z are distinct variables, then any string of
more than one terminal is now in the language, so we can only get regular languages.

The natural question now is whether we really do get non-context-free languages with
suitable CCG rule schemata, or whether the added power is illusory. Here is an example of
such a non-context-free language, inspired by the Dutch example (25). Suppose our set Φ of
rule schemata consists of the functional application schemata (8), together with one schema
from (23), namely

(X/LZ1)/RZ2 → X/RY (Y/LZ1)/RZ2.

Define a grammar with terminals {a, b, c, d, e}, primitive categories {Q,R, S}, by setting

f(a) = {Q} f(b) = {R} f(c) = {(S/LQ)/RS} f(d) = {(S/LR)/RS} f(e) = {S}

It can be shown that the language L generated by this grammar is not context-free. For
a quick sketch of the proof, intersect L with the regular language {a, b}∗{c, d}∗e, and then
apply the homomorphism given by

a 7→ a b 7→ b c 7→ a d 7→ b e 7→ ε

It it not too hard to check that the resulting language is the copy language {ww} over {a, b};
since this language is not context-free, neither was the original L.

So if CCG is not restricted to context-free languages, what is the next reasonable class
of languages that it can generate? Vijay-Shanker and Weir, in [73], define a type of CCG
system that generates precisely the linear indexed languages. Their version of CCG does
not quite fit into our framework, and so we will give an approximation of their result before
discussing the differences.

Vijay-Shanker and Weir’s result, paraphrased in terms of our concepts, is as follows.

Theorem 6 Let O = {/L, /R}, and let (O, C, S, Ω, Φ, f) be a GCCG. If Φ consists of finitely
many schemata of the forms

(· · · (X|1Z1) · · · |nZn) → (X/RY ) (· · · (Y |1Z1) · · · |nZn) (29)

(· · · (X|1Z1) · · · |nZn) → (· · · (Y |1Z1) · · · |nZn) (X/LY ), (30)

where X is a variable, each of Y , Zi is either a distinct variable or a category over C, and
each |i ∈ O, then the language generated by the GCCG is a linear indexed language.

Thus, any CCG using a finite number of composition rules (including function applica-
tion) will generate a linear indexed language. We will actually prove a slight generalization
of the preceding result, but to state it, we will need a little more terminology. Let V be
the O-category space over a set of primitive categories C. We define the target function
τ : V → C, consistent with the definitions in the last section, recursively by τ(X) = X for
X ∈ C, and τ(X|Y ) = τ(X). We also define the arguments of an element X ∈ V to be the
set given recursively as follows: X has no arguments if X ∈ C; and the arguments of X|Y
consist of Y and all the arguments of X. We now define a rule schema A → A1 · · ·An to be
argument-depth-preserving if the following three conditions hold:

34



• the target of A (viewed as a category over C ∪ Ω) is a variable and is also the target
of exactly one Ai, and it does not appear anywhere else as a subtype of A or any Aj;

• every variable that is the target of some Ai and is not the target of A must also be a
subtype of an argument of some Aj;

• any variable occuring as a subtype of an argument of A, with some depth d, is also a
subtype of an argument of some Ai with depth ≥ d.

Thus, for example, all the composition rules are argument-depth-preserving (with all the
relevant depths equal to 0), even though they are not necessarily depth-preserving. A rule
schema such as X/RY → Y/LX is depth-preserving, but not argument-depth-preserving.

Theorem 7 If (O, C, S, Ω, Φ, f) is a GCCG, and Φ consists of finitely many argument-
depth-preserving rules, then the resulting language is a linear indexed language.

Our proof is a straightforward generalization of that given in [73] and [74] (and also
outlined in [68]).

As mentioned earlier, there are a couple of differences between the CCG systems used by
Vijay-Shanker and Weir and those we have defined. One is that they allow rule schemata in
which a variable can be restricted to have a specific target. Although we have not included
this extra notational complexity, one can check that the proof we give below still works in
this case.

A more important difference is that Vijay-Shanker and Weir allow the function f to assign
categories to the empty string ε, in addition to terminal symbols. It is also straightforward
to adjust our proof to handle this. However, under this definition of CCGs, they show not
only that every language generated by a CCG (with composition rule schemata) is generated
by an LIG but also that the converse is true. (The construction is too lengthy to warrant
including here; see [73] for details.)

Unfortunately, the proof given by Vijay-Shanker and Weir that every linear indexed
language is generated by a CCG depends on assigning a large number of categories to ε,
so it does not go through if we prohibit ε from receiving categories. As noted by Weir and
Joshi in commenting on these results ([75]), linguistic applications of CCG do not assign
categories to ε. It seems rather undesirable to introduce this ad-hoc allowance, which both
complicates the formalism and renders categorial grammar less appealing as a linguistic
theory. This naturally raises the question of whether excluding ε gives a proper subset of
the linear indexed languages (aside from the obvious property that we cannot generate any
L with ε ∈ L), which appears to be an open problem. This prospect may or may not raise
questions for the viability of this form of CCG, but at any rate, it is time to move on.

If we allow our GCCG rules to be completely arbitrary, we are not even restricted to
the linear indexed languages. For one (rather artificial) example, consider the GCCG with
O = {|}, C = {Q,R, S}, Ω = {X, Y }, and the rules

S → X|S X|S X|S (X|Y )|S → X|S Y |S.

If our terminal symbols are a, b, assigned to categories Q|S, R|S respectively, then we have

(for example) (Q|R|Q|Q|R)|S ∗⇒ abaab, under any parenthesization of the Q’s and R’s. In

35



general, if X is a category not having S as a subtype, then X|S ∗⇒ w for a unique string
w, “encoded” by the order of the Q’s and R’s in S. It follows that our grammar generates
precisely the double-copy language {www}.

In fact, it is an exercise to construct a GCCG with finitely many rules that mimics
any given unrestricted rewrite system, even with only one operation in O; this implies that
GCCGs can generate any recursively enumerable language, which is far too broad. However,
recall that we do not want to think of GCCG itself as a model of universal grammar; rather,
any particular set Φ of rule schemata gives us a model of universal grammar, which in turn
determines a class of languages.

As we have just seen, it is easy to concoct ad-hoc rule systems to give us arbitrary
(recursively enumerable) language, so in order to obtain results we can care about, we should
restrict our attention to rules that are plausibly linguistically relevant. We can give examples
of some rules actually proposed in the literature that still have the effect of allowing non-
linear-indexed languages. For one, note that the statement of Theorem 6 allows only finitely
many composition rules; a natural extension of the CCGs we have defined would be to allow
GCCGs whose rule schemata consist of infinitely many composition rules. As pointed out in
[75], however, this allows us to generate non-linear-indexed languages. The example given
there (also in [74]) is essentially as follows: consider a GCCG over O = {/L, /R} with all
possible mixed composition rules (i.e. those of the forms (29), (30)). Then we define f as
follows:

f(a1) = {A1} f(a2) = {A2} f(b1) = {B1} f(b2) = {B2}
f(c1) = {(((S/LA1)/RD1)/RS)/LB1} f(c2) = {(((S/LA2)/RD2)/RS)/LB2}

f(d1) = {D1} f(d2) = {D2} f(e) = {S}
The language L generated by this grammar is rather complicated, but one can show that its
intersection with the regular language

{a1}∗{a2}∗{b1}∗{c1}∗{b2}∗{c2}∗e{d2}∗{d1}∗

consists of all strings of the form

an1
1 an2

2 bn1
1 cn1

1 bn2
2 cn2

2 edn2
2 dn1

1

for n1, n2 ≥ 0. This set can be shown not to be a linear indexed language, by the pumping
lemma for LIL’s ([71], [48]). Since the class of LIL’s is closed under regular intersection (it
is an AFL, [76]), then the original language L is not an LIL.

If we have only finitely many schemata, documentation of non-linear-indexed languages
in the literature is extremely sparse. Weir ([74], also [75]) claims that a conjunction rule
can generate non-linear-indexed languages but gives no example. It also seems that type-
lifting rules should be able to generate non-linear-indexed languages, but examples are not
forthcoming. Here we will sketch an example for a somewhat lifting-like rule that comes
from [35]. Let Φ consist of the functional application schemata and mixed composition (23)
for n ≤ 2, as well as the following schema:

(X/LY )/R(X/LZ) → Z/RY

36



Now define f by

f(a1) = {A1} f(a2) = {A2/RA1} f(a3) = {A3/RA2}

f(a4) = {A4/RA3} f(a5) = {(S/LA4)/RS} f(s) = {S}
When the language generated by this categorial grammar is intersected with the language
{a1}∗{a2}∗{a3}∗{a4}∗{a5}∗s, the resulting language is {an

1an
2an

3an
4an

5 s}, which is not linear
indexed.

These kinds of findings may pose a problem for constraining the expressive power of CCG,
although it still remains to be determined whether or not type-lifting can really take us out
of the linear-indexed class. Meanwhile, one way that has been proposed to bridge the gap
is lexicalization — constraining each rule to a finite number of possible applications, which
would then be captured by the assignment function f . For example, in [68], Steedman hints
at lexicalizing type-lifting, so that instead of a lifting schema, some collection of NP’s (say)
are simply assigned the type S/R(S/LNP). However, this approach poses further problems for
linguistic description, since we would like to be able to type-lift any NP in order to let it
participate in right-node-raising constructions (18).

One upshot of all this is that the book is far from closed on the formal expressive power of
categorial grammars. Even if we restrict our attention to versions of the formalism that have
been reasonably well fleshed-out as potential descriptions of natural language, interesting
and relevant questions about expressive power are still open. Another observation to draw
away is that, as Theorems 5 and 7 suggest, there are many possible sets of rules that give
comparable degrees of expressive power. This mitigates against our preferring one set of
rules rather than others on purely formal grounds; on the flip side, it also suggests that the
tendency for several seemingly very different formalisms to give the same class of languages,
such as the linear-indexed and related systems studied by Vijay-Shanker and Weir, should
perhaps be taken with a grain of salt.

To summarize our results so far: Theorem 5 shows that (finitely many) depth-preserving
rule schemata, such as those of classical CG, can only give context-free languages. Theorem 7
shows that argument-depth-preserving rule schemata, such as generalized mixed composition,
can only give linear indexed languages. We also have seen reasons to believe that other CCG
rules may take us out of the linear indexed class, and certainly GCCGs taken as a whole can
wildly overgenerate.

Now that we have given an overview of some of the results about the generative power of
categorial grammars, let us go ahead and prove them. The proofs are presented here, rather
than left entirely for the appendix, in order to give an indication of the kinds of methods that
are used in this area. The general technique is straightforward: to show that a class of rules
generates (say) only linear indexed languages, one simply performs a reduction, transforming
any given categorial grammar into a linear indexed grammar that gives the same language.
The rub is that sometimes the desired reduction is possible and sometimes not.

We begin with Theorems 4 and 5. As indicated, the reduction of depth-preserving CCGs
to context-free grammars is fairly straightforward: one only has to show that the derivations
of G altogether use only finitely many different ground instances of the rule schemata.

Proof of Theorem 4: First suppose that L can be generated by a classical categorial
grammar (C, S, f). It is clear from the definitions that ε /∈ L. To show that L is a context-free

37



language, it suffices to show that there are only finitely many categories appearing anywhere
in any S-parse tree of the grammar. Then it will follow that only finitely many ground
instances of the application rules are used in any such tree, which means that we can form
a context-free grammar for L using these ground instances, together with the rules X → a
(X ∈ f(a)), as productions.

Let K be the set of all subtypes of any category assigned to an element of Σ by f . Then
we claim that, in any S-parse tree, all the categories occurring belong to K. To see this,
we work by induction up the tree. It is clear that each category immediately dominating a
terminal a belongs to K (since this category is in f(a)). For the induction step, we need to
show that with each application of a rule X → X/RY Y , the known X/RY ∈ K, Y ∈ K (given
by the induction hypothesis) implies X ∈ K. But this is certainly true, since X is a subtype
of X/RY , and subtypes of elements of K are in K. Similarly for the rule X → Y X/LY , and
so the induction step holds. Since K is finite, this completes the proof that L is context-free.

The proof of the converse — that every ε-free context-free language is given by a classical
CG — is rather lengthy, and is not really essential to our immediate concerns (since what
we have already shown effectively tells us that classical CGs are not an adequate model for
natural language). We will only state it as a separate lemma here, but we include the proof
in the appendix, since the result will be referenced in subsequent sections.

Lemma 8 Any context-free language not containing ε can be generated by a classical cate-
gorial grammar.

This granted, we are done. ¤
Proof of Theorem 5: As in the proof of Theorem 4, it suffices to show that there are

only finitely many categories that can occur in any S-parse tree of our grammar G (and it
then immediately also follows that only finitely many ground instances of the rules of Φ can
be used). So let d be the maximum depth to which any variable appears in the left side of
any rule schema in Φ. Let K be the set of all subtypes of any type assigned to a terminal
symbol by f , together with any types over C that occur anywhere in a rule of Φ; and let
K ′ be the set of all types with the property that every subtype of depth at least d is in K.
Notice that K ′ is finite. Indeed, it is equal to the set Kd obtained in the course of the usual
category space construction (K0 = K, Ki+1 = Ki ∪ (Ki ×O ×Ki)).

Now we just need to prove that, in every S-parse tree under G, every category that
appears is in K ′. This is done just as in the previous proof. We show by induction, working
up the tree, that every nonterminal used is in K ′; this is immediate for the nodes immediately
above terminals, since the categories appearing there are in K ⊆ K ′. For the induction step,
we need to show that whenever we have a ground instance X → X1 · · ·Xn of a rule schema
A → A1 · · ·An, if X1, . . . , Xn are in K ′ then so is X. Well, consider any subtype Y of X
of depth at least d. Either it arises from a non-variable in A (i.e. a subtype of A that is a
category over C), in which case it is already in K; or it arises from the instantiation of a
variable B in A. In the latter case, the variable B is a subtype of A of some depth dB; it
is replaced in our ground instance by some type Z; and Y is a subtype of Z, of some depth
dY . The depth of Y as a subtype of X is dB + dY ≥ d. By the assumption that our rules are
depth-preserving, B must also occur in some Ai to depth at least dB, so Z is a subtype of
Xi of depth at least dB and hence Y is a subtype of Xi of depth ≥ dB + dY ≥ d. Therefore
Y ∈ K. This shows that X ∈ K ′, which is what we need, and the proof is done. ¤

38



The proof of Theorem 7 is next. (Theorem 6 is just a special case.) This uses analogous
ideas, only one has to be slightly cleverer in order to transform argument-depth-preserving
rule schemata into LIG productions.

Proof of Theorem 7: The first step imitates the proof of Theorem 5. Let K be the
set of all subtypes of categories assigned to terminals by f , together with all categories over
C appearing as subtypes in any rule schema in Φ. Let d be the maximum depth to which
any variable appears on the left side of a rule schema. Let K ′ be the set of all categories such
that every subtype of depth at least d is in K. Then K ′ is a finite set. We claim that, in
every S-parse tree from our grammar, every category that appears has all of its arguments
in K ′. The proof is by induction up the tree, exactly as in the proof of Theorem 5; the
third condition in the definition of argument-depth-preserving ensures that the induction
step succeeds.

Now, define a semi-ground instance of an argument-depth-preserving rule schema A →
A1 · · ·An to be a schema B → B1 · · ·Bn, where B, Bi are categories over C ∪ Ω, with the
following property: there exists a homomorphism φ from the category space over C ∪ Ω to
itself, such that φ(A) = B and φ(Ai) = Bi; moreover φ(Q) = Q for Q ∈ C, and φ maps every
variable to a category over C, except that φ(τ(A)) is still a variable. Thus, a semi-ground
instance is almost the same as a ground instance, except that the target of A remains a
variable rather than being mapped to a category over C.

We claim that we can replace each rule schema R of Φ by finitely many semi-ground
instances of R, without changing the language generated by the grammar — that is, only
finitely many different semi-ground instances of schemata are actually used in any deriva-
tion. This is not hard to see: in any application of a rule schema A → A1 · · ·An, all the
argument categories appearing on either side of the rule must be from the finite set K ′ (by
the result from two paragraphs ago), and all the target categories except for τ(A) must
also be instantiated as elements of K ′ since they also appear in argument categories; thus,
every variable in the rule other than τ(A) can take on only finitely many values. Thus, we
may now assume that every rule schema R has exactly one variable, and that moreover that
variable appears as the target of the left side of R, the target of one term on the right side,
and nowhere else.

Now we are ready to construct our linear indexed grammar. Let the set of nonterminals
be C, and let the set of stack symbols I be O∪K ′. Write W = C×I∗ as usual, and let V ′ be
the set of categories over C whose arguments all belong to K ′. Define the “encoding” function
e : V ′ → W as follows: any category in V ′ can be uniquely written (· · · ((X|1Y1)|2Y2) · · · |nYn)
for X ∈ C, |i ∈ O, and Yi ∈ K ′; then

e(· · · ((X|1Y1)|2Y2), . . . |nYn) = X[|1Y1 · · · |nYn].

We have the following LIG rules:

• if A → A1 · · ·An is a rule schema in Φ, where τ(A) = τ(Ai) is the variable X, then write
A = (· · · (X|1Y1) · · · |nYn), Ai = (· · · (X|′1Y ′

1) · · · |′nY ′
n), and for each category Q ∈ C we

then use the LIG rule

Q[◦◦|1Y1 · · · |mYm] → e(A1) · · · e(Ai−1) Q[◦◦|′1Y ′
1 · · · |′mY ′

m] e(Ai+1) · · · e(An); (31)

39



• if X ∈ f(a), then we also have the rule e(X) → a.

It is now immediate that X1 · · ·Xn ⇒ Y1 · · ·Ym in the GCCG (where the Xi, Yj are cat-
egories in V ′) if and only if e(X1) · · · e(Xn) ⇒ e(Y1) · · · e(Ym) in the linear indexed grammar
we have constructed. Applying this to each step of a derivation gives us, for any terminal
string w, that S

∗⇒ w in the GCCG if and only if S[ ]
∗⇒ w in the LIG, so we are done. ¤

Before departing from this brief glance at classes of CCG rule schemata, we should
mention two topics that are worth consideration in the course of further investigation. One
is whether the size of the operation set O actually makes any difference in the expressive
power of a CCG system. Of course this is not an immediately well-defined question, because
we do not know how to talk about rule systems without fixing O. But all the classes of
rule systems we have considered here seem to give expressivity results that are independent
of the number of operations. Thus, Theorem 5 tells us that no matter how many slashes
we have, depth-preserving rules give us only ε-free, context-free languages, and the proof
of Lemma 8 given in the appendix shows that any such language can be achieved by using
only one slash (say, /L). In discussing modalized slashes in [7], Baldridge shows that they
do not actually add anything to the expressive power of his CCG formalism, although we
cannot use his proof here because it requires a framework with target-restricted rules. As
mentioned above, if we consider GCCGs in full generality (with Φ finite), we get the class
of all recursively enumerable languages, and restricting O to be a singleton again does not
change this. It would be interesting to generalize results of these sorts.

Next, we mention one criterion for CCG rules that intuitively seems relevant and that has
been missing thus far. Many of the rule schemata we have proposed are quite ridiculous. For
example, a rule like X/RY → Y/LX seems unnatural; an expression that forms an X if a Y is
added to it should not also form a Y if an X is added to it. What we, as decent human beings,
might expect from a combinatory rule schema is that the elements on the “numerator” of
one side of the rule should also be on the numerator of the other side, and similarly for the
denominators. We can make this algebraically precise. If C is a set of primitive categories
and V the category space over it, let U be the free abelian group generated by the elements
of C, written multiplicatively; so elements of U are all of the form Xe1

1 Xe2
2 · · ·Xen

n , where
the Xi are in C and ei are arbitrary integers, and multiplication of two elements is given
by addition of corresponding exponents. Now define a map µ : V → U by µ(X) = X for
X ∈ C, and µ(X|Y ) = µ(X)µ(Y )−1.

Now, we say that a GCCG rule schema A → A1 · · ·An, with A, Ai categories over C ∪Ω,
is balanced if µ(A) = µ(A1) · · ·µ(An) in U . Then the function application, composition,
and type-lifting rules are all balanced, but many others that we can imagine are not, such
as X/RY → Y/LX. The property of being balanced seems to be a kind of baseline for
reasonableness of a hypothesized GCCG rule. We leave as an open direction of study the
question of whether using only a finite set of balanced rules still allows us to generate all
recursively enumerable languages, or whether it gives us at least some restrictions (say, the
constant growth property). It is worth pointing out, though, that unbalanced rules have
been proposed, such as the substitution rule of [66].

After having looked at the generative power of some CCG systems, it seems appropriate
to talk at least briefly about the analogous results for other linguistic theories, to see what
the landscape is like. Unfortunately, most theories suffer from the unsurprising problem

40



that the richer the description given, the more complicated the theory is to write down
formally, and therefore the harder it is to obtain any results about. Transformational theories
are so widespread and diverse (and, quite often, not fully fleshed out) that it is difficult
to make any general statements about them. However, we should at least mention one
seminal bit of work in this area, by Peters and Ritchie ([51], [50]). They give a general
definition for transformational grammars, in which a context-free “base” grammar is used
to generate parse trees; these trees are then operated on by deletion, substitution, and
adjunction transformations whose applicability is determined by structural conditions on
the tree. Peters and Ritchie show that every recursively enumerable language is generated
by some such transformational grammar.

Of course, this is not at all a conclusive dismissal of transformational grammars as over-
generating, because any particular transformational linguistic theory is bound to be much
more specific than the framework Peters and Ritchie give; their work serves as more of a cau-
tionary note. On a more optimistic note for the expressivity of transformational grammars,
Michaelis ([44]) has shown that a certain formalism for minimalist grammars, introduced by
Stabler in [63], generates only languages satisfying Joshi’s mild context-sensitivity require-
ments.

5 Learnability theory

The main motivating concept of learnability theory, as applied to natural language, is as
follows: the class L∗ of possible human languages must be small enough that some one
“learner” is capable of learning any language. Indeed, any normal human child has the ability
to learn any language. Once we have a suitable formalization of the notion of “learning,”
this idea can be used to evaluate theories of language; a theory that predicts an unlearnable
class L is insufficiently restrictive. The theory of language learnability is logically almost
entirely separate from formal language theory, although, in practice, ideas from the latter
area are often used to delimit possible classes of languages to test for learnability.

The model of learning that we will use is among the simplest available; it comes from
Gold’s foundational article [31] and is formally referred to as identification in the limit from
positive data. Our definitions come roughly from [43], but we will diverge in one important
respect from much of the literature on the subject in that our model studies abstract learning
functions rather than (computable) algorithms. This is done for formal simplicity, but it will
not really make much difference, because in each case where we have a learnable class, we
will give a computable learner.

As usual, consider a fixed alphabet Σ. For any nonempty language L, a text of L is an
infinite sequence w1, w2, . . . of strings of L such that every element of L appears at least
once. A learner for some class L of languages over Σ is a function Λ : (Σ∗)∗ → L, that is,
from the set of finite sequences of strings to L. If L is a language in L, we say that Λ learns
L if the following holds: for every text w1, w2, . . . of L, there is some N such that

Λ(w1, w2, . . . , wn) = L for all n > N. (32)

The idea is that the human child (modeled by Λ) successively hears strings from the language;
after hearing any number n of strings, it has a current guess Λ(w1, . . . , wn) as to what the

41



language is, and in order to learn the language, the child must eventually guess the correct
language and stay there.

We say that the learner Λ learns the class L if it learns every language in L, and that
L is learnable if there exists a learner that learns L. (All of these definitions only make
sense for nonempty languages, so from now on it will be assumed that the empty language
is excluded from L, although we may not state this technicality explicitly.)

A couple of very simple examples are in order. If L is the class of all finite languages, then
let Λ(w1, . . . , wn) = {wi | 1 ≤ i ≤ n}: the learner simply guesses the language consisting of
all strings it has heard so far. Then Λ learns every finite language L: by definition of a text,
every string in L equals some wi, so {wi | 1 ≤ i ≤ n} is all of L when n is large enough.
Hence, the class of all finite languages is learnable. Of course, since this algorithm only
guesses finite languages, it will not be able to learn any class containing an infinite language
(such as any human language).

If L contains only finitely many languages, then it is learnable. Indeed, just define Λ by
letting Λ(w1, . . . , wn) be a minimal element of the set

{L ∈ L | w1, . . . , wn ∈ L}

(ordered under inclusion L ⊆ L′). To see that this learns any L ∈ L, observe that there are
finitely many L′j ∈ L with L 6⊆ L′j. For each such L′j, there is some w′

j ∈ L with w′
j /∈ L′j.

For any given text, once n is sufficiently large, all w′
j have occurred in the text. So the set

{L′ ∈ L | w1, . . . , wn ∈ L′} does not contain any L′j, hence it consists entirely of languages
L′ with L ⊆ L′ — and at this point the learner guesses its unique minimal element L. This
shows that L is learnable.

A natural question to ask is whether any of the levels of the Chomsky hierarchy is
learnable, since these are the most natural classes of languages to which we have reference.
As we shall see momentarily, none of these classes is learnable. However, before going further,
it seems appropriate to discuss some features of our model of learning and place it in the
context of other possible models, as well as motivating some properties of the model that
might initially be mysterious.

There certainly are other models of language learnability, and Savitch ([60]) gives a
helpful survey. One clearly rough feature of our formalization is the definition of a text. For
example, we have assumed that the text contains only positive data (i.e. the information that
certain strings are in the language, rather than that certain strings are not in the language).
This is based on the empirical finding that human children are exposed to very little negative
data (part of the well-known logical problem of language acquisition), and that they often fail
to absorb negative data such as parents’ corrections to their own ungrammatical utterances.
(See [6], [21], [36].)

Aside from the empirical reasons, there are formal reasons to define texts as we do. In
[31], Gold also considers learning from an “informant” — either by allowing the learner to
periodically propose strings and find out whether or not they are in the language L, or by
having the text contain every string of Σ∗, together with an indicator as to whether or not
it is in L (these two models actually give equivalent definitions of learnability). It turns
out that outrageously large classes of languages are learnable in this model, which makes it
not particularly useful for our purposes. Also, it should be clear why we require the text to

42



contain every string of L at least once. If we simply allow the text to be any sequence of
strings of L, then we have no way of differentiating a text of L from a text of some L′ ⊂ L,
so any class that contains two such languages is unlearnable.

The other component of our model is the definition of learning. Notice that we require
the learner to reach the correct language, but it does not have to “know” when its guess is
correct — that is, it always holds out the prospect of changing its guess in the future. This
seems reasonable, since actual humans do not pick a point at which to stop acquiring their
native language.

Looser definitions of learning are possible. Feldman ([26]) provides a model in which
the learner Λ learns L if, for every w ∈ L, all but finitely many of the learner’s guesses
are languages containing w; every language other than L is guessed only finitely many
times; and the correct language L is guessed infinitely many times. Other models allow the
learner to be successful if it has come reasonably close to the target language (under some
metric), or assume a probability distribution on L from which successive strings of the text
are drawn, and require the learner to determine the correct language by some particular
time for “most” texts ([70]). Although some of these models suffer from the same formal
deficiency as informant learning — implausibly large classes of languages become learnable
— the point should be made that many models are possible.

As mentioned above, one often studies “effective learning,” where the learning function
has to be computable. In this framework, one assumes a fixed grammar system, which maps
some set of grammars G into the class of languages L. The learning function Λ is required
to be computable, and it takes values in G rather than L (grammars are finite objects and
so can be the output of a computation; languages cannot). Λ learns L if it fixates on any
grammar that generates L.

In the effective learning context, one can further constrain learnability; for example, com-
putational learning theory often requires the learning algorithm to operate in polynomial time
([70]). Although this sort of consideration is certainly relevant to making predictions about
the size of the class L, it is beyond the scope of our current concerns. Actually, it is possible
to use ideas from complexity theory even without explicitly requiring the computability of
the learning function. For example, [79] discusses a constraint in which the number of wrong
guesses the learner makes is polynomially bounded in terms of the size of the grammar. We
are restricting attention here to the framework of identification in the limit from positive
data because of its relative formal tractability, but the same questions we will study can and
should be studied for other frameworks.

Let us now return to the Gold model of learning from text. As mentioned before, none
of the classes of the Chomsky hierarchy is learnable. In order to show this, we give the
following useful characterization of learnability, from Angluin ([4]):

Lemma 9 A countable class L of nonempty languages is learnable if and only if, for each
L ∈ L, there is a finite “telltale” subset T ⊆ L such that L is minimal in {L′ ∈ L | T ⊆ L′}.

The countability restriction is not much of an impediment, since any learnable class
must be countable. Indeed, given the learner Λ, every language in the class must equal
Λ(w1, . . . , wn) for some finite sequence w1, . . . , wn, and there are only countably many such
sequences.

43



The proof of Lemma 9 is fairly simple: If each L does have such a finite subset T , then
we define a learner that basically chooses a minimal language consistent with all the data so
far; for the converse, if some language L has no such subset, then for any putative learner Λ
we can produce a text that leaves Λ repeatedly thinking it is learning some language smaller
than L. Indeed, Lemma 9 is a gratifying result for basic intuitions about what learning
should require. It essentially says that no class is learnable unless it is learnable in the most
obvious way, namely by always guessing the smallest language compatible with the data so
far.

Proof: Suppose Λ is a function that learns L. Let L ∈ L, and suppose for the sake of
contradiction that, for every finite T ⊆ L, there exists another language of L containing T
and properly contained in L. Construct a text w1, w2, . . . for L as follows. First let u1, u2, . . .
be any text for L. Then:

1. Since Λ learns L, there exists some n such that Λ(u1, . . . , un) = L. Let wi = ui for
i = 1, . . . , n.

2. Suppose that w1, . . . , wn have been determined. By hypothesis, there exists some
L′ ∈ L properly contained in L and containing w1, . . . , wn. Let v1, v2, . . . be a text for
L′ such that v1 = w1, . . . , vn = wn. Since Λ learns L′, we have Λ(v1, . . . , vm) = L′ for
some m > n. So put wi = vi for n < i ≤ m. These strings are all in L, since L′ ⊂ L.
Thus Λ(w1, . . . , wm) = L′.

3. Next, choose the smallest k such that uk has not occurred among w1, . . . , wn (if there
is such a k), and let wn+1 = uk.

4. Iterate steps 2 and 3 indefinitely.

We thus construct an infinite sequence of strings from L, and step 3 ensures that every
uk eventually occurs, so that we do have a text (i.e. every string of L appears). On the
other hand, step 2 ensures that there are infinitely many initial segments w1, . . . , wn such
that Λ(w1, . . . , wn) is a proper subset of L rather than L. Thus, Λ fails to learn L. This is
our needed contradiction.

For the converse, suppose each L ∈ L contains some finite set T such that L is minimal
among all languages of L containing T . We also need our countability condition; let L1, L2, . . .
be an enumeration of the languages in L. We now define Λ as follows: If the set {L′ ∈
L | w1, . . . , wn ∈ L′} has a minimal element (under inclusion), then Λ(w1, . . . , wn) be such a
minimal element Li, chosen from among all minimal elements so that i is as small as possible.
Otherwise Λ(w1, . . . , wn) can be an arbitrary language of L. We need to show that this Λ
learns any Li ∈ L. Well, let T be the telltale subset associated with Li, and let w1, w2, . . .
be any text for Li. When n is large enough, say n > N , then w1, . . . , wn contains all the
elements of T . Any language L′ ∈ L that contains w1, . . . , wn certainly contains T , so the
set of such languages has a minimal element (namely Li). Therefore, for all sufficiently large
n, we have that Λ(w1, . . . , wn) = Lj for some j ≤ i.

We will be done if we can show that, for each j < i, Λ(w1, . . . , wn) 6= Lj when n is
sufficiently large (because then the only possibility remaining for all large enough n is the
desired Λ(w1, . . . , wn) = Li). Well, if Λ(w1, . . . , wn) 6= Lj for all n > N , then we are done.

44



Otherwise, choose n > N with Λ(w1, . . . , wn) = Lj. Since Lj is minimal among the languages
of L containing w1, . . . , wn, then Li 6⊆ Lj. So Li contains a string not in Lj, which must be
manifest as wnj

for some integer nj. Hence, whenever n ≥ nj, we have Λ(w1, . . . , wn) 6= Lj.
This completes the proof. ¤

Now we are in a position to prove the famous result known as Gold’s Theorem.

Theorem 10 [31] If L contains all finite languages and at least one infinite language, then
L is not learnable.

Proof: If L is uncountable, then as we have already seen it is unlearnable, so suppose
it is countable. Let L be the infinite language. According to Lemma 9, there must be some
finite subset T so that L is minimal among languages in L containing T . But T is itself a
language in L containing T and properly contained in L — contradiction. ¤

Of course, there is nothing terribly special about classes satisfying the hypotheses of
Theorem 10, and one can use the same method to prove that other classes are unlearnable.
For example, the class of all L such that Σ∗ − L is finite is unlearnable.

Since (say) all finite languages are regular, Theorem 10 implies that the class of regular
languages is unlearnable. Also, if any class L is learnable, then so is every subset of L (use
the same learner), so we immediately have

Corollary 11 None of the levels of the Chomsky hierarchy is learnable.

¤
This result has been taken by Gold, and others since, as a demonstration that none

of these levels is an adequate choice of L, so that the class of human languages must be
described by some other sort of restrictions.

This result, announced in 1967, was at first taken to constitute a major setback for
the relevance of learnability theory to natural languages, since classes of languages worthy of
consideration other than those of the Chomsky hierarchy were less readily available. However,
the area was revitalized by Angluin’s 1980 discovery ([5]) of other nontrivial learnable classes
of languages. Work in the late eighties by Buszkowski, such as [12] and [14], showed that
adding simple restrictions to the categorial grammar formalism could produce learnable
classes, leading to the results we present here. Our material on the learning of categorial
grammars will be taken from Kanazawa’s survey book [43], except where noted otherwise.
We have significantly tightened some of the proofs, but the general structure preserves the
spirit of Kanazawa’s treatment. One might expect that we would use Lemma 9 to prove
learnability, but in fact the existence of tell-tale subsets for classes of languages is not always
an easy thing to prove, so we will instead go about our business by constructing learning
algorithms.

In order to demonstrate how certain classes of categorial grammars can be learned (the
main goal of the next section), we first need a slight detour into learning other kinds of
objects. We have looked so far at studying languages of strings — subsets of Σ∗ — but
really, this has been quite irrelevant. The foregoing results, such as Lemma 9 and the
learnability of finite classes, hold equally well when the objects being identified are subsets
of some arbitrary countable set ∆, and thus L is a class of subsets of ∆. For example, we
could speak of “learning” a set of integers, or learning the names of Uncle Ned’s goldfish,
rather than learning a language, with all the same formal implementation.

45



In particular, we can let ∆ be the set of trees (suitably defined) generated by a grammar,
rather than merely the set of strings generated by that grammar. Following the terminology
used by Kanazawa, we then think of the corresponding learning problem as one of “learning
from structures.” Although we have heretofore avoided burdening our poor brains with the
additional complexity of trees, we will see that, in the context of CCG systems, starting with
learning from structures will help us get a handle on the more directly relevant problem of
learnability of string languages.

We need to define the structures under consideration. Suppose we have a fixed GCCG
G = (O, C, S, Ω, Φ, f) over the alphabet Σ. We have the notion of an S-parse tree, as usual:
a (labeled, ordered) tree, such that

• the leaves are labeled with terminals;

• the other nodes are labeled with categories over C;

• if a node has a label X and its daughters’ labels, in order, are categories X1, . . . , Xn,
then X → X1 · · ·Xn is a ground instance of a rule from Φ;

• any other interior node (label X) has one daughter, whose label is a terminal a, such
that X ∈ f(a).

Parse trees themselves will not be the input to the learner, because this supplies too much
information to make for an interesting learning problem; instead, we define a structure
derived from parse trees.

Suppose then that we have an S-parse tree, and we relabel the non-leaf nodes as follows:
if a node X has daughters X1, . . . , Xn, then we relabel this node with any rule schema of
which X → X1 . . . Xn is an instance; if a node has only a terminal daughter, we relabel it
with the symbol > (for “terminal”). Leaves retain their original terminal labels. Thus we
now have a tree whose leaves, in order, spell out a string from the language, but the interior
nodes, instead of telling us categories, only tell us which rule schema was applied at each
step. A tree obtained from an S-parse tree in this manner is called a rule structure. (What
we call “rule structures” are called “functor-argument structures” in [43], in the context
specifically of classical CGs.) Thus, for example, the parse tree (17) gives us the following
rule structure. We have used /L and /R as abbreviations for the left and right application
rules, and have assumed that and is just lexically listed as category (NP/LNP)/RNP.

/LXXXXX
»»»»»

>

Camille

/RXXXXX
»»»»»

>

eats

/LPPPP
³³³³

>

Camembert

/R
HHH

©©©
>

and

>

cauliflower

(33)

46



The set of all rule structures that can be thus generated from the grammar G is the
structure language of G, and will be denoted S(G). For distinctness, the set of strings
generated by the grammar G will be called the string language of G and denoted L(G). A
rule structure gives us a unique corresponding string in the (string) language L generated
by G, obtained by reading off the leaves in order. Every string in L corresponds to at least
one rule structure, but possibly more than one. Thus determining the structure language of
an unknown grammar certainly suffices in order to determine the string language.

Now we can see how to frame a learning problem for structures. Just as L is a subset of
the countable set Σ∗, S(G) is a subset of the countable set ∆ of ordered trees whose leaves are
labeled by elements of Σ and whose intermediate nodes are labeled by elements of Φ∪ {>}.
Now suppose that the rule schemata of Φ are pure: all their terms are categories over Ω (i.e.
they have no actual categories of C as subtypes). Then knowing O and Ω suffices in order
for us to express the rule schemata of Φ. This means, in turn, that if we regard O, Ω, Φ, Σ
as fixed, then ∆ is defined. So we have a setting in which to pose a learning problem. Each
possible triple (C, S, f) gives us a GCCG G, as discussed back in Section 3, and in particular
we get a structure language S(G) ⊆ ∆. If we consider some particular class of such triples,
we get a class of structure languages, and can ask whether or not this class is learnable.

6 Learning categorial grammars

The goal of this section is to show that, under appropriate conditions, categorial grammars
give us learnable classes of languages. We will study learning of structure languages and
learning of string languages, and will obtain some results about both, although we are
interested mainly in the latter.

So, continuing from the last section, suppose that the terminal alphabet Σ and O, Ω are
fixed, and suppose that we also have a fixed set of pure rule schemata Φ (i.e. rule schemata
only involving categories over Ω). For succinctness, we will henceforth use the term categorial
grammars (CGs) to mean triples (C, S, f), and we will speak of the languages they generate,
implicitly with respect to O, Ω, Φ.

It is apparent from the results we have presented so far that we cannot, in general, expect
the class of all languages generated by CGs with these rule schemata to be learnable. Indeed,
by Theorem 4, even the classical rule schemata give us all possible context-free languages
not containing ε, so by a trivial variant of Theorem 10, these are not learnable from strings.
In fact, we do not even need this much technology: under almost any reasonable set of CCG
schemata you can think of, it is not difficult to construct a sequence of grammars G1, G2, . . .
with proper inclusions L(G1) ⊂ L(G2) · · ·, and another grammar G such that L(Gi) ⊂ L(G)
for all i; once this is accomplished, Lemma 9 readily tells us that even the set {Gi} ∪ {G} is
unlearnable. However, we can achieve learnability for the class of categorial grammars if we
introduce the restriction of “rigidity.” A CG G = (C, S, f) is rigid if f assigns at most one
category to each element of Σ.

As we shall see, under the assumption of rigidity, we can obtain a natural lattice structure
on the class of CGs (over a fixed terminal alphabet). Grammars that are higher on the lattice
generate larger languages. We can then construct an algorithm to learn a CG from a text
of rule structures by successively “unifying” grammars given by the individual structures,

47



working its way up the lattice, and eventually arriving at the correct language. Eventually
we will get to talk about learning from strings as well. Our exposition will still be taken
largely from Kanazawa’s book [43], with adaptations to the GCCG framework and notation;
much of the original work on unification in the context of categorial grammars was done
by Buszkowski ([12], [14]). There is in fact a connection between this unification and the
unification mentioned earlier for feature structures, but we need not concern ourselves with
this.

Recall that if we had two sets of primitive categories C1, C2, and the category spaces
over them, V1 and V2 respectively, then a homomorphism was a map φ : V1 → V2 satisfying
φ(X|Y ) = φ(X)|φ(Y ). A homomorphism is uniquely determined by its values on elements of
C1. If φ(S) is again a primitive category, then for any categorial grammar G with primitive
types C1, we will write φ(G) for the grammar with primitive types C2, obtained by applying
φ to every element of f(a) for each a ∈ Σ (and using φ(S) as the start symbol instead of
S). That is, φ(G) = (C2, φ(S), f̂), where f̂(a) = {φ(X) | X ∈ f(a)}. This map of categorial
grammars G 7→ φ(G) will also be called a substitution.

If there are substitutions φ, φ′ such that G2 = φ(G1) and G1 = φ′(G2), then G1, G2 differ
only by a relabeling of primitive categories — that is, we may assume φ, φ′ are induced by
bijections on the sets of primitive categories. (This is easy to see if we define the length of
a category over C by l(X) = 1 for X ∈ C, and l(X|Y ) = l(X) + l(Y ). Then applying a
homomorphism can never decrease the length of a category X, and will preserve it intact
only if the homomorphism sends all the primitive subtypes of X to primitive types.) It is
straightforward to see that this relabeling relation is an equivalence relation on categorial
grammars.

A substitution φ is called faithful (with respect to a grammar G on which it acts) if,
for each a ∈ Σ, φ is one-one on the set f(a). Given two grammars G,G′, with respective
category assignment functions f, f ′, we write G v G′ if there is some faithful substitution φ
on G such that {φ(X) | X ∈ f(a)} ⊆ f ′(a) for each a ∈ Σ. That is, G′ is obtained from G
by applying a substitution φ and then possibly adding more category assignments.

Lemma 12 v is a partial ordering on (equivalence classes of) categorial grammars.

Proof: Reflexivity is immediate, as is transitivity (if G v G′ via the substitution φ
and G′ v G′′ via the substitution φ′, then G v G′′ by the substitution φ′ ◦ φ, which is
still faithful). So we only have to check antisymmetry. If G,G′ have respective assignment
functions f, f ′, and G v G′ via the faithful substitution φ, then |f(a)| ≤ |f ′(a)| for each
x ∈ Σ. And if equality holds for all a, then G′ = φ(G) (with no extra type assignments
thrown in). So if G v G′ via φ and G′ v G via φ′, then we must have |f(a)| = |f ′(a)| for all
a, hence G′ = φ(G) and G = φ′(G′), that is, the two grammars are equivalent. ¤

Now let’s prove a couple nice basic properties of this ordering.

Lemma 13 If G v G′, then S(G) ⊆ S(G′) and L(G) ⊆ L(G′).

Proof: Let φ be the substitution by which G v G′. If X → X1 · · ·Xn is a ground
instance of a rule schema R, then for any homomorphism φ, φ(X) → φ(X1) · · ·φ(Xn) is
again a ground instance of R. (Notice that this requires our rule schemata to be pure.) It

48



follows that, given any derivation D over the grammar G, we can obtain a derivation D′

over G′ by applying φ to every nonterminal at every step of the derivation; the rule schema
applied at each step is the same as before. Since the rule structures of S(G) record only
the rule schemata used and the terminals, not the actual categories that are assigned, the
rule structure obtained from D′ is identical to that obtained from D. Hence D ∈ S(G′),
from which we have S(G) ⊆ S(G′). By reading off the leaf labels from each rule structure,
it immediately follows that L(G) ⊆ L(G′). ¤

Lemma 14 For any categorial grammar G′, there are (up to equivalence) only finitely many
grammars G such that G v G′.

Proof: Recall the length function l; let the size of a grammar G be the quantity σ(G)
defined by

σ(G) =
∑
a∈Σ

∑

X∈f(a)

l(X).

Then, from l(X) ≤ l(φ(X)), it follows that any grammar G such that G v G′ must satisfy
σ(G) ≤ σ(G′). Since there can only be finitely many distinct grammars (up to equivalence)
of any given size, the result follows. ¤

Henceforth, we will restrict ourselves to rigid grammars. When we speak of the partial
ordering v, we will mean only the class of rigid grammars under this ordering, not all possible
categorial grammars, unless otherwise indicated.

Now, to get to the point where we can demonstrate just what’s so exciting about the
partially ordered set of (rigid) categorial grammars, it will be necessary to introduce just
one more major notion, that of unification of categories. Unification plays a major role in
automated theorem-proving and is in fact the basis of the computer language PROLOG
([27]).

Suppose C1, C2 are sets of primitive categories, V1, V2 the corresponding category spaces
over them, and φ : V1 → V2 a homomorphism. If D ⊆ V1 is a finite set of categories, we say
that φ is a unifier of D if φ(X) = φ(Y ) for all X, Y ∈ D. If S is a finite collection of finite
subsets of V1, then φ is a unifier of S if it is a unifier of every set of S. We say that φ is a
most general unifier of S if for every unifier ψ : V1 → V3 of S (where V3 is a category space
over any C3), we have some homomorphism θ : V2 → V3 such that ψ = θ ◦ φ.

The relevant result for our purposes is the following standard theorem:

Theorem 15 Let V be a category space over some set C. If S, a finite collection of finite
subsets of V , has a unifier, then it has a most general unifier.

The proof, while not immediate, is rather unsurprising. Since discussion of unification
would take us pretty far afield from categorial grammars and learning, we defer the proof to
the appendix, so that we can return to our main focus. The following statement makes clear
why we care about unification:

Theorem 16 If G1, G2 are rigid grammars that have an upper bound under the partial
ordering v (i.e. a rigid grammar G such that G1 v G and G2 v G), then they have a least
upper bound — an upper bound G such that any other upper bound G′ satisfies G v G′.

49



Proof: We may assume without loss of generality that G1 and G2 use disjoint sets of
primitive categories C1, C2. Then let C0 = C1 ∪ C2, and let V0 be the category space over
C0. Let G0 be the non-rigid grammar over C0 given by assigning to each a ∈ Σ the types
f1(a) ∪ f2(a).

Now, suppose the rigid grammar G over a set C of primitive categories (with category
space V ) is an upper bound for G1, G2, with G1 v G via φ1 and G2 v G via φ2. Combining
φ1 and φ2 gives us a map φ : C0 → V , which then extends uniquely to a homomorphism
V0 → V (that agrees with the φi on Vi). Since G is rigid, φ must map f1(a) and f2(a) to the
same category (whenever both are defined), and must also map the two start symbols S1, S2

both to the start symbol of G. In other words, φ is a unifier for the class

S = {f1(a) ∪ f2(a) | a ∈ Σ} ∪ {{S1, S2}}.
Conversely, we can see that if φ is a unifier for this class, then φ(G0) is a rigid grammar and
an upper bound for G1, G2.

So, since G1, G2 have an upper bound, there exists a unifier for S. Let φ now be a most
general unifier, and let G = φ(G0). We have seen that G is a rigid grammar, and an upper
bound for G1, G2. We claim this G is the desired least upper bound. Indeed, if G′ is another
(rigid) upper bound, then we obtain φ′ by the above procedure, again a unifier for S. So we
can write φ′ = θ ◦ φ for some homomorphism θ, and it immediately follows that G v G′ via
θ (it is trivial that θ is faithful on G since G is rigid). ¤

This allows us to prove:

Corollary 17 The partially ordered set of rigid grammars, with a “top” element 1 added,
forms a complete lattice: every subset has a (unique) least upper bound and greatest lower
bound.

Proof: We first show that every subset K has a least upper bound. First suppose K
has an upper bound G, an actual grammar. Then, by Lemma 14, K must be finite. So
let the elements of K be G1, G2, . . . , Gn. We apply Theorem 16 to G1, G2 to obtain a least
upper bound H2; then apply the theorem again to H2, G3 to obtain a least upper bound H3;
and so forth. Eventually we get to some Hn, which is readily checked to be a least upper
bound for all the elements of K. (Actually, we have one technicality: if K is the empty set,
then the least upper bound is the “empty” grammar whose f assigns the empty set to every
terminal.)

If on the other hand K does not have an upper bound that is a rigid grammar, then the
top element 1 is the unique upper bound for K, hence it is the least upper bound.

Now we have shown that every set of grammars has a least upper bound. But if a
partially ordered set has the property that every subset has a least upper bound, then every
subset also has a greatest lower bound. This is a standard fact from combinatorics ([32, ch.
1]): given any subset S, let T be the set of all its lower bounds. Now if s ∈ S and t ∈ T ,
then t v s, so every element of S is an upper bound for T . Let x be the least upper bound
for T (which we know exists). For any s ∈ S, the fact that s is an upper bound for T gives
x v s, hence x is itself a lower bound for S. But since t v x for all t ∈ T , we see that x is
the greatest lower bound for S. ¤

This proposition is to some degree of purely academic interest; the last part of this
proposition shows that sets of grammars can not only be “united” but also “intersected,”

50



but this is not an operation we presently need to use. On the other hand, we will use the
upper-bound operation enough that we should establish a separate notation for it: we let
G1 t G2 denote the least upper bound of G1, G2; or

⊔
i Gi denote the least upper bound of

some collection of grammars Gi.
We are almost ready to put together our learning algorithm for categorial grammars.

It remains only to have a way of converting the input to the learner — which, currently,
consists of rule structures — into grammars.

Lemma 18 Let T be a rule structure that can be generated by some rigid grammar G. There
is a rigid grammar G with the following property: for any rigid G′, T ∈ S(G′) if and only if
G v G′.

This G will be called the general form associated to the rule structure T . The proof of
its existence is another straightforward definition-chase, which we therefore leave for the
appendix.

With this statement accepted, we can at last assemble the various formalities we have
defined to obtain a learning algorithm for rigid categorial grammars.

Theorem 19 Let Λ be the learning function on sequences of rule structures, defined as
follows: If input rule structures T1, . . . , Tn determine general forms G1, G2, . . . , Gn, then let
G = G1t· · ·tGn. If G = 1 then let Λ(T1, . . . , Tn) be arbitrary; otherwise let Λ(T1, . . . , Tn) =
S(G). Then Λ learns the class of rigid grammar structure languages.

Proof: Let G be a rigid grammar and T1, T2, . . . a text for the structure language S(G).
So these determine general forms G1, G2, . . ., respectively. Let Hn = G1 t · · · tGn. Thus,

Λ(T1, . . . , Tn) = S(Hn).

Because Hn+1 is also an upper bound of G1, . . . , Gn, we have Hn v Hn+1. But since
Ti ∈ G for all i, we have that G is an upper bound for all the Gi, so Hn v G for each
n. Hence, by Lemma 14, there are only finitely many possible values for the Hn (up to
equivalence). This means that the chain

H1 v H2 v H3 v · · ·

must eventually be constant (up to equivalence) — i.e. there is some n such that Hn =
Hn+1 = · · ·. Let H be this constant grammar. Now by Lemma 13, S(H) ⊆ S(G). On
the other hand, let T be any rule structure in S(G). We must have T = TN for some N ,
which means T ∈ S(Gn) ⊆ S(Hn) whenever n ≥ N , and then taking large enough n gives
Hn = H. This shows S(G) ⊆ S(H), and so we have equality. This shows that Λ has learned
the structure language S(G). ¤

Abstracting away from the particular learning algorithm, we have shown:

Corollary 20 For a fixed terminal alphabet and set of pure rule schemata, the class of
structure languages S(G), where G ranges over rigid grammars, is learnable.

51



¤
This in itself is a rather appealing result. In fact, while we have introduced learning from

structures as an auxiliary tool, it is not without merit of its own: within the assumptions
of the Gold learning model, it is not far-fetched to imagine that a hypothetical language
learner is able to construct rule structures for the sentences he or she receives as input (based
on information about their meanings; for more on the human learner’s access to semantic
information, see below). The learner would then apply the above learning algorithm to learn
the syntax of the language. However, we do not rest here, since we have been committed to
focus primarily on string languages rather than structure languages. Hence, our next goal is
to show learnability of string languages, under suitable circumstances.

As it turns out, there is some subtlety involved here. We will need to assume that the
set of rule schemata Φ, in addition to being pure, has the following two properties:

• (Finite interpretability) For every string w, there are only finitely many rule structures
that can be assigned to w. (That is, the set

⋃
S(G), where G ranges over all rigid

categorial grammars with the given rule schemata, contains only finitely many different
rule structures for the terminal string w.) This is achieved, for example, if Φ has finitely
many rules and the right-hand side of every rule has at least two terms — since then
the rule structures are all labeled trees where each internal node is branching, and
there are only finitely many such trees with |w| leaves.

• (Finite elasticity) There does not exist an infinite sequence of rigid grammars

G1 v G2 v · · ·

such that the inclusions
S(G1) ⊂ S(G2) ⊂ · · ·

are all proper.

In fact, what we are calling “finite elasticity” is not exactly the definition used in the
literature (originally from [78], [46]), but in the case of rigid categorial grammars it turns
out to be equivalent.

Kanazawa demonstrates in [43] that classical categorial grammars are learnable from
strings, but the proof he gives, which we shall basically follow, does not immediately gener-
alize to a wide range of other GCCG rule systems. It is clear that the classical CG rules (8)
give finite interpretability for each string (since both rules’ right-hand sides have more than
one term). It is less clear that the finite elasticity property holds. The day is saved by

Lemma 21 Under the classical CG rule system (8), finite elasticity holds.

Although the proof is nontrivial and by no means purely technical, presenting it here
would interrupt the discussion of learnability, so we will again defer it until the appendix.
Our proof is based loosely on that given by Kanazawa, but we make crucial use of a fairly
nontrivial result, Sublemma 26, which we prove entirely independently (it plays roughly the
same role in the proof as Lemma 5.56 of [43]). In the process, we develop some further
theory of category spaces. We also give, in the appendix, some examples of further rule

52



schemata one could add to Φ that would still preserve the finite elasticity property, but we
will not state the results right here, since they are not sufficiently general to be worth the
interruption.

Accepting Lemma 21 as true, we can go ahead and prove learnability from strings:

Theorem 22 If the rule system Φ satisfies the conditions of finite interpretability and finite
elasticity, then the class of string languages {L(G)}, as G ranges over the rigid categorial
grammars, is learnable.

Thus, in particular, the string languages generated by rigid classical CGs form a learnable
family.

The idea of the proof is to use the partial-ordering apparatus we have developed for
structure languages, together with Angluin’s Lemma 9 for string languages. Finite inter-
pretability suffices to make the connection between strings and structures, but we need to
be somewhat careful about how this is done.

Proof: We will show that for each rigid categorial grammar G, there is a finite subset
TG ⊆ L(G) with the following property: there is no grammar G′ such that TG ⊆ L(G′) and
L(G′) is a proper subset of L(G). The learnability result will then follow from Lemma 9. So
suppose that some G does not have this property, and seek a contradiction.

Let w1, w2, . . . be any text of G. By assumption, for each n ≥ 1, there exists a categorial
grammar Gn with w1, . . . , wn ∈ L(Gn) and L(Gn) ⊂ L(G). Let Si,n be the set of all rule
structures assigned to the string wi in S(Gn). Thus, for fixed i, Si,n is a subset of the set of
possible rule structures for wi, which is a finite set (by finite interpretability), hence Si,n can
take only finitely many possible values as n ranges over the positive integers.

Now we show that there exist sets S1, S2, . . . with the following property: for each k,
there exist infinitely many n such that the equations

S1,n = S1, S2,n = S2, . . . , Sk,n = Sk

simultaneously hold. This holds by an easy induction on n. For k = 1 it holds because the
S1,n have only finitely many possible values, so infinitely many of them must be equal, and
we take S1 to be this common value. Similarly, if the claim is proven for k− 1, then we look
at all the values of n such that

S1,n = S1, . . . , Sk−1,n = Sk−1.

There are infinitely many such n, so among the corresponding values of Sk,n, some value
must occur infinitely often, and we take Sk to be this value; thus we get the induction step.

Now, for each i, let G′
i be the rigid grammar that is the least upper bound of the general

forms for the rule structures in Si. Let Hi = G′
1 tG′

2 t · · · tG′
i. Each Hi must be an actual

grammar (not the top element), since there are infinitely many grammars Gn that generate
all the rule structures in S1, . . . , Si, and therefore are w Hi. We have the sequence

H1 v H2 v H3 v · · · .
Therefore, the chain of structure languages

S(H1) ⊆ S(H2) ⊆ S(H3) ⊆ · · ·

53



must eventually be constant: indeed, if not, then there are infinitely many j for which
S(Hj−1) ⊂ S(Hj), and taking those Hj would give a contradiction to finite elasticity.

Thus, there is some N such that S(Hi) = S(HN) for all i ≥ N . Since Si ⊆ S(G′
i) ⊆ S(Hi),

we have Si ⊆ S(HN) for all i. In particular, HN generates the string wi — that is, wi ∈ L(HN)
for all i. Thus,

L(G) ⊆ L(HN). (34)

On the other hand, there is some n (indeed, infinitely many) such that S1,n = S1, . . . ,
SN,n = SN . Then, since Gn generates all the structures in S1, . . . , SN , we must have HN v Gn

and therefore (by Lemma 13)

L(HN) ⊆ L(Gn) ⊂ L(G) (35)

where the second inclusion is strict, by assumption. This, and (34), give our needed contra-
diction. ¤

So, we have successfully proven learnability of at least some rigid grammars (such as
classical CGs) from strings, using finite interpretability and finite elasticity. Notably, in our
application of Lemma 9, we did not actually construct tell-tale subsets for the language
L(G); we only have an existence proof.

As Kanazawa notes, this proof is not adequate for effective learning (i.e. learning by a
computable function). The problem is that the proof of Lemma 9 requires computing a
grammar G such that L(G) is minimal with the property that w1, . . . , wn ∈ L(G). Unfor-
tunately, we don’t know how to determine minimality; the problem of determining whether
L(G1) ⊆ L(G2) is in fact undecidable at least for general categorial grammars (because
the corresponding problem for context-free grammars is undecidable, [33, ch. 8]). However,
Kanazawa gives a computable learning function based on the idea of determining minimality
“in the limit.”

The idea is as follows: Given strings w1, . . . , wn, there is a finite set of grammars Wn =
{G′

1, . . . , G
′
m}, each of which can generate all of these strings, such that if G′ is any other

language that generates all these strings, then G′
j v G′ for some j. (Proof: consider all

n-tuples (S1, . . . , Sn) such that Si is a rule structure for wi; there are finitely many such
n-tuples. For the j-th n-tuple, let G′

j be the least upper bound of the general forms given
by the rule structures in that n-tuple.)

Now let G1, G2, . . . be a (computable) enumeration of all possible categorial grammars;
and let v1, v2, . . . be a (computable) enumeration of all possible strings. Let W ′

n be the set
of all G′ ∈ Wn for which L(G′) ∩ {v1, . . . , vn} is minimal (among grammars in Wn). We
define the learner Λ as follows: Λ(w1, . . . , wn) is the element of W ′

n that occurs earliest in
our enumeration of all possible grammars. This is effectively computable: we can determine
L(G′) ∩ {v1, . . . , vn} since we can determine for any particular v ∈ Σ∗ whether or not v ∈
L(G′) (just compute all the possible rule structures for it and see if any of them gives a
general form that is v G′).

We need to show that this Λ successfully learns rigid categorial grammars from strings.
Well, let G be a grammar for the language to be learned, and also fix a text w1, w2, . . .. For
each i, let Ti be a rule structure assigned by G to wi (if there is more than one such structure,
pick one), and let Hi be the grammar produced by running our earlier structure-learning

54



algorithm on the input T1, . . . , Ti. Then Hi v G for all i, and

H1 v H2 v · · · ,
so by Lemma 14, the sequence of Hi must eventually be constant. Let H be its value.
Then L(G) ⊆ L(H) since H generates all of the strings w1, w2, . . .; but also H v G implies
L(G) ⊆ L(H), so we have equality.

By construction of H, we see that H is in the set Wn defined above when n is sufficiently
large. We claim that, in fact, for sufficiently large n, H is in fact in W ′

n. Indeed, we
know by the proof of Theorem 22 that there exists some TH ⊆ L(H) such that, for any
rigid grammar H ′ with TH ⊆ L(H ′), L(H ′) 6⊂ L(H). Suppose N is sufficiently large so that
TH ⊆ {w1, . . . , wN}. Now, by construction of the sets Wn, we have the following: if H ′

n ∈ Wn

for n ≥ N , then there is some H ′
N ∈ WN with H ′

N v H ′
n. (Specifically, H ′

n is obtained by
unifying the general forms of some rule structures for w1, . . . , wn; just unify the first N of
these to get H ′

N .) But for every H ′
N ∈ WN , we have

TH ⊆ {w1, . . . , wN} ⊆ L(H ′
N)

which means that L(H ′
N) contains some string wH′

N
/∈ L(H) (unless it happens that L(H ′

N) =
L(H)). When n is sufficiently large, then we have

wH′
N
∈ {w1, . . . , wn} ∩ {v1, . . . , vn}

for every choice of H ′
N . At this point, then, for any H ′

n ∈ Wn such that H 6v H ′
n, we have

some choice of H ′
N v H ′

n so that wH′
N
∈ L(H ′

N) ⊆ L(H ′
n) and hence

L(H ′
n) ∩ {v1, . . . , vn} 6⊆ L(H) ∩ {v1, . . . , vn}.

This shows that H meets the minimality condition to be in W ′
n.

So H, which generates the same string language as G, is in W ′
n for all sufficiently large

n. H appears somewhere in our enumeration G1, G2, . . . of grammars, say H = Gk. Now,
we have defined Λ to pick out a member of W ′

n that occurs as early as possible in the
enumeration, hence Λ(w1, . . . , wn) = Gj for some j ≤ k. We now need only show that each
Gj for j < k will be chosen at most finitely many times, except possibly if L(Gj) = L(H).
Then it will follow that the learner will eventually settle either on Gk or on some earlier Gj

that generates the same string language, and this will prove our result.
Consider any j < k. If L(Gk) ⊂ L(Gj) (properly), then some vN is in L(Gj) but not

L(Gk). Then minimality will be violated — that is, Gj /∈ W ′
n for n ≥ N , and so the learner

will never again output Gj. If on the other hand L(Gk) 6⊆ L(Gj), then there is some wN

in L(Gk) but not L(Gj), and so Λ(w1, . . . , wn) 6= Gj when n ≥ N (since, by construction,
our learner only guesses grammars that are consistent with the data so far). So every Gj for
j < k, such that L(Gj) 6= L(Gk), is eventually eliminated, and we thus have a computable
learner of the string languages of rigid categorial grammars.

Now, from all the notational mess, this learning algorithm seems a bit too complicated
and computation-intensive to be a realistic model of the human learning process, so we should
pause a moment in our formal study to discuss what is really going on. The idea of Lemma
9 — which is arguably the main ingredient in proving learnability of categorial grammars

55



from strings, Theorem 22 — is that we construct a learner which hypothesizes the smallest
possible language consistent with the data given so far. All of the remaining formal baggage
involved in the proof of Theorem 22 is then used in proving that this learner actually learns
the target language (as opposed to, say, guessing successively larger and larger languages
but never reaching the target); the learner itself does not make use of any of this formalism.

Now, the foregoing discourse focused on the fact that, in practice, “the smallest possible
language consistent with the data given so far” may not be computable. (Alternatively, it
may be computable only in an unreasonable amount of time.) The conceptual solution to this
should be to use some method of approximating the smallest possible language that computes
“in the limit” what this smallest language is. The computable learner we gave above does
this in perhaps the most crude and naive way possible, finding the minimal language in the
limit by finding the language whose intersection with {v1, . . . , vn} is minimal, for increasingly
large values of n. Hence, it seems that one place to work on the model to make the learner
more realistic would be to find more efficient ways of approximating the smallest language,
at least for specific classes of categorial grammars. For now, we simply point to this goal as
one for future research, and move on to discuss other cases of learnability.

We have so far focused on rigid grammars; although this makes for a relatively nice
theory, the constraint is, well, rigid. An immediate way to relax the requirement of rigidity,
proposed by Kanazawa in [43], is to consider the k-valued grammars: these are categorial
grammars for which the function f assigns at most k categories to each terminal. There is a
very simple relation between k-valued grammars and rigid grammars. Let Σ′ be the disjoint
union of k copies of Σ, and let φ : Σ′ → Σ be the map that sends each copy in Σ′ of any
element a ∈ Σ to a. This extends in an obvious way to a homomorphism φ : Σ′∗ → Σ∗. We
can define φ(L) for a language L over Σ′ (as the set {φ(w) | w ∈ L}). If we also define φ(T ),
for any rule structure T , to be the rule structure obtained by applying φ to each terminal
label on a leaf of T , then we can look at the image φ(S) where S is a structure language
over Σ′, thus getting a structure language over Σ.

Lemma 23 The string languages generated by k-valued grammars over Σ are precisely those
that can be expressed in the form φ(L(G′)), where G′ is a rigid grammar over Σ′. The
structure languages generated by k-valued grammars over Σ are precisely those that can be
expressed in the form φ(S(G′)), where G′ is a rigid grammar over Σ′.

Proof: It suffices to prove the second statement, as the first follows from it. If G′ =
(C, S, f) is a rigid grammar over Σ′, then define a k-valued grammar (C, S, f̂) over Σ by
setting f̂(a) = ∪φ(b)=af(b) — that is, f̂ assigns to each terminal all of the types assigned
to its various copies in Σ′ by f . It is straightforward to check that the structure language
generated by this grammar is φ(S(G′)). Conversely, given a k-valued grammar G = (C, S, f̂)
over Σ, define a rigid grammar G′ = (C, S, f) over Σ′ as follows: if f̂ assigns j (≤ k) categories
to a terminal a ∈ Σ, then f should assign these categories to j copies of a in Σ′ (and assign
no categories to the remaining copies). Again, it is immediate that S(G) = φ(S(G′)). ¤

As Kanazawa shows, we can exploit this connection to prove learnability of the languages
generated by k-valued grammars, under suitable conditions:

Theorem 24 If finite elasticity holds, then for each k ≥ 1, the class of structure languages
{S(G)}, where G ranges over the k-valued grammars, is learnable; if we have finite inter-
pretability as well, then the class of string languages {L(G)} is also learnable.

56



Rather than go through the tedium of laying out the full proof here, we will just give
the basic idea. It suffices to construct a learner that computes in the limit a rigid grammar
G′ over Σ′ satisfying φ(S(G′)) = S(G) (or φ(L(G′)) = L(G), respectively); by Lemma 23,
such a grammar does exist. Consider the case of structures (the proof for strings is entirely
analogous). For each rule structure T over Σ, there are finitely many rule structures T ′

over Σ′ such that φ(T ′) = T . Hence we can simply duplicate the proof of Theorem 22,
with structures over Σ playing the role occupied by strings in the previous proof, and with
structures over Σ′ playing the role previously played by structures over Σ. Finite elasticity
is now applied to grammars over Σ′.

Really, the proofs of Theorems 22 and 24 are the same, at a suitably abstract level.
Both involve the reduction of one learning problem to another: in both cases we have a map
between some two infinite sets, φ : ∆′ → ∆, and grammars G generating subsets D(G) ⊆ ∆′.
(In the former case, φ is the map from rule structures to strings that reads off terminal labels;
in the latter, it is the map Σ′∗ → Σ∗ that we just defined). As long as φ−1(x) is finite for every
x ∈ ∆, we can use the idea of finite elasticity to infer the learnability of the class {φ(D(G))}
from the learnability of the class {D(G)}. (This general method of proof is analogous to
Theorem 3.1 from [43], but our use of it is somewhat more succinct.)

Unfortunately, for computational purposes, the resulting algorithm for learning k-valued
structure languages suffers the same excessive complexity that we saw with the learning of
rigid string languages (and of course this is all the more so if we want to learn k-valued
string languages). The same comments made before apply again here: the difficulty is in
computing, or approximating, the minimal k-valued language that contains a given set of
structures (or strings), but one can at least prove that such a minimal language exists. Work
on simpler, faster algorithms that compute the minimal language in the limit would be of
interest.

In closing up our discussion of learning categorial grammars, we should think seriously
about what more appropriate restrictions we could impose, instead of rigidity. To do so, we
should be guided by trying to consider the ways in which actual human language violates
rigidity. It is important to keep in mind what the elements of Σ are to represent, a point
on which the whole literature is somewhat vague. If they represent, say, phonological forms
of words, then rigidity is extremely problematic, because clearly a single word can have a
host of categories (think of English set, which is a noun, a verb, and an adjective, not to
mention its many possible subcategorizations). We prefer to suppose that elements of Σ are
abstract lexical items, with each possible meaning assigned to a different terminal symbol,
and different terminals sometimes having the same phonological form. (We might even posit
a single universal vocabulary Σ of possible meanings for all human languages, with the choice
of how to bundle these meanings together into units with a single phonological form left up
to each individual language.)

What this entails for our theory of learnability, then, is the assumption that the learner
has access not only to the string of phonemes but also to the particular lexical item that each
phonological word references. This might seem like a concession since we have until now been
concerned exclusively with syntactic information. But from the point of view of modeling
human language acquisition, it is no problem at all. Obviously any theory of language
acquisition will ultimately need to explain semantic as well as syntactic acquisition, which
means it will need to posit that learners have information about the meanings of sentences

57



they receive as input; in view of this, accommodating semantic information by assigning
different terminal symbols to different meanings is hardly a shortcoming of our learning
framework. Similarly, as hinted earlier, the idea that rule structures themselves would be
available to the learner is not entirely ridiculous if the learner knows what different semantic
operations correspond to each rule schema.

However, there is another respect in which rigidity poses a more serious problem, and
this is with regard to the idea of features. As described at the end of Section 3, there is no
especially neat way to incorporate features into our CG framework; the only solution is to
take what we normally think of as a primitive category (such as N or S) and subdivide it
into many categories based on all possible feature bundles that can be attached to it, then
give each lexical item a pile of different categories, one for each valid assignment of feature
bundles to its primitive subtypes. This results in an extremely non-rigid grammar system.
Worse, if there are, say, c feature structures that can be associated with each primitive
category, then a “featureless” category of length l would split into cl possible categories with
features, and this number is unbounded if we do not a priori have a bound on l. Thus we no
longer are even assured of falling within the k-valued class of grammars for any particular k.

Really, though, there seems to be a more fundamental problem with the CCG handling
of features vis-à-vis our model of learning. Clearly, when speakers of a language learn a new
word, it does not need to be learned separately with each of its possible feature instantiations.
For example, if I utter the sentence you snarple the tree, thus informing you that snarple has
category (S/LNP[2sg])/RNP, you will also be able to use it as an (S/LNP[1pl])/RNP and so forth,
forming sentences such as we snarple the pigs without needing to learn these forms separately.
Our current model of features in CCG, wherein each of these is a distinct category, has no
way of capturing this phenomenon. (Actually this example is easy to handle; we could
postulate that the verb has only a single category, and that there are agreement suffixes,
some of which are phonologically null, that have categories for all of the different possible
agreement features. This requires the language learner to learn each suffix just once in order
to get the agreement features down pat, and then to learn each verb root only once. But
this solution does not immediately handle other cases of feature-bundle proliferation, such
as control verbs and other lexical inheritors.)

It seems that there should be a device by which the learner can “generalize” or “analogize”
to conclude that, when a lexical item has certain categories, it also has certain others.
However, this goes well beyond the learning framework we have discussed here; our theory,
by requiring the use of general forms and operating on equivalence classes of grammars, seems
to prohibit anything that would require reference to a specific choice of category. We will
leave this as one more direction for future research in formal modeling of language learning.

7 Conclusion

Now that we have established some of the basic formal properties of categorial grammars, we
will close by discussing the relevance of the results we have presented, as well as the relevance
of our techniques more generally. As for the latter, the views we present here (unlike the
assumptions described in Section 1) are the author’s and are not necessarily the consensus
of mathematical linguists or of the generative grammar community.

58



Now then, let’s review the results on formal complexity of categorial grammars. The-
orems 4 and 5 show that classical categorial grammars generate precisely the context-free
languages (not containing ε); and a broader class of CG systems, namely those using only
finite, depth-preserving rule systems, also generate only context-free languages. Argument-
depth-preserving rule schemata give us at most linear indexed languages (our Theorem 7),
providing a straightforward formal generalization of the result of [73]. We have also seen
that fairly standard CCG schemata, or approximations thereto, can generate non-linear-
indexed languages. These results can be interpreted as saying that certain types of CCG
rule schemata systematically undergenerate, while others overgenerate (assuming our views
on the complexity of L∗ to be correct). From the point of view either of comparing the
validity of different theories or of seeking evolutionary explanations, then, these results are
instructive, although also limiting (for example, it seems difficult to distinguish between the
many possible argument-depth-preserving rule systems on the basis of generative power).

In any event, the relevance of the tools we have presented here to understanding natural
language should not be exaggerated. The basic and fairly obvious shortcoming of the whole
theory is that there is no particular reason for natural language to respect the Chomsky
hierarchy. The classes of regular languages, context-free languages, and so forth continue
to be the standard yardstick used by linguists who want to describe the expressive power
of one or another theory, and there is even an unfortunate tendency to worship them as
being the canonical measures of complexity; thus one sees grammar systems described as
“trans-context-free” ([69]) or empirical data that are “provably context-sensitive” ([77, ch.
4]). Of course they are not the only possible measures of complexity. For example, the
language {a2n | n ≥ 0} is extremely simple, as measured naively by the number of symbols
it takes to describe it, and the membership problem can be decided very efficiently, but it
falls at the context-sensitive level of the hierarchy. Realistically, the machinery underlying
natural language should be sensitive to complexity constraints very different from those
defining the levels of the Chomsky hierarchy. These levels have direct relevance to natural
language insofar as it could be believed that, say, context-free grammars are the basis of
natural language; but we now know that they are not. Therefore, we should expect that
the class L∗ cross-cuts the Chomsky hierarchy, with some languages perhaps located at the
context-free level and others not, while L∗ cuts out only a thin slice of each level. (This
general observation has also been made in [58] and in [45, ch. 9].)

If this is the case, why does the Chomsky hierarchy continue to play such a central role
in studies of language complexity? The basic answer is that it is the best scale that we have.
The simple definitions of the language classes, the fact that many non-linguistic systems
mesh well with them, and the relatively clean formal properties of these language classes
make them a convenient choice to work with. It is not at all clear what kinds of complexity
measurements would be better-suited for constructing a system in which human languages
had a natural place, aside from considerations of time and space efficiency of parsing and
perhaps degrees of ambiguity (i.e. assigning multiple structures to the same string).

The most concrete task that can be accomplished by applying formal language theory
to natural language is to rule out possible theories of universal grammar on grounds of
undergeneration. Thus, for example, it is now safe to say that classical categorial grammar
is not an adequate description of natural language, because Theorem 4 tells us that this
system only generates context-free languages, whereas human languages are not context-

59



free. There are several reasons that this is the most directly productive direction in which
to apply the theory. One is that the formal theories of language that we can devise are
only approximations, and it is easier to construct approximations L for which L ⊇ L∗
than for which L ⊆ L∗. For example: classical CG by itself is obviously too simple to
give a reasonable characterization of the class of natural languages (this is a matter of
common sense, not a theorem that needs proving), but the linguist who wishes to construct
a more comprehensive theory of universal grammar based on classical CG might do so by
adding restrictions (specifying the number of primitive categories, or limiting the lengths of
categories that can be assigned to a terminal). Any such theory would then generate some
subset of the class of languages generated by “bare” classical CG theory. Consequently,
using Theorem 4, any theory along these lines is going to be inadequate.

Now, there are other ways of embellishing a theory of universal grammar that do not
simply give a subset of the original language set; for example, we might impose a bound on
the number of times a rule can be used in a derivation. But in general it is difficult to say
what new classes of languages would be generated by such restrictions. Put another way:
suppose that you begin with some given rudimentary theory of universal grammar (such as
classical CG), which you hope to develop into a more fleshed-out, plausible theory. Suppose
that the two theories are to generate language classes L,L′, respectively. If you want to carry
out the development in such a way that L and L′ bear any discernible relationship to each
other, that relationship is likely to be L′ ⊆ L. Therefore, the best way to use tools of formal
language theory to try to obtain meaningful information about this hypothetical fleshed-out
theory is to show that L is too low on the complexity hierarchy; this then guarantees that
no fleshed-out theory derived in this manner can be adequate.

This, then, tells us one reason why it is more useful to prove that a theory of grammar
undergenerates than it is to prove that it overgenerates: if it overgenerates, perhaps we
just need to throw in more restrictions to develop the theory. Another reason comes from
the empirical rather than the theoretical side: lower bounds on the complexity of natural
language are more easily obtainable than upper bounds. For example, we can collect data to
convince ourselves that Dutch is not context-free. But using data to show conclusively that
any language is in some complexity class, say the linear indexed languages, is well beyond
the present means of the science of linguistics — let alone showing that all human languages
fall into the linear indexed class. Indeed, we probably would not be able to do that until we
had an accepted comprehensive grammar for the language; as far as this author is aware,
there is no technique for showing that a language falls into one of the standard complexity
levels without constructing, at least implicitly, a grammar of the required sort. So we cannot
“know” that a theory that gives, say, all context-sensitive languages overgenerates; we can
only take it as an article of faith. (Of course, such knowledge is also not clearly meaningful
because the notion of a “grammar” is a theoretical construct outside of the physical world
— to say nothing of the notion of “possible human languages.”) Even the available tools
for showing that natural languages fall outside of some complexity class are very limited;
in practice, it basically comes down entirely to the pumping lemma, or its analogues for
other classes of languages. The analysis of formal complexity of languages would be greatly
aided by having some other useful means of demonstrating that a language was outside a
particular class.

Despite these limitations on detecting overgeneration, it can still be helpful in directing

60



further research. Even though it may be clear that some theory is too simple to be a realistic
model of universal grammar, knowing that it overgenerates helps in deciding how to improve
it: there is some particular language that the revised theory will have to exclude. Or if some
more fleshed-out theory is too complicated to analyze thoroughly in terms of generative
power, one can at least look at any results about the simple theory on which it is based in
order to decide where to look for possible examples of overgeneration.

Results that neither show overgeneration nor undergeneration, but rather suggest that
a theory has the appropriate level of complexity, also have their role to play. For example,
Theorem 6 does not tell us that combinatory CGs generate all linear indexed languages, nor
is it entirely clear whether or not they should. But having statements like this is nonetheless
useful in the quest to judge the reasonableness of the model. If one is asking “can I show
that this theory overgenerates by giving a non-linear-indexed language it can produce?”
then proving containment within the linear-indexed class will stop the fruitless search for
counterexamples. And while no one can formally “prove” that a theory of universal grammar
generates the right class of languages, if we have been unable to prove that it cannot generate
the right class, then the theory may be worth further research, until someone discovers it is
wrong for another reason.

In general, syntacticians try to hone in on appropriate models of grammar by studying
overgeneration and undergeneration: a grammar is bad insofar as it fails to generate some
sentence that should exist, or it generates some sentence that should be ungrammatical. This
empirical approach is perfectly appropriate for describing individual languages, but in order
to study theories of universal grammar and the undergeneration or overgeneration of classes
of languages, we basically need formal tools of the sort used here: we need to be able to talk
about structural properties of entire languages in the same way that we are accustomed to
talking about structural properties of sentences. We are only beginning to develop the kind
of rigor needed for this, and we often see it entirely lacking in the literature. Pullum and
Gazdar’s paper [55] cites linguistics textbooks asserting, for example, that “we can be sure”
that natural languages cannot be described by context-free grammars, giving as reasons only
the observations that the most obvious attempts to construct such grammars fail; in some
cases, Pullum and Gazdar specifically show that the data used as evidence in such flimsy
arguments actually can be accounted for by context-free grammars, albeit not very intuitive
ones. Formal language theory gives us at least the beginnings of the machinery for making
sense of, and even proving, statements about the insufficiency of a grammar system. In the
future, it may give us solid means of proving the overabundance of a grammar system as
well.

Now let us move on to the results about learnability theory. We saw that even the classical
categorial grammars — and, indeed, virtually any “reasonable” CG system — resulted in
an unlearnable class, under the Gold framework. Then we looked at what happens when
we impose the restriction of rigidity. As we have seen from Corollary 20, learnability from
structures does hold, for any collection of pure rule schemata, and Theorem 22 shows that
this transfers to learnability of string languages in suitable cases, including for classical CGs.
We have also seen that these results are (at least sometimes) applicable to k-valued grammars
as well. Learnability from structures is somewhat encouraging for the framework of (rigid)
categorial grammars in general, although the results we have cited give no concrete way of
preferring one rule system to another. If some particular systems were known to be learnable

61



from strings, this would give a way to prefer them; but the only such systems currently
established are depth-preserving, so we have to rule them out on account of generative
power. The most elegant, and perhaps the most interesting, part of this theory is not the
results themselves but rather the apparatus of unification and the structure it imposes on the
collection of categorial grammars, which provides a clean way to understand the learning
algorithm as successively gluing together the pieces of information it receives into a rigid
grammar that is as small as possible (under the partial ordering v).

Unfortunately, when it comes to the linguistic relevance of these results from learning
theory, we are on shakier ground than in the discussion of generative power. It is essen-
tially impossible to either uphold or reject a theory of universal grammar on grounds of
learnability, because this whole framework depends on an extra dose of assumptions that
are approximations at best — namely, the learning model. The Gold model that we have
used is an especially simple one, but any model powerful enough to make clear and interest-
ing predictions about both learnable and unlearnable languages would have to suffer major
drawbacks of relevance. Under any model now available, learnability is too weak a formal
test for the validity of a theory of universal grammar, in that it fails to constrain the choice of
learning algorithm so as to make it realistic. Learnability is also too strong a formal test, in
that it operates on the unrealistic assumption that the child successfully learns the language
of its environment, neglecting diachronic change. Our lack of certainty about the format of
the input available to the learner adds to the confusion.

In other words, when we consider all of the confounding factors, it is not really clear
whether, in any given model, the actual class L∗ is learnable. And if we do not know
whether L∗ is learnable, then even when we have results about the learnability of L in a
particular theory, we do not know whether this means we should accept or reject the theory.
The situation is somewhat like accepting or rejecting a theory of extraterrestrials based on
its predictions about the clothes they wear: the empirical evidence isn’t really there.

Nonetheless, learnability and unlearnability are useful if one treats them only as a heuris-
tic; a good theory should predict a language class L of an appropriate size, and learnability
is intuitively a sign of better size than unlearnability, insofar as it means the class is man-
ageable. Results showing that a class is learnable do not show that the theory is correct,
but at least they give us reason to continue pursuing it.

Even taking into account the inadequacies of the learning model, one can get results from
the application of learning theory that are valuable in other ways. We should be cautious
about claiming that any particular learning algorithm is a realistic model of how human
acquisition takes place; still, we can at least draw some ideas from learnability theory to
formulate hypotheses about actual learning, which can then be used to further our experi-
mental understanding of language acquisition. And, as already noted, learning algorithms
do have their place in artificial intelligence, where one generally works in a paradigm that
is much better-understood and more modelable than the human brain. Learnability theory
also provides a formal tool whose importance was mentioned above: a way of measuring
the size of a class of languages, separately from the Chomsky hierarchy. Even if it is an
extremely coarse measurement, any criterion helps, when it comes to comparing classes of
languages generated by various theories.

So, with the caveats we have just given, are all of these sixty pages a waste of time? No.
The tools of mathematical linguistics have their proper place in helping to direct the formula-

62



tion of reasonable models of universal grammar. The limitations listed just now indicate the
major conceptual and methodological challenges in this field in the future. Attacking these
challenges, as well as the more specific short-term problems we have described in Sections 4
and 6 about classifying categorial grammars in order to obtain more general formal results,
will provide potentially very fruitful (if rather open-ended) lines for further study.

Discussing the topic of generative power, Chomsky writes in [16], “It is important to
realize that the questions presently being studied are primarily determined by feasibility of
mathematical study, and it is important not to confuse this with the question of empirical
significance.” This is true, but it is tautological; nobody studies questions whose study is
infeasible. The fact that new results are driven by attainability is an inevitable property of
research in any area. Although we seem to be progressing in only the minutest steps toward
the goal of formulating a complete formal theory of the language faculty, and a huge amount
of uncharted territory remains ahead, we can still hope that the tools we have exhibited and
the applications to which we have put them will contribute toward eventual understanding.

8 Acknowledgments

The author would like to thank his advisors, Cedric Boeckx and Cliff Taubes of Harvard
University, for all of their help in discussing preparations for this work and reading drafts.
Pauline Jacobson’s class on categorial grammar at Harvard in the fall of 2004 also offered
extremely helpful exposure to the theory of categorial grammar and its underlying ideas.
Michael Gensheimer and Peter Green looked at earlier drafts of this thesis and offered useful
comments. Barry Mazur, Martin Nowak, Ed Stabler, and Mark Steedman have also pro-
vided helpful conversations, while Jennifer Finley and Javier Martin-Gonzalez have provided
administrative help. And the crocodile did its part by eating that stale, tasteless old cake.

Any errors are of course the sole responsibility of the author. Oops, my bad.

A Proofs

Here we will include the proofs of some of the auxiliary results that were omitted from the
main body of the text. First, we prove the statement that every ε-free context-free language
is generated by a classical CG.

Proof of Lemma 8: ([9]) Suppose (V, S, P ) is a grammar for the context-free language
L, ε /∈ L. First suppose the grammar is in Chomsky normal form ([33, ch. 4]), that is, each
rule is of the form

X → Y Z (X,Y, Z ∈ V ) or X → a (X ∈ V, a ∈ Σ).

Enumerate the rules of the former type as

X1 → Y1Z1, X2 → Y2Z2, . . . , Xm → YmZm.

(These symbols are of course not necessarily distinct.) Let Q be the set of all triples (i, j, k),

1 ≤ i, j, k ≤ m, such that Xi
∗⇒ wXj for some w ∈ V ∗ and Zj = Xk. We will construct a

63



classical CG whose set of primitive categories C consists of the symbols in V , the numbers
1, . . . , m, and the triples in Q.

The category assignment function f is built as follows. We first construct a function f̂
assigning nonterminals in V to categories; then f assigns a to category U if and only if there
is some X ∈ V for which X → a in P and f̂ assigns X to category U . The construction of
f̂ is according to the following rules:

1. f̂ assigns each X ∈ V to itself;

2. f̂ assigns each Yi to category i;

3. if (i, i, k) ∈ Q then Yk gets category (i, i, k)/Li;

4. if (i, j, k), (i, k, l) ∈ Q, then Yl gets category (i, k, l)/L(i, j, k);

5. if Xi is assigned a category U by rules 1-4, then Zi gets category U/Li;

6. if (i, j, k) ∈ Q and Xi is assigned a category U by rules 1-4, then Zk gets category
U/L(i, j, k).

The categories assigned by rules 1-4 will be called left categories, and the remaining ones
we call right categories; note that these sets of categories are disjoint.

Now consider any parse tree generated by the context-free grammar. Each nonterminal
that appears in the tree, except for the root, emerges as the result of a rule of the form
X → Y Z. Each appearance of a symbol that is obtained as the Z from such a rule (i.e. each
symbol that is the right daughter of its mother) will be called right, and the other symbols
(a symbol that is the left daughter of its mother, or the root) are called left.

Now suppose T is a parse tree for a derivation of U
∗⇒ U1 · · ·Un in our context-free

grammar, where U and all the Ui are nonterminals. We claim that for each Ui, there is
a category Ai assigned to it by f̂ such that U

∗⇒ A1 · · ·An under the classical CG rules;
moreover, Aj is a left category if and only if Uj is left in the tree. The proof is by induction
on n; the base case n = 1 is obvious. Otherwise, choose an internal (non-leaf) node occurring
left in the tree, such that the substring of U1 · · ·Un that it dominates is as short as possible.
Let this node be labeled W , and suppose it dominates the substring Up · · ·Uq. By minimality,

no internal node below W can be left, so the subderivation W
∗⇒ Up · · ·Uq must have the

form

W ⇒ UpWp ⇒ UpUp+1Wp+1 ⇒ · · · ⇒ UpUp+1 · · ·Uq−2Wq−2 ⇒ UpUp+1 · · ·Uq−1Uq.

Now apply the induction hypothesis to the tree T with the subtree below W excised;
this is a parse tree for U

∗⇒ U1 · · ·Up−1WUq+1 · · ·Un. Thus we obtain categories Al for Ul

when l < p or l > q, and also a left category B for W . But the subderivation starting from
W consists of applying rules of the form Wl−1 → UlWl (where Wp−1 = W and Wq−1 = Uq);
hence for each such l = p, . . . , q − 1, we have Wl−1 = Xil , Ul = Yil ,Wl = Zil for some integer
il. Then

Xip = Wp−1
∗⇒ Up−1 · · ·UlWl = Up−1 · · ·Ul−1Xil

64



and Zil = Xil+1
implies that the triples

(ip, ip, ip+1), (ip, ip+1, ip+2), (ip, ip+2, ip+3), . . . , (ip, iq−2, iq−1)

are all in Q. Therefore, f̂ assigns

• the left category Ap = ip to Up,

• the left category Ap+1 = (ip, ip, ip+1)/Lip to Up+1,

• the left category Al = (ip, il−1, il)/L(ip, il−2, il−1) to Ul = Yil for p + 1 < l < q, and

• the right category B/L(ip, iq−2, iq−1) to Uq.

This category assignment meets our needs, and our claim is proven.
Now we also need to prove the converse: that if U1, . . . , Un ∈ V have categories A1, . . . , An,

and A ∈ V such that A
∗⇒ A1 · · ·An under the CG rules, then A

∗⇒ U1 · · ·Un under the
original context-free rules. We first make a simple observation: if A,B, B′ are categories
of our CG such that A ⇒ B B′, then B is a primitive category and B′ = B′′/LB for some
B′′; in particular B′ is non-primitive. (This is immediate from the structure of the pos-
sible categories we have assigned.) From this it readily follows by induction that, for any

A1, . . . , An, there is at most one category A for which A
∗⇒ A1 · · ·An, and only one parse

tree corresponding to such a derivation. Indeed, to see this, let j be maximal such that Aj

is primitive; then Aj must be a sister of Aj+1 in the parse tree, and writing B ⇒ AjAj+1,

we can apply an induction to A
∗⇒ A1 · · ·Aj−1BAj+2 · · ·An.

Now we prove our claim, again by induction on n. The base case n = 1 is trivial since
A1 = A. Otherwise, A1 must be primitive by the observation in the previous paragraph.
Also, since we only use the left slash /L, we can see that τ(An) = A; examining the categories
our f̂ assigns, we see that An must be of the form A/LB or (A/LB)/LB′ for some B, B′, hence
is a right category. Now we know there exist some j < k such that Aj is primitive and Ak is
a right category, and we choose such a pair (j, k) with k−j minimal. Then, for j < l < k, Al

is left and non-primitive, i.e. is of the form B/LB′ where B, B′ are both primitive. It follows
that in our parse tree, Aj, Aj+1 must be sisters; their parent is a primitive category, so must
be a sister of Aj+2; their parent is again primitive, and so forth. Thus, we see that there is
a left-branching subtree that dominates the string AjAj+1 · · ·Ak.

But from the type assignment rules, we can see that this forces

Aj = pj Aj+1 = (pj, pj, pj+1)/Lpj Aj+2 = (pj, pj+1, pj+2)/L(pj, pj, pj+1) · · ·

· · · Ak = B/L(pj, pk−2, pk−1)

for some integers pj and some B that is a left category of Xpj
. (Or, if k = j + 1, we

have Aj = pj, Aj+1 = B/Lpj and the argument will be similar.) We need to show that

Xpj

∗⇒ Uj · · ·Uk under the context-free rules; the induction hypothesis applied to A
∗⇒

A1 · · ·Aj−1BAk+1 · · ·An will also give us that A
∗⇒ U1 · · ·Uj−1Xpj

Uk+1 · · ·Un in the context-
free grammar, and combining will then give us the induction step, completing the proof.

65



But from the values of Aj, . . . , Ak, it follows that Uj = Ypj
; Ul = Ypl

and Xpl
= Zpl−1

for
j < l < k; and Uk = Zpk−1

. Hence, we have the context-free derivation

Xpj
⇒ Ypj

Zpj
= UjXpj+1

⇒ UjYpj+1
Zpj+1

= UjUj+1Xpj+2
⇒ · · · ⇒ Uj · · ·Uk−1Zpk−1

= Uj · · ·Uk,

as required.
What we have shown is that, for terminals A,U1, . . . , Un ∈ V , we have A

∗⇒ U1 · · ·Un

under the context-free rules if and only if there are categories Ai assigned to the Ui by f̂
such that A

∗⇒ A1 · · ·An under the CG rules. But taking A = S, and considering strings of
nonterminals that correspond to terminals (i.e. for which we have rules of the form Ui → ai),
we then see that the CG generates precisely our context-free language, as needed.

Now we have shown that L is representable by a classical CG if L can be generated by a
context-free grammar in Chomsky normal form. So we will be done if we can show that any
context-free language not containing ε is generated by a context-free grammar in Chomsky
normal form. This is standard ([33, ch. 4]); we normalize the grammar in a series of steps,
each of which does not change the language it generates.

First, we may assume that every rule is of the form X → w where w is either a single
terminal or a string of nonterminals. Indeed, for each terminal a, we can introduce a new
nonterminal Ya, and then simply replace every occurrence of a on the right side of a rule by
Ya, and also add the rule Ya → a.

Next, we may assume the right side of each rule contains at most two nonterminals.
To accomplish this, we replace each rule of the form X → Y1Y2 · · ·Yn (where the Yi are
nonterminals) by rules X → Y1Z1, Z1 → Y2Z2, . . . Zn−2 → Yn−1Zn−1, Zn−1 → Yn, where the
Zi are new nonterminal symbols.

Next, we will get rid of all the rules of the form X → ε. To do this, whenever we have
a rule of the form X → Y Z such that Y

∗⇒ ε, we include a new rule X → Z; if Z
∗⇒ ε,

we include a new rule X → Y . This certainly does not enable us to derive any strings that
were not already in the language. Now we can delete all the rules whose right-hand side
is ε. To see that any string that was previously derivable is still derivable, just consider a
parse tree for some string w under the old grammar; removing every node that dominates
an empty string gives a parse tree for w under the new grammar (and this tree is nonempty,

since ε /∈ L means that S 6 ∗⇒ ε).
Now all our rules are of the forms X → a, X → Y Z, or X → Y for nonterminals X, Y, Z,

terminal a, and it remains to eliminate all rules of the last form. Well, if X
∗⇒ a, then we

should include a rule X → a, and if X
∗⇒ Y Z, then we include a rule X → Y Z. Now we

delete all rules of the form X → Y . As in the previous step, this operation does not result
in the loss of any possible strings: consider a parse tree for any string w in the old grammar;
by contracting each maximal chain of nonbranching nodes to a single branching node, we
get a parse tree for w in the new grammar. This gives our grammar in Chomsky normal
form, and we are done. ¤

The remaining results we will prove in this appendix are from Section 6. First, we prove
the basic theorem about unification of categories: any collection of sets that has a unifier
has a most general unifier.

Proof of Theorem 15: Let C be a set of primitive categories and V the category
space over C. We want to show that if a finite collection S of finite subsets of V has a

66



unifier, then it has a most general unifier. Recall the definition of the length of a category,
given inductively by l(X) = 1 for X ∈ C and l(X|Y ) = l(X) + l(Y ). We will here use the
pseudolength given by l̂(X) = l(X) − 1. We will prove the statement by induction first on
the size of C (actually, the number of distinct elements of C that appear as a subtype of
some element of some D ∈ S) and then on the quantity

λ =
∑
D∈S

(∑
X∈D

l̂(X)

)
.

That is, in the induction step, we will reduce the statement to be proven either to a statement
with a smaller C, or to one with the same C and a smaller value of λ.

First we need a base case: this will be when λ = 0. This happens if and only if every type
in every D ∈ S is primitive. In this case, define a relation ∼ on the primitive types by X ∼ Y
if and only if there is some D ∈ S with X ∈ D,Y ∈ D. ∼ induces an equivalence relation
∗∼ on C, by transitive closure. Let C ′ be the set of equivalence classes, and φ : C → C ′ the
map sending each X to its equivalence class. It is clear that the induced map φ of category
spaces is a unifier of S, and moreover any such unifier must factor through φ, so φ is in fact
the most general unifier of S.

Now, for the induction step, suppose λ 6= 0; then some D ∈ S contains a category of the
form X|Y . We have three cases:

• If D contains another category of the form X ′|′Y ′ for |′ 6= |, then S has no unifier (since
there is no homomorphism that can send X|Y,X ′|′Y ′ to the same value), so we can go
home.

• If every element of D is of the form X ′|Y ′ for some X ′, Y ′, then define the two sets
D1 = {X ′ | X ′|Y ′ ∈ S}, D2 = {Y ′ | X ′|Y ′ ∈ S}. Notice that a homomorphism φ
unifies D if and only if it unifies both D1 and D2, so if we let S ′ be the class obtained
from S by replacing D with D1 and D2, then a most general unifier of S is the same
thing as a most general unifier of S ′. Now l̂(X ′) + l̂(Y ′) = l̂(X ′|Y ′)− 1, and it follows
that S ′ has a lower value for the parameter λ than S does (and uses the same C); hence
we have performed the necessary reduction and can use the induction hypothesis.

• The only remaining case is if D contains a primitive category Z. If Z is a subtype of
X or Y , then again D has no unifier and we are done, so suppose otherwise. In this
case, let C ′ = C \{Z}, with category space V ′, and define ψ : V → V ′ by ψ(Z) = X|Y
and ψ(W ) = W for all other W ∈ C. Let S ′ = ψ(S) (that is, each D′ ∈ S is replaced
by {ψ(W ) | W ∈ D′}). We claim that φ is a unifier of S if and only if φ = θ ◦ ψ for
some unifier θ of S ′. One direction is clear — that if θ unifies S ′, then θ ◦ ψ unifies S.
Indeed, we only need to check that θ(ψ(X|Y )) = θ(ψ(Z)), but this is achieved since
ψ(X|Y ) = X|Y = ψ(Z).

So we need to prove the converse: if φ is a unifier of S, then φ = θ ◦ψ for some unifier
θ of S ′. Well, put θ(W ) = φ(W ) for each W ∈ C ′. Then φ and θ ◦ ψ agree for each
W , and they also agree on Z since θ(ψ(Z)) = θ(X|Y ) = φ(X|Y ) (because X|Y does
not have Z as a subtype). Hence φ = θ ◦ ψ. Now to check that θ is a unifier of S ′

67



just means (by construction of S ′) that θ(ψ(W )) = θ(ψ(U)) whenever W,U are in the
same set of S. But this is clear, because θ ◦ ψ = φ, which is a unifier for S.

Since S ′ uses the primitive category set C ′, a proper subset of C, we can again now
apply the induction hypothesis, and the proof is done.

¤
Next in line: the existence of general forms.
Proof of Lemma 18: First, construct several set-theoretically disjoint copies of the

variable set Ω, one copy Ωv for each internal node v of the rule structure T . Let C be the
disjoint union of the Ωv together with a copy of Σ. Let φv : Ω → C be the appropriate
inclusion, which extends to a homomorphism of category spaces in the obvious way.

Each node in the tree will be relabeled with one or two categories over C:

• Whenever a node v is originally labeled (in T ) with a rule schema R : A → A1 · · ·An,
we relabel it with φv(A) and its daughters with φv(A1), . . . , φv(An), respectively.

• A node that immediately dominates the terminal a will be relabeled a.

For each node v, let Sv be the set of its new labels, and let S be the family of all Sv

as v varies. Also define a grammar G0 whose set of primitive categories C0 consists of all
elements of C occurring as a subpart of any new node label; whose start symbol is φr(A),
where r is the root node and A is the left side of the rule schema applying there (which
necessarily is a single variable); and whose category assignment function simply assigns each
a ∈ Σ occurring on a leaf of T to the category a itself, and assigns no categories to any other
terminal.

Now it is straightforward to check the following: For any rigid grammar G for which T is
a valid rule structure, G is obtained from some φ(G0), where φ is a unifier of S, by possibly
adding some more terminal category assignments. And conversely, if φ is a unifier of S,
then T is a valid rule structure for the grammar φ(G0); the homomorphism φ simply tells
us exactly how to instantiate the rules at each node. Hence, if we let φ be the most general
unifier of S, then φ(G0) is the desired general form for T . ¤

Finally, we get to something interesting: proving the finite elasticity of classical CGs.
The proof is somewhat involved. Here it is.

Proof of Lemma 21: In order to prove this statement, we need to introduce a couple
new ideas concerning category spaces. If V is a category space over the set of primitive
categories C, and K ⊆ V , let the span s(K) denote the set of all elements of V obtained
from elements of K by repeatedly applying operations in O, and let the rank r(K) be the
size of the smallest D ⊆ V such that K ⊆ s(D). Thus, for example, every subset K ⊆ V
has rank at most |C| (just take D = C), and also rank at most |K| (just take D = K). V
itself has rank exactly |C| (since we must have C ⊆ D; there is no way to get the primitive
categories by applying operations of O to other categories).

We have the following basic property:

Sublemma 25 If V, V ′ are category spaces and φ : V → V ′ a homomorphism, then we have
r(φ(V )) ≤ r(V ). If φ is not one-one, then r(φ(V )) < r(V ).

68



Proof: Let C be the set of primitive categories for V . The first statement is obvious since
{φ(Q) | Q ∈ C} spans φ(V ). We prove the second statement by induction on l(X) + l(Y ),
where X,Y are distinct categories such that φ(X) = φ(Y ). For the base case, both X and Y
are primitive. Then φ(V ) is generated by φ(X) together with the images of the other |C|−2
primitive categories, so it has rank at most |C| − 1.

Otherwise, we may assume X = U |W (for some | ∈ O). If Y is not primitive, then write
Y = U ′|′W ′. We get φ(U)|φ(W ) = φ(U ′)|′φ(W ′), so φ(U) = φ(U ′) and φ(W ) = φ(W ′).
Since X 6= Y , either U 6= U ′ or W 6= W ′; either way, we can apply the induction hypothesis.

Finally, if X = U |W but Y is primitive, then Y cannot be a subtype of X (otherwise
φ(Y ) would be a proper subtype of φ(X), and the two could not be equal). So if Ĉ = C \{Y }
and V̂ is the category space over Ĉ, then all primitive categories are mapped by φ into φ(V̂ )
(this is trivial for primitive categories other than Y , and for Y it holds because φ(Y ) = φ(X)
and X ∈ V̂ ). Thus

r(φ(V )) = r(φ(V̂ )) ≤ r(V̂ ) = |Ĉ| < |C| = r(V ).

¤
Now, for any grammar G, let U(G) be the set of all categories that appear in any S-parse

tree of G. Also say that G uses a terminal a if a appears in some string in L(G). We use
the following sublemma:

Sublemma 26 Suppose G is a categorial grammar over Σ that uses every terminal, and φ
a homomorphism such that S(φ(G)) contains a structure not in S(G) (where we are using
the classical rule schemata (8)). Then r(U(φ(G))) < r(U(G)).

Proof: We may assume that C is the set of primitive categories of V and r(U(G)) = |C|,
since otherwise we can let D ⊆ V be a set of minimal size with U(G) ⊆ s(D), and rewrite the
elements of U(G), treating the elements of D as primitive categories. We may also assume
that φ is one-one, since otherwise Sublemma 25 applies and we are done.

Let K = U(φ(G)). Notice that φ(U(G)) is a proper subset of K: otherwise, for each
S-parse tree of φ(G), we could apply φ−1 to each node label and obtain an S-parse tree of
G, contradicting the assumption S(G) ⊂ S(φ(G)) (this step depends crucially on the fact
that φ is one-one, so that φ−1(X|Y ) = φ−1(X)|φ−1(Y )). Also let D0 = {φ(Q) | Q ∈ C}, so
|D0| ≤ r(U(G)). We will construct a finite sequence of sets

D0, D1, . . . , Dm ⊆ V ′

such that we have strict inclusions

(s(D0) ∩K) ⊂ (s(D1) ∩K) ⊂ · · · ⊂ (s(Dm) ∩K) = K.

These sets will satisfy |Di+1| ≤ |Di|, and |Di+1| < |Di| for at least one i. Then we will be
done, since we will have

r(K) ≤ |Dm| < |D0| ≤ |C| = r(U(G)).

The construction is inductive, so suppose Di is given, with K 6⊆ s(Di). We know, by
the argument in the proof of Theorem 4, that K is a finite set. So let X be an element of

69



K \ s(Di) that occurs as low as possible in some S-parse tree T of φ(G); if there are multiple
such choices for X, choose one that maximizes the length l(X). (We will be somewhat sloppy
here about the distinction between a node and its label, but this should cause no confusion.)
We know that X cannot be a category assigned to a terminal in φ(G), since otherwise
it would be in s(D0) ∩ K ⊆ s(Di); hence it must be a branching node, with daughters
of the forms X|Y and Y (here of course | ∈ {/L, /R}). By assumption X|Y ∈ s(Di) and
Y ∈ s(Di). X|Y must be an element of Di itself, since otherwise we would have X ∈ s(Di).
So let D′

i = Di ∪ {X} \ {X|Y }. Then X and Y are in s(D′
i), so X|Y ∈ s(D′

i) and hence
s(Di) ⊂ s(D′

i). Their intersections with K maintain this strict subsethood, since X is in
s(D′

i) but not s(Di).
Now, if s(D′

i) does not contain all the node labels of T , then put Di+1 = D′
i. If on the

other hand s(D′
i) does contain all the node labels of T , we will go a bit further. Since X

cannot be the root node label (otherwise X = φ(S) ∈ D0 ∩ K ⊆ s(Di)), it must have a
mother and a sister. Let the mother be labeled U ; it then has two daughters, of the forms
W , U |′W , one of which is equal to X. We also, by assumption, have U,W ∈ s(D′

i). If
X = U |′W , then X ∈ D′

i by construction. If X = W , then our choice of X (as maximizing
l(X) for given depth) implies U |′W ∈ s(Di), hence in fact U |′W ∈ Di because otherwise
we would have X ∈ s(Di). Moreover, U |′W 6= X|Y , because otherwise we would have
X = W = Y , contradicting Y ∈ s(Di). Hence, U |′W is still in D′

i. So regardless of which of
the two daughters of U is equal to X, we have U |′W ∈ D′

i. But since U,W ∈ s(D′
i), we can

let Di+1 = D′
i \ {U |′W}, and we still have s(Di+1) = s(D′

i); meanwhile |Di+1| < |D′
i| = |Di|,

as needed.
Figure 4 shows the case X = W of this argument. The labels that are necessarily in

s(Di) are circled; those that are necessarily in Di itself are circled thickly.

U

U| W

X|Y

S

X=W

Y

Figure 4: The proof of Sublemma 26

Thus we have the inductive construction of Di+1 from Di. We have shown that s(Di) ∩
K ⊆ s(Di+1) ∩K, and in fact the inclusion is strict since X ∈ s(Di+1) \ s(Di). Because K
is finite, this process can be repeated only finitely many times, and eventually we get some
Dm with K ⊆ s(Dm). We have shown that at each stage |Di+1| ≤ |Di|. Moreover, if we

70



consider the latest i such that U(G) 6⊆ s(Di), then in the course of constructing Di+1 from
Di, we exhaust the labels on some parse tree; hence for this i, |Di+1| < |Di|. This finishes
the proof.

¤
Now back to our main goal. Suppose that G1 v G2 v · · · are rigid categorial grammars

with the classical rule schema, and

S(G1) ⊂ S(G2) ⊂ · · ·
are all strict inclusions. If G v G′ then every terminal used by G is used by G′; since there
are only finitely many terminals, it follows that Gn must use the same set of terminals for all
sufficiently large n. So, ignoring finitely many initial terms, we may assume that all Gn use
the same set of terminals. It follows from the definition of v that there exist homomorphisms
φ1, φ2, . . . of the category space such that Gi+1 = φi(Gi) for each i. But since the inclusions
of structure languages are strict, Sublemma 26 tells us that r(U(Gi+1)) < r(U(Gi)). Hence
the ranks of the U(Gi) form a strictly decreasing sequence of positive integers, which is a
contradiction. ¤

It is worth taking at least a few moments to discuss other rule schemata that can be
added to Φ while preserving finite elasticity. The crucial step is Sublemma 26, since it is the
only part of the proof that makes any reference to the rule schemata. The requirements we
must impose on the rule schemata in order for the preceding proof to go through are fairly
strict. They must be depth-preserving, since we have made use of the finiteness of the set K.
They must also have the property that, if φ is a one-one homomorphism of category spaces,
then applying φ−1 to each term of a ground instance (if possible) gives a ground instance.
Thus, for example, the composition rule X/RZ → X/RY Y/RZ fails to meet this criterion,
because a category space with categories I, J, K and the one-one homomorphism given by

φ(I) = I/RJ, φ(J) = J/RK, φ(K) = I/RK

has the property that φ(K) → φ(I) φ(J) is a ground instance, but K → I J is not.
But the further properties needed in order to make the proof succeed are subtler. We

can at least add rules of the form

X → some ordering of X1, . . . , Xn, B (36)

where X, X1, . . . , Xn are variables, and B is a category in s(X,X1, . . . , Xn) having each
variable X, X1, . . . , Xn as a subtype. The proof goes through essentially as before, with two
changes:

• in forming D′
i from Di, instead of removing X|Y ∈ Di, we only know that some subtype

of this instance of B is an element of Di having X as a subtype, and this is the one we
remove;

• in the case where all the labels of T are in s(D′
i), we do not necessarily know exactly

how to remove one element to form our Di+1, but we can still show that some element
(our node X or one of its sisters) can be obtained from D′

i using operations of O in two
different ways, and then we can apply Sublemma 25 to show that there exists some
Di+1 with |Di+1| < |D′

i|, s(D′
i) ⊆ s(Di+1).

71



Kanazawa ([43, ch. 9]) notes that adding rules such as

X → X X (37)

also does not get in the way of finite elasticity. The same proof goes through, except that
instead of choosing X as low as possible, we must choose an X node that does not arise on
the right-hand side of an instance of (37) and is as low as possible given this constraint.

Anyhow, finding more rules that preserve the finite elasticity property is an interesting
mathematical recreation, but it is not our prime concern here.

References

[1] A. Ades and M. Steedman, “On the Order of Words,” Linguistics and Philosophy 4,
1982: 517-558.

[2] A. V. Aho, “Indexed grammars: An extension to context-free grammars,” Journal of
the ACM 15, 1968: 647-671.

[3] K. Ajdukiewicz, “Die syntaktische Konnexität,” Studia Philosophica 1, 1935: 1-27.

[4] D. Angluin, “Inductive Inference of Formal Languages from Positive Data,” Information
and Control 45, 1980: 117-135.

[5] D. Angluin, “Finding Patterns Common to a Set of Strings,” Journal of Computer and
System Sciences 21, 1980: 46-62.

[6] C. L. Baker and J. McCarthy, eds., The Logical Problem of Language Acquisition (Cam-
bridge: MIT Press), 1981.

[7] J. Baldridge, Lexically Specified Derivational Control in Combinatory Categorial Gram-
mar, Ph. D. thesis (University of Edinburgh, School of Informatics), 2002.

[8] Y. Bar-Hillel, “A Quasi-Arithmetical Notation for Syntactic Description,” Language 29,
1953: 47-58, reprinted in Y. Bar-Hillel, Language and Information (Reading: Addison-
Wesley), 1964.

[9] Y. Bar-Hillel, H. Gaifman, and E. Shamir, “On categorial and phrase structure gram-
mars,” The Bulletin of the Research Council of Israel 9F, 1960: 1-16.

[10] R. Berwick and S. Epstein, “On the Convergence of ‘Minimalist’ Syntax and Categorial
Grammar,” in A. Nijholt, G. Scollo, and R. Steetkamp, eds., Algebraic Methods in Lan-
guage Processing 1995: Proceedings of the Twente Workshop on Language Technology
10 (Enschede: Universiteit Twente), 1995.

[11] J. Bresnan, R. Kaplan, S. Peters, and A. Zaenen, “Cross-Serial Dependencies in Dutch,”
Linguistic Inquiry 13 (4), 1982: 613-635, reprinted in W. Savitch, E. Bach, W. Marsh,
and G. Safran-Naveh, eds., The Formal Complexity of Natural Language (Dordrecht:
Reidel), 1987.

72



[12] W. Buszkowski, “Discovery procedures for categorial grammars,” in E. Klein and J. van
Benthem, eds., Categories, Polymorphism, and Unification (Amsterdam: University of
Amsterdam), 1987.

[13] W. Buszkowski, “Generative Power of Categorial Grammars,” in R. Oehrle, E. Bach,
and D. Wheeler, eds., Categorial Grammars and Natural Language Structures (Dor-
drecht: Reidel), 1988: 69-94.

[14] W. Buszkowski and G. Penn, “Categorial Grammars Determined from Linguistic Data
by Unification,” Studia Logica 49, 1990: 431-454.

[15] S. Carey, The Origin of Concepts (Cambridge: MIT Press), forthcoming.

[16] N. Chomsky, Aspects of the Theory of Syntax (Cambridge: MIT Press), 1965.

[17] N. Chomsky, “Introduction to the Formal Analysis of Natural Languages,” in R. Luce,
R. Bush, E. Galanter, eds., Handbook of Mathematical Psychology, Volume II (New
York: Wiley and Sons), 1967: 269-322.

[18] N. Chomsky, Syntactic Structures (The Hague: Mouton), 1969.

[19] N. Chomsky, Logical Structure of Linguistic Theory (New York: Plenum Press), 1975.

[20] N. Chomsky, Lectures on Government and Binding (Dordrecht: Foris), 1981.

[21] N. Chomsky, Knowledge of language: its nature, origin, and use (Westport: Praeger),
1986.

[22] N. Chomsky, The Minimalist Program (Cambridge: MIT Press), 1995.

[23] C. Culy, “The Complexity of the Vocabulary of Bambara,” Linguistics and Philosophy
8, 1985: 345-351, reprinted in W. Savitch, E. Bach, W. Marsh, and G. Safran-Naveh,
eds., The Formal Complexity of Natural Language (Dordrecht: Reidel), 1987.

[24] H. B. Curry and R. Feys, Combinatory Logic, Volume I (Amsterdam: North Holland),
1958.

[25] D. Dowty, “Grammatical Relations and Montague Grammar,” in P. Jacobson and G.
Pullum, eds., The Nature of Syntactic Representation (Dordrecht: Reidel Publishing),
1982.

[26] J. Feldman, “Some Decidability Results on Grammatical Inference and Complexity,”
Information and Control 20, 1972: 244-262.

[27] M. Fitting, First-Order Logic and Automated Theorem Proving (Berlin: Springer), 1996.

[28] J. Fodor, Modularity of mind: an essay on faculty psychology (Cambridge: MIT Press),
1983.

73



[29] G. Gazdar, “Applicability of Indexed Grammars to Natural Languages,” in U. Reyle
and C. Rohrer, eds., Natural Language Parsing and Linguistic Theories (Dordrecht:
Reidel), 1988: 69-94.

[30] G. Gazdar, G. Pullum, R. Carpenter, E. Klein, T. Hukari, and T. Levine, “Category
structures,” Computational Linguistics 14 (1), 1988: 1-19.

[31] E. M. Gold, “Language identification in the limit,” Information and Control 10, 1967:
447-474.

[32] G. Grätzer, Lattice Theory: First concepts and distributive lattices (San Francisco: W.
H. Freeman), 1971.

[33] M. Harrison, Introduction to Formal Language Theory (Reading: Addison-Wesley),
1978.

[34] M. Hauser, Wild Minds: What Animals Really Think (New York: Holt and Company),
2000.

[35] B. Hoffman, “The Formal Consequences of Using Variables in CCG Categories,” in
Proceedings of the 31st Meeting of the Association for Computational Linguistics, 1993:
298-300.

[36] N. Hornstein and D. Lightfoot, eds., Explanation in Linguistics: The logical problem of
language acquisition (London: Longman), 1981.

[37] M. A. C. Huybregts, “Overlapping Dependencies in Dutch,” Utrecht Working Papers
in Linguistics I, 1976: 24-65.

[38] P. Jacobson, Introduction to Syntax and Semantics: A Categorial Grammar Approach,
in preparation.

[39] A. K. Joshi, L. S. Levy, and M. Takahashi, “Tree adjunct grammars,” Journal of Com-
puter and System Sciences 19 (1), 1975: 136-163.

[40] A. K. Joshi, “Tree adjoining grammars: How much context-sensitivity is required to pro-
vide reasonable structural descriptions?” in D. Dowty, L. Karttunen, and A. Zwicky,
eds., Natural Language Parsing: Psychological, computational, and theoretical perspec-
tives (Cambridge: Cambridge Press), 1985: 206-250.

[41] A. K. Joshi, K. Vijay-Shanker, and D. Weir, “The convergence of mildly context-
sensitive grammar formalisms,” in P. Sells, S. Shieber, and T. Wasow, eds., Foundational
Issues in Natural Language Processing (Cambridge: MIT Press), 1991.

[42] M. B. Kac, “Surface Transitivity, Respectively Coordination, and Context-Freeness,”
Natural Language and Linguistic Theory 5, 1987: 441-452.

[43] M. Kanazawa, Learnable Classes of Categorial Grammars (Stanford: CSLI Publica-
tions), 1998.

74



[44] J. Michaelis, “Derivational minimalism is mildly context-sensitive,” in M. Moortgat,
ed., Logical Aspects of Computational Linguistics, Lecture Notes in Computer Science
vol. 2014 (Berlin: Springer), 2001.

[45] G. Morrill, Type Logical Grammar: Categorial Logic of Signs (Dordrecht: Kluwer Aca-
demic Publishers), 1994.

[46] T. Motoki, T. Shinohara, and K. Wright, “The correct definition of finite elasticity:
Corrigendum to identification of unions,” in The Fourth Annual Workshop on Compu-
tational Learning Theory (San Mateo: Morgan Kaufmann), 1991: 375.

[47] D. Muller and P. Schupp, “The theory of ends, pushdown automata, and second-order
logic,” Theoretical Computer Science 37, 1985: 51-75.

[48] M. A. Palis and S. M. Shende, “Pumping Lemmas for the Control Language Hierarchy,”
Mathematical Systems Theory 28, 1995: 199-213.

[49] B. Partee, A. ter Meulen, and R. Wall, Mathematical Methods in Linguistics (Dordrecht:
Kluwer Academic Publishers), 1993.

[50] T. Peters and R. W. Ritchie, “On restricting the base component of transformational
grammars,” Information and Control 18, 1971: 483-501.

[51] T. Peters and R. W. Ritchie, “On the generative power of transformational grammars,”
Information Sciences 6, 1973: 49-83.

[52] S. Pinker and P. Bloom, “Natural language and natural selection,” Behavioral and Brain
Sciences 13, 1990: 707-727.

[53] S. Pinker, The Language Instinct (New York: HarperCollins), 1994.

[54] P. M. Postal, On Raising: One Rule of English Grammar and its Theoretical Implica-
tions (Cambridge: MIT Press), 1974.

[55] G. Pullum and G. Gazdar, “Natural Languages and Context-Free Languages,” Linguis-
tics and Philosophy 4 (1982): 471-504, reprinted in W. Savitch, E. Bach, W. Marsh,
and G. Safran-Naveh, eds., The Formal Complexity of Natural Language (Dordrecht:
Reidel), 1987.

[56] D. Radzinski, “Chinese Number-Names, Tree Adjoining Languages, and Mild Context
Sensitivity,” Computational Linguistics 17 (3), 1991: 277-299.

[57] K. Roach, “Formal properties of head grammars,” in A. Manaster-Ramer, Mathematics
of Language (Amsterdam: Benjamins), 1987: 293-348.

[58] W. C. Rounds, A. Manaster-Ramer, and J. Friedman, “Finding Natural Languages a
Home in Formal Language Theory,” in A. Manaster-Ramer, Mathematics of Language
(Amsterdam: Benjamins), 1987: 349-359.

[59] A. Salomaa, Formal Languages (New York: Academic Press), 1973.

75



[60] W. Savitch, “Theories of Language Learnability,” in A. Manaster-Ramer, ed., Mathe-
matics of Language (Amsterdam: Benjamins), 1987.

[61] S. Shieber, An Introduction to Unification-Based Approaches to Grammar (Stanford:
CSLI), 1986.

[62] S. Shieber, “Evidence Against the Context-Freeness of Natural Language,” Linguistics
and Philosophy 8 (1985): 333-343, reprinted in W. Savitch, E. Bach, W. Marsh, and G.
Safran-Naveh, eds., The Formal Complexity of Natural Language (Dordrecht: Reidel),
1987.

[63] E. Stabler, “Derivational minimalism,” in C. Retoré, ed., Logical Aspects of Compu-
tational Linguistics, Lecture Notes in Computer Science vol. 1328 (Berlin: Springer),
1997.

[64] E. Stabler, “The 3-D lexical matrix,” presentation at Program in Evolutionary Dynam-
ics, Harvard University, March 2004.

[65] M. Steedman, “Dependency and Coordination in the Grammar of Dutch and English,”
Language 61 (3), 1985: 523-568.

[66] M. Steedman, “Combinatory Grammars and Parasitic Gaps,” Natural Language and
Linguistic Theory 5, 1987: 403-439.

[67] M. Steedman, “Combinators and Grammars,” in R. Oehrle, E. Bach, and D. Wheeler,
eds., Categorial Grammars and Natural Language Structures (Dordrecht: Reidel), 1988:
417-442.

[68] M. Steedman, The Syntactic Process (Cambridge: MIT Press), 2000.

[69] M. Steedman and J. Baldridge, “Combinatory Categorial Grammar,” in preparation,
at ftp://ftp.cogsci.ed.ac.uk/pub/steedman/ccg/manifesto.pdf (accessed 8 Jan-
uary 2005).

[70] L. Valiant, “A Theory of the Learnable,” Communications of the ACM 27 (11), 1984:
1134-1142.

[71] K. Vijay-Shanker, A study of tree adjoining grammars, Ph.D. thesis (University of Penn-
sylvania), 1987.

[72] K. Vijay-Shanker and D. Weir, “Characterizing structural descriptions produced by
various grammatical formalisms,” 25th Meeting of the Association for Computational
Linguistics, 1987: 104-111.

[73] K. Vijay-Shanker and D. Weir, “The equivalence of four extensions of context-free gram-
mar,” Mathematical Systems Theory 27, 1994: 511-546.

[74] D. Weir, Characterizing Mildly Context-Sensitive Grammar Formalisms, Ph.D. thesis
(University of Pennsylvania), 1988.

76



[75] D. Weir and A. K. Joshi, “Combinatory categorial grammars: Generative power and
relationship to linear context-free rewriting systems,” in Proceedings of the 26th Meeting
of the Association for Computational Linguistics, 1988: 278-285.

[76] D. Weir, “A geometric hierarchy beyond context-free languages,” Theoretical Computer
Science 104, 1992: 235-261.

[77] M. M. Wood, Categorial Grammars (London: Routledge), 1993.

[78] K. Wright, “Identification of unions of languages drawn from an identifiable class,” in
The 1989 Workshop on Computational Learning Theory (San Mateo: Morgan Kauf-
mann), 1989: 328-333.

[79] T. Yokomori, “Polynomial-time identification of very simple grammars from positive
data,” Theoretical Computer Science 298, 2003: 179-206.

77



Index

AFL, 14
argument-depth-preserving, 34
assignment function, 22

category, 22, 30
category space, 22, 30
Chomsky hierarchy, 13
classical categorial grammar, 22
combinatory categorial grammar (CCG),

23
composition rules, 24
computation, 4
context-free language, 9
context-sensitive language, 12

depth, 33
depth-preserving, 33
derivation, 7

expressive power, 7

function application rules, 24

general form, 51
generalized combinatory categorial gram-

mar (GCCG), 30–31
generative capacity, 7
Gold framework, 41
grammar, 7
grammar system, 7
ground instance, 31

homomorphism, 31

k-valued, 56

language, 7
learnable, 42
learner, 41
length, 48
linear indexed language (LIL), 18

mildly context-sensitive language, 18

nonterminal, 7

parse tree, 10
primitive category, 22, 30
production, 7
pure, 47

regular language, 8
rewrite system, 7
rigid, 47
rule, 7
rule schema, 31
rule structure, 46
rule system, 31

S-parse tree, 11
string, 7
string language, 47
structure language, 47
substitution, 48
subtype, 33

target, 29, 34
terminal, 7
text, 41
type, 22

unification, 49
unifier, 49

variable, 31
vocabulary, 7

78


