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Introduction

Reverse mathematics is a relatively new program in the foundations of mathematics. Its
basic goal is to assess the relative logical strengths of theorems from ordinary non-set theo-
retic mathematics. To this end, one tries to find the minimal natural axiom system A that
is capable of proving a theorem T . In order to verify that A is in some sense the weakest
axiom system that would allow a proof of T it would be nice to be able to show that A in
fact follows from T , for this would demonstrate that the axioms of A are necessary for T
to hold. However, no theorem T from ordinary mathematics is strong enough to prove any
reasonable axiomatization of mathematics. Therefore, one must supplement T with a weak
axiom system B known as the base system. If one is able to find axiom systems A and B

and a theorem T such that A is capable of proving T and such that B + T is capable of
proving A in turn, then one says that T and A are equivalent over B. A proof that A follows
from B and T is called a reversal of T . The goal of reverse mathematics is to find axiom
systems to which the theorems of ordinary mathematics are equivalent.

It turns out that many of the theorems of ordinary mathematics are either provable in
the weak base system RCA0, which essentially corresponds to computable or recursive math-
ematics, or are equivalent over RCA0 to one of four subsystems of second order arithmetic
WKL0, ACA0, ATR0 and Π1

1 − CA0. These subsystems differ primarily in their set com-
prehension axioms, which lay out what sets must exist. Additionally, all of these systems
may be arranged linearly in terms of logical strength, with RCA0 the weakest system and
Π1

1 − CA0 the strongest. It is somewhat surprising that so many of the theorems of ordi-
nary mathematics can be shown equivalent to so few axiom systems, and it is even more
surprising that these systems can be ordered linearly by their logical strength. This is one of
the key insights provided by reverse mathematics. In Chapter I, we will explore the reverse
mathematics of some completeness and compactness properties of the real line with respect
to three of these basic axiom systems as an illustration of the standard practice of reverse
mathematics.

There are also additional benefits of studying reverse mathematics. In general, it is harder
to find a reversal of a given theorem than a proof of that theorem in the equivalent axiom
system. For this reason, reversals tend to grant some deeper insight into the theorems than
is afforded by their statements and proofs alone. For example, in Chapter II we will study
the reverse mathematics of Hilbert’s basis theorem. We will show that while Hilbert’s proof
of this theorem could never have been constructive, the theorem can be proven construc-
tively if one assumes a basic fact from the theory of ordinals, namely that ωω is well-ordered.
Moreover, we will show that the well-ordering of ωω is equivalent to Hilbert’s basis theorem
over constructive mathematics.

As another example of the extra insight that reverse mathematics can provide, we will
see in Chapter III that a reversal of T can sometimes be reinterpreted as showing that T
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is not an effective theorem, that is the structures that it proves to exist are not always
computable. In particular, we will show constructively that Hahn’s embedding theorem for
ordered abelian groups is not an effective theorem.

Chapter I - Elementary Reverse Mathematics

In this chapter we will study the reverse mathematics of completeness and compactness
properties of the real numbers in RCA0, ACA0 and WKL0. We will also briefly discuss re-
sults from reverse mathematics in other areas and in ATR0 and Π1

1 − CA0. All of the results
from this chapter may be found in [1]. Before discussing these results, however, we must
briefly turn our attention to second order arithmetic, the arena in which the action of reverse
mathematics occurs.

Second Order Arithmetic

Most of the reverse mathematics to date has been carried out using subsystems of second
order arithmetic, often denoted Z2. The language of second order arithmetic consists of the
logical symbols ∧,∨,¬,(,), quantifiers ∀ and ∃, relations =,<,∈, binary operators + and ∗,
a constant symbol 0, a unary operator S representing the successor function on the natural
numbers, and a two-tiered system of variables x,y,z,. . . that range over natural numbers and
X,Y ,Z,. . . that range over sets of natural numbers.

Sets of sets of natural numbers are not part of second order arithmetic, hence it cannot
handle essentially uncountable mathematics. While this is a significant limitation, large
parts of mathematics can be dealt with using only countable structures. For example, the
study of continuous functions on complete separable metric spaces is not essentially uncount-
able. Using second order arithmetic also has technical advantages because basic existence
axioms are not as strong as they might be in essentially uncountable mathematics.

The axioms of second order arithmetic are the usual logical axioms and arithmetic axioms
of Peano arithmetic in addition to two axiom schemata. The first, is the comprehension
axiom schema, which essentially dictates which sets are known to exist. In full second order
arithmetic this schema is given by

∃X∀n(n ∈ X ↔ φ(n))

where φ is any well-formed formula in which X is not a free variable. φ may have other free
variables, in which case the universalization of the sentence above is understood to hold, or
it may have parameters.
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The second axiom schema is the schema of induction

(φ(0) ∧ ∀n(φ(n) → φ(Sn))) → ∀nφ(n)

where φ is a well-formed formula, which may or may not have other free variables. In full
second order arithmetic, this axiom schema is actually redundant. It may be replaced by
the second order induction axiom

∀X((0 ∈ X ∧ ∀n(n ∈ X → Sn ∈ X)) → ∀n(n ∈ X)).

This sentence in addition to the comprehension schema immediately imply the induction
schema.

All subsystems of second order arithmetic we will consider here include the basic logical
and arithmetic axioms. The comprehension and induction axiom schemata, however, are
limited in these subsystems. In order to delineate these limitations, we must first classify
the formulae of second order arithmetic.

We say that a formula is an arithmetical formula if it has no universal or existential quan-
tifiers that range over set variables. In other words, the only quantifiers in an arithmetical
formula are number quantifiers. Arithmetical formulae may be further subdivided into the
classes Σ0

0, Σ0
1, Π0

1 and ∆0
1. A formula is said to be Σ0

0 if it is equivalent to a formula with
only number quantifiers that are bounded above and no other quantifiers.1 We say that a
formula is Σ0

1 if it is equivalent to a formula of the form ∃nφ(n) where φ(n) is Σ0
0. Similarly,

a formula is Π0
1 if it is equivalent to a formula of the form ∀nφ(n) where φ(n) is Σ0

0. A
formula is ∆0

1 just in case it is both Σ0
1 and Π0

1. It should be noted that ∆0
1 formulae define

recursive sets and that Σ0
1 formulae define recursively enumerable sets. The complement of

a Σ0
1 formula is Π0

1 and vice-versa.

Having made these preliminary definitions, we may now turn our attention to our first
subsystem of second order arithmetic, RCA0.

The Base System: RCA0

RCA0, or recursive comprehension axiom with limited induction, is the base system used
in most of reverse mathematics, and it will be the base systems for all of the results we
discuss here. It is a subsystem of second order arithmetic that is meant to correspond more
or less with computable and constructive mathematics. In RCA0, the full comprehension
schema is replaced by comprehension only for ∆0

1 sets. That is we have

∃X∀n(n ∈ X ↔ φ(n))

1By equivalent here we mean that the same sets of natural numbers satisfy the two formulae. We will
treat this equivalence informally here for the sake of readability. For more details, see [2]. By a number
quantifier that is bounded above we mean expressions such as ∀j(j < n → φ(j)) or ∃i ≤ p(θ(i))
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only for formulae φ that are ∆0
1. Similarly, the induction schema is limited to Σ0

1 formulae.
In other words, RCA0 is second order mathematics restricted to recursive sets and where
induction is restricted to recursively enumerable sets. Not surprisingly, the recursive sets
form a minimal model of RCA0 (See [1] Corollary II.1.8).

Finite sets, ordered tuples, and finite sequences may be encoded as natural numbers
using elementary number theory in RCA0. Similarly, infinite sequences and the Cartesian
products of sets may be encoded as sets, and a function f : X → Y may be encoded as
subsets of X×Y in the standard manner. Additionally, the set of integers, Z, and the set of
rational numbers, Q, and the arithmetic operations on these sets can be encoded and shown
to fulfill the usual ring and field axioms respectively. We will employ the ordinary notation
of mathematics, and for the most part ignore these issues of encoding as atomic terms for
these encodings are all Σ0

0. For details, see [1]. The encoding of R is more subtle in second
order arithmetic and will be discussed below.

Primitive Recursion

In this section we will show some basic results about RCA0. Namely, we will show that
all primitive recursive functions are provably total functions in RCA0 and will derive two
important consequences from this fact.

Theorem I.1. If f : Nk → N is a primitive recursive function, then its existence may be
proven in RCA0. Additionally, the characteristic function of a set X is also exists in RCA0.
That is, the following functions may be shown to exist in RCA0:

(i) The constant functions

(ii) The composition of two functions

(iii) For any two functions f : Nk → N and g : Nk+2 → N, a function h : Nk+1 → N defined
by

h(0, n1, . . . , nk) = f(n1, . . . , nk)

h(m + 1, n1, . . . , nk) = g(h(m, n1, . . . , nk), m, n1, . . . , nk)

(iv) For any function f : Nk+1 → N such that for all (n1, . . . , nk) ∈ Nk there exists some
m ∈ N such that f(m,n1, . . . , nk) = 1, a function g : Nk → N defined by

g(n1, . . . , nk) = least m such that f(m, n1, . . . , nk) = 1

and
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(v) For any set X, the characteristic function of X, χX : N → N defined such that χX(n) = 1
if n ∈ X and χX(n) = 0 if n 6∈ X.

Proof.

(i) If c ∈ N is a constant, then the function f = {(i, j) | j = c} exists by Σ0
0 comprehension.

(ii) Let f : X → Y and g : Y → Z be functions. Then their composition h : X → Z is given
by

h = {(i, j) | ∃k ∈ Y ((i, k) ∈ f ∧ (k, j) ∈ g)} = {(i, j) | i ∈ X ∧ ∀k((i, k) ∈ f → (k, j) ∈ g)},

which exists by ∆0
1 comprehension. This is a well-defined function provided that f and g are

well-defined functions.

(iii) Let θ(s, m, (n1, . . . , nk)) be the Σ0
0 formula that says that s is a sequence of the initial

m values of h(n1, . . . , nk). That is, θ(s, m, (n1, . . . , nk)) says that s encodes a sequence of
length m + 1 such that s0 = f(n1, . . . , nk), and for all i < m, si+1 = g(si, m, n1, . . . , nk).

We may define

h = {((m, n1, . . . , nk), j) | ∃s(θ(s, m, (n1, . . . , nk)) ∧ s(m) = j)}
= {((m, n1, . . . , nk), j) | ∀s(θ(s, m, (n1, . . . , nk)) → s(m) = j)},

which exists by ∆0
1 comprehension. To prove that this is a well-defined function, we must

show in RCA0 that there exists an essentially unique s for all m and (n1, . . . , nk) such that
θ(s, m, (n1, . . . , nk)).

Fix (n1, . . . , nk). The formula

φ(m) = ∃s θ(s, m, (n1, . . . , nk))

is Σ1
0, and

φ(0) ∧ ∀m(φ(m) → φ(Sm))

is by hypothesis a theorem of RCA0. Therefore, by Σ0
1 induction, ∀m φ(m) is a theorem of

RCA0. Moreover, we can prove that s is unique for fixed m, i.e.

(θ(s, m, (n1, . . . , nk)) ∧ θ(s′, m, (n1, . . . , nk))) → ∀i < m + 1(si = s′i).

(iv) Define

g = {((n1, . . . , nk), m) | ((m, n1, . . . , nk), 1) ∈ f ∧ ¬∃m′ < m(((m′, n1, . . . , nk), 1) ∈ f)},

which exists by Σ0
0 comprehension. This is a well-defined function by hypothesis.
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(v) Define
χX = {(i, j) | (i ∈ X ∧ j = 1) ∨ (i 6∈ X ∧ j = 0)},

which exists by Σ0
0 comprehension.2

Corollary I.2. For any infinite set X, one can prove in RCA0 that there exists a function
πX : N → X that enumerates all of the elements of X in order.

Proof. We will show that πX is primitive recursive relative to χX , which exists by (v)
above. First, define νX : N → N by νX(n) = least m such that n > m and χX(m) = 1,
which exists by (iv) above. Now we can define πX by (iii) above.

πX(0) = νX(0)

πX(m + 1) = νX(πX(m)).2

Corollary I.3. Let φ(n) be a Σ0
1 formula in which f does not occur freely. One can prove

in RCA0 that either only finitely many n satisfy φ(n), or there exists a one-to-one function
f : N → N whose range is precisely those n that satisfy φ(n).

Proof. By the normal form theorem, there exists a Σ0
0 formula θ(j, n) such that φ(n)

is logically equivalent to ∃j θ(j, n). Define X = {(j, n) | θ(j, n) ∧ ¬∃j′ < j(θ(j′, n))}. Ei-
ther only finitely many n satisfy φ(n), or X is infinite. If X is infinite, then by Corol-
lary I.2, πX exists, and we may set f(n) = p2(πX(n)) where p2 is the projection function
p2 = {(m, k) |m encodes (i, j) ∧ k = j, which exists by Σ0

0 comprehension.2

Arithmetical Comprehension: ACA0

ACA0, or arithmetical comprehension with limited induction, is a formal system defined
similarly to RCA0 although it is in fact quite a bit stronger. Just as in RCA0 it has all the
logical and arithmetic axioms of standard Peano arithmetic. Unlike RCA0, however, ACA0

has a comprehension schema covering all arithmetical formulae. Recall that a formula is
arithmetical just in case it has no quantifiers ranging over the universe of sets. Induction
in ACA0 is accomplished using a single axiom - the second order axiom of induction - as
discussed above. This allows induction to be carried out on all arithmetical formulae.

The following lemma provides some weaker conditions for concluding that arithmetical
comprehension holds. These are very useful in proving reversals involving ACA0.

Lemma I.4. Arithmetical comprehension is equivalent over RCA0 to the following:

(i) Σ0
1 comprehension, i.e. ∃X∀n(n ∈ X ↔ φ(n)) for any Σ0

1 formula φ in which X is not free.
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(ii) For all one-to-one functions f : N → N, the range of f exists, i.e.

∃X∀n(n ∈ X ↔ ∃m(f(m) = n)).

Proof. That arithmetical comprehension implies (i) is clear. That (i) implies (ii) follows
from the fact that ∃m(f(m) = n) is Σ0

1. That (ii) implies (i) follows from Corollary I.3. All
that remains to be shown is that (i) implies arithmetical comprehension.

Assume (i) holds. Every arithmetical formula is equivalent to some formula that con-
sists of alternating universal and existential number quantifiers followed by a Σ0

0 formula.2

Therefore, we may take our formula to be in this form and further stipulate that the string
of quantifiers begins with an existential quantifier by using dummy variables if necessary.
Because the negation of a universal quantifier is an existential quantifier and vice-versa, and
because the complement of a set necessarily exists, it is immaterial whether the formula
begins with a universal quantifier or an existential quantifier. We proceed by induction on
m, the number of alternations between types of quantifiers that appear. The m = 0 case
follows from (i). Assume that comprehension holds in the case m = k, and let φ(n) have
k + 1 alternations beginning with an existential quantifier. We may write φ(n) as ∃j θ(j, n)
where θ(j, n) has k alternations beginning with a universal quantifier. Let

X = {(j, n) | ¬θ(j, n)}.

The negation in ¬θ(j, n) may be propagated along the alternating quantifiers until it is
absorbed by the Σ0

0 portion of θ(j, n). This results in a formula that conforms to the m = k
case, and thus X exists by the inductive hypothesis. Let

Y = {n | ∃j((j, n) 6∈ X)},

which exists by Σ0
1 comprehension. We have

∀n(φ(n) ↔ ∃j θ(j, n) ↔ ¬∀j(¬θ(j, n)) ↔ ¬∀j((j, n) ∈ X) ↔ ∃j((j, n) 6∈ X) ↔ n ∈ Y ).

Thus, Y is the set defined by φ(n), so we have comprehension with k+1 quantifier alternations.2

Weak König’s Lemma: WKL0

WKL0, or RCA0 with weak König’s lemma, is an axiom system with logical strength
between RCA0 and ACA0. It consists of the axioms of RCA0 plus an additional lemma
concerning infinite binary trees called weak König’s lemma.

Definitions. Recall that in second order arithmetic finite sequences may be encoded as
natural numbers. Let 2<N denote the set of binary sequences, or finite sequences consisting

2For a constructive proof of this statement that is readily formalized into RCA0, see [2].
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only of 0’s and 1’s. This set exists in RCA0 by Σ0
0 comprehension. If s = (s0, . . . , sn) ∈ 2<N

is a sequence, let `(s) = n + 1 be the length of s. This function is primitive recursive and
hence exists in RCA0 by Theorem I.1. If s = (s0, . . . , sn) and t = (t0, . . . , tm) are two binary
sequences, then define the concatenation of s and t to be s � t = (s0, . . . , sn, t0, . . . , tm). A
binary sequence s is said to be an initial part of a binary sequence t, denoted s ⊆ t, just in
case there exists a (possibly null) sequence u such that s � u = t.

A binary tree, T ⊂ 2<N is a set of binary sequences such that if s ∈ T and t ⊆ s, then nec-
essarily t ∈ T . A path through T is a function f : N → {0, 1} such that (f(0), . . . , f(n)) ∈ T
for all n ∈ N. Weak König’s lemma states that for any infinite binary tree T , there exists a
path through T .3

Real Numbers in RCA0

We will now define and develop some of the basic properties of the real numbers R within
second order arithmetic. We will then show that RCA0 is strong enough to prove that R
satisfies a certain completeness property called nested interval completeness. In the chapters
that follow, we will study the reverse mathematics of real numbers in ACA0 and WKL0,
culminating with the following theorem:

Main Theorem I. The following are theorems of RCA0:

(A) The real numbers are nested interval complete.

(B) ACA0 is equivalent to the following statements:
(ii) The real numbers are complete.
(iii) [0, 1] is sequentially compact.

(C) WKL0 is equivalent to the compactness of [0, 1].

Definitions. A set x is a real number in second order arithmetic if it is an infinite
sequence of rational numbers x = {xk ∈ Q}k∈N such that |xk − xk+i| ≤ 2−k for all k, i ∈ N.
Notice that the set of real numbers R does not exist in second order arithmetic as it is
uncountable. We will however, use the term x ∈ R as a stand-in for the full expression that
x is a real number. x ∈ R is not a Σ0

0 formula, but is instead a Π0
1 formula because of the

universal quantification over i and k in the definition.

Two real numbers x and y are equal if, for all k ∈ R, |xk − yk| ≤ 2−k+1. Again we will
denote equality as x = y, but this is not ordinary equality and is Π0

1 rather than Σ0
0. Addi-

3The full form of König’s lemma is the same statement concerning finitely branching trees with arbitrary
natural numbers for nodes. König’s lemma is in fact equivalent to ACA0 over RCA0. See [1] for details.
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tion, multiplication and comparison can be defined similarly and atomic formulae involving
these are also Π0

1. Because, for example, x < y is equivalent to ¬(x ≥ y), atomic formulae
involving comparison are actually ∆0

1.

Sequences of real numbers may also be encoded as sets, and we say that a sequence of
real numbers {xn ∈ R}n∈N converges to a real number x, denoted xn → x, just in case
∀ε > 0∃i∀j(|x− xi+j| < ε).

We may imbed the rationals in the reals by identifying a rational number q with the real
number q = {qk = q}k∈N, and say that a real number x is rational if x = q for some q ∈ Q.
It can be shown in RCA0 that R satisfies all the usual axioms of an ordered field.

While we cannot prove that the reals are complete4, we can prove a slightly weaker com-
pleteness property.

Theorem I.5. In RCA0 one can prove that the real numbers are nested interval com-
plete, i.e. if {an ∈ R}n∈N and {bn ∈ R}n∈N are sequences of real numbers such that
an ≤ an+1 ≤ bn+1 ≤ bn for all n ∈ N, and such that bn − an → 0, then there exists a real
number x such that an ≤ x ≤ bn for all n.

Proof. Let an = {an,k ∈ Q}k∈N and bn = {bn,k ∈ Q}k∈N for all n ∈ N. Define

Xk = {m | (m ≥ k + 2) ∧ (bm,m − am,m ≤ 2−k+2)},

which exists by ∆0
1 comprehension. Because bn − an → 0, Xk is non-empty for each k ∈ N.

By Theorem I.1 (iv) and (v), there exists a function f : N → N such that

f(k) = least m such that m ∈ Xk.

Define x = {xk = af(k),f(k)}k∈N. By definition, x is a real number and an ≤ x ≤ bn for all
n.2

Real Numbers in ACA0

Theorem I.6. ACA0 is strong enough to prove that R is complete and that [0, 1] is
sequentially compact.

Proof. We will first prove the sequential compactness of [0, 1]. Let {xn ∈ [0, 1]}n∈N be
a sequence of real numbers in [0, 1]. We must show that there exists a subsequence that
converges to a real number x in [0, 1]. Let

φ(k, i) = ∀N∃n > N((i < 2k) ∧ (i ∗ 2−k ≤ xn ≤ (i + 1) ∗ 2−k)).

4In fact, as Main Theorem I asserts, the completeness of the reals is equivalent to ACA0, which is strictly
stronger than RCA0.
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φ(k, i) says that infinitely many xn lie in the interval [i ∗ 2−k, (i + 1) ∗ 2−k] ⊂ [0, 1]. Because
0 ≤ xn ≤ 1 for all n, infinitely many xn must lie in at least one of these intervals. Thus
φ(k, i) for at least one i for each k. Now let

f = {(k, i) |φ(k, i) ∧ ¬∃j((j > i) ∧ φ(k, j))},

which exists by arithmetical comprehension. f is a well defined function because (k, i) ∈ f
exists and is unique for each k by definition.

Let x = {xk = f(k) ∗ 2−k}k∈N. x is a real number because each rational number xk with
k > N will lie in [f(N) ∗ 2−N , (f(N) + 1) ∗ 2−N ]. 0 ≤ xk ≤ 1 for all k, so x ∈ [0, 1]. Now
define another function

g(k + 1) = least n such that (n > g(k)) ∧ (|x− xn| ≤ 2−k),

which exists by Theorem I.1 and because infinitely many xn lie within 2−k of x for all k by
definition. The subsequence {xg(k)}k∈N converges to x. Thus, [0, 1] is sequentially compact.

Now we shall show that R is complete. In other words, we must show that any Cauchy se-
quence, i.e. a sequence of reals {xn ∈ R}n∈N such that ∀ε > 0∃m ∀n(m < n → |xm−xn| < ε),
converges to a real number x. Now it is clear from the definition that every Cauchy sequence
is bounded, so by linearly rescaling we may take the sequence to lie entirely in [0, 1]. The
last result implies that a subsequence of this scaled sequence converges. However, if a subse-
quence of a Cauchy sequence converges, then the entire sequence converges to the same num-
ber. Thus, after reversing the scaling process, we have found an x ∈ R such that {xn} → x.2

Theorem I.7. ACA0 is equivalent to the completeness of R and the sequential compact-
ness of [0, 1] over RCA0.

Proof. We have already shown that these two theorems may be proven in ACA0.
Therefore, we need only find reversals. That is, we must prove that given RCA0 and either of
these two theorems, we can show that arithmetical comprehension holds. As we saw in the
proof of the previous theorem, the sequential compactness of [0, 1] implies the completeness
of R. Therefore, it is sufficient to find a reversal for the completeness of R.

Working in RCA0, assume that R is complete. Let f : N → N be an arbitrary function.
Let

xn =
n∑

i=0

2−f(i).

{xn} is a bounded, increasing sequence of real numbers, so it is Cauchy. By the completeness
of R, {xn} → x for some x ∈ R. Having this number x in hand allows us to effectively bound
our search for a number i ∈ N such that f(i) = k. That is, we know that for all k,

∃i(f(i) = k) ↔ ∀n(|xn − x| < 2−k → ∃i ≤ n(f(i) = k)).
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However, this equivalent reformulation of k being in the range of f is Π0
1, while the original

formulation is Σ0
1. Therefore, we may define

X = {k | ∃i(f(i) = k)},

which exists by ∆0
1 comprehension. We have constructed a set that is equal to the range of

an arbitrary function f . By Lemma I.4, this implies arithmetical comprehension.2

Real Numbers in WKL0

Following Main Theorem I, we wish to show that WKL0 is equivalent to the compactness
of [0, 1] over RCA0. To say that [0, 1] is compact is to say that given a countable covering
of [0, 1], i.e. sequences of real numbers {an ∈ R}n∈N and {bn ∈ R}n∈N such that for any
x ∈ [0, 1] there exists i ∈ N such that ai ≤ x ≤ bi, there is a finite subcovering of [0, 1], i.e.
there exists N such that for any x ∈ [0, 1] there exists i < N such that ai ≤ x ≤ bi. We will
first prove that [0, 1] is compact working in WKL0, and then we will find a reversal.

Theorem I.8. WKL0 is strong enough to prove the compactness of [0, 1].

Proof. First we will reduce to the special case where an = an ∈ Q and bn = bn ∈ Q.
Let

φ(q, r) = q ∈ Q ∧ r ∈ Q ∧ ∃i(ai < q < r < bi).

φ(q, r) is Σ0
1, so by Corollary I.3, there exists a function f : N → Q×Q such that

∀q ∀r(φ(q, r) ↔ ∃n((q, r) = f(n))).

Without loss of generality, we may take (an, bn) = f(n).

We proceed by finding, for each n ∈ N, a partition of [0, 1] into 2n pieces indexed by the
set of binary sequences s ∈ 2<N of length `(s) = n. Let

cs =

`(s)−1∑
i=0

si

2i+1

and

ds = cs +
1

2`(s)
.

c(0,...,0) = 0 and d(1,...,1) =
∑n−1

i=0 2−i+1 + 2−`n = 1, where n is the number of 1’s, so [cs, ds] do
in fact partition [0, 1] for each n. Note that if s ⊆ t, then [ct, dt] ⊆ [cs, ds]. We will now define
a tree T based on these partitions and the countable covering of [0, 1] by rational intervals.
Let

T = {s ∈ 2<N | ¬∃i ≤ `(s)(ai < cs < ds < bi)},
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which exists by Σ0
0 comprehension.

We claim that there is no path through T . Assume otherwise that there is a path
f : N → {0, 1} through T . We will associate f with a real number in [0, 1] by using its
binary representation. That is, define

xf = {
n∑

i=0

f(i)

2i+1
∈ Q}n∈N.

We have xf ∈ [0, 1] and xf is the unique number such that xf ∈ [c(f(0),...,f(n)), d(f(0),...,f(n))]
for all n ∈ N by Σ0

1 induction. Because {(an, bn)} cover [0, 1], there exists i such that
ai < xf < bi. Because xf is the only number that lies in [c(f(0),...,f(n)), d(f(0),...,f(n))] for all n,
and because s ⊆ t implies [ct, dt] ⊆ [cs, ds], we may find N ≥ i such that
ai < c(f(0),...,f(N)) < d(f(0),...,f(N)) < bi. This, however, implies that (f(0), . . . , f(N)) 6∈ T , by
the definition of T , which contradicts the fact that f is a path.

We have shown that there is no path through T . By weak König’s lemma, this implies
that T is finite. Let N be larger than the length of any binary sequence in T . We thus have,
by the definition of T , that

∀s ∈ 2<N(`(s) = N → ∃i ≤ N(ai < cs < ds < bi)).

However, {[cs, ds]}`(s)=N cover [0, 1], therefore {(a0, b0), . . . , (aN , bN)} is a finite subcover of
[0, 1].2

Definitions. In what follows we will call a real number x ∈ [0, 1] a Cantor point if there
exists a path f : N → {0, 1} through 2<N such that

x = {
n∑

i=0

2f(i)

3i+1
∈ Q}n∈N.

If no such path exists, then we will say that x ∈ [0, 1] is a non-Cantor point.

Additionally, for any binary tree T ⊂ 2<N, define the set of leaves of T to be

LT = {s ∈ T | s � (0) 6∈ T ∧ s � (1) 6∈ T},

which exists for any given T by Σ0
0 comprehension.

Lemma I.9. Over RCA0 for a given tree T , if LT is finite, then either T is finite or it
has a path.

Proof. Assume that T is infinite, but that LT is finite. We shall show that T has a path.
Consider the set of binary sequences

X = {s ∈ T | ∃t ∈ LT (s ⊆ t)},

12



which exists by Σ0
0 comprehension because LT is finite. For any given t ∈ LT , there can

only be finitely many subsequences of t. Because the finite union of finite sets is finite, this
implies that X is finite. Because T is infinite, there must exist a binary sequence s0 ∈ T
such that s0 6∈ X. By definition of X, there exists s1 ∈ T such that s1 is either s0 � (0)
or s0 � (1), and s1 6∈ X. By Σ0

0 induction there exists sn for all n such that sn ∈ T and
sn+1 is either sn � (0) or sn � (1). Let f : N → {0, 1} to be either f(n) = s0

n if n < `(s0) or

f(n) = s
n−`(s0)+1
n otherwise. By the above, f is a path through T .2

Theorem I.10. WKL0 is equivalent to the compactness of [0, 1] over RCA0.

Proof. By Theorem I.8, it is sufficient to find a reversal for the compactness of [0, 1].
Working in RCA0, assume that [0, 1] is complete. Let T be a binary tree such that there
are no paths through T . Our goal is to show that T must be finite. By Lemma I.9, it is
sufficient to show that LT is finite.

Define the following sequences of real numbers in [0, 1] indexed by binary sequences
s ∈ 2<N:

as =

`(s)−1∑
i=0

2si

3i+1

bs = as + 3−`(s)

cs = as − 3−`(s)−1

ds = bs + 3−`(s)−1

For any non-Cantor point x there exists s ∈ 2<N such that x ∈ (bs�(1), as�(0)) while no
Cantor points will lie in any of these intervals. This may be verified by formalizing in RCA0

any standard presentation of the Cantor set (see, for example, [3]). Thus, the intervals
X = {(bs�(1), as�(0))}s∈2<N cover precisely the non-Cantor points of [0, 1].

We claim that the set Y = {(cs,ds)}s∈LT
consists of pairwise disjoint intervals that

cover at least the Cantor points of [0, 1]. From the definition of cs and ds, any two in-
tervals (cs,ds) and (ct,dt) are disjoint unless s ⊆ t or t ⊆ s. However, no two leaves of
a tree may overlap in this way, so we have that the intervals given above are pairwise disjoint.

To see that the intervals in Y cover at least the Cantor points of [0, 1], we will assume oth-

erwise and show that this implies the existence of a path for T . Let x = {
∑n

i=0
2f(i)
3i+1 }n∈N be a

Cantor point that does not lie in any interval (cs,ds) for s ∈ LT . Then, f is a path through T
because x ∈ (c(f(0),...,f(n)),d(f(0),...,f(n))) for all n ∈ N by ∆0

1 induction, so (f(0), . . . , f(n)) ∈ T
for all n.
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Hence, we have shown that the intervals X ∪ Y together form a countable cover of [0, 1].
By compactness, there should be a finite subcover. However, each of the intervals in Y is
needed because they are pairwise disjoint and each interval contains at least one Cantor
point as ∈ (cs,ds). Thus Y must be a finite set. This implies that LT is finite, which in turn
implies that T is finite, completing the proof.2

Proof of Main Theorem I. The theorem follows directly from Theorems I.5, I.7, and
I.10.2.

Further Results

In this section we will list several other standard reverse mathematical results and briefly
discuss the remaining standard subsystems of second order arithmetic used in reverse math-
ematics, ATR0 and Π1

1 − CA0. Proofs of all of these theorems may be found in [1].

Theorem I.11. The following theorems can be proven in RCA0:

(i) The real line satisfies the intermediate value property.

(ii) The Baire category theorem.

(iii) A version of the Tietze extension theorem for complete separable metric spaces.

(iv) A strong version of the soundness theorem in mathematical logic.

(v) The algebraic closure for any countable field exists.

(vi) The Banach/Steinhaus theorem.

Theorem I.12. The following are equivalent to WKL0 over RCA0:

(i) The Heine/Borel theorem for compact metric spaces.

(ii) Several properties of continuous functions on compact metric spaces including uniform
continuity, the maximum principle, Riemann integrability, and Weierstrass approximation.

(iii) The completeness and compactness theorems of mathematical logic.

(iv) The uniqueness of the algebraic closure for countable fields.

(v) The Brouwer and Schauder fixed point theorems.
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(vi) The Peano existence theorem for solutions of ordinary differential equations.

(vii) The separable Hahn/Banach theorem.

Theorem I.13. The following are equivalent to ACA0 over RCA0:

(i) Every countable vector space over Q has a basis.

(ii) Every countable commutative ring has a maximal ideal.

(iii) The divisible closure of an arbitrary countable Abelian group is unique.

(iv) König’s lemma for subtrees of N<N

(v) Ramsey’s theorem for colorings of [N]3.

ATR0, or arithmetical transfinite recursion with limited induction, is a subsystem of sec-
ond order arithmetic that is logically stronger than ACA0 and the other systems we discussed
in this chapter. The system may be described informally as taking ACA0 and allowing for
the transfinite iteration of the Turing jump operator along any countable well-ordering.

Theorem I.14. The following are equivalent to ATR0 over RCA0:

(i) Lusin’s separation theorem.

(ii) The Borel domain theorem.

(iii) The perfect set theorem.

(iv) The existence of Ulm resolutions.

(v) The comparability of countable well-orderings.

(vi) The open and clopen Ramsey theorems.

Π1
1 − CA0, or Π1

1 comprehension with limited induction, is the strongest subsystem of
second order arithmetic considered in standard reverse mathematics. It is defined similarly
to RCA0 and ACA0 except recursive and arithmetical comprehension are replaced with Π1

1

comprehension, i.e. the comprehension schema applies to formulae of the form ∀X(φ(X))
where X is a set variable and φ(X) is arithmetical.
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Theorem I.15. The following are equivalent to Π1
1 − CA0 over RCA0:

(i) The Cantor/Bendixson theorem for closed sets.

(ii) Kondo’s theorem on coanalytic uniformization.

(iii) Silver’s theorem on Borel equivalence relations.

(iv) Every countable Abelian group is a direct sum of a divisible group and a reduced group.

(v) The ∆0
2 Ramsey theorem.

As can be seen from this list of results, reverse mathematics provides a wealth of infor-
mation about the equivalencies and relative logical strengths of many of the theorems of
mathematics. It is surprising that all of these theorems can be seen as equivalent up to
constructive mathematics to basic axioms that describe what counts as a set. Furthermore,
it is quite intriguing that all of these theorems can be arranged in a linear ordering of logical
strength starting from RCA0 and working up to Π1

1 − CA0.

Finally, it may be interesting to note that each of the five standard subsystems of second
order arithmetic that arise in the study of reverse mathematics can be seen as corresponding
to different philosophical approaches to the foundations of mathematics. RCA0 can be asso-
ciated with the constructivism of Bishop, WKL0 with the finitistic reductionism of Hilbert,
ACA0 with the predicativism of Weyl and Feferman, ATR0 with the predicative reductionism
of Friedman and Simpson, and Π1

1 − CA0 with the impredicativity of Feferman and others.
These connections are explored in more detail in [1].

Reverse mathematics, thus, gives deep insight into the nature of many theorems of or-
dinary mathematics, into the relations and equivalencies between these theorems, into the
axioms that we may choose to consider and the nature of the set, and into several of the
philosophical approaches to the foundations of mathematics. In the following two chapters
we will explore some interesting theorems of reverse mathematics that go beyond the stan-
dard results and that serve to further illustrate these themes.
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Chapter II - The Reverse Mathematics of Hilbert’s Basis Theorem

In this chapter we will prove a unique theorem of reverse mathematics. Namely, we will
show that Hilbert’s basis theorem is equivalent to the well-ordering of ωω over RCA0. This
chapter is based on the proof by Simpson in [4], although the presentation and structure
have been significantly altered.

Definitions. A countable ring A is a tuple (|A|, +A, ∗A, 0A, 1A) where |A| is a set of
natural numbers - the set of codes for elements of A - +A and ∗A are functions from |A|×|A|
to |A|, and 0A and 1A are distinct distinguished elements of |A| such that these objects obey
the usual axioms for a commutative ring with unit. Standard ring notation will be freely
used in place of the explicit notation using | · | and the subscript A.

The polynomial ring in m variables associated with a countable ring A, which is denoted
A[x1, . . . , xm], is a countable ring whose elements are (codes for) finite sums of the form∑

ai1,...,imxi1
1 · · ·xim

m . Addition, multiplication and the additive and multiplicative identities
are defined as usual for polynomials.

A monomial is an element of A[x1, . . . , xm] that consists of only one term and does not
include the coefficient of this term i.e. an expression of the form xi1

1 · · ·xim
m . The monomial

ordering is a total-ordering on the monomials given by first ordering by total degree (the sum
i1 + · · · + im) and then ordering lexicographically. For any polynomial P ∈ A[x1, . . . , xm],
the monomial that appears in P and which is greatest under this ordering is called the
leading monomial of P . A monomial M = xi1

1 · · ·xim
m is said to divide another monomial

N = xj1
1 · · ·xjm

m if ik ≤ jk for all k from 1 to m.

A countable ring A is said to be Hilbertian if it possesses the following property: For
every sequence of elements {ak ∈ A}k∈N there exists a natural number N such that for all k
there exist f0, . . . , fN ∈ A such that ak = f0 ∗a0 + · · ·+ fN ∗aN . In other words, a countable
ring is Hilbertian iff all sequences of its elements are finitely generated.5

The version of Hilbert’s basis theorem considered in this chapter is a theorem which states
that for all countable rings A and natural numbers m > 0, A[x1, . . . , xm] is Hilbertian.

The set of ordinals up to ωω, denoted O, is the set of (codes for) finite sequences of natural
numbers along with a special code |ωω|, which can be arbitrary as long as it is distinct from
the other elements of O. The code |α| = (α0, . . . , αn) is intended to represent the ordinal
α = αn ∗ ωn + αn−1 ∗ ωn−1 + · · ·+ α0 with |ωω| of course representing ωω. The ordinals in O
have the usual lexicographical ordering with ωω as the largest element.

5In RCA0 it is possible to show that a countable ring is Hilbertian just in case all Σ0
1 ideals are finitely

generated where a Σ0
1 ideal is a sequence {ak ∈ A}k∈N such that (1) ak 6= 0 for all k (2) for all i and j there

exists k such that ak = ai + aj and (3) for all i and all a ∈ A there exists k such that ak = a ∗ ai. In ACA0

one can show that Σ0
1 ideals are the same as ideals as usually construed, i.e. subsets of A that are closed

under addition and multiplication by arbitrary elements of A. See [4].
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The natural sum and natural product of ordinals are commutative binary operations on
ordinals, defined by first ordering the summands or factors from largest to smallest and then
taking the sum or product as it is usually defined for ordinals. For example, the natural sum
of α = αm ∗ ωm + αm−1 ∗ ωm−1 + · · ·+ α0 and β = βm ∗ ωm + βm−1 ∗ ωm−1 + · · ·+ β0 where
m > n is simply

α + β = βm ∗ ωm + βm−1 ∗ ωm−1 + · · ·+ βn+1 ∗ ωn+1 + (αn + βn) ∗ ωn + · · ·+ α0 + β0.

To say that an ordinal η ∈ O is well-ordered is to say that there does not exist a sequence
{ηk ∈ O}k∈N such that η0 = η and ηk+1 < ηk for all k.

Main Theorem II. Hilbert’s basis theorem and the well-ordering of ωω are equivalent
over RCA0.

Remarks. As we saw above for the purposes of this chapter Hilbert’s basis theorem
just says that for all m ∈ N and for all countable rings A, A[x1, . . . , xm] is Hilbertian. Fur-
thermore, it is clear that the well-ordering of ωω is equivalent to the well-ordering of ωm for
all m ∈ N. Therefore, it is sufficient to prove that for any given m ∈ N, the following are
equivalent over RCA0:

(1) For any countable ring A, A[x1, . . . , xm] is Hilbertian.
(2) ωm is well-ordered.

We shall begin by proving that (1) implies (2).

Theorem II.1. Over RCA0 for fixed m, if A[x1, . . . , xm] is Hilbertian for some A, then
ωm is well-ordered.

Proof. Let {ηk ∈ O}k∈N be a sequence of ordinals beginning with ωm and with
ηk = ηk,m ∗ωm−1 +ηk,m−1 ∗ωm−2 + · · ·+ηk,1 < ωm for k > 0. Disregarding the first element in
the sequence, create a sequence of monomials in A[x1, . . . , xm] by setting Mk = x

ηk,1

1 · · ·xηk,m
m .

Because A[x1, . . . , xm] is Hilbertian, there exists N such that MN+1 = g1∗M1+ · · ·+gN ∗MN

with g1, . . . , gN ∈ A[x1, . . . , xm].

We claim that MN+1 divides Mi for some i ≤ N . Assume otherwise. Because MN+1 does
not divide M1, and because the sum g1 ∗M1 + · · ·+gN ∗MN must add up to a monomial, the
term g1∗M1 must be exactly canceled by the other terms. This reasoning holds for all i ≤ N ,
which implies that MN+1 = 0. However, MN+1 is non-zero by construction. Therefore, there
exists i ≤ N such that MN+1 divides Mi.

This in turn implies that ηN+1,j ≤ ηi,j for all j from 1 to m. However, this means that
ηN+1 ≤ ηi. Therefore, {ηk} cannot be a strictly decreasing sequence. Because {ηk} was
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arbitrary, ωm must be well-ordered.2

We will now show that (2) implies (1) over RCA0. In order to accomplish this, we
will proceed in three steps. First, we will reduce the Hilbertianness of A[x1, . . . , xm] to a
similar condition on sequences of monomials. Second, we will demonstrate an equivalent
characterization of this condition on sequences of monomials. Finally, we will show how
any counter-example to this reduction of the Hilbertianness of A[x1, . . . , xm] can be used to
construct a counter-example to the well-orderedness of ωm.

Theorem II.2. Over RCA0 for a given polynomial ring A[x1, . . . , xm], if A[x1, . . . , xm]
satisfies

(∗) For every sequence of monomials {Mk ∈ A[x1, . . . , xm]}k∈N there exists N such that
for all k there exists i ≤ N such that Mi divides Mk,

then A[x1, . . . , xm] is Hilbertian.

Remarks. From the cancellation argument in the proof of Theorem II.1, we can see
that condition (∗) is equivalent to the sequence {Mk} being finitely generated. This theorem
shows, then, that if all sequences of monomials are finitely generated, then all sequences of
polynomials must be finitely generated as well.

Proof. Let {Pk ∈ A[x1, . . . , xm]}k∈N be a sequence of polynomials. Note that the for-
mula “H = F0 ∗P0 + · · ·+Fn ∗Pn” is Σ0

0 because the equality here is just numerical equality
between codes in |A[x1, . . . , xm]|, and ∗A[x1,...,xm] and +A[x1,...,xm] act as parameters. There-
fore, the formula φ(H) ≡ “There exist n ∈ N and F0, . . . , Fn ∈ A[x1, . . . , xm] such that
H = F0 ∗ P0 + · · · + Fn ∗ Pn” is a Σ0

1 formula. Thus by Corollary I.3, we can conclude in
RCA0 that there exists a sequence {Hk ∈ A[x1, . . . , xm]}k∈N that enumerates precisely the
polynomials in A[x1, . . . , xm] that are finite linear combinations of the Pk. Note that if {Hk}
is finitely generated, then {Pk} must also be finitely generated because {Pk} ⊂ {Hk} and
every Hk is a finite linear combination of the Pk.

Define {Mk ∈ A[x1, . . . , xm]}k∈N to be a sequence of monomials such that Mk is the
leading monomial of Hk. By the supposition of (∗), there exists N such that for all k there
exists i ≤ N such that Mi divides Mk.

We claim that H0, . . . , HN generate {Hk}, which we will prove by induction on the
monomial ordering of the leading monomials, Mk. Given a fixed k, we know that there
exists i ≤ N such that Mi divides Mk i.e. Mk = Mi ∗ Nk where Nk is another monomial.
Necessarily for any a ∈ A, Hk − aNk ∗ Hi is equal to Hl for some l ∈ N. For some choice
of a, ak, the leading monomial of Hj is canceled by akNk ∗Hi hence Hl has a lesser leading
monomial i.e. Ml comes before Mk in the monomial ordering. By the inductive hypothesis
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Hl = F0 ∗H0 + · · ·+ FN ∗HN for some F0, . . . , FN ∈ A[x1, . . . , xm]. Thus,

Hk = F0 ∗H0 + · · ·+ (Fi + akNk) ∗Hi + · · ·+ FN ∗HN .

By induction {Hk} is finitely generated. Hence, {Pk} is finitely generated, so A[x1, . . . , xm]
is Hilbertian.2

Theorem II.3. For a given polynomial ring A[x1, . . . , xm], condition (∗) is equivalent
over RCA0 to

(∗′) For every sequence of monomials {Mk ∈ A[x1, . . . , xm]}k∈N there exist i and k such
that i < k and Mi divides Mk.

Proof. That (∗) implies (∗′) is clear by taking k = N + 1.

Assume A[x1, . . . , xm] satisfies condition (∗′). Fix a sequence of monomials {Mk}. Let X
be the set of natural numbers k such that there does not exist i < k such that Mi divides Mk.
This set exists by Σ0

0 comprehension because the existential quantifier is a bounded quantifier.

We claim that for all natural numbers k there exists an i ∈ X such that Mi divides Mk.
Assume for the purpose of contradiction that there exists a k ∈ N such that whenever Mi

divides Mk, then i is not an element of X. We proceed by finding an infinite regress of
monomials Mij that divide Mk. Let i0 = k. By the inductive hypothesis we assume that
Mij divides Mk. ij is therefore not an element of X. By definition this means we can find
ij+1 < ij such that Mij+1

divides Mk. This creates an infinite regress of the natural numbers
ij, so for all k ∈ N there exists i ∈ X such that Mi divides Mk.

Next, we claim that X is finite. Suppose otherwise. By Corollary I.2, there exists a
monotonic function πX : N → X that enumerates the elements of X. Consider the infinite
subsequence {MπX(k)}. By (∗′) there must exist i < k such that MπX(i) divides MπX(k).
However, having πX(i) < πX(k) and MπX(i) divides MπX(k) contradicts the definition of X.
Therefore, X must be finite.

By the second claim, X is finite, so it has an upper bound N . By the first claim, for all
k there exists i ≤ N such that Mi divides Mk. This holds for arbitrary {Mk}, so therefore
A[x1, . . . , xm] satisfies condition (∗).2

Definitions. In order to complete the proof of the main theorem, we require some
definitions concerning the space Nm of all m-tuples of natural numbers. With u and v
ordinals less than or equal to ω define the interval [u, v) to be the set of natural numbers
n such that u ≤ n < v. An m-box, denoted [u,v) =

∏m
i=1[ui, vi) ⊂ Nm, is the Cartesian

product of these intervals. Further define the volume of a countable union of m-boxes indexed
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by a set I to be ∣∣∣ ⋃
[u,v)∈I

[u,v)
∣∣∣ =

∑
[u,v)∈I

m∏
i=1

(vi − ui)

where natural sums and natural products are used on the right.

Theorem II.4. The existence of a polynomial ring A[x1, . . . , xm] that does not satisfy
condition (∗′) implies over RCA0 that ωm is not well-ordered.

Proof. Let {Mk ∈ A[x1, . . . , xm]}k∈N be a sequence of monomials that does not satisfy
the condition in (∗′). In other words, k < l implies that Mk does not divide Ml. We will use
{Mk} to construct a sequence of ordinals {ηk ∈ O}k∈N such that η0 = ωm and ηk+1 < ηk for
all k. The existence of such a sequence demonstrates that ωm is not well-ordered by definition.

Roughly speaking, in order to construct this sequence of ordinals we will inductively
create a partition of the space Nm. Note that the collection of exponents of a monomial in
A[x1, . . . , xm] can be identified with a point in Nm. Because k < l implies that Mk does
not divide Ml, the exponents of each Mk specify some m-box in Nm in which none of the
remaining exponents can lie. At each step, we will throw away this piece of the partition
and define ηk to be the volume of what remains.

Let I0, the initial partition of Nm, be the trivial partition {
∏

i[0, ω)}. Let

η0 = |
∏

i

[0, ω)| = ωm.

Let (jk,1, . . . , jk,m) ∈ Nm be given by Mk = x
jk,1

1 · · ·xjk,m
m .

At each step take the m-box [uk,vk) ∈ Ik−1 such that (jk,1, . . . , jk,m) ∈ [uk,vk) and split
it into 2m m-boxes made up of each combination of [uk,i, jk,i) and [jk,i, vk,i). Let Ik be the
union of Ik−1 − {[uk,vk)} and these m-boxes except for the m-box given by
[jk,1, vk,1) × · · · × [jk,m, vk,m). Because for all l > k we cannot have Mk divides Ml by
hypothesis, the exponents for Ml can never lie in this removed piece. Therefore, the subsets
in Ik partition a portion of Nm that contains the exponents for each remaining Ml. Finally,
define

ηk =
∣∣∣ ⋃

[u,v)∈Ik

[u,v)
∣∣∣.

It remains to be shown that ηk+1 < ηk for all k. To prove this, it is sufficient to show
that the combined volume of the m-boxes that replace [uk,vk) is strictly less than |[uk,vk)|.
Let a, b ∈ N be given by |[uk,v)k| = a ∗ ωb. This means that for exactly b instances of i,
vk,i = ω. Each m-box that is made up of [uk,i, jk,i) for at least one of these b choices of
i will contribute less than ωb to the volume. The remaining m-boxes will contribute some
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multiple a′ ∗ ωb of ω. However, this a′ must be strictly less than a because, ignoring all the
infinite dimensions, these remaining (m − b)-boxes make up some strict subset of the finite
m−b dimensional portion of the original m-box. Therefore, ηk+1 < ωb+a′∗ωb ≤ a∗ωb = ηk.2

Proof of Main Theorem II. We have shown the following working in RCA0. By The-
orem II.1, the Hilbertianness of A[x1, . . . , xm] implies that ωm is well-ordered. By Theorem
II.4, if ωm is well-ordered, then for every ring A, the polynomial ring A[x1, . . . , xm] satisfies
condition (∗′). Therefore, by Theorem II.3, every polynomial ring satisfies condition (∗).
Hence, by Theorem II.2, A[x1, . . . , xm] is Hilbertian for any ring A. Thus, Theorems II.2-4
have shown that the well-orderedness of ωm implies the Hilbertianness of A[x1, . . . , xm] for
arbitrary A. The theorem follows from the remarks.2
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Appendix to Chapter II

While we showed in Chapter II that Hilbert’s basis theorem and the well-ordering of
ωω are equivalent over RCA0, we said nothing of whether these theorems can be proved in
RCA0. It turns out that they cannot, and that furthermore they cannot be proved in WKL0.
The complete proof of these facts is beyond the scope of this thesis. Therefore, we will use
the following lemma without proof.6

Lemma A-1. Any function f that is provably recursive in WKL0 and hence in RCA0

is primitive recursive.

Let the Ackermann function A : N× N → N be defined recursively by

n + 1, if m = 0

A(n, m) = A(m− 1, 1), if m > 0 and n = 0

A(m− 1, A(m,n− 1)), if m > 0 and n > 0

It is a well known fact that the Ackermann function is not primitive recursive (see, for ex-
ample, [6]). Therefore, we have

Corollary A-2. The Ackermann function is not provably recursive in WKL0 or RCA0.

However, we also have the following lemma

Lemma A-3. The well-ordering of ωω implies the existence of the Ackermann function
over RCA0.

Proof Sketch. The Ackermann function A(m,n) is computed by repeated “calls” to
the function itself with different parameters. In order to prove that the function exists, it is
sufficient to show that the calculation terminates after a finite number of steps. This can be
done for a fixed value of m by associating a call to A(m, n) with (n+1)∗ωm and noting that
successive calls are always to lesser ordinals. Therefore, the well-ordering of ωm+1 implies
that the function Am(n) = A(m,n) exists. The well-ordering of ωω implies the well-ordering
of ωm for all m, and hence the existence of the Ackermann function. For a complete proof
see [7].

Thus, we have

Theorem A-4. The well-ordering of ωω and Hilbert’s basis theorem cannot be proved
in WKL0 or RCA0.

6For a model-theoretic proof, see [1]. For a proof-theoretic approach, see [5].
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Chapter III- The Reverse Mathematics of the Hahn Embedding Theorem

The Hahn embedding theorem is an important result in abstract algebra that describes
ordered abelian groups. Namely it says that every ordered abelian group is isomorphic to
an ordered subgroup of some sum of copies of (R,≤R), the real numbers under the standard
ordering. In this chapter, we will study the reverse mathematics of a formalization of Hahn’s
embedding theorem in second order arithmetic. In particular, we will show that Hahn’s
embedding theorem implies ACA0 over RCA0, and hence that the theorem is not effective.
That is, there exists a computable ordered abelian group for which one cannot construct
a computable embedding into a sum of copies of R. The results in this chapter and their
presentation follow primarily [8] with some additions from [9].

Definitions. An abelian group is a tuple (|G|, +G, |0G|) where |G| ⊂ N is the set of
codes for elements of the group, +G : |G| × |G| → |G| is a binary operation with identity
|0G| ∈ |G| satisfying the usual axioms of an abelian group. Subgroups H � G, cosets g + H
and quotient groups G/H are also defined as usual. A linear order is a tuple (|T |,≤T ) where
|T | ⊂ N is a set of codes for elements of T , and ≤T is a relation between elements of T
satisfying the usual axioms of a total linear ordering. An ordered abelian group is a tuple
(|G|, +G, |0G|,≤G) such that (|G|, +G, |0G|) is an abelian group and (|G|,≤G) is a linear order.

The positive cone of an ordered abelian group G, P ⊂ G is defined to be the set
P = {g ∈ G | 0 ≤ g}, which exists for any given G by Σ0

0 comprehension with ≤G acting
as a parameter. We may also define an ordering on an abelian group G by specifying its
positive cone by taking g ≤ h just in case h − g ∈ P . Indeed, it is easy to see that any
subgroup P ⊂ G such that P is pure, i.e. P ∩ {g ∈ G | −g ∈ P} = {0}, and full, i.e.
P ∪ {g ∈ G | −g ∈ P} = G, is the positive cone for some ordering on G.

For a linear order T , a subset S ⊂ T is said to be well-ordered provided that any subset
U ⊂ S has a T -minimal element u0, i.e. u ∈ U implies u0 ≤T u. Furthermore, S is said to
be convex provided that for any a, b, t ∈ T if a and b are in S and a ≤ t ≤ B, then t is in
S as well. If H is a convex subgroup of a ordered abelian subgroup G, then we may define
the induced order ≤G/H , on G/H by a+H ≤G/H b+H if and only if a+H = b+H or a <G b.

For any ordered abelian group G with positive cone P , we may define the absolute value
function to be |g| = g if g ∈ P , and |g| = −g if g 6∈ P . For n ∈ N and g ∈ G, ng is
defined to be the sum of n copies of g. For a, b ∈ G we say that a is Archimedean less than
b, denoted a � b, if |na| < |b| for all n ∈ N. If neither a � b nor b � a, then we say that
a and b are Archimedean equivalent, denoted a ≈ b. Note that a � b is a Π0

1 formula while
a ≈ b is Σ0

1. If a ≈ b for all a, b ∈ G− {0G}, then we say that G is an Archimedean ordered
group. A special case of Hahn’s embedding theorem is Hölder’s theorem which says that any
any Archimedean ordered group is isomorphic to a subgroup of R. For a proof of Hölder’s
theorem in RCA0 see [10].
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Finally, for an ordered abelian group G, we say that X ⊂ G is a set of Archimedean
representatives for G if:

(1) For all g ∈ G, there exists x ∈ X such that x ≈ g, and
(2) for all x, y ∈ X such that x 6= y, x 6≈ y.

We may now begin our study of the reverse mathematics of Hahn’s embedding theorem
by showing that a crucial part of the theorem, the existence of a set of Archimedean repre-
sentatives for G, is equivalent to ACA0 over RCA0.

Lemma III.1. For any ordered abelian group G, the following are equivalent over RCA0

(i) There exists a set of Archimedean representatives for G.

(ii) The set A = {(g, h) ∈ G×G | g ≈ h} exists.

Proof. To see that (i) implies (ii), we begin by defining a function Rep : G → X defined
by

Rep = {(g, x) |x ∈ X ∧ ∃n, m < 0(|g| ≤G |nx| ∧ |x| ≤G |mg|)}
= {(g, x) |x ∈ X ∧ ∀y ∈ X(y 6= x → (∀n > 0(|g| ≤G |ny|) ∨ ∀n > 0(|y| ≤G |ng|)))},

which exists by ∆0
1 comprehension with X acting as a parameter. Rep assigns to any element

g ∈ G its Archimedean representative in X. Therefore, we can simply define

A = {(g, h) ∈ G×G |Rep(g) = Rep(h)},

which exists by Σ0
0 comprehension.

To see that (ii) implies (i) simply note that the set

{g ∈ |G| | ∀h <N g(h ∈ |G| → (g, h) 6∈ A)},

which exists by Σ0
0 comprehension is a set of Archimedean representatives for G.2

Theorem III.2. The following are equivalent over RCA0

(i) ACA0.

(ii) For any ordered abelian group G, there exists a set of Archimedean representatives for G.

Proof. To see that (i) implies (ii) note that the set

{g ∈ G | ∀n ∈ N(n <N g → (n 6∈ G ∨ n 6≈ g))},
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which exists by Π0
1 comprehension in ACA0, is a set of Archimedean representatives for G.

Let f : N → N be an arbitrary function. To show that (ii) implies (i), we will construct
an ordered abelian group G using the function f , and then use the existence of a set of
Archimedean representatives for G to show that the range of f exists, which is sufficient to
prove arithmetical comprehension by Lemma I.4.

Because the divisors of a given number are bounded by the number itself, primality
can be expressed using a Σ0

0 formula. Therefore, by Corollary I.3, we may enumerate the
odd prime numbers as {pm}m∈N. We will define G as an abelian group with countably in-
finitely many generators xn satisfying the relations pmx2n = x2n+1 if f(m) = n. To define
this formally we encode the elements of G as finite sequences g = (g0, . . . , g`) representing∑`

n=0 gnxn. We further require that elements of G are reduced, that g` 6= 0 and that there
does not exist 2n < ` and pm < |2g2n| such that f(m) = n. The identity element 0G, is
given by the empty sum. Since the condition of being reduced is Σ0

0, G is well-defined as a set.

Reducing an arbitrary sum is a straightforward process. For each 2n < ` check if there
is a prime pm < |2g2n| such that f(m) = n. If we have f(m) = n, and g2n = cpm + r
where |r| < pm

2
, then set g2n to r and add c to g2n+1. Because the function which sums

two elements of G (in the natural way) and then reduces the result is primitive recursive,
G is also well-defined as an abelian group by Theorem I.1. Note that for a reduced sum
g =

∑
n gnxn, we have simply −g =

∑
n−gnxn, which is already reduced by definition.

We will define an order on G by giving its positive cone P ⊂ G. Let

P = {0G} ∪ {
∑

n

gnxn ∈ G | g` > 0}.

Intuitively, P is the positive cone of the lexicographic ordering on G. To show that P in
fact defines a valid positive cone, note that P contains the identity, and is both pure and
full because −g =

∑
n−gnxn. Therefore, it only remains to be shown that P is closed under

+G. That is given two elements of P , g =
∑`g

n=0 gnxn and h =
∑`h

n=0 hnxn where g`g > 0

and h`h
> 0, we must show that the reduced sum g +G h =

∑ˆ̀

n=0 snxn satisfies sˆ̀ > 0. We
proceed in three cases:

Case 1: `g 6= `h. Without loss of generality we take `g < `h. Clearly if sˆ̀ = s`h
is not

effected by the reduction process, then g +G h ∈ P . The only way for s`h
to be effected is if

`g = 2j and `h = 2j + 1, and there exists pk < |2a2j + 2b2j| such that f(k) = j. However,
since a2j and b2j come from reduced sums and since a2j > 0, this could only happen if
2a2j + 2b2j > pk. Thus, sˆ̀≥ b`h

> 0, so g +G h ∈ P .

Case 2: `g = ` = `h, ` is odd. Because a`−1 and b`−1 come from reduced sums, we have
sˆ̀ = s` ≥ a` + b` − 1 > 0, so g +G h ∈ P .
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Case 3: `g = ` = `h, ` is even. We either have sˆ̀ = s`+1 > 0 because a` + b` > 0, or
sˆ̀ = s` = a` + b` > 0. Either way g +G h ∈ P .

We have shown that G is an ordered abelian group, so by (ii) and Lemma III.1, the
set A = {(g, h) ∈ G × G | g ≈ h} exists. We claim that the range of f is given by
{n | (x2n, x2n+1) ∈ A}. If n is in the range of f , that is if f(m) = n for some m, then
pmx2n = x2n+1, so x2n ≈ x2n+1, and (x2n, x2n+1) ∈ A. If, on the other hand, n is not in the
range of f , then for all m, mx2n is already reduced, so mx2n < x2n+1. Thus x2n � x2n+1, so
(x2n, x2n+1) 6∈ A.2

Definitions. In order to state Hahn’s embedding theorem in second order arithmetic, we
must define a Hahn subgroup and the notion of an isomorphism between a Hahn subgroup
and an ordered abelian group in the strict sense of second order arithmetic defined above.

If (T,≤T ) is a linear ordering and {Kt}t∈T is a sequence of Archimedean ordered abelian
groups indexed by T , then a subgroup of

∑
T Kt indexed by I, is a sequence of functions

F = {fi : T → ∪T Kt}i∈I such that:

1. fi(t) ∈ Kt for all i ∈ I and t ∈ T ,
2. there exists i ∈ I such that fi(t) = 0Kt for all t ∈ T ,
3. there exists a j ∈ I such that fj = −fi for all i ∈ I, i.e. fj(t) = −fi(t) for all t ∈ T ,
4. there exists a k ∈ I such that fk = fi + fj for all i, j ∈ I, and
5. there exists t ∈ T such that fi(t) 6= fj(t) for all i, j ∈ I such that i 6= j.

It is clear from the definition that F itself has the structure of an abelian group. However,
it should be noted that F is not an abelian group in the sense of second order arithmetic
because it is a sequence of functions encoded as sets rather than a set of elements encoded
as natural numbers. Moreover, the group operation on F and the inverse operation are not
guaranteed to exist as computable functions.

If the set {t | fi(t) 6= 0Kt} is well-ordered for every i ∈ I, then we may further define an
order <F by fi <F fj if and only if fi(t0) <Kt0

fj(t0) where t0 is the T -minimal element
of {t | (fi − fj)(t) 6= 0Kt}. If this order respects the group operation on F , i.e. if fi <F fj

implies that fi + fk <F fj + fk for all i, j, k ∈ I, then F has the structure of an ordered
abelian group. We may define the absolute value, multiplication by n ∈ N, and notions of
Archimedean order and equivalence for F just as we did for ordered abelian groups in the
strict sense of second order arithmetic.

A Hahn subgroup is a subgroup of
∑

T Kt that has the structure of an ordered abelian
group in the way just described and that satisfies a closure property called the cut property.
The cut property need not be used for the reversal of Hahn’s embedding theorem, but we
present its definition here for the sake of completeness.
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For every t0 ∈ T we define a cut Ct0 which associates functions in F with other functions
from T to ∪T Kt. For a given fi, Cfi(t) is defined to be fi(t) if t <T t0 and 0Kt otherwise.
We say that F has the cut property if for every t0 ∈ T and every i ∈ I, there exists a j ∈ I
such that fj = Ct0fi, i.e. fj(t) = Ct0fi(t) for all t ∈ T .

Finally, we must define a notion of isomorphism between ordered abelian groups in the
strict sense of second order arithmetic and Hahn subgroups. We say that an ordered abelian
group G is isomorphic to a Hahn subgroup of

∑
T Kt if there exists a Hahn subgroup of∑

T Kt indexed by G such that:

1. f0G
(t) = 0Kt for all t ∈ T ,

2. fg+h = fg + fh for all g, h ∈ G,
3. f−g = −fg for all g ∈ G, and
4. g <G h ↔ fg <F fh for all g, h ∈ G.

We can now state Hahn’s embedding theorem in second order arithmetic and prove that
it implies ACA0 over RCA0.

Main Theorem III. Hahn’s embedding theorem states that for every ordered abelian
group G, there is a linear order T and a sequence of Archimedean ordered subgroups Kt ⊂ G
such that G is isomorphic to a Hahn subgroup of

∑
T Kt. Hahn’s embedding theorem implies

ACA0 over RCA0.

Proof. Let f : N → N. Define G as in the proof to Theorem III.2. As was shown in
that proof, the range of f is given by {n |x2n ≈ x2n+1}. Therefore by Lemma I.4, showing
this set exists is sufficient to prove arithmetical comprehension.

By Hahn’s embedding theorem, there exists an isomorphism {fg}g∈G between G and
some Hahn subgroup of

∑
T Kt. We claim that

x2n ≈ x2n+1 ↔ ∀t ∈ T (fx2n+1(t) 6= 0Kt → fx2n 6= 0Kt).

This claim suffices to prove the result because this condition is Π0
1 and the usual condition

for x2n ≈ x2n+1 is Σ0
1, so the range of f would exist by ∆0

1 comprehension.

Note that either x2n � x2n+1 or x2n ≈ x2n+1. If x2n � x2n+1, then fx2n �F fx2n+1 by the
definition of the isomorphism. By definition this means that fx2n(t0) �Kt0

fx2n+1(t0) where
t0 is the T -minimal element of {t ∈ T | fx2n(t) 6= fx2n+1(t)}. However, Kt0 is Archimedean,
so we must have that fx2n+1(t0) 6= 0Kt0

while fx2n+1(t0) = 0Kt0
.

If on the other hand, x2n ≈ x2n+1, then for some odd prime pm we have pmx2n = x2n+1,
so for every t ∈ T , pmfx2n(t) = fx2n+1(t). Thus fx2n+1(t) 6= 0Kt implies fx2n(t) 6= 0Kt .2
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Corollary to Main Theorem III. There exists a computable ordered abelian group G
such that there is no computable embedding of G into a Hahn subgroup.

Proof. We note that REC, the natural numbers along with the recursive sets, forms a
model of RCA0+¬arithmetical comprehension. Indeed, there exist recursive functions whose
ranges are recursively enumerable but not recursive sets, so arithmetical comprehension can-
not hold in REC by Lemma I.4. Given any such function f , the group G constructed from
f in the proof of Theorem III.2 cannot be computably embedded into a Hahn subgroup be-
cause then its range would be recursive by the proof of the Main Theorem. However, G must
be computable because its existence can be proven in RCA0, and REC is a model of RCA0.2

Hahn’s embedding theorem is also provable within ACA0, and hence is equivalent to
ACA0 over RCA0. The proof of Hahn’s embedding theorem in ACA0 is essentially the
standard proof (found in [11]) modified to avoid induction on a non-arithmetic formula, and
is not of direct interest to us here. It can be found in [8].
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