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Abstract

The uniformization theorem states that every simply connected Riemann surface is conformally
equivalent to the open unit disk, the complex plane, or the Riemann sphere. We present three
aproaches to the uniformization of Riemann surfaces. We first prove the uniformization theorem
via the construction of a harmonic function by the Dirichlet principle. We then give an alter-
nate proof by triangulating the surface and inductively constructing an analytic map. Finally,
we introduce projective structures on the surface and describe the geometric realization as a
uniformizing map.
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1 Introduction

At its roots, uniformization theory is closely tied to the formation of the concept of the Riemann
surface. Riemann conceived the idea of the Riemann surface to deal with multivalued functions.
He constructed such surfaces by pasting together sheets of the complex plane. Weierstrass, on the
other hand, developed the idea of analytic continuation to deal with complex functions. Consider
an analytic function u of a complex variable z. Such a function can be represented locally near
a point z0 by two analytic functions z(t), u(t) of a local parameter t in the plane. These locally
defined functions represent a function element. By analytically continuing the function element
to all other possible function elements, and then adding further elements at singularities (branch
points), we obtain an analytic form (z, u). Considering the function elements as points, the
analytic form is the Riemann surface of the analytic function. In this formulation, the link
between Riemann surface and analytic function is explicit. Weyl laid out the idea of the abstract
Riemann surface, purely geometric and independent of the analytic function, by considering it
as a manifold. After Weyl, we will take the following modern definition of a Riemann surface:

Definition 1.1. A Riemann surface is a connected Hausdorff space M together with a collection
of charts {Uα, zα} with the following properties:

1. The Uα form an open covering of M .

2. Each zα is a homeomorphic mapping of Uα onto an open subset of the complex plane C.

3. If Uα ∩ Uβ 6= 0, then fαβ = zβ ◦ z−1
α is complex analytic on zα(Uα ∩ Uβ).

We will likewise consider uniformization theory in more modern terms, but the motivation
of uniformization lies with Riemann and Weierstrass. As Weyl states, “in the theory of uni-
formization the ides of Weierstrass and of Riemann grow into a complete unity” (Weyl [10]).
Weierstrass could represent his analytic form locally by a single-valued parameter varying in the
complex plane, while Riemann could parametrize the form by considering z and u as functions
of a point on a surface. From this perspective, the problem of uniformization is to obtain a global
representation z = z(t), u = u(t) of the analytic form in terms of the uniformizing parameter t
whose domain is a subset of the complex plane. The parameter is uniform in that z(t) and u(t)
are single-valued, and t must serve as a local parameter.

Leaving behind the analytic form, we would like to find a parameter t that varies in a domain
R of the complex plane that is both a local and global parameter of an arbitrary Riemann surface
M . This amounts to finding a map from R to M that is analytic. A great aid to us and those
who first developed uniformization is Schwarz’s idea of the covering surface. Every Riemann
surface M has a universal covering surface M̃ that is also a Riemann surface. If f : R → M̃ is a
uniformizing map for M̃ and π : M̃ → M is the covering map, we can easily get a uniformization
of M by composing π ◦ f . Since the universal covering surface is simply connected, we focus
our attention on simply connected Riemann surfaces. To get the strongest uniformization, our
map from R onto M̃ must be one-to-one, in which case R must be simply connected as well.
In geometric terms, we want a conformal (angle-preserving) map between M̃ and a domain R
of the complex plane. Allowing for compact simply connected Riemann surfaces, we allow R to
possibly be the whole Riemann sphere. M̃ and R are then conformally equivalent, which means
they are essentially the same.

Before coming to the full statement of the uniformization theorem, we mention a special case
that applies to the simplest Riemann surfaces, those which are subsets of the complex plane.

Theorem 1.1 (Riemann mapping thoerem). For any simply connected region R in the
complex plane that is not the whole plane and z0 ∈ R, there exists a unique conformal mapping
f of R onto the unit disk such that f(z0) = 0 and f ′(z0) > 0.

The theorem may have been suggested to Riemann by physical considerations of fluid flow
or electric fields in such domains, for he made use of the Dirichlet principle; we will discuss this
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idea further in section 2. The Riemann mapping thoerem groups all simply connected regions
except for the whole plane into one conformal class, that of the unit disk. The theorem will be
an important tool in one of our proofs of the unformization theorem.

Returning to general Riemann surfaces, we now state the uniformization theorem that we
will prove in this thesis:

The Uniformization Theorem. Every simply connected Riemann surface is conformally
equivalent to the unit disk, the complex plane, or the Riemann sphere.

The uniformization theorem was first proved by Koebe and Poincaré independently in 1907.
It is a classification theorem of all Riemann surfaces according to their universal covering spaces
into three groups. Importantly, it reduces many aspects of Riemann surfaces to the study of the
disk, the plane, and the sphere.

It is easy to see that these three spaces are indeed conformally distinct. Compactness distin-
guishes the sphere from the disk or the plane topologically. As for distinguishing the disk from
the plane, we can never have a conformal map from the plane onto the disk, for such a map
would be a bounded entire function and hence constant by Liouville’s thoerem.

As the Riemann surface evolved, so did approaches to uniformization. In an attempt to
convey a sense of the variety of ideas that have been related to uniformization, we will present
three approaches to the problem. The first has already been mentioned in connection with the
Riemann mapping thoerem. That is, we will use physics as motivation to prove the uniformiza-
tion theorem using harmonic functions and Dirichlet integrals. The Dirichlet principle was fully
justified by Hilbert, and the proof given here is based on his 1909 proof of uniformization. The
logic will largely follow Siegel [9]; the proof by Weyl [10] is similar. Following our first proof of the
uniformization theorem, we will immediately apply the theorem to arbitrary Riemann surfaces;
the perspective is mainly from Ahlfors [3]. The second approach will also use classical methods,
but will deal strictly with analytic functions and involve the triangulation of a Riemann surface
to prove the uniformization theorem. The main tools will be the Schwarz reflection principle,
the Riemann mapping theorem, and a statement derived from Koebe distortion theorem. The
proof follows that of Sansone and Gerretsen [8]. The third approach is distinctly more abstract,
making use of more recent tools of cohomology. There we will present projective structures
on Riemann surfaces and their geometric realizations, following Gunning [6] [7]. However, by
this approach we are not able to provide a full proof of the uniformization theorem. We con-
sider briefly some possible resolutions to the problem. This final approach provides an alternate
perspective on uniformization and serves as an introduction to projective structures and more
modern methods of studying of Riemann surfaces.

2 The First Proof

2.1 Preliminaries

Our goal is to construct a global analytic function from a simply connected Riemann surface to
a subdomain of the Riemann sphere. How do we get an analytic function on the surface? We
are aided by thinking of analytic functions as conformal, for physics provides us with natural
conformal maps. If we place a system of charges on a Riemann surface and keep the boundary
(if any) grounded, the electric field lines and equipotential lines on the surfaces must be per-
pendicular at every point. This suggests that if we map the former to horizontal lines in the
plane, and the latter to vertical lines, the map will be conformal. We let u denote the potential
function.

Given a set of charges, how do we get the potential function in a region R? The potential
function is that which minimizes the total field energy. This energy is given by the Dirichlet
integral:

D[u;R] =

∫

R

(u2
x + u2

y)dxdy. (2.1)
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For later, we will also need to define the Dirichlet inner product of two functions u and v:

D[u, v;R]

∫

Ω

(uxvx + uyvy)dxdy. (2.2)

In fact, the function that minimizes the Dirichlet integral is a harmonic function, defined as
having ∇2u = 0, where ∇2 is the Laplacian operator. From a harmonic function u, we can get
a harmonic conjugate v, and if the conjugate is single-valued, we obtain an analytic function
f = u+iv. From a mathematics standpoint, the problem we have been discussing is the Dirichlet
problem: find a harmonic function that satisfies certain given boundary conditions. If such a
solution exists, we can get it by minimizing the Dirichlet integral.

The next step is to figure out what boundary conditions will give a function that maps the
Riemann surface to a domain in the sphere. If we have no boundary conditions, corresponding
physically to no charges on our surface, then the potential function is constant. So we must place
some charge on our surface. The simplest nontrivial boundary condition would be to require a
simple pole 1/z for our function, corresponding to a dipole charge. Actually, we could specify just
one charge, corresponding to the function log|z|. The potential function solving this boundary
problem is Green’s function, and this situation can be used in the proof of the uniformization
theorem (see Ahlfors [3]). However, Green’s function does not exist on some Riemann surfaces,
so we will not consider it here.

Why should we expect a function with a simple pole to give us the correct map? On a sphere,
it obviously maps to the whole sphere. On the plane, consider the pole at the origin as a dipole
oriented in the positive x-direction. For all fixed values v = c, except for one, tracing an electric
field flow line on the plane traces a circle tangent to the x-axis. Only tracing the flow line on
the x-axis itself gives a nonclosed path, for this axis extends to a point at infinity on either side.

Now consider the dipole on a simply connected region that is not the plane or sphere, and
let the boundary be grounded; this is the case of the Riemann mapping theorem. Then again we
expect the flow lines to be closed, except for one line v = c which extends out to the boundary,
forks on the boundary, and comes together and returns from a different point on the boundary.
Mapping such lines onto the plane, the dipole corresponds to ∞, and all of the plane is covered,
except for the line v = c, which has a segement covered twice, coresponding to the fork of the
boundary. Thus we have a plane with a slit. The slit can be mapped by a conformal one-to-
one map to the negative real half-axis; the resulting region can be mapped conformally and
one-to-one to the right half plane, and then to the unit disk.

These three cases considered correspond to the three cases for Riemann surfaces, and they
motivate the method of proof that we give here, which will be in two main parts. Given a simply
connected Riemann surface, we will construct the analytic map from the surface to a domain
in the sphere. To do this, we will find the harmonic function that is the real part of a function
with a simple pole by minimizing Dirichlet integrals; taking the harmonic conjugate gives us
the analytic map. Then we will prove the bijectivity of the map, and show that the image of a
Riemann surface under the map is conformally equivalent to the sphere, the plane, or the unit
disk.

2.2 Construction of the Analytic Map

Throughout this section, M will denote the Riemann surface in question. By disk we will mean
a closed disk, and if R is a disk, then R will denote the interior of the disk.

2.2.1 The Cover

Before beginning our construction, we need two statements concerning the covering of our Rie-
mann surface by disks. The first statement, the (second) axiom of countability, is actually
assumed for topological surfaces by Weyl [10], as is the finiteness condition for compact surfaces.
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Both statements can be proved from our basic defintion 1.1 for Riemann surfaces (see Ahlfors
[4]).

Proposition 2.1. Every Riemann surface M can be covered with countably many disks belonging
to M , so that every point of M is in the interior of one of the covering disks.

Proposition 2.2. On every Riemann surface M it is possible to choose finitely many disks
R1, . . . , Rν or countably many disks R1, R2, . . . which cover M , in the sense of proposition 2.1,
such that for n = 1, . . . , ν − 1 and n = 1, 2, . . ., respectively, the union of R1, . . . , Rn intersects
Rn+1 without containing it. The number of required disks is finite if and only if M is compact.

Now we may begin our construction. We choose a point p0 in M and disks, as in proposition
2.2, such that R0 ⊂ R1 are both concentric about p0, and such that R0 ∩ (∪i>2Ri) = ∅. Also,
let Bn = ∪n

i=0Ri, and let C0, C1, . . . be the boundaries of the disks R1, R2, . . .. For any region
R containing p0, Ṙ = R\{p0}.

We take a moment to define piecewise differentiable or harmonic functions and their Dirichlet
integrals, with respect to our chosen cover. Real-valued functions that are continuous, differen-
tiable, or harmonic on a region R of M have their usual definitions in terms of local parameters.
A continuous function is piecewise differentiable on R if it has continuous first-order partial
derivatives on Ṙ, with the possible exception of points of finitely many circumferences Cn. A
similar definition works for piecewise harmonic functions. To define the Dirichlet integral D[h;R]
of a piecewise differentiable function h in a region R bounded by circular arcs, we partition the
region into nonoverlapping subregions bounded by circular arcs on the interior of which the
function h is continuously differentiable. If the Dirichlet integrals converge on every subregion,
their sum is the Dirichlet integral D[h;R] over the whole region R. The definition is similar for
the Dirichlet inner product D[h, g;R].

2.2.2 Comparison Functions

Our goal is to construct a harmonic function that is the real part of a meromorphic fuction that
has a simple pole at p0 and is otherwise regular on M . Let a be the radius of the disk R0, and
let z = x + iy be the local coordinate at p0, with z(p0) = 0. We define in R0 the function

q = Re(
1

z
+

z

a2
) =

x

x2 + y2
+

x

a2
(2.3)

in terms of the local coordinate. The first term in q is the simple pole; the second term is to make
the normal derivative of q equal to zero; we will need this property later. We want to consider
functions h that look like q near p0. More precisely, we require that the difference h(p)− q(p) is
continuous at p0. This condition fixes the pole at p0 as our boundary condition.

We would like to minimize the Dirichlet integral of these functions h to get our harmonic
function. However, over any domain containing p0, the Dirichlet integral of h diverges, so we
need to modify the integral we use. Let us define

ĥ =

{
h − q for p in R0

h for p in M − R0

so that ĥ in M is discontinuous on C0. Let us also require the existence of D[h − q; Ṙ0], which
we denote for convenience by D[h − q;R0]. Then we can consider the modified integral

D[ĥ;Bn] = D[h;Bn − R0] + D[h − q;R0].

This modified integral, if it exists for n = 1, 2, . . ., gives a monotonic increasing sequence of
nonnegative numbers. If the sequence is bounded and has a limit, then we let

D[ĥ;M ] = lim
n→∞

D[ĥ;Bn].
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This is the normalized Dirichlet integral of h over M . So the functions h that we consider should
have finite normalized Dirichlet integral.

The class of functions that we want to consider will be called comparison functions. To sum-
marize the above discussion, h is a comparison function if it has the following three properties:

1. h is continuous and piecewise differentiable in Ṁ .

2. h − q is continuous at p0.

3. D[ĥ;R] exists.

Using polar coordinates x = r cos φ, y = r sinφ on R1 it can be verified that the function

h =





x
x2+y2 = cos φ

r on Ṙ0

cos φ
r

b−r
b−a on R1 − R0

0 on M − R1

has the required properties of a comparison function, so we know that comparison functions do
exist.

The problem is now to get a comparison function that minimizes D[ĥ;R]. Since D[ĥ;R] ≥
0, the set of all comparison functions has some nonnegative greatest lower bound µ for the
normalized Dirichlet integral. Hence there exists a sequence hn such that D[ĥn;R] → µ as n
goes to ∞. Such a sequence will be callsed a minimizing sequence. Our main result is the solution
of this given Dirichlet problem, i.e., the proof that µ is actually obtained for some comparison
function, and that the comparison function is indeed harmonic. It is the harmonic function that
will be the real part of our required conformal map.

2.2.3 Existence of the Minimal Comparison Function

A common method of demonstrating the existence of a function is to construct a convergent
sequence of functions whose properties we know. In our case, we want our convergent sequence
to be a minimizing sequence. We will need the following lemma for minimizing sequences; the
proof is straightforward and is omitted.

Lemma 2.1. For a minimizing sequence hj,

lim
m,n→∞

D[hm − hn;M ] = 0. (2.4)

Beginning with a minimizing sequence, our procedure will be to the functions of this sequence,
eventually arriving at convergence to a harmonic function. Note that we have consructed our
cover out of disks, so that, using the Poisson integral, we can easily modify our functions to be
harmonic in a given disk and still continuous on the boundary. The role of the Poisson integral
is that, in short, it solves the Dirichlet problem in a disk having continuous boundary values.
Convergence of these disks can be obtained under certain conditions, as specified in the following
lemma (Siegel [9]):

Lemma 2.2. Let un(z), n = 1, 2, . . . be a sequence of functions harmonic in a Jordan domain
G and having Dirichlet integrals. Further, let limn,m→∞ D[un − um;G] = 0. If the sequence of
functional values un(z0) converges at a point z0 of G, then un(z) coverges at all points z in G

to a limit function harmonic in G, and this convergence is uniform on every region in G.

Our procedure will inductively get convergence to harmonic functions on each disk of our
cover, in the prescribed order. While getting convergence on these successive disks, we want to
make sure that the limit function does not change inside previous disks. In other words, the limit
function should be the harmonic continuation of the limit function defined on previous disks.
Our tool will be the Schwarz reflection principle for harmonic functions; from this principle one
can derive the following lemma that will be used in the proof:
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Lemma 2.3. Let un(n = 1, 2, . . .) be a sequence of functions harmonic inside a region B and
having Dirichlet integrals. Let L be a circular arc which is a portion of the boundary of B, and
let each function un vanish on L. Further, let limn→∞ D[un;B] = 0. Then un → 0 in the
interior of B, and this convergence is uniform on every region in B.

Now we can give the key result.

Theorem 2.1. There exists a comparison function u that is harmonic in Ṁ and satisfies

D[û;M ] = µ.

Proof. The proof will be carried out in 4 steps.

I. We first construct a minimizing sequence of functions harmonic in Ṙ1.

Let h be a comparison function. Since h − q is continuous on R1, in particular on the
boundary C1, there is exactly one function, given by the Poisson integral, which is harmonic
in R1, continuous on R1, and coincident with h − q on C1. In Ṙ1, denote this function
by g − q. If we set g = h in R − R1, then g is continuous in all of Ṙ and is a comparison
function.

We claim that the normalized Dirichlet integral of g is no greater than that of h. We must
show that

D[g;R1 − R0] + D[g − q;R0] ≤ D[h;R1 − R0] + D[h − q;R0].

Since g − q is harmonic in R1, we have

D[g − q;R1] ≤ D[h − q;R1]

which implies

D[g;R1 − R0] − 2D[q, g;R1 − R0] + D[g − q;R0]

≤ D[h;R1 − R0] − 2D[q, h;R1 − R0] + D[h − q;R0]. (2.5)

So the proof of our claim is reduced to showing that D[q, g−h;R1−R0] = 0. Let B be the
ring R1 −R0 bounded by the circles C1 and C0. Since q has derivatives of all orders in the
interior of B, and these derivatives have boundary values, and since g−h is continuous and
piecewise differentiable and has a convergent Dirichet integral over B, we can use Green’s
Identity to get

D[q, g − h;R1 − R0] +

∫∫

R1−R0

(∆q)(g − h)dxdy

=

∫

C1

(g − h)(qxdy − qydx) −
∫

C0

(g − h)(qxdy − qydx). (2.6)

The second double integral vanishes because q is harmonic. The first line integral vanishes
because g and h coincide on the boundary C1. We can rewrite the second integral in terms
of the normal derivative,

∫

C0

(g − h)(qxdy − qydx) =

∫

C0

(g − h)
∂q

∂n
|dz|,

and since, as noted above, the normal derivative of q is zero on C0, this integral vanishes
as well, and the claim is proved.

We start with any minimizing sequence. Replacing each member h of the sequence by
the corresponding function g gives us a new minimizing sequence whose Dirichlet integrals
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converge to µ at least as well as hn. Hence we may assume that for all hn of a minimizing
sequence, hn − q are harmonic in R1 and have boundary values throughout C1. Adding a
constant to a function does not change the Dirichlet integral, so we may assume that the
hn − q all vanish at p0. Such a minimizing sequence will be called a smooth minimizing
sequence.

II. The next step is to show that for a smoothed minimizing sequence, the differences hn − q
converge in R1 to a harmonic function u0. From equation (2.4), we have

lim
m,n→∞

D[(hm − q) − (hn − q);R1] = 0.

Using lemma 2.2, since the hn − q vanish at p0 and are harmonic in R1, we obtain

lim
m,n→∞

(hn − q) = u0

in R1. The convergence is uniform in the interior of every circle smaller than and concentric
with C1, and u0 is harmonic in R1. Then u = u0 + q is harmonic in Ṙ1 and has the same
singularity at p0 as q, since u0(p0) = 0.

III. In general, it is not true that the smoothed sequence hn converges in Ṙ outside of Ṙ1.
However, the following proof by induction shows that we can get a unique harmonic con-
tinuation of the function u, constructed in part II, to all points in Ṙ.

Let t be a given natural number. Assume the existence of a smoothed minimizing sequence
htn which converges uniformly in every region in Ḃt. By assumption, u is the harmonic
continuation fo the function constructed on Ṙ1. Further, let htn be piecewise harmonic
on Ḃt, i.e., harmonic at all points in Ḃt not belonging to any of C1, . . . , Ct. A minimizing
sequence with these properties is a t times smoothed minimizing sequence.

We have already constructed the 1 times smoothed minimizing sequnce. For the induction
step, let us construct a (t + 1) times smoothed minimizing sequence from a given t times
smoothed minimizing sequence. The disk Rt+1 lies outside of R0 and intersects Bt. Using
the local uniformizing parameter, for each n we can form the Poisson integral with bound-
ary values on Ct+1 given by the function htn; this will define the function jtn on Rt+1; this
function is harmonic on Rt+1. Outside of Rt+1, define jtn = htn. Then since the Poisson
integral minimizes the Dirichlet integral for given boundary values, we have

D[jtn;Rt+1] ≤ D[htn;Rt+1]

and therefore
D[jtn;M ] ≤ D[htn;M ].

Thus jtn form a minimizing sequence of comparison functions.

Now we show that jtn is t + 1 times smoothed. Since, by assumption, htn is piecewise
harmonic on Ḃt, it follows that jtn is piecewise harmonic on Ḃt+1. In the intersection of
Rt+1 and Bt, choose a region B which abuts Ct+1 along an arc L, but does not meet any
of the circles C1, . . . , Ct. Then let un = u + tn = htn − jtn. Since the combined sequence
htn, jtn is also a minimizing sequence, equation 2.4 implies

lim
n→∞

D[un;M ] = 0 lim
n→∞

D[un;B] = 0 (2.7)

Then we can use 2.3 to get
lim

n→∞

utn = 0

in the interior of B. By our induction assumption

lim
n→∞

htn = u
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on B. On the other hand, as in part II, we see that jtn converges uniformly to a harmonic
function in the interior of every smaller circle concentric with Ct+1. Therefore, since the
limit function coincides with u in the interior of B, it must be the harmonic continuation
of u to all of Rt+1. It is clear that the harmonic continuation is independent of the choice
of arc L and domain B. To complete the induction argument, we set ht+1,n = jtn.

This inductive procedure allows us to define the function u successively on Ṙ1, R2, . . . in
a unique manner such that u is harmonic in each domain. Since every point of Ṁ lies in
one of these domains, it follows that u is uniquely determined and harmonic on Ṁ .

IV. We have our harmonic function, but we do not know that it is a comparison function, and
we have not calculated its Dirichlet integral. So our last step is to show that the function
does in fact u minimize the normalized Dirichlet integral. Since u is harmonic on Ṁ , it is
continuous and piecewise differentiable on Ṁ . Further, the difference u − q is continuous
at p0 and has the value 0 there. We show that the normalized Dirichlet integral of u
converges to a value ≤ µ. We will need to use the convergence of sequences on compact
subsets of M , so we diminish the region Bm by omitting from each of the covering disks
R1, . . . , Rm a boundary strip of width ε. Let Bm(ε) denote the union of the resulting
disks R1(ε), . . . , Rm(ε). By part II, hn − q converges uniformly to u on any R1(ε), and the
hn = h1n form a smoothed minimizing sequence; by part III, ht+1,n converges uniformly
to u on any Rt+1(ε), for any ε > 0. On any such disk, this sequence is a convergent t + 1
times smoothed minimizing sequence, and the ht+1,n coincide with the htn on Ṁ outside
Rt+1. This is true for t = 1, . . . ,m − 1, so by Harnack’s theorem for harmonic functions,
we have

lim
n→∞

D[ĥmn;Bm(ε)] = D[û;Bm(ε)].

Since hmn is a minimizing sequence,

lim
n→∞

D[ĥmn;M ] = µ.

On the other hand,
D[ĥmn;Bm(ε)] ≤ D[ĥmn;M ],

and therefore
D[û;Bm(ε)] ≤ µ;

µ is independent of ε and m. Letting ε → 0 and m → ∞, we get

D[û;M ] ≤ µ.

Then u is a comparison function, which implies

D[û;M ] ≥ µ,

and finally
D[û;M ] = µ.

2.2.4 Uniqueness of the Minimal Function

We have done the main work of finding our minimizing harmonic function. In the following
section, we prove, in succession, that the function u is unique for a fixed cover R0, R1, . . .;
independent of the choice of R0 when R1, R2, . . . are fixed; and independent of the choice of
disks R1, R2, . . ., so long they satisfy proposition 2.2 and Ri for i ≥ 2 do not intersect R0.

We first prove the following useful result:
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Proposition 2.3. Let h be an arbitrary function which is continuous and piecewise differentiable
on M and for which the Dirichlet integral D[h;M ] exists. A necessary and sufficent condition
for a comparison funciton u to minmize the normalized Dirichlet integral D[û;M ] is that, for all
h,

D[û, h;M ] = 0. (2.8)

Proof. Let u be a comparison function that minimizes the normalized Dirichlet integral with
D[û;M ] = µ. Let h be as in the hypotheses of the theorem, so that u + λh is also a comparison
function for every real constant λ. Then

0 ≤ D[û + λh;M ] − µ = λ[2D[û, h;M ] + λD[h;M ]],

which implies that D[û, h;M ] = 0.
Conversely, if 2.8 holds for u and any comparison function h, let h = v − u, where v is an

arbitrary comparison function. Then

D[v̂;M ] = D[û;M ] + D[h;M ] ≥ D[û;M ],

and D[û;M ] minimizes the normalized Dirichlet integral.

Now we can show that for a given covering R0, R1, . . ., the comparison function u is uniquely
determined if D[û;M ] = µ and u− q vanishes at p0. For if v is a function with these properties,
then the function h = v − u vanishes at p0. By proposition 2.3, D[û, h;M ] = 0. Therefore
D[v̂;M ] = D[û;M ] + D[h;M ]. But D[v̂;M ] = D[û;M ] = µ, which implies D[h;M ] = 0, so
h = 0 and u = v.

Proposition 2.4. If the disks R1, R2, . . . are held fixed, then u is independent of the choice of
disk R0.

Proof. We replace R0 by a concentric disk R∗ of radius a0 > a lying in the interior of R1.
Correspondingly, set

q∗(p0) = q∗(x, y) =
x

x2 + y2
+

x

a2
0

.

Also set u∗ = u − q∗ in R∗ and u∗ = u in M − R∗. By proposition 2.3, we only need show that
for all admissible h,

D[û, h;M ] = 0 (2.9)

implies
D[u∗, h;M ] = 0

or equivalently
D[û − u∗, h;M ] = 0. (2.10)

Assume equation (2.9). Then

u − u∗ =





0 in M − R∗

q∗ in R∗ − R0

q∗ − q in R0,

and
D[û − u∗, h;M ] = D[q∗ − q, h;R∗] + D[q, h;R∗ − R0].

As in step I of theorem 2.1, we apply Green’s identity, this time to both summands on the right;
observing that q∗ − q is harmonic in R∗, q is harmonic in R∗ −R0, qxdy − qydx vanishes on C0,
the boundary of R0, and q∗xdy−q∗ydx vanishes on C∗, the boundary of R∗, equation 2.10 follows,
as desired.
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Proposition 2.5. The minimum function u is independent of the choice of the remaining cov-
ering disks R1, R2, ...

Proof. By the proof of proposition 2.4, if v is the extremum function associated with another
covering with the same center p0, then we can use the same disk R0 for both coverings. Let
h = v − u. By proposition 2.3, we have D[û, h;M ] = D[v̂, h;M ] = 0, from which we get

D[v̂;M ] = D[û;M ] + D[h;M ] D[û;M ] = D[v̂;M ] + D[h;M ] (2.11)

and thus D[h;M ] = 0, h = 0, and v = u.

2.2.5 The Analytic Map

For our chosen point p0, we have found a unique harmonic function u with our desired properties.
From u we can obtain an analytic function by using the harmonic conjugate. Recall that for a
harmonic function u, the harmonic conjugate v is given by

v(p) − c =

∫

L

(uxdy − uydx) (2.12)

where c is an arbitrary real constant, and L is a rectifiable curve on Ṁ from a fixed point
p1 to a variable point p, and integration is with respect to the appropriate local uniformizing
parameters.

Proposition 2.6. If M is simply connected, then the harmonic conjugate v(p) of the minimum
function u is single-valued.

Proof. Let p1 ∈ Ṙ0 and L be closed. Our proposition will follow if we show that the integral
(2.12) over L is zero. Since M is simply connected, our only concern is at p0. L is homotopic
to a curve in R0 which loops around p0, so it is sufficient to consider L to be such a curve in
R0. Thus, all we need to show is that u has a single-valued harmonic conjugate in R0. We
write u = (u − q) + q. Since u − q is harmonic throughout R0, a simply connected disk, it has
a single-valued harmonic conjugate there. Also, we chose q to be the real part of an anlytic
function, so in Ṙ0 it has the single valued harmonic conjugate −y/(x2 + y2) + y/a2. Then u has
a single valued harmonic conjugate.

Setting f(p) = u(p) + iv(p), we have obtained a function regular and single-valued on the
simply connected surface Ṙ and having a simple pole with residue 1 at p0.

2.3 Bijectivity of the Analytic Map

We now study the mapping w = f(p) from the simply connected region M into the w-sphere.
We want to show that f maps M bijectively onto its image. The mapping will be conformal
since f is analytic, and the image will also be simply connected.

Our procedure is motivated by our previous physical considerations of the dipole in a simply
connected region of the plane. Recall that our insight was gained from tracing the flow lines
v = c on our region. Our picture showed each such line dividing the region into two connected
domains, with v > c and v < c. Our first step is to prove that this is true on our surface. From
this fact we can prove that our map is locally injective. Then we will prove, as we expect from our
picture, that there is only one curve v = c that is not closed, but extends out to the boundary;
it will be our endles curve. The last step will be to consider the images of our Riemann surface
under the map with the aid of our constant v lines. The result will be three cases, which will be
our three domains: the unit disk, the plane, and the sphere.

10



2.3.1 Local Injectivity

At the point p = p0, the function 1/w has a simple zero. Then f maps a neighborhood of p0

conformally onto a neighborhood of w = ∞. In the neighborhood M1 of p0, we have

u + iv = w =
1

z
+ c1z + . . . , (2.13)

u =
x

x2 + y2
+ a1x + . . . , (2.14)

v = − y

x2 + y2
+ b1y + . . . . (2.15)

Let c be any real constant. The equation v = c determines a line in the w-plane parallel to the
u-axis, which we think of as running from u = ∞ to u = −∞. For sufficiently large values of
|c|, these parallels are images under f (which is locally conformal at p0) of small simple closed
curves touching the x-axis at z = 0 an approximating the circles given by c(x2 + y2) = −y. We
wish to trace the curves on M that are mapped by f onto the various lines v = c for arbitrary c.

Let us fix c. If 1/u varies over a small interval about 0, then

z = w−1 + c1w
−3 + . . . = (u + ic)−1 + . . . = u−1 − icu−2 + . . .

varies over a small arc touching the x-axis at the origin, since the sign of Im(z) is always constant,
either negative or positive. this arc divides a sufficiently small disk on M with center p0 into only
two domains. Let H denote the lower of these two domains. Then v > c in the lower domain,
and v < c in the upper domain, since as c increases, Im(z) = −cu−2 decreases. We have the
following lemma.

Lemma 2.4. All the points of Ṁ at which v(n) > c form a single domain.

Proof. We must show that every such point n can be joined to a point n1 of H by a curve on
Ṁ at all of whose points we have v > c. Our proof is by contradiction. Assume there is a point
n2 on Ṁ with v(n2) > c which fails to have this property. Let Gk, (k = 1, 2) be the set of all
points of Ṁ which can be joined to nk by curves for which v > c. These two sets form disjoint
domains with p0 a boundary point of G1 but not of G2. Let g(v) be a real valued function that
is continuously differentiable for all finite v ≥ 0, is bounded, has bounded derivative, is positive
for positive v, and satisfies g(0) = 0, g′(0) = 0. One such function is

g(v) =
v2

1 + v2
= 1 − 1

1 + v2
.

Let k(u) be a real valued function that is bounded, is continuously differentiable for all real u,
and has a derivative that is bounded and positive for all u. One such function is

k(u) = arctan u, for − π

2
< arctan u <

π

2

Let h(p) = k(u)g(v − c) = kg for all p in G2 and h(p) = 0 in M −G2. then h(p) is continuously
differentiable in terms of local parameters throughout M . In G2,

hx = k′gux + kg′vx = k′gux − kg′uy (2.16)

hy = k′guy + kg′vx = k′guy + kg′ux (2.17)

uxhx + uyhy = k′g(u2
x + u2

y) (2.18)

h2
x + h2

y = [(k′g)2 + (kg′)2](u2
x + u2

y), (2.19)

and in M − G2, both hx and hy vanish. Then since we have (k′g)2 + (kg′)2 is bounded and
D[û;M ] coverges, we find that D[h;M ] exists. Since u is independent of the choice of M0, we
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assume that M0 lies entirely in M −G2. This is possible because p0 is not in G2 or its boundary.
Then

D[û, h;M ] = D[u, h;G2] =

∫∫

G2

k′(u)g(v − c)(u2
x + u2

y)dxdy (2.20)

where

u2
x + u2

y = | df
dz

|2. (2.21)

It follows that the integrand > 0 except possibly for isolated points of G2. This implies that
D[û, h;M ] > 0, which contradicts proposition 2.3.

To get that v < c defines a single domain, we replace g(v − c) with g(c − v) in the above
proof. After proving this lemma, we can now show that f is locally injective.

Theorem 2.2. The mapping w = f(p) is conformal and locally injective at all points of M
relative to local parameters.

Proof. We already saw that f is locally injective at p0. Now we show that on Ṁ the derivative
of f(p) with respect to the local parameter is not zero, and this will be sufficient to prove the
theorem. Assume there exists a point p∗ at which f vanishes to order l > 1 in terms of the
local parameter t. Then f maps a neighborhood of t = 0 onto a neighborhood of w∗ = f(p∗)
covered l times. The inverse map of the line v = v∗ through w∗ = u∗ + iv∗ gives l curves on M
near p∗ that intersect at p∗ and form 2l sections with angle π/l. Going around p∗, the sections
alternate having v > v∗ or v < v∗. Now choose n1, n3 in disjoint sectors with v > v∗, and n2, n4

in disjoint sectors with v < v∗. By part I, we can find a curve L1 that joins n1 to n3, with
L1 ⊂ Ṁ and v > v∗ on all of L1, and we can find a curve L2 that joins n2 to n4, with L2 ⊂ Ṁ
and v < v∗ on all of L2. Join each of n1, n2, n3, n4 to p∗ by curves that remain in their respective
sectors. We get two closed curves L1, L2 which cross only at p∗, and the index, or intersection
number, of L1 and L2 is ±1. But by the simple-connectedness of M , we can contract L2 to a
point outside of L1, so that the index of L1 and L2 is 0. This contradicts the fact that the index
of two closed curves on a Riemann surface is invariant under continuous deformations of the
curves throughout which the number of common points of the two curves remains finite. Thus
our theorem is proved.

2.3.2 The Endless Curve

Let us now look at curves L extending from p0 on M . Let

z = ζ(w) = w−1 + c1w
−3 + · · ·

be the function element (local representation of z as a function of w) at w = ∞ obtained by
inverting w = f(p) at p = p0. This function element can be continued analytically along the
line v = c on the w-sphere, for fixed c. We can have u increase from −∞ or decrease from ∞.
There are two cases:

1. Analytic continuation is possible on the whole line v = c, and we come back to the initial
function element ζ(w) at ∞, in which case there is a corresponding curve L in R which is
mapped by f onto C. Since f is single-valued and infinite only at p = p0, L is a simple
closed curve;

2. Analytic continuation is only possible from −∞ up to a and from ∞ down to b; then we
have rays u < a and u > b which are images of the curves L1 and L2 on R, respectively.
Again by the single-valuedness of f , L1 and L2 have no double point and form a simple
curve on R. If they had a common point other than p0, then analytic continuation back
to ∞ would be possible; so they have no common point.
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In the second case, we wish to know what happens to p on L1 as u approaches a. We claim
that for a compact subset N of R, there exists a δ such that for a − δ < u < a, p is outside of
N . Suppose such a δ did not exist. Then there would exist a monotonically increasing sequence
un converging to a such that the images p′n on N converge to a point p′ 6= p0 in N . Since f
is continuous, we have f(p′) = a + ci, and we could continue ζ(w) up to an including a. This
is a contradiction, so our claim is proved. As a consequence, we see that as u approaches a,
the point p on L1 leaves every compact set Bn; the same holds for L2. Thus we call the curve
L = L1 + L2 an endless curve.

Now we prove the following theorem.

Theorem 2.3. An endless curve occurs for at most one value of c.

Proof. Again, we prove by contradiction. Let v = c, v = c∗ define two endless curves L,L∗, with
L1 the subarc of L corresponding to u increasing from −∞, L2 the subarc of L corresponding
to u decreasing from ∞, and similarly for subarcs L∗

1, L
∗

2 for L∗. L and L∗ have only p0 in
common, since f is single-valued. They touch at the x-axis without crossing, in terms of the
local coordinate z = x + iy at p0. Let D be a disk centered at p0 small enough such that
L1, L

∗

1;L2, L
∗

2 determine two sectors S1,S2. We claim that every interior point n1 ∈ S1 can be
joined to n2 ∈ S2 by a curve for which c < v < c∗. For −m sufficiently large and positive, the
line u = m in the w-plane has image C, approximately a small circle, contained in D. C cuts
off a sector of S1, and does not intersect S2. Let n1 be a point lying in S1 but outside of C.
Consider the set of points on Ṁ such that u > m and c < v < c∗; this set may form disjoint
domains, so we let G be such a domain containing n1. Assume for contradiction that n2 /∈ G.
Then p0 is not a boundary point of G, and by proposition 2.4 we can assume that M0 lies in
M − G.

Now let g be as in theorem 2.2, e.g., g = v2/(1+v2). Define h(p) = g(u−m)g(v− c)g(c∗−v)
on G, and h(p) = 0 on M − G. Put

g′(u − m)g(v − c)g(c∗ − v) = g1

g(u − m)(g′(v − c)g(c∗ − v) − g(v − c)g′(c∗ − v)) = g2.

In G, we have:

hx = g1ux − g2uy, hy = g1uy + g2ux

uxhx + uyhy = g1(u
2
x + u2

y), h2
x + h2

y = (g2
1 + g2

2)(u2
x + u2

y).

Then D[h;M ] exists, and D[û, h;M ] > 0, which contradicts proposition 2.3. So n2 lies in G.
Now we join n1 and n2 by a curve lying in G, i.e., for which c < v < c∗; we close this

curve by tracing a curve lying in S1 from n1 to p0, and then a curve lying in S2 from p0 to n2.
We obtain a closed curve B. Let A be the curve L1 + L∗

2. Then the index of A and B is ±1.
Since B is closed and A extends to infinity in both directions, the index must be invariant under
continuous deformations of B that keep the intersection points finite. But again by the simple
connnectedness of M , the curve B can be contracted to a point outside A, so that the index of
A and B is 0. This contradition shows that there are no two endless curves L,L∗.

Let L be and endless curve on which v = c. Let L1 with u < a and L2 with u > b be
two subarcs of L which meet at p0. Then we can show that a ≤ b. For, suppose b < a, and
let d = (a + b)/2. For c1 < c, consider the strip c1 ≤ v < c. Since L is the only endless
curve, z = ζ(w) admits unique analytic continuation to all points of the strip. Adjoining the
rays corresponding to L1 and L2, we have that analytic continuation along these rays yields the
same function elements at d. But then continuation of L1 beyond u = a is possible, which is a
contradiction.
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2.3.3 The 3 Cases

Now we have 3 cases:

1. There is no endless curve.

2. There exists one endless curve v = c with a = b.

3. There exists one endless curve v = c with a < b.

To each case corresponds an image W of the map:

1. The full w-sphere. This is the elliptic case.

2. The sphere punctured at w1 = a + ci. This is the parabolic case.

3. The sphere slit along a ≤ u ≤ b, v = c from w1 = a + ci to w2 = b + ci, with the edges
omitted. This is the hyperbolic case.

Theorem 2.4. The function w = f(p) effects a biholomorphic mapping of the simply connected
Riemann surface M onto W .

Proof. We have already shown the map to be analytic locally injective. Here we prove that the
map is globally bijective. Let n1 ∈ M and c = Im(f(n1)) = v(n1). Consider the curve L on M
arising from analytic continuation of z = ζ(w) at w = ∞ along v = c. The curve L is either
closed or endless, with v > c on one side and v < c on the other.

We claim that n1 is on L. Suppose n1 is not on L. Then we can find n2, n3 sufficiently close
to n1 such that v(n2) > c and v(n3) < c. The points n2, n3 can be joined by a curve not meeting
L. Then we can obtain a closed curve B through p0 that crosses L only at p0. Again, considering
the index of L and B when B is contracted to a point outside L, we get a contradiction. We can
conclude that every point of M lies on a curve L. Conversely, for a given c, there is a unique
correspondence between the curves L and the lines v = c on W via the mapping w = f(p).
Then f covers W . Further, if f(p) = f(n1), then p must also lie on L. Since every point on L
is uniquely determined by the value of u, we find that p = n1, and f is one to one.

Now in the elliptic case, W is the full sphere and is compact. So M is compact and simply
connected, so it must have genus 0. In the parabolic case, the transformation s = (w − w1)

−1

maps the punctured w-sphere conformally onto the full s-plane. The composition s(f(p)) maps
the Riemann surface M conformally onto the full s-plane. In the hyperbolic case, let

s =

√
w − w1 −

√
w − w2√

w − w1 +
√

w − w2

with the branch satisfying 0 < s < 1 for positive values of w−w2 on w-sphere slit from w1 to w2.
Then s maps W conformally onto the interior of the unit circle in the s-plane. The composition
s(f(p)) maps the Riemann surface M conformally onto the interior of the unit circle in the
s-plane.

Hence we have completed the first proof of the uniformization theorem for simply connected
Riemann surfaces.

2.4 Arbitrary Riemann Surfaces

We have shown that every simply connected Riemann surface is conformally equivalent to the
sphere, the plane, or the unit disk. Now we use the universal covering surface to describe any
arbitrary Riemann surface in terms of these three spaces. It is known that every Riemann surface
has a unique universal covering surface, up to conformal equivalence. The universal covering
surface is defined as being simply connected. Then if M is a Riemann surface, the universal

14



covering surface M̃ is conformally equivalent to the sphere, the plane, or the unit disk. We a
free to assume that M̃ is one of these spaces.

Let π : M̃ → M be the projection map. Recall that a homeomorphism φ : M̃ → M̃ is a
cover transformation if π ◦ φ = π. It is known that every cover transformation is a conformal
homeomorphism, and every cover transformation that is not the identity has no fixed points.

For the sphere, the plane, and the disk, all conformal self-mappings are given by the projective
transformations (also called fractional linear or Möbius transformations, which have the form

φ(z) =
az + b

cz + d
, ad − bc 6= 0. (2.22)

Every such mapping has at least one fixed point on the sphere. Therefore, if M̃ is the sphere,
the only cover transformation is the identity. If M̃ is the plane, the cover transformations must
fix the point at infinity, so they are given by parallel translations φ(z) = z + b. If M̃ is the unit
disk, then for cover transformations that are not the identity, the fixed points must lie on the
unit circle. Then any cover transformation φ has the form φ(z) = (az + b)/(b̄z + ā).

The group of cover transformations is isomorphic to the fundamental group π1(M). If M̃
is the sphere, then π1(M) = 1. Since the sphere is compact, so is its projection, and M is
conformally a sphere.

In the other two cases, we make use of the fact that the group Γ of cover transformations
is properly discontinuous on M̃ . When M̃ is the plane, the group of cover transformations is a
properly discontinuous group of parallel translations. there are only three types of such groups:
(1) the identity, (2) the infinite cyclic group generated by φ(z) = z + b, b 6= 0, (3) the abelian
group generated by φ1(z) = z + b1 and φ2 = z + b2, with nonreal ratio b2/b1. By identifying
points of the plane that correspond under the transformations in Γ, we get back M . In each of
the three cases above, M is (1) the plane, (2) an infinite cylinder, conformally equivalent to the
punctured plane, and (3) a torus obtained by identifying opposite sides of a parallelogram.

For all other Riemann surfaces not listed above, M̃ is the unit disk, and Γ is a properly
discontinuous group of fixed point free linear transformations mapping the disk onto itself.
Conversely, given such a group Γ, we can obtain a Riemann surface by identifying the points of
the disk that are equivalent under this group.

Via these results of uniformization, the study of Riemann surfaces can be reduced to the study
of the sphere, the plane, and the disk, along with the groups of fixed point free self-mappings of
these spaces that are projective transformations.

3 The Second Proof

3.1 Preliminaries

In our first proof of the uniformization theorem, we described the Riemann surface as a collection
of linked disks with conformal structure, and our main construction used harmonic functions.
In our second proof, we will use the triangulation of a Riemann surface, and we will deal with
analytic functions in constructing our map. A surface can be defined combinatorially in terms of
triangulation, and then the conformal structure added afterwards to make it a Riemann surface
(see Sansone [8] for definitions). A surface is closed, or compact, if the number of triangles in
the triangulation is finite, and open if it is countably infinite. Covering surfaces and simple
connectedness can be defined in these terms. For consistency, we note that the triangulability
of a Riemann surface can be derived from the countability axiom, which we used in section 2
(see Ahlfors and Sario [4]). Another observation that we need is the following: it is possible to
subdivide triangles of a general RS such that every one is included in a local coordinate chart.

The statement of the uniformization theorem to be proved here is the same as in section
2, and the methods here are classical as well. The mapping function will be constructed using
a convergent sequence of functions. We saw in the first proof that the covering of disks was
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countable and ordered, and we would expect that the same is possible for our triangulation. The
precise ordering we need is given by Van der Waerden’s lemma (Sansone [8]).

Lemma 3.1. If M is a simply connected open surface, then its traingles can be enumerated in
such a way that every triangle ∆n+1 has one side or two sides in common with the sum of the
preceding triangles En = ∆1 + . . . + ∆n but not a side and the opposite vertex.

As in our first proof of uniformization, an inductive method is suggested to us; in this case,
we will use continuation and the Schwarz reflection principle for analytic functions. A key tool
for getting analytic maps will be the Riemann mapping theorem 1.1. We note that the Schwarz
reflection principle requires that the boundary being reflected across is an analytic arc, and that
the analytic function being reflected extends continuously to the boundary. In the following
proof, the arcs being reflected across are all circular arcs, and the function being reflected is
derived from the Riemann mapping theorem. The regions being mapped will all be bounded by
analytic arcs or circular arcs, in which case it is known that the mapping extends continuously
to the boundary. In this section, where the Riemann mapping theorem is invoked, this extension
is implied.

We will need one futher statement concerning normal families. Recall that a family of func-
tions is normal in a region R if every sequence of functions in the family contains a subsequence
that converges uniformly on every compact subset of R. We have the following lemma which
can be derived from the Koebe Distortion Theorem:

Lemma 3.2. If the family of univalent and holomorphic functions in a region R is such that
the values of the functions as well as those of their derivatives are bounded at a given point of
R, then the family is a normal family.

Now we provide our second proof of the uniformization theorem.

3.2 Proof of the Uniformization Theorem

Let M be a simply connected Riemann surface with local uniformizing parameters t. We trian-
gulate M such that every triangle lies in a neighborhood having a local uniformizing parameter.
In the t-plane, the triangles look like simply connected regions bounded by three analytic arcs.

3.2.1 Case 1: Open

We first consider the case that M̃ is open, and we assume that the triangles ∆1,∆2, . . . of its
trianguation are ordered according to Van der Waerden’s lemma.

Let ∆1 be included in a neighborhood U in which the local parameter t is defined. ∆1

corresponds to a simply connected region ∆′ in the t-plane, bounded by analytic arcs. Then by
the Riemann Mapping Theorem, ∆′ can be mapped conformally onto the interior of a circle in
the s plane such that there is a one to one correspondence between the boundaries.

Now we proceed by induction. Assume En = ∆1 + · · · + ∆n is mapped conformally onto
an open disk Mn in the s-plane, with a one to one correspondence between boundaries. Let
s = φn(p) denote the mapping function. We wish to obtain such a map for En+1. The region
En+1 consists of En plus a triangle ∆ = ∆n+1 which shares one or two sides with En. ∆ lies in a

neighborhood U in M̃ which is mapped injectively onto a neighborhood U ′ in the t-plane by the
local parameter t. ∆ is mapped by t onto ∆′ in U ′. A common side a of En and ∆ is mapped
by φn continuously onto an arc a1 of the boundary of Rn, and by t onto an arc a′ of U ′. Let V
be the region of En that lies in U of which a forms part of the boundary. The image V1 of V
in the s-plane lies in Rn and has a1 as part of its boundary. Let V ′ in U ′ be the image of V in
the t-plane. Via the local parameter, the function s = φn(t) maps V ′ to V1, where φn(t) is the
restriction of φn(p) to U . Now draw in Rn a circular arc a2 with endpoints correpsonding with
those of a1. At its endpoints, the arc a2 should have an angle π/2r relative to a1 small enough
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so that a2 lies in V1; such an arc is possible for large enough r. Denote the 2-gon enclosed by a1

and a2 by B1. The image of B1 in M̃ is B, which lies in V , and its image B′ in the t-plane lies
in V ′.

After this somewhat tedious preliminary setup, we briefly sketch our situation and the steps
that follow. We do not yet know how to map En+1 to a domain in the plane, but we do have a
maps on En and ∆ separately. Our key is the domain B, conformally equivalent to B1 and B′,
which is common to our two maps t and φn, and which we have nicely set up to take advantage of
the Schwarz reflection principle. So roughly, the idea is to map the two parts of En+1 separately
to the same disk, and then to make sure that the maps agree on B. Most of the work is in
getting the maps from ∆′ + B′ in the t-plane, and from Rn in the s-plane.

We claim that there are holomorphic functions

s∗ = g(s), s∗ = G(t) (3.1)

such that g maps the disk Rn onto a region B∗+H∗ and G maps ∆′ +B′ onto a region ∆∗ +B∗,
with the following four properties:

1. ∆∗ + B∗ + H∗ constitutes an open disk Rn+1;

2. s∗ = g(s) maps B1 onto B∗ and H1 = Rn = B1 onto H∗;

3. s∗ = G(t) maps B′ onto B∗ and ∆′ onto ∆∗;

4. in B′ holds the relation
G(t) = g(φn(t)). (3.2)

We start with the simply connected region ∆′ +B′ in the t-plane. By the Riemann mapping
theorem, it can be mapped by a function t1 = A1(t) onto a disk ∆

′′

+ B
′′

1 with the center of the
disk in the interior of ∆

′′

. Then the mapping given by

t1 = A1(φ
−1
n (s)) = g1(s)

relates B1 conformally to B
′′

1 , where t = φ−1
n (s) from V1 to V ′ is the inverse map of s = φn(t).

By the Schwarz reflection principle, we can extend this mapping to B2, the reflected image of
B1 with respect to a2. The image of B2 under (g1(s) is B

′′

2 , which is the reflection of B
′′

1 with
repsect to a

′′

, the image of a2. Then the region ∆
′′

+ B1
′′ + B

′′

2 is simply connected and can be
mapped onto a circular disk ∆′′′ +B1

′′′ +B2
′′′ such that the center of the disk lies in ∆

′′′

. Then
the mapping

t2 = A2(g1(s))

maps the 2-gon B1 + B2 with angle π/2r−1 and sides a1 and a3 to B1
′′′ + B

′′′

2 . We again apply
the reflection principle to extend the mapping to B3, the reflection of B1 + B2 with respect to
a3. The image of B3 is B

′′′

3 , which is the reflection of B1
′′′+B

′′′

2 with repsect to a
′′′

(the image of
a3). The resulting region ∆

′′′

+ B1
′′′ + B

′′′

2 + B
′′′

3 is again simply connected and can be mapped
to a disk. This process can be continued; after r steps, Rn is wholly covered by two-gons, and
we have two mappings

s∗ = Ar+1Ar . . . A2A1(t) = G(t) (3.3)

s∗ = Ar+1Ar . . . A2A1φ
−1
n (s) = g(s). (3.4)

G(t) maps ∆′ and B′ onto ∆∗ and B∗ = B
(r+2)
1 ; g(s) maps B1 and H1 = B2 + · · · + Br+1 onto

B∗ = B
(r+1)
1 and H∗ = B

(r+2)
2 + · · · + B

(r+2)
r+1 ; ∆∗ + B∗ + H∗ is an open disk. This verifies

properties 1, 2, and 3. Property 4 follows from

g(φn(t)) = Ar+1Ar . . . A2A1φ
−1
n (φn(t)) = Ar+1Ar . . . A2A1(t) = G(t),

and our claim is proved.
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Remark 3.1. The proof of our claim started with ∆ + B′ and then obtained maps from the
s-plane that incorporated larger and larger regions of Rn. With some modifications, we could
have started with Rn and obtained maps from the t-plane incorporating larger and larger regions
of ∆ via reflection.

Now we pull back the maps g(s) and G(t) in the t- and s-planes to our original region En+1

on the Riemann surface. The function

s∗ = g(s) = g(φn(p)) = g∗(p)

maps En onto B∗ + H∗ and the function

s∗ = G(t) = g∗∗(p)

maps ∆ + B onto ∆∗ + B∗. If p is in B, then g∗(p) and g∗∗(p) are defined and we have

g∗(p) = g(s) = g(φn(t)) = G(t) = g∗∗(p).

Now g∗(p) is defined throughout En, g∗∗(p) throughout ∆ + B. Hence they are analytic contin-
uations of each other, and they define a function

s∗ = φn+1(p)

which maps En+1 = En + ∆ onto the disk Rn+1. We have proved the following statement:
The interior of every of the infinitely many regions En = ∆1 + · · ·+ ∆n of an open covering

surface M̃ can be mapped one to one and conformally onto an open disk Rn. The boudnary of
En corresponds one-to-one and continuously to the circumference of Rn.

The mapping function for En is denoted φn(p). Selecting a point o in the interior of ∆1, we
can normalize these functions by setting

φn(o) = 0, φ′

n(o) = 1 (3.5)

for the functions and their derivatives with repsect to local parameters.
Now we form the functions

φ1,n(s) = φn(φ−1
1 (s))

for n = 1, 2, . . . , which are holomorphic in R1, univalent, and normalized at s = 0. Thus by
lemma 3.2, they constitute a normal family. We select a subsequence which converges on the
interior of R1 to a univalent function. We may do the same for the sequence

φ1(p), φ2(p), . . .

which contains a subsequence
φ1

1(p), φ1
2(p), . . .

which converges in the interior of E1 to a univalent holomorphic function φ0(p). Since we may
suppose that R2 again is in the s-plane, we can, as above, construct the functions

φ2,n(s) = φn(φ−1
2 (s))

and get the sequence
φ2

1(p), φ2
2(p), . . .

that converges throughout E2 to a function whose restriction to E1 is φ0. We call this function
φ0 as well.

Repeating this process and applying the diagonal principle, we get a sequence

φ1
1(p), φ2

2(p), . . .

where φk
k(p) is defined throughout En if k ≥ n and converges to φ0 there. Since En exhaust the

surface M̃ , we see that φ0(p) is univalent on M̃ and maps M̃ onto a region R in the s-plane. It

is easy to see that R is simply connected. Since M̃ is open, R cannot be the extended plane;
therefore, it is either the whole plane, or it can by mapped by the Riemann Mapping theorem
to the unit disk.
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3.2.2 Case 2: Closed

Now we consider the case that M̃ is closed. Then M̃ consists of a finite number of triangles
making up En, and a closing triangle ∆ which has three sides in common with En. Puncture ∆
by an interior point q. The remaining part is a simply connected open surface M̃0 which can be
mapped onto either a plane or an open disk; denote this map by s = φ(p). We will show that
only the former case can occur.

Let o be a point in E = En. Let E′ be the image of E and ∆′ of ∆\{q} under φ. Assume
s = 0 corresponds o. Let R′ be a disk about s = 0 contained in E′. Then ∆′ is outside the
disk, and so the function w = 1/s maps ∆′ to a bounded region of the w-plane. Considering

w = 1/φ(p) as a function on M̃\{q}, w is bounded and analytic in a neighborhood near q, so w
has a removable singularity at q. Let q′′ denote the image of q in the w-plane.

We argue by contradiction. Suppose that the image of the punctured surface is the interior
of a disk R in the s-plane, hence the exterior of a disk R

′′

in the w-plane. A sequence of points
p

′′

1 , p
′′

1 , . . . outside R
′′

and having an accumulation point on the circumference corresponds to

a sequence p1, p2, . . . on M̃ that also has an accumulation point, since M̃ is closed. Then this
accumulation point must be q, for any other accumulation point on M̃ would be mapped to the
exterior of R′′ and not a point on the circumference. Thus q = limn→∞ pn, and q

′′

= limn→∞ p
′′

n.
But the accumulation point of p

′′

1 , p
′′

1 , . . . can be selected arbitrarily on the circumference of R
′′

.
Thus to q there must correspond infinitely many points q

′′

, and we have a contradiction.
There is no contradiction if the radius of R

′′

is zero and q
′′

is the origin. Then in the s-plane,
the radius of R is infinite, and thus M̃ corresponds to the extended plane. The proof of the our
theorem is complete.

4 Uniformization with Projective Structures

In the time since the uniformization theorem was first proved by the methods of sections 2
and 3, newer tools have been developed and applied to the study of Riemann surfaces. In this
section, we take a more algebraic approach to uniformization using sheaf cohomology, following
Gunning [6], [7]. An advantage of this approach is the possibility of generalizing it to higher
dimensions. We present Gunning’s argument leading up to a geometric realization derived from
special structures on a Riemann surface, termed projective structures. The final step of deriving
the uniformization theorem from the geometric realization was not demonstrated by Gunning;
we conclude with a brief discussion of approaches to this problem.

4.1 Projective Structures

Our definition of a Riemann surface will be essentially the same as we have been using in the
previous sections. We present it here with emphasis on the formalism that will be specialized to
the affine and projective cases. A coordinate covering {Uα, zα} of a 2-dimensional manifold M
will be called a complex analytic coordinate covering if all the coordinate transition functions are
holomorphic functions. Two complex analytic coordinate coverings are equivalent if their union
is also a complex analytic coordinate covering. We will call an equivalence class of complex
analytic coordinate coverings a complex (analytic) structure on M. Then a Riemann surface is a
surface M with a fixed complex structure. Note that the only property of holomorphic functions
needed for these definitions is that holomorphic fucntions are closed under composition when
composition is defined. This is called the pseudogroup property.

By the above discussion, we can define a structure on a surface whenever we have a pseu-
dogroup. We will be interested in the affine and projective (pseudo)groups, which are subsets of
the set of complex analytic local homeomorphisms. The uniformization theorem tells us that the
universal covering surface of any Riemann surface is a sphere, plane, or unit disk, and the cover
transformations are given by certain projective transformations, a consequence of the fact that
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all conformal self-maps of the sphere and disk are projective, and those of the plane are affine.
We let A denote the group the complex affine mappings, and P deonte the complex projective
mappings. A function f ∈ A has the form

f(z) = az + b,

for some complex constants a 6= 0, b. A function f ∈ P has the form

f(z) =
az + b

cz + d

for constants a, b, c, d, ad − bc 6= 0. This last condition implies that f ′(z) 6= 0 We note for later
that any uniformization of a Riemann surface provides a coordinate covering of the surface such
that the local analytic coordinates are related by projective transformations.

It will be convenient to describe affine and projective transformations by certain differential
operators. Let f : U → V be a complex analytic local homeomorphism, where U, V are open
subdomains of C. We introduce 2 differential operators θ1, θ2:

θ1f(z) =
f ′′(z)

f ′(z)
(4.1)

θ2f(z) =
2f ′(z)f ′′′(z) − 3f ′′(z)2

2f ′(z)2
(4.2)

Since f is a local homeomorphism, f ′(z) 6= 0 for all z ∈ U , and thus θνf are holomorphic
throughout U for ν = 1, 2. We call θ2 the Schwarzian derivative. Note that if g : V → W is
another complex analytic local homeomorphism, then so is the composition h = g ◦ f : U → W .
A straightforward calculation shows that

θνh(z) = θνg(w) · f ′(z)ν + θνf(z) for ν = 1, 2, (4.3)

with w = f(z).
Now let Fν be the family of all complex analytic local homeomorphisms such that θνf(x) = 0

at all points z where f is defined. Then it is clear from equation (4.3) that Fν has the pseudogroup
property. As expected, F1 consists of the complex affine mappings, and F2 consists of the complex
projective mappings (or linear fractional or Möbius transformations).

We define affine and projective structures in the obvious way. Let {Uα, zα} be a coordinate
covering of a manifold M with transition functions zα = fαβ(zβ). In analogy to the complex
analytic case, the covering will be called an Fν coordinate covering if the transition fuctions fαβ

belong to Fν . Two coordinate coverings are equivalent if their union is also an Fν coordinate
covering. Then an equivalence class of Fν coordinate coverings is an Fν structure on M . The
adjectives affine and projective will be used for the appropriate structures.

Note that an affine coordinate covering is also a projective coordinate covering, since A ⊂ P.
This also means that two equivalent affine coordinate coverings are equivalent as projective
coordinate coverings. Thus an affine structure belongs to a well-defined projective structure.
We say that the affine structure is subordinate to that projective structure. In the same way, a
projective structure is subordinate to a well-defined complex structure. On a Riemann surface,
which has a fixed complex structure, we will be interested in the projective and affine structures
subordinate to that complex structure.

In the remainder of section 4, we will work towards defining the geometric realization of an
affine or projective structure and relating it to the uniformization theorem. We will need to prove
the existence of projective structures on Riemann surfaces, and for that we will need connections
on a Riemann surface. Connections will also give us a handle on projective (affine) structures
via a canonical correspondence. Following, we will use the group structure of projective (affine)
transformations to define the coordinate cohomology class, and from there arrive at the geometric
realization.
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4.2 Connections

Consider any complex analytic coordinate covering Υ = {Uα, zα} of a Riemann surface M . The
canonical bundle κ ∈ H1(M,O) is defined by the cocycle καβ(p) = f ′

αβ(zβ(p))−1 for coordinate
transition functions fαβ , and p ∈ Uα ∩ Uβ . To each Uα ∩ Uβ , associate the complex analytic
function θνfαβ , defined in zβ(Uα ∩ Uβ). Denote the function by σναβ ; i.e., in terms of the local
coordinate zβ(p) for p ∈ Uα ∩ Uβ , let

σναβ(zβ(p)) = θνfαβ(zβ(p)).

Observe that the transition functions satisfy fαγ(zγ) = fαβ ◦ fβγ(zγ) in Uα ∩ Uβ ∩ Uγ . Using
equation (4.3), we have

θνfαγ(zγ) = θνfαβ(zβ) · f ′

βγ(zγ)−ν + θνfβγ(zγ),

which can be rewritten

σναγ(zγ(p)) = σναβ(zβ(p)) · κβγ(p)−ν + σνβγ(zγ) (4.4)

for p ∈ Uα ∩ Uβ ∩ Uγ . Considering σναβ as an element in Γ(Uα ∩ Uβ ,O(κν)), we have

σναβ(zγ(p)) = κν
γβ(p)σναβ(zβ(p)).

Then equation (4.4) becomes

σναγ(zγ(p)) = σναβ(zγ(p)) + σνβγ(zγ(p)).

This shows that (σναβ) is a cocycle for the covering Υ. Therefore, to any complex analytic
coordinate covering Υ of M , there is a canonically associated cocycle

σν(θνfαβ) ∈ Z1(Υ,O(κν)), ν = 1, 2.

An Fν connection for the covering Υ is a zero cochain h = (hα) ∈ C0(Υ,O(κν)) such that
δh = σν , where δ is the coboundary operator. Two connections, h, h′ for the coverings Υ,Υ′ are
called equivalent if together they form part of a connection for the union of two coverings. Then
an equivalence class of connections will be called an Fν connection for the mainfold M . Again,
we use the adjectives affine and projective for the appropriate connections. Explicitly, an Fν

connection for Υ consists of sections (hα) ∈ Γ(Uα,O(κν)) such that

σναβ(p) = hβ(p) − hα(p) for p ∈ Uα ∩ Uβ . (4.5)

In terms of the local coordinate zα, the section hα is a holomorphic function; the coboundary
condition can be rewritten as

σναβ(zβ(p)) = hβ(zβ(p)) − καβ(p)−νhα(zα(p)) (4.6)

for p ∈ Uα ∩ Uβ .
The following theorem relates projective connections to projective structures and will allow

us to prove the existence of complex projective structures on Riemann surfaces.

Theorem 4.1. There is a canonical one-one correspondence between the Fν connections on a
Riemann surface and the Fν structures on that surface.

Proof. Let H be an Fν connection on a Riemann surface M . Choose a representative connection
(hα) ∈ C0(Υ,O(κν)) for some complex analytic coordinate covering Υ = {Uα, zα} of M . First we
show that, after passing to a refinement of the covering if necessary, there are complex analytic
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homeomorphisms wα on zα(Uα) = Vα ⊂ C such that hα(zα) = θνwα(zα). This amounts to
finding a solution to the equation

θνwα(zα) − hα(zα) = 0

in a neighborhood of a given point, with w′

α(zα) 6= 0. In the affine case, our equation is

w′′

α − w′

αhα = 0,

which has solutions for arbitrary values of w′

α at any point. In the projective case, we use the
formula

θ2w(z) = −2w′(z)1/2 d2

dz2
w′(z)−1/2.

Then we let v = (w′(z))−1/2, or w′(z) = v−2 so that our equation becomes

v′′

α(z) − 1

4
vαhα = 0,

which also has solutions with arbitrarily prescribed wα.
Now having solved for wα, any general such homeomorphism w̃α satisfying hα = θνw̃α can

be written as w̃α = uα ◦wα for uα ∈ Fν . For we can write uα = w̃α ◦w−1
α , so that w̃α = uα ◦wα.

Then using equation (4.3), we have

hα = θνw̃α = θνuα · (w′

α)ν + θνwα.

Since w′

α 6= 0 and θνwα = hα, we have θνuα = 0, so that uα ∈ Fν . Given an open cover {Uα},
the most general complex analytic coordinate covering is {Uα, wα ◦zα}, where zα is a coordinate
covering and wα : Vα → Wα ⊂ C, Vα = z(Uα), are complex analytic homeomorphisms, The
transition functions are given by

f̃αβ = (wα ◦ wα)(wβ ◦ zβ)−1 = wα ◦ fαβ ◦ w−1
β .

We rewrite this as
f̃αβ ◦ wβ = wα ◦ fαβ .

Again we apply equation (4.3):

θν f̃αβ · (w′

β)ν + θνwβ = (θνwα)(f ′

αβ)ν + θνfαβ ,

which we can rewrite as

(θν f̃αβ)(w′

β)ν = hα(κβα)ν − hβ + σναβ ,

where hα = θνwα. From formula 4.6, hα is a connection for the covering Υ if and only if
θν f̃αβ = 0, if and only if (f̃αβ) are transition functions of an Fν coordinate covering. The
correspondence between Fν connections for Υ and Fν coordinate coverings is one-to-one, by the
above observations. Equivalences are preserved, and the theorem follows.

4.3 Existence of Projective Structures on Riemann Surfaces

The existence of a holomorphic connection for a covering on a surface is equivalent to the condi-
tion that the associated cocycle (σναβ) is cohomologous to zero. The vanishing of H1(M,Ω(κν))
guarantees the existence of at least one connection. If a connection h exists, the most general
connection is h+ g, where g ∈ Γ(M,O(κν)) is an arbitrary section, i.e., g is an arbitrary abelian
(ν = 1) or quadratic (ν = 2) differential. Thus there is a one to one correspondence between
projective connections (if they exist) and quadratic differentials, and a one to one correspondence
between affine connections (if they exist) and abelian differentials. Now have several corollaries
that show the existence of affine and projective structures on Riemann surfaces.
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Corollary 4.1. Any open RS admits a complex affine structure subordinate to the given complex
structure. The set of all such structures can be put into one to one corespondence with the set
of abelian differentials on the surface.

The corollary follows from the fact that H1(M,O(κ)) = 0 for an open Riemann surface M ,
which can be shown by other methods.

Corollary 4.2. A compact Riemann surface M admits affine strctures if and only if c(κ) = 0,
hence if and only if the surface has genus one.

The proof is an application of the Serre duality theorem.

Corollary 4.3. Any Riemann surface admits a complex projective structure subordinate to the
given complex structure. The set of all such structures can be put into one to one correspondences
with the set of quadratic differentials on the surface.

Proof. For an open Riemann surface, the proof is as in corollary 4.1. For a compact Riemann
surface M, the case of genus 0 or 1 is obvious. For genus g > 1, by the Serre duality theorem,
H1(M,O(κ2)) ∼= Γ(M,O(κ−1)). Since the Chern class c(κ−1) = −c(κ) = 2 − 2g, we have that
c(κ−1) < 0, and therefore H1(M,O(κ2)) ∼= Γ(M,O(κ−1)) = 0, and again we have the existence
of projective structures.

4.4 The Coordinate Cohomology Class

Viewing the projective transformations as complex analytic homeomorphisms φ : P → P, P
is the projective linear group of rank 2 over C. We will use the group properties to define a
cohomology class that will be used in the geometric realization. In the following sections, we will
be dealing with the projective case; one can find corresponding statements for the affine case.

We make use of the cohomological machinery for coefficients in an abstract group. The
machinery is defined in a natural way, and we omit the details, except for two points: letting
Υ = {Uα} be an open covering of a topological surface M and G an abstract group, the one-
cocycle condition for a one-cochain (φαβ) ∈ C1(Υ, G) is that φαβ = φ−1

βα and φαβφβγ = φαβ

whenever Uα ∩ Uβ ∩ Uγ 6= ∅; the equivalence condition for two one-cocycles (φab), (ψαβ) is that
there exist a zero cochain (θα) ∈ C0(Υ, G) such that ψαβ = θαφαβθ−1

β .

We are interested in the first cohomology set H1(M,G), which we can relate to projective
structures via the following lemma, letting G = P.

Lemma 4.1. There is a canonical mapping from the set of projective structures on a surface M
into the cohomology set H1(M,P).

Proof. For any projective structure, select a representative coordinate covering Υ = {Uα, zα}
with coordinate transition functions (φαβ). These functions are elements of P and satisfy φαβ =
φ−1

αβ and φαγ = φαβφβγ whenever Uα∩Uβ ∩Uγ 6= ∅. Then (φαβ) define a 1-cocycle in H1(M,P).
If {Uα, z̃α} is an equivalent projective coordinate covering in terms of the same given cover
{Uα}, with transition functions (φ̃αβ), then z̃α and zα are related by functions θα ∈ P, so

that φ̃αβ = θαφαβθ−1
β . Then the cocycles (φ̃αβ), (φαβ) are equivalent, and the mapping from

equivalence classes of projective coordinate coverings in terms of Υ into H1(Υ,P) is well defined.
The mapping is compatible with refinement. Two projective coordinate coverings are equivalent
if and only if they induce equivalent coordinate coverings for a common refinement.

The element of H1(M,P) that corresponds to a projective stucture is called the coordinate
(cohomology) class of the structure.

Remark 4.1. If restricted to projective structures subordinate to a fixed complex structure, one
can show that this correspondence is one-to-one.
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We saw in our first two proofs that the simple-connectedness of our surface was required
in order to get the uniformizing map. Additionally, the uniformization of an arbitrary Rie-
mann surface was achieved by considering the non-trivial fundamental group and relating it
to cover transformations. We should therefore have a way to relate projective structures to
the fundamental group of a surface; this relation will be via the coordinate class. Again con-
sider an abstract group G, and let Hom(π1(M,p), G) be the set of homomorphisms from the
fundamental group into G. Let G act on Hom(π1(M,p), G) by conjugation; i.e., an element
g ∈ G takes χ ∈ Hom(π1(M,p), G) to χg ∈ Hom(π1(M,p), G) defined by χg(π) = g−1χ(π)g for
π ∈ π1(M,p). Then Hom(π1(M,p), G)/G is the quotient space under the group action. Our link
between projective structures and the fundamental group is provided by the following lemma.

Lemma 4.2. For any surface M and any group G, there is a natural one to one correspondence
between the cohomology set H1(M,G) and the set Hom(π1(M,p), G)/G.

We omit the proof and proceed to the geometric realization.

4.5 Geometric Realization

Let M be a Riemann surface with projective structure. It is easy to see that this structure
provides a projective structure on the covering surface M̃ . We now consider lemma 4.2 with
the case that G = P. Since the covering surface is simply connected, its fundamental group
is 1, so the lemma implies that the first cohomology group H1(M,P) is trivial. Thus there
is only one trivial coordinate cohomology class. Since any Riemann surface admits projective
structures, there is a projective structure whose coordinate cohomology class is trivial. Then
there is a representative coordinate covering of that projective structure such that the coordinate
transition functions are the identity mapping. We obtain from these local coordinate maps a
global mapping ρ : M̃ → D ⊂ P. Since ρ is a local homeomorphism, D is a connected open
subset of P. An equivalent coordinate covering representing the same projective structure defines
a mapping ρ1 : M̃ → D1, and the mappings are related by ρ1 = R ◦ ρ for some projective
transformation R. So ρ is unique up to projective transformations.

Now let π1(M) be the usual fundamental group of the Riemann surface M , and let Π ∼= π1(M)

be the group of cover transformations of M̃ . Then T̃ is represented by a projective transformation
in terms of the local coordinates for the given covering. This means that for any point p̃0 ∈ M̃ ,
there is a projective transformation T ∈ P such that

ρ(T̃ p̃) = T (ρ(p̃)) (4.7)

for all points p̃ near p̃0, since ρ is defined in terms of local mappings. Since equation (4.7) is

valid in a local neighborhood of p̃0, the map p̃0 7→ T is locally constant. Since M̃ is connected,
equation (4.7) is valid for all points in M̃ . We define the map ρ∗ : Π → P by ρ∗(T̃ ) = T , where

T̃ and T are as in equation (4.7). This map is evidently a group homomorphism. Also, it is clear
that T maps the domain D onto itself. The set of all such T , that is, the image of Π under ρ∗,
is a group that will be denoted by Γ, and Γ is isomorphic to Π.

For two mappings derived from the same projective structure, related by ρ1 = R ◦ ρ,

ρ∗1 = Rρ∗R−1,

as one can verify. These considerations lead to the following definition.

Definition 4.1 (Geometric Realization). The pair of mappings

ρ : M̃ → D ρ∗ : π1(M̃) → P (4.8)

related by

ρ(T̃ p̃) = ρ∗(T̃ )ρ(p̃) (4.9)

for all T̃ ∈ Π, p̃ ∈ M̃ , is called a geometric realization of a given projective structure on M.

24



Note that ρ is a complex analytic local homeomorphism, and ρ∗ is a group homomorphism.
The equivalence of geometric realizations (ρ, ρ∗), (ρ1, ρ

∗

1) is given by

ρ1 = Rρ (4.10)

ρ∗1 = Rρ∗R−1 (4.11)

for some R ∈ P. Since any geometric realization determines a projective structure, there is a
one to one correspondence between projective structures on a Riemann surface and equivalence
classes of geometric realizations on that surface.

Remark 4.2. If (ρ, ρ∗) is the geometric realization of a projective structure on M , the mappings
ρ∗ from all equivalent geometric realizations form an element (ρ∗) ∈ Hom(π1(M),P)/P. It
is easy to see that this element is the image of the coordinate cohomology class of the given
projective structure under the homomorphism of lemma 4.2.

What can we say about the geometric realization map ρ? We would like it to be our uni-
formization map, for some projective structure. We need the map to be bijective onto its image
D, and we need D to be simply connected. It can be shown that the map is a covering map,
which takes us part of the way there.

Theorem 4.2. Let M be a compact topological surface of genus g ¿ 1 with a complex projective
structure; let ρ : M̃ → D be its geometric realization, where D ⊂ P,D 6= P. Then ρ is a covering
map, and either D is analytically equivalent to the unit disk, or its complement in P has infinitely
many components.

4.6 Problem: Proof of Classical Uniformization

If the geometrical realization of a projective structure on any Riemann surface M gives a map
ρ : M̃ → D such that D is simply connected, then M̃ must be simply connected and ρ must be
a homeomorphism. Also, Γ must act discontinuously on D so that M ∼= D/Γ. We noted above
that there is a one to one correspondence between projective structures on a Riemann surface
and equivalence classes of geometric realizations. Therefore, to prove the uniformization theorem
using projective structures, we must answer the following question: given any simply connected
Riemann surface M , how can we choose a projective structure such that any representative
geometric realization map ρ : M → D is guranteed to have the domain D be simply connected?

Gunning did not answer this question. In light of theorem 4.1 and corollary 4.3, one could ap-
proach this problem using projective connections or quadratic differentials. Also, as we remarked
after lemma 4.1, the mapping from a projective structure subordinate to the given complex struc-
ture on a Riemann surface to its coordinate cohomology class is one-to-one, so, recalling remark
4.2, the study of coordinate cohomology classes provides another possible approach to completing
the proof of the uniformization theorem.

5 Conclusion

The unresolved question of obtaining uniformization by the geometric realization of a projective
structure demonstrates that an old topic can still provide new problems when approached from a
new perspective. From any of these three approaches, a logical further investigation would be to
generalize the uniformization theorem. By our proof of the theorem, we have demonstrated that
there exists some uniformization of every Riemann surface. The general uniformization problem
is to find all uniformizations of any Riemann surface. Weyl [10] divides the problem into two
parts. The first is to determine all covering surfaces of a given surface. The second is to find
all possible conformal maps of all covering surfaces onto a domain of the sphere. This second
problem involves the study of all conformal self-maps of the sphere, the plane, and the disk. A
further generalization of the uniformization theorem to planar surfaces is also possible. Finally,
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a major application of uniformization is the simplification of the theory of analytic functions on
a Riemann surface to functions automorphic under the group of covering transformations, and
in this area there are many possibilities for subsequent study.
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