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1. Introduction

1.1. Background and motivation. Let W be a finite group. It is a basic fact from repre-
sentation theory (see [FH], Proposition 2.30) that the number of irreducible representations
of W on finite-dimensional complex vector spaces is the same as the number of conjugacy
classes in W (the proof being that both numbers count the dimension of the vector space of
class functions on W). This is a wonderful statement; however, it comes with a caveat: in
general there is no explicit bijection underlying this equality of numbers, and thus no way
to construct an irreducible representation of W given a conjugacy class in W.

dclausen@fas.harvard.edu − 617-692-0895 − Advisor: Dennis Gaitsgory.
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An important and very classical exception to this caveat occurs when W = Sn, the group
of permutations of a set of n elements. In this case, via cycle types, conjugacy classes in
Sn correspond to partitions of n; these in turn correspond to Young diagrams (see [FH],
page 45), which can be used to construct irreducible representations of Sn using Young
symmetrizers ([FH] Theorem 4.3), thus giving an effective combinatorial bijection between
conjugacy classes in Sn and irreducible representations of Sn.

In the paper [S2], Springer gave a completely different description of this bijection, which
is at its base geometric rather than combinatorial. It relies on the interpretation of Sn as
the Weyl group of a certain reductive group, the group GLn of invertible n×n matrices with
complex coefficients. What Springer in fact constructs is an irreducible representation of
Sn for every unipotent conjugacy class in GLn. These latter are also parametrized by the
partitions of n through the theory of Jordan normal forms, and this procedure does give
another realization of the classical bijection.

The actual construction of the representation corresponding to a unipotent conjugacy class
is quite involved. To each unipotent conjugacy class one can associate a variety, the variety
of Borel subgroups containing a fixed element of the class; and while the Weyl group Sn does
not act on this variety, it remarkably does act on its cohomology, and the corresponding
irreducible representation of Sn will in fact be the top-dimensional cohomology of this variety.

The goal of this paper is to give an expository account of this story and its generalization
to arbitrary reductive groups, known as the Springer correspondence. We will use the ma-
chinery of perverse sheaves, which is particularly helpful in the crucial step—constructing
the action of the Weyl group on the cohomology of the variety of Borel subgroups containing
a fixed unipotent element. We have also chosen to stress functorial aspects of the Springer
correspondence; more precisely, the bijection between irreducible representations of the Weyl
group Sn and unipotent conjugacy classes in GLn can be extended to an equivalence of cat-
egories between the category of finite-dimensional representations of Sn and the category of
conjugation-equivariant perverse sheaves on the unipotent locus of GLn (for a general reduc-
tive group, we get not a full equivalence, but rather an equivalence onto a Serre subcategory),
and we will phrase many of our results in terms of properties of these functors.

1.2. Notations and conventions. As concerns type-facing, the general rule is that we
will use script letters both for sheaves (say, F ,G, or S) and for varieties (say, X , Y , or U).
However, there are exceptions in both cases: we will use bold-facing for constant sheaves
such as C and Q, and when the variety is an algebraic group, we will use sans serif, say for
a reductive group G or one of its Borel subgroups B. We will also use sans serif for finite
groups, like the Weyl group W, and for categories, such as the category of perverse sheaves
P(X ) on X . Representations (always finite-dimensional and over Q) will be denoted by greek
letters such as ρ and τ .

As for mathematical conventions, all of our geometric objects are varieties X , not necessar-
ily irreducible, over the field C of complex numbers. Our “sheaves” on X will be elements of
Db

c(X ; Q) = D(X ), the constructible bounded derived category of sheaves of Q-vector spaces
on X . If f : X → Y is a map, we use the plain notation f∗, f!, f

∗, f ! for the associated opera-
tions on this derived category. Our full subcategory of perverse sheaves P(X ) ⊆ D(X ) comes
from the middle perversity ([BBD], page 63). Additionally, since our varieties are usually
acted on by an algebraic group G, we will sometimes need to use G-equivariant derived cate-
gories DG(X ) and categories of G-equivariant perverse sheaves PG(X ); this formalism, which
is completely analogous to its non-equivariant counterpart, will be recalled in Appendix B.
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When we speak of dimension, it will always be in the sense of algebraic geometry, not
complex topology. The symbol • will denote the variety which is just a point with sheaf of
rings C. If i : Y → X is a closed immersion, then i∗ is an equivalence onto a localizing
triangulated subcategory, and is exact both in the perverse sense and the normal sense; so
we will never feel bad about dropping it from the notation, and viewing a sheaf on Y also
as a sheaf on X without comment.

If P is a category and F and G are objects of P, we will write P(F ,G) for the set of
morphisms from F to G in P. If, furthermore, P is abelian, we will denote by Pn(F ,G) what
is usually called ExtnP(F ,G), the Yoneda Ext group; on the other hand, if D is triangulated,
we set Dn(F ,G) = D(F ,G[n]). Recall that if D is any of the usual derived categories of P
(i.e. bounded or unbounded however one likes), these notations are consistent.

1.3. Statement of the main results. Let G be a connected reductive group over C, and
let U be the unipotent locus of G, which is a closed subvariety carrying the conjugation
action of G. In Section 2.1, we will give the definition and basic geometric properties of a

certain G-equivariant resolution of singularities p : Ũ → U , called the Springer map. The
first result of note is the following, to be proved in Section 3.2:

Proposition 1.1. The sheaf S = p∗Q[dim(U)] (called the Springer sheaf) is perverse, and
carries a natural right action of the Weyl group W of G.

In Appendix A, we show how such an object with such an action gives rise to a Q-linear
functor WRep → PG(U) from the category of finite-dimensional representations of W to the
category of G-equivariant perverse sheaves on U ; this will be called the Springer functor.
Here is the main theorem:

Theorem 1.2. The Springer functor identifies WRep with a Serre subcategory of PG(U).

Now, consider a parabolic subgroup P of G, with Levi factor L. In section 3.2, we will
construct functors ResG

L : DG(UG)→ DL(UL) and IndG
L : DL(UL)→ DG(UG), which fit into the

following theorem concerning functorial properties of the Springer functor:

Theorem 1.3. The Springer functor likes to intertwine operations on representations and
operations on sheaves:

(1) It intertwines duality on representations and Verdier duality D on sheaves;
(2) Let L be a Levi factor as above, with associated inclusion WL ⊆ WG of Weyl groups.

Then:
(a) It intertwines ResWG

WL
and the above ResG

L ;

(b) It intertwines IndWG
WL

and the above IndG
L .

(3) Let G′ be another connected reductive group, with uninpotent locus U ′ and Weyl group
W′. Then G×G′ has unipotent locus U×U ′ and Weyl group W×W′, and the Springer
functor intertwines the external product � on representations and the external product
� on perverse sheaves.

We will also consider more closely the case G = GLn (with Weyl group W = Sn), which
affords many simplifications.

Theorem 1.4. For G = GLn, the Springer functor is an equivalence of categories.

In Appendix B.4, we prove a result which implies that, with G = GLn, the category PG(U) is
artinian and noetherian, and has only finitely many (isomorphism classes of) simple objects,
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these being moreover in bijection with the unipotent conjugacy classes in GLn. We will then
have:

Theorem 1.5. The Springer functor induces, on isomorphism classes of simple objects, a
bijection between the irreducible representations of Sn and the unipotent conjugacy classes in
GLn.

1.4. Acknowledgements. I would like to thank my advisor, Dennis Gaitsgory, for intro-
ducing and teaching this beautiful subject to me. Everything I’ve written here comes from
something he has told me, and I’m very grateful for the guidance I’ve received and the things
I’ve learned. He also suggested the wonderful books [S] and [BBD], whose authors I would
also like to thank: both books have been invaluable both as learning aids and as references.

On a more personal note, my friends and family deserve my deepest thanks for their love,
their patience, and their support.

2. The geometry of the unipotent locus

We start by introducing our geometric playground: the unipotent locus of a reductive
group. We will see that this variety has a very natural resolution of singularities, called
the Springer map, which, besides enjoying a number of interesting and simple properties, is
fundamental for the Springer correspondence.

2.1. Fundamental facts. Let G be a connected reductive group. We denote by UG, or just
by U when the group is clear, the unipotent locus of G. It is a closed subvariety, and we
will always consider it together with its conjugation action by G. Let also B be a fixed Borel
subgroup of G, and U its unipotent radical, which is the same as its unipotent locus. It is a
normal subgroup of B, and we consider it together with its B-action by conjugation. We let
T be a fixed maximal torus in B, though we will often want to think of T as B/U (see [S],

Theorem 6.3.5). We let W = NG(T)/T denote the Weyl group of G, and Ẇ ⊆ NG(T) some
fixed set of representatives for W (nothing we ever do will depend on these representatives).
Given w ∈ W with representative ẇ and a closed subgroup H of G, let Hw = H ∩ ẇ−1Bẇ. In
particular we have Bw and Uw (not to be confused with the Uw = U∩ ẇ−1U−ẇ of [S]); these
are closed, connected, solvable subgroups of G, and we have Bw ' T×Uw (via multiplication;
see [S] Corollary 8.3.10 and Theorem 6.3.5).

Recall that every element of U can be conjugated into U, so if we are only interested in
G-conjugacy classes in U , then U is in some sense a reasonable smooth approximation. It is
pretty nice, since it’s even an affine space; however, it has a defect: it carries only a B-action,
and not a G-action. So, to obtain a better smooth approximation to U , we consider instead
the base-change of the B-space U up to the G-space G×B U (c.f. Corollary B.10); it turns
out that this will provide a G-equivariant resolution of singularities for U , and many other
things besides:

Definition 2.1. Notations as above, G being a reductive group. Define Ũ = G×B U. The

Springer map is the morphism p : Ũ → U given by [g, u] 7→ gug−1; we think of it as the
G-replacement for the inclusion U→ U .

The following proposition collects the fundamental algebraic-geometric properties of p.

Proposition 2.2. We have the following:
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(1) The unipotent locus U is irreducible of dimension 2 dim(U), and has only finitely
many G-orbits;

(2) For u ∈ U , the fiber Bu := p−1(u) can be identified with the set of Borel subgroups of
G containing u. It is equidimensional and connected; furthermore, if Ou denotes the
orbit (i.e. conjugacy class) of u, we have

dim(Ou) + 2 dim(Bu) = dim(U).

(3) The Springer map p is a resolution of singularities, i.e. it is proper and birational,

and Ũ is smooth; it is furthermore G-equivariant (by definition).

(4) If X denotes the variety-theoretic U ×U Ũ , then X admits a stratification X =∐
w∈W X (w) parametrized by the Weyl group, and we have X (w) ' B×Bw Uw. Thus,

the X (w) are all smooth and connected of dimension dim(U); so their closures are
the components of X , and X is equidimensional of dimension dim(U).

We make a few remarks before starting the proof. Firstly, we warn the reader right away
that the order of the proof will not come close to following the order of the statements; it

will jump around like crazy. We will start with a different description of Ũ , related to point
(2) and point (3), then proceed to point (4), which we will essentially use to prove the rest.

Secondly, we will not prove the connectedness and equality of dimensions in (2); instead
we will prove only the equidimensionality and an inequality ≤ of dimensions, and refer to
the paper of Spaltenstein [Sp] for the missing statements.1

Thirdly, we remark that, in this proof, we will be claiming that a lot of squares are
pullbacks in the category of schemes, mostly in order to apply faithfully flat descent. It
will always obviously be so in the category of varieties; the only question will be whether
there can be nilpotents. However, each of the squares will deal with pullback by a smooth
map (coming from a map of homogeneous G-spaces; see [S] Theorem 4.3.6), so that the
scheme-theoretic pullback is necessarily reduced, thanks to the following lemma:

Lemma 2.3. Let f : Y → Z be a smooth morphism of schemes, with Z locally noetherian.
If Z is reduced, so is Y.

Proof. We easily reduce to the affine case, say Y= Spec(B) and Z= Spec(A), with A noe-
therian. Denote by ki the residue fields of the (finitely many) minimal primes of A; then
we have an injection A ↪→ ⊕iki. Tensoring with B (flat over A by smoothness) gives an
injection B ↪→ ⊕iB⊗ki. But B⊗ki is smooth over the field ki, hence reduced; the injection
then shows that B is as well. �

We now turn to the proof of the proposition.

Proof. As promised, we start with a different description of Ũ , more precisely as a certain

closed subvariety of B×U , where B = G/B is the flag variety. Consider the map Ũ → B×U
1A remark concerning the importance of these statements whose proofs were omitted. One should note

that, in the proof below of Proposition 2.2, we use them in order to deduce that U has only finitely many
orbits (part of (1)) and that p is birational (part of (3)), so in some sense we are not really including the proofs
of those facts either. The birationality of p will play no role for us; it is included for its independent interest.
However, U having only finitely many orbits is fundamental, being invoked in the proof of Proposition 1.1
(the Springer sheaf is perverse). The equality of dimensions in (2) will also be important in and of itself,
since it will give us Springer’s version of his correspondence (Theorem 4.2), which in turn will let us deduce
without counting that the Springer functor is an equivalence of categories in the case G = GLn—this is, of
course, the culmination of the paper.
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given by [g, u] 7→ (gB, gug−1). It is a closed immersion, since after faithfully flat base-change
by the quotient G → B it becomes idG × i, with i : U → U the inclusion. Furthermore,
its image is easily identified as those (gB, u) for which u ∈ gBg−1, and in these terms p is
just the projection to the second factor. This makes the first sentence of (2) clear, since,
recall, gB ↔ gBg−1 gives a bijection between B and the set of Borel subgoups of G (see [S]
6.4.13). We also see that p is proper (part of claim (3)), being a closed immersion followed
by projection from the projective B.

Now we consider (4). By the above interpretation of Ũ , we can view X as the set of (u, gB)
with u ∈ U∩gUg−1; thus X admits a natural projection to B. However, Bruhat’s lemma ([S],
Theorem 8.3.8) gives us a stratification of B into its B-orbits, parametrized by the w ∈ W:

B =
∐
w∈W

B · (ẇ−1B),

which pulls back to a stratification X=
∐

w∈W X (w) of X , each piece of which fits into a
pullback square

B× Uw //

��

X (w)

��

B // B · (ẇB),

where the left map is projection and the bottom map is the faithfully flat action map, which
has stabilizer Bw; we deduce from descent that that the right-hand map is smooth, hence so
is X (w); then the pullback square again gives us the desired property.

This finishes (4); we now turn to (1). Firstly, since Ũ → B definitionally admits G× U→ G

as a faithful flat base-change, we see at once that Ũ is smooth, irreducible, and of dimension
2 dim(U). Then U is irreducible as well, since p is surjective (every unipotent element can
be conjugated into U). Now, since p is proper, it has some generic relative dimension; the
situation being G-equivariant, this must be the same as the generic relative dimension of

X → U, which we’ve seen is zero. Thus we have dim(U) = dim(Ũ) = 2 dim(U), and this
finishes (1), except for the claim about finitely many orbits.

We leave this aside for now, and move on to (2). For u ∈ U , let Õu = p−1(U). We have

Õu = G×B (Ou ∩U), by construction (see the remarks preceding Proposition B.10). On the
other hand, we have the pullback

G× Bu //

��

Õu

��
G // Ou,

exhibiting G×Bu as an equidimensional flat base-change of Õu; putting things together, we
deduce that Bu is equidimensional, and that

dim(Ou) + dim(Bu) = dim(Ou ∩ U) + dim(U).

On the other hand, from the dimension claim in (4), we have

dim(Ou ∩ U) + dim(Bu) ≤ dim(U);

summing the above two lines and using the dimension claim in (1) gives the inequality ≤ in
(2), which is all we will show; see the remarks preceding this proof.
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However, we now use equality in (2) ([Sp]) to see there are only finitely many unipotent
conjugacy classes, finishing (1): if u runs over a set of representatives of the conjugacy classes,
the inverse images of the Ou in X are equidimensional of maximal possible dimension in X
(because we have equality in the above line, not just ≤), and thus each gives a subset of the
components; clearly these subsets are disjoint, but there are only finitely many components
to go around, and so only finitely many Ou.

The reader armed with a checklist will know that only the birationality of p remains. For
this, since U is irreducible and has only finitely many orbits, there is an open orbit O; take
a u ∈ O. Then we have a pullback

G× Bu
//

��

Õ

��
G // O,

where Õ = p−1(O); counting dimensions gives dim(Bu) = 0, but the connectedness claim in
(2) gives that Bu is connected; thus it is trivial2, and the left map is an isomorphism; then
by descent, so is the right map, as desired. �

2.2. Interlude: introduction of the Springer sheaf. We will soon return to geometry,
but we now pause to introduce our lead actor, our principal algebraic object: the Springer
sheaf S.

Recall that G is a connected reductive group, and U is its unipotent locus, which carries a

G-action by conjugation. Recall also the G-equivariant Springer map (resolution) p : Ũ → U
from the previous section.

Definition 2.4. The Springer sheaf SG (or just S) is the element p∗Q[dim(U)] of D(U).

The following is fundamental:

Proposition 2.5. We have S ∈ PG(U).

Proof. It is clearly G-equivariant; the claim is that it is perverse. Since Ũ is smooth of

dimension dim(U), the sheaf Q[dim(U)] on Ũ is self-dual; since p is proper, p∗ = p!, and so
S is self-dual as well. Thus, it will suffice to check just one half of the perversity condition
(see [BBD] page 63); so what we need is that if j : Z → U is a stratum, then the stalk
at any z ∈ Z of the cohomology of S vanishes in degrees above − dim(Z). However, given
any stratification, by refining if necessary we can assume it finer than the stratification of
U by orbits, so say Z ⊆ Ou. But then certainly dim(Z) ≤ dim(Ou), and so the dimension
estimate in Proposition 2.2 (2) shows that for all x ∈ Z, we have

dim(Z) + 2 dim(Bx) ≤ dim(U).

On the other hand, by proper base change, the stalk of S at x is just the cohomology
complex of Bx shifted by dim(U); so the above dimension estimate is exactly what’s required
to conclude. �

2It is somewhat of a cheat to invoke connectedness of the Bu to prove that the generic Bu is trivial, since
the latter fact is easier than the former. However, as mentioned in the previous footnote, birationality of
p will play absolutely no role for us in the remainder of this paper, so we do not feel bad about cheating
during its proof, at least provided we include a footnote explaining our cheating.
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Our next goal is to construct a canonical right action of W on S, in order to be able to
use the formalism of Appendix A to obtain a functor WRep→ PG(U). For this we will need
to revisit and extend the geometry of the previous section.

2.3. An extension of the Springer map. The idea behind the construction of the action

of W on S is to view the Springer map p : Ũ → U as a special locus of a more general map

G̃ → G, which is itself generically Galois with group W. The obvious action of W on the
pushforward of the constant sheaf Q on this Galois locus will extend to the whole of G, and
then restrict to U .

We define G̃ := G×B B (recall, the B-action on B is conjugation); it admits a map p : G̃→
G given by [g, b] 7→ gbg−1. Here is the analog to Proposition 2.2:

Proposition 2.6. The map p : G̃→ G has the following properties:

(1) G̃ is smooth, p is proper, and for x ∈ G, the fiber Bx := q−1(x) can be identified with
the set of Borel subgroups of G containing x;

(2) There is a diagram

Ũ
p

��

// G̃

p

��

R̃
p◦

��

oo

U i // G R
joo

where both squares are cartesian (in varieties), i is the obvious closed immersion, j
is the inclusion of a G-stable dense open subset, p◦ is connected Galois with group W,
and all maps are G-equivariant;

(3) If Y denotes the variety-theoretic B×GG̃, then Y admits a stratification Y =
∐

w∈W Y(w)

parametrized by the Weyl group, and we have Y(w) ' B ×Bw Bw; furthermore, over
R, the map Y → B is constant Galois with group W.

Proof. The proofs of (1) and all but the last part of (3) are exactly as in Proposition 2.2; it
suffices to replace U by G and U by B in the first two paragraphs of that proof. The claims

about the left-hand square in (2) are also clear from the identification of Ũ , respectively G̃,
as a closed subvariety of B ×U , respectively B ×G. What remain are the claims concerning
the open locus R, to whose definition we now turn.

Let R be the set of x ∈ G whose connected centralizer Z(x)◦ is a maximal torus. We will
see that each x ∈ R is semi-simple; R is called the regular semi-simple locus, and is clearly
G-stable. We first check that R is nonempty and open. For this, let RT ⊆ T denote the
complement to all the kernels of the roots of G (see [S] 7.1.1 and Corollary 8.1.12). These
are finitely many proper closed subvarieties, so RT is nonempty and open in T. I claim that

R = G \ p(G̃ \ q(f−1(RT))), where f : G× B→ B→ T is the projection and q : G× B→ G̃
is the quotient map. Since p is proper and q is flat, this would imply that R is open—and
nonemptiness will become clear in the course of the proof of the claim, which we now begin.

In more down-to-earth terms, the claim is exactly that R is the set of x ∈ G all of whose
conjugates lying in B are of the form tu, with t ∈ RT and u ∈ U. Since both R and this set it
is claimed to be equal to are conjugation stable, it suffices to show that a tu ∈ TU = B is in
R if and only if t ∈ RT. We note first that RT ⊆ R, by [S], Exercise 8.1.12 (3). We also note
that, on general grounds, the semi-simple part of such a tu is conjugate to t. Now, if t ∈ RT,
then t ∈ R, and so the semi-simple part of tu will be in R; but its unipotent part commutes
with its semi-simple part, so by the definition of R it will be trivial (see [S] Threorem 6.3.5
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(ii), which says that centralizers of semi-simple elements in solvable groups are connected),
and so tu equals its semi-simple part, and lies in R. Similarly for “only if”: the unipotent
part of tu commutes with tu, and thus is trivial, so tu is equal to its semi-simple part, which
is conjugate to t and thus lies in R.

So R is open and nonempty. We now make a few important observations aboutR. Firstly,
every x ∈ R is contained in a unique maximal torus—indeed, each maximal torus containing
x lies in the centralizer Z(x). This, together with [S], Corollary 6.4.12, shows that, for
x ∈ RT, conjugation by the ẇ gives a simply-transitive action of W on the set Bx of Borel
subgroups of G containing x. This action in fact extends to an action of W on the whole

map p◦ : R̃ → R; in terms of the interpretation of G̃ as the set of pairs (x, gB), it is simply
(x, gB) 7→ (x, gẇ−1B)—but in order to describe it in a way which is obviously well-defined,
we use the identification

R̃ ' G×B (R∩ B) ' G×T RT ' G/T×RT,

the first isomorphism coming from R being G-stable, the second coming from the fact that
each element of R∩B can be uniquely conjugated into RT by an element of U, and the last
coming from the conjugation action of T on RT being trivial. Then in terns of G/T ×RT,
the action is (gT, x) 7→ (gẇ−1T, ẇtẇ−1). Chasing it through on elements of RT , we see that
this recovers the above simply-transitive action.

So all that remains to show that p◦ is connected Galois with group W is to see that it
is étale. For this, by dimension considerations, it suffices to see that the induced map on
tangent spaces at any point is surjective; this is something we can check after composing

with the smooth G× B → G̃, so we just need that, for every x0 ∈ B ∩ R and g0 ∈ G,
the conjugation map G× B → G is smooth at (g0, x0). Because of G-equivariance, we can
assume g0 = e, the identity; so we may as well show that the map G× B → G given by
(x, b) 7→ xbx−1x−1

0 is smooth at (e, x0). However, restricting to {e}×B gives that the image
of the map on tangent spaces contains the Lie algebra L(B) of B, and restricting to G×{x0}
gives that this image also contains a complementary subspace to L(Z(x)) = L(T), by [S]
Corollary 5.4.5; this is enough to guarantee that the map on tangent spaces is surjective, as
desired.

What remains is the last claim in (3). But this is simple: when Y(w) is identified with
B×Bw Bw, the regular semi-simple locus in Y(w) is identified with

B×Bw (R∩ Bw) ' B/T×RT,

just as above; and it’s easy to see that, under these identifications, the map to R ∩ B is
just conjugation (bT, t) 7→ btb−1. We also remark that, under these identifications, the Weyl
group action is just (bT, t) 7→ (bT, t)—note, though: mapping the Y(w′) component to the
Y(ww′) component. �

We will need the following corollary before we return to the Springer sheaf.

Corollary 2.7. There exists a stratification of G with the following properties:

(1) R is a stratum;
(2) If Z is a stratum which is not R, then for all x ∈ Z, we have dim(Z) + 2 dim(Bx) <

dim(G).

Proof. Because the map p is proper, we have a stratification G =
∐

n≥0Zn into locally closed
pieces Zn = {x ∈ G | dim(Bx) = n}. Replace Z0 with Z0 \ R, and add R; this gives the
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desired stratification. To verify (2), we can proceed exactly as in the proof of the dimension
estimate of Proposition 2.2 (2): since the Zn are G-stable, we get

dim(Zn) + n = dim(Zn ∩ B) + dim(U);

but pulling back to Y gives dim(Zn ∩ B) + n ≤ dim(B), so we deduce

dim(Zn) + 2n ≤ dim(G).

But, actually, since we’re missing R, which is open and dense in Y by (3) in the above
proposition, we can replace the non-strict inequality with a strict one, and this gives the
required estimate. �

We are now in a position to construct the action of W on the Springer sheaf S. Here are
the sheaf-theoretic consequences of the above geometric considerations.

Corollary 2.8. The derived pushforward p◦∗ agrees with the usual pushforward of sheaves.
The sheaf p◦∗Q carries a canonical right action of W, and its shift S◦ := p◦∗Q[dim(G)] lies in
PG(R).

Proof. The first claim just comes from the usual pushforward being exact, which holds
because p◦ is étale. The second claim is then clear: Q is just the sheaf of locally constant

functions from R̃ to Q, and so the left action of W on p◦ gives, by function composition,
a right action of W on p◦∗Q. For the third claim, G-equivariance is clear, and perversity
follows from étale pushforwards also being t-exact ([BBD] Corollary 2.2.6 (i); c.f. the proof
of Proposition 2.5). �

Corollary 2.9. The Springer sheaf S can be obtained from p◦∗Q by a multi-step func-
torial operation: if we let S = p∗Q[dim(G)] ∈ D(G), then we have S = j!∗(S◦), and
S = i∗S[− dim(T)]. Hence S also carries a right action of W.

Proof. We first note that S is perverse. Indeed, this follows from the exact same argument
as Proposition 2.5, using the stratification of Corollary 2.7 rather than the stratification by
orbits (which would not be a stratification in this case). And in fact, the strict inequality in
(2) of that Corollary, together with the characterization ([BBD] Proposition 2.1.17) of the
Goresky-Macpherson extension of a self-dual sheaf, shows that S is the Goresky-Macpherson
extension of its restriction to R. To conclude, it suffices to remark that j∗S =S◦ and
i∗S = S[dim(T)], both by proper base-change. �

3. The Springer functor

3.1. Beginning of proof of Theorem 1.2. Recall that G is a connected reductive group
over C, and U is its unipotent locus, acted on by G through conjugation. By Corollary 2.9,
the Weyl group acts on the right on the Springer sheaf S (Definition 2.4); by Proposition
2.5, S lives in the Q-linear abelian category PG(U), which clearly has finite-dimensional
morphism spaces. Thus, Proposition A.1 gives us:

Definition 3.1. There is a unique Q-linear functor L : WRep→ PG(U) such that L(Q[W]) =
S compatibly with the right actions of W on both sides; we call this L = S⊗W− the Springer
functor.
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Our goal will now be to prove Theorem 1.2, i.e., that the Springer functor identifies WRep
with a Serre subcategory of PG(U). We will use Proposition A.3, which says that we can
equivalently check the following three properties of the sheaf S and its associated action of
W:

(1) The action map gives an isomorphism Q[Wop]
∼−→ PG(S,S);

(2) The sheaf S is semi-simple;
(3) We have P1

G(S,S) = 0.

Of these, the second is most quickly taken care of. Indeed, it follows immediately3 from
the decomposition theorem of [BBD] (Theorem 6.2.5), since p is proper and we already
know that S is perverse (Proposition A.3). There are two small subtleties, easily overcome:
firstly, the cited theorem only implies that S is semi-simple in P(U), not in PG(U); but by
Proposition B.5, this is the same thing. Secondly, the cited theorem concerns sheaves of C-
vector spaces, not sheaves of Q-vector spaces. However, one can go from C to Q using the
Lefschetz principle, and from there to Q using Galois theory (recall that the decomposition
theorem, in the end, is just a statement about certain maps in D(X ) splitting).

Claims (1) and (3), are quite similar, and can in fact be handled simultaneously, using
the equivariant derived category DG of Bernstein-Lunts (see Appendix B.5). Since the same
same technique will also yield (2) of Theorem 1.3, concerning functoriality of the Springer
functor with respect to Levi factors L of G, we give the argument in its general form. But
first we must define the restriction and induction functors from Levi factors.

3.2. Restriction and Induction. Let G be a connected reductive group, P a parabolic
subgroup containing B, and L = P/Pu the Levi factor of P, which we simultaneously think of
as the unique Levi subgroup containing T (see [S] Corollary 8.4.4). The reader is encouraged
to keep the case P = B in mind, when L = T; this is what will eventually give us (1) and (3)
above. Consider the diagram

L
s←− P

i−→ G

Here i is the inclusion, a closed immersion, and s is the (smooth) quotient by the unipotent
radical of P. We give G the conjugation action by itself, and L and P the conjugation action
by P.

In defining restriction and induction, we will be using the equivariant derived DG for-
malism of Bernstein-Lunts ([BL]). Even though almost all the sheaves we work with are
equivariant perverse (even better—see Proposition B.5—equivariant perverse for the action
of a connected group), we can’t simply use the PG: the restriction and induction functors
are multi-step, and intermediate stages are not necessarily perverse.

We recall the forgetful functor RG
P : DG(G)→ DP(G) and its right adjoint IG

P from Appendix
B.5. Here is the first of the two functors.

Definition 3.2. Define the functor ResG
L : DG(G)→ DP(L) by

ResG
L (F) = s!i

∗RG
PF .

By definition, ResG
L has a right adjoint:

3While it only takes us a few sentences to make this argument here, it’s worth keeping in mind that the
decomposition theorem is the culmination of the whole book [BBD], goes through the Weil conjectures, and,
needless to say, is difficult.
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Definition 3.3. Define the functor IndG
L : DP(L)→ DG(G) by the following formula:

IndG
L (G) = IG

P i∗s
!(G).

What is not obvious from the definitions, but nonetheless true, is that these functors often
preserve perversity in cases concerning the Springer sheaf and its relatives (see Theorem 1.3
for a more precise statement); this, together with the adjointness of Res and Ind, is what
will give us the refined information necessary for proving (1) and (3) above.

We start with Res. What follows is the most important calculation in the whole paper,
by a long shot. It is the key to (1) and (3) above, as well as (2) of Theorem 1.3.

Proposition 3.4. Let G be a connected reductive group, and P a parabolic subgroup with
Levi factor L. Then

ResG
L SG = IndWG

WL
SL,

the right actions by WG agreeing on both sides.

Note: on the right-hand side, what we mean is SL⊗WL
Q[WG], in the notation of Appendix

A; it is simply the obvious analog of the usual induction of representations, and may be
defined in the same way, as a direct sum over right cosets WL\WG with the appropriately-
defined action of WG.

Proof. We first note that, since SG and IndWG
WL
SL are perverse, we may, by virtue of Proposi-

tion B.16, work in the non-equivariant context (and pretend there’s no RG
L in the definition

of ResG
L , so that the left-hand side is just s!i

∗SG).
Now we outline the proof. Not surprisingly, it follows a similar strategy to the proof of

Corollary 2.9, where we constructed the action of W on S. First we will show that the sheaf
s!i
∗SG ∈ D(L) is perverse, and moreover equal to its Goresky-Macpherson extension from the

regular semi-simple locus RL ⊆ L (see Proposition 2.6). Second, we note that s!i
∗ commutes

with arbitrary restrictions, so on the one hand it is easy to directly compute this restriction
to RL, and on the other hand (restricting to the unipotent locus) the resulting information
on S gives us all we need to know about S.

Now we get down to work. Let Y = P ×G G̃ (so that when P = B, this agrees with the
earlier notation in Proposition 2.6). Then by proper base-change, we have

s!i
∗SG = f!Q[dim(G)],

with f : Y → P→ L. On the other hand, the Bruhat stratification B =
∐

w∈WG/WL
P · (ẇ−1B)

([S] Exercise 8.4.6(3)) pulls back to a stratification

Y =
∐

w∈WG/WL

Y(w)

with Y(w) ' P ×Pw Pw, just as in Proposition 2.2 (recall Pw = P ∩ ẇ−1Bẇ); repeated
applications of the standard gluing triangle

(j!j
∗F ,F , i!i∗F)

to the sheaf F = Q[dim(G)] along this stratification then show that f!Q[dim(G)] is gotten

by successive extensions of the f(w)!Q[dim(G)], with f(w) : Y(w) ↪→ Y f−→ L.

On the other hand, each f(w) factors through the Springer map p : L̃ → L. We give two

descriptions of this factoring Y(w) → L̃—the first being independent of choices, and the
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second, the one we will work with, being more amenable to calculation. For the first, we use

the interpretation of G̃ as the set of pairs (x,B) consisting of an element x ∈ G and a Borel
subgroup B containing it; see Proposition 2.2 (2). Here, the factoring is easily described as a
map even from Y to L: namely, given a pair (x,B) with x ∈ P∩B, we have that (P∩B)/PU

is a Borel subgroup of L, and we send (x,B) 7→ (xPU, (P ∩B)/PU).
For the second description, we use the Bruhat Decomposition, i.e., we replace the P in

the above Bruhat stratification with the more refined Uw (see [S] Corollary 8.3.9); this gives
Y(w) ' Uw × Pw. Note that, here, we have chosen a representative of a class in WG/WL,
and this isomorphism depends on it (even the target of the isomorphism depends on it). In

these terms, the factorization is Uw×Pw → L×B/PU B/PU = L̃ given by reducing mod UP on
both factors. It’s easy to see that these two descriptions of the factoring agree.

Returning to the proof, from the second description we see that the factoring is locally
principal with fibers affine space of dimension dim(UP); thus, proper push-forward of the
constant sheaf along it merely shifts by −2 dim(UP) = dim(L)−dim(G). Then from the above
we deduce that s!i

∗SG = f!Q[dim(G)] is gotten by successive extensions of p!Q[dim(L)] =
SL, and is thus perverse and equal to its Goresky-Macpherson extension from RL, by the
corresponding fact for SL (see the proof of Corollary 2.9).

This concludes the first step of the above outline; now we see what happens over the étale
locus R. There the stratification Y =

∐
Y(w) turns into a decomposition into connected

components (c.f. Proposition 2.6 (3)), so all the above-discussed extensions are in fact split;
thus it’s just direct sums of constant sheaves all the way down the calculation until the last
step, and we do get an identification

s!i
∗S◦G = IndWG

WL
S◦L ,

at least as sheaves. But checking that the actions agree as well is a simple matter: we
just need to see how WG acts geometrically at every stage of the above argument (recall the
definition of the action, Corollaries 2.8 and 2.9). Consider the action of WG on Y . In terms of
the identification of Y as a closed subvariety of P×B, it is just (x, gB) 7→ (x, gẇ−1B) (see the
fourth paragraph of the proof of Proposition 2.2); so if {wα} stands for a set of representatives
of WG/WL, then on the component Y(wα), the action by w is (x, uẇα

−1B) 7→ (x, uẇα
−1ẇ−1B);

rewriting wwα = wβw
′ with w′ ∈ WL (using the fact that the α are a set of representatives),

we see that this goes to Y(wβ), and there, under the map Y(wβ) → L̃, acts by w′; this is
exactly the description of the left induced representation, and when we pass from spaces to
functions on the space, we get the right induced representation.

So we have the desired fact for S◦; however, by the observations in the outline, this
is enough: it Goresky-Macpherson extends to the corresponding statement about S, then
restricts to the statement we’re trying to prove. �

Now let’s see how the Springer sheaves interact with IndG
L . Before beginning, though, note

that we can unravel the definition of IndG
L = IG

P i∗s
∗(G) to some extent. Indeed, the functor

IG
P i∗[dim(G/P)] (recall from Appendix B.5) also has the following interpretation, by virtue of

proper and smooth base-change: given F ∈ DP(P), take the unique F ′ ∈ DG(G×P P) which
agrees with F on bolded pull-back to G× P; then

iGPi∗F [dim(G/P)] = a∗F ′,
a : DG(G×P P)→ DG(G) being induced by the action map. Thus

IndG
L (G) = a∗(s

∗G)′.
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This description has two simple consequences:

Lemma 3.5. Take P = B, so L = T. We have:

(1) SG = IndG
T Q[dim(T)];

(2) SG = IndG
T Qe (skyscraper at the identity e ∈ T).

Proof. The first point is immediate from the above discussion and the definition of S (Defi-
nition 2.4—though if you forget this, you’re in deep water); the second one then follows by
restricting to the unipotent locus at every stage of Ind. �

But in fact, we can make a more general claim:

Proposition 3.6. Let G be a connected reductive group, and P a parabolic subgroup with
Levi factor L. Then

IndG
L SL = ResWG

WL
SG,

the right actions by WL agreeing on both sides (otherwise we wouldn’t really have bothered

writing ResWG
WL

).

Proof. The proof is much simpler than that of Proposition 3.4, but follows the same out-
line: we first show that the left-hand side is perverse and equal to its Goresky-Macpherson
extension from RG, then we compare on RG.

In fact, for the first step, we will identify the left-hand side with the right-hand side
(as sheaves) a priori. For this, we note that Ind is transitive with respect to inclusions of
parabolic subgroups. Indeed, the corresponding fact for Res is simple to verify; then one can
invoke adjointness. Given this transitivity, the claim follows from the Lemma.

So now we turn to the regular semi-simple locus. Recall that there is an identification

R̃G ' G/T×RT under which the Springer map is conjugation and the Weyl group action is
(gT, t) 7→ (gẇ−1T, ẇtẇ−1) (see the fourth paragraph of the proof of Proposition 2.2), and of
course similarly for L; through these identifications, the restriction of the left-hand side to
RG is just the pushforward along G×P (P/T×RT)→ RG of the constant sheaf Q[dim(G)];
however, it’s clear that G ×P (P/T ×RT) ' G/T ×RT in the obvious way (the action of P
on P/T×RT is just left-translation on the left); this lets us conclude. �

3.3. Back to the proof of Theorem 1.2. We now finish showing that the Springer functor
embeds WRep as a Serre subcategory of PG(U). Recall that we need both that the action

map gives an isomorphism Q[Wop]
∼−→ PG(S,S), and that P1

G(S,S) = 0. Let’s investigate
both claims simultaneously: let n ∈ Z. We have (hang on, the justifications will come at the
end)

DG(S,S[n]) = DG(S, IndG
T Qe[n])

= DB(ResG
T S,Qe[n])

= DB(IndW
1 ST,Qe[n])

= DB(Qe[W],Qe[n]),

the first step by Lemma 3.5, the second by adjointness, the third by Proposition 3.4, and
the fourth by... well, I’ll leave the fourth to the reader.

If we’re only considering n ≤ 1, then by Lemma B.7, the above equality can also be written

PnG(S,S) = PnB(Qe[W],Qe).
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But this last morphism space is over a point; and, B being connected, the category PB(•) is
just vector spaces (c.f. Lemma B.12); so we conclude

PnG(S,S) = VectnQ(Q[W],Q)

for n ≤ 1.
Taking n = 1 immediately gives P1

G(S,S) = 0, one of our desired facts. What remains

is to prove that the action map gives an isomorphism Q[Wop]
∼−→ PG(S,S). For this we

take n = 0 above. By the claim about the actions agreeing in Proposition 3.4, we then see
that there is an isomorphism of (left) W-representations PG(S,S) ' Q[W]. To conclude, it
suffices to use the following lemma:

Lemma 3.7. Let k be a field, A a finite k-algebra, and ϕ : A → B a map of k-algebras;
in particular, B becomes a right A-module. If B is abstractly isomorphic to A as a right
A-module, then ϕ is an isomorphism.

Proof. The right-A-module A has a generator; since B ∼= A, so does B, so say b · A = B.
Then the composition

A
ϕ−→ B

b−→ B

is surjective, the right map being left-multiplication by b; but all vector spaces involved have
the same dimension, so all maps must be isomorphisms. �

4. Complements

4.1. The Springer correspondence. We have finished the proof of Theorem 1.2, that
the Springer functor gives a Serre embedding of WRep into PG(U). Now we give some
consequences and supplementary facts.

Firstly, we note that since PG(U) is artinian and noetherian (Corollary B.6), its Serre
subcategories are in one-to-one correspondence with subsets of S, the set of isomorphism
classes of its simple objects; on the other hand, Proposition B.13 identifies S with the set of
pairs (O, τ) consisting of a unipotent conjugacy class O and an irreducible finite-dimensional
representation τ of the group Z(u)/Z(u)◦ of components of the centralizer of a fixed u ∈ O.

Thus, we deduce:

Proposition 4.1. The Springer functor induces a bijection ρ 7→ (Oρ, τρ), called the Springer
correspondence, between the set of irreducible representations of W and some subset R of
S.

It’s reasonable to ask for information about this subset and the induced bijection. We will
soon see that, in some sense, the subset R is quite large; to prove this (and of course also
because of its independent interest), we will give Springer’s description of his correspondence
([S2]), a.k.a. finding representations in the cohomology groups.

Theorem 4.2. Let O be a unipotent conjugacy class, and u ∈ O. Then

H2 dim(Bu)(Bu; Q) =
⊕

ρ:Oρ=O

τρ ⊗ ρ∨,

the sum being over all irreducible representations ρ of W whose corresponding conjugacy class
equals O.
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Proof. Applying the Springer functor L to the decomposition

Q[W] =
⊕
ρ

ρ⊗ ρ∨

of the regular representation into left-right W−W modules (the sum being over all irreducible
ρ), we deduce that, as a sheaf with a right W-action,

S =
⊕
ρ

L(ρ)⊗ ρ∨.

On the other hand, Proposition B.13 realizes L(ρ) as the Goresky-Macpherson extension
j!∗Lρ[dim(Oρ)] of the local system Lρ corresponding to τρ along the inclusion j : Oρ → U ;
we can use this to pick out the ρ component, or at least almost.

Indeed, if we restrict S to O, we will kill off all the ρ components except those with
O ⊆ Oρ; then if we further take cohomology in degree − dim(O), we’ll kill all except those
with Oρ = O, by the basic property of Goresky-Macpherson extension ([BBD] Proposition
2.1.9). We deduce that for u ∈ O,

H− dim(O)(S|u) =
⊕

ρ:Oρ=O

τρ ⊗ ρ∨.

On the other hand, by proper base-change and the definition of S, this translates to the
desired

H2 dim(Bu)(Bu; Q) =
⊕

ρ:Oρ=O

τρ ⊗ ρ∨,

where we have also used the equality of dimensions in Proposition 2.2 (2). �

Now we can see that R is big.

Corollary 4.3. For each conjugacy class O, there is an element of R whose first component
is O.

Proof. This follows immediately, since H2 dim(Bu)(Bu; Q) is certainly nonzero; in fact it has
basis the components of Bu (recall that Bu is a projective variety: Proposition 2.2 (3)). �

Another natural question is where the trivial representation of W goes under the Springer
correspondence. If someone tries to tell you it goes to something other than the identity
conjugacy class and the open conjugacy class, you should contact the nearest psychiatric
clinic. In fact,

Proposition 4.4. Under the Springer correspondence, the trivial representation 1 ∈ WRep
goes to the pair (O, 1) where O is the open orbit in U .

Proof. Recall that the action of W on S was obtained functorially from the action on S◦,
through Goresky-Macpherson extension followed by restriction (Corollary 2.9). From Propo-
sition A.2 (1), we see that it suffices to see where S◦ ⊗W 1 goes under the same extension-
restriction procedure.

But from the definition of the action on S◦, it’s clear that S◦ ⊗W 1 = (S◦)W is just
the constant sheaf Q[dim(G)] on R. If we Goresky-Macpherson extend this in a leisurely
way, stopping for a rest at the (open and G-stable, by properness and G-equivariance) locus
Z0 ⊆ G where p has finite fibers, we see that SW|O = Q[dim(U)], making the only possibility
1 7→ (O, 1). �
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4.2. Intertwining. Now we will give the proof of Theorem 1.3, concerning what the Springer
functor L does to certain usual operations on representations. We state it again for conve-
nience:

Theorem 4.5. Let G be a connected reductive group, and L the Springer functor.

(1) L intertwines duality on representations and Verdier duality D on sheaves;
(2) Let P be a parabolic subgroup of G with Levi factor L, giving an inclusion WL ⊆ WG

of Weyl groups. Then:
(a) L intertwines ResWG

WL
and the above ResG

L ;

(b) L intertwines IndWG
WL

and the above IndG
L .

(3) Let G′ be another connected reductive group, with uninpotent locus U ′ and Weyl group
W′. Then G×G′ has unipotent locus U×U ′ and Weyl group W×W′, and L intertwines
the external product � on representations and the external product � on perverse
sheaves.

Proof. By Proposition A.2, we need to see that:

(I) D(S) = S, the left action of W agreeing on both sides (on the right side, it comes
from applying group inversion to the right action);

(II) ResG
L SG = IndWG

WL
SL and IndG

L SL = ResWG
WL
SG, the right actions agreeing on both

sides in both cases;
(III) SG×G′ = SG � SG′ , the actions of W ×W′ agreeing on both sides.

Actually, there is a small problem in applying Proposition A.2 to (II) in order to deduce
(2) of the Theorem, coming from the fact that we don’t know a priori that ResG

L ◦LG and
IndG

L ◦LL land inside the abelian categories of perverse sheaves, but only the additive derived
categories. However, the uniqueness part of Proposition A.1 works just as well for additive
categories as abelian ones, as the proof shows, and we only need the uniqueness here. So the
reduction does work, and we can proceed to the proofs of (I), (II), and (III).

Statement (II) says the same thing as Propositions 3.4 and 3.6. For statement (I), we follow
the same outline as in the proof of those Propositions: we already noted in Proposition 2.5
and Corollary 2.9 that the sheaves S and S are self-dual, so it’s just a matter of making sure
the actions agree, and by functoriality we can just check this for S◦ on the regular semi-simple
locus; there we can simply recall that Verdier duality commutes with usual duality under
the correspondence between local systems and representations of the fundamental group.
Statement (III) is simple, using the same outline as always; we leave it for the interested
reader. �

4.3. The case of GLn. We specialize the Springer theory to the nicest case: G = GLn. The
reason this case is so nice is the following:

Lemma 4.6. In GLn, all centralizers are connected.

Proof. Let A ∈ GLn. We show that any two elements X, Y ∈ ZGLn(A) are joined by a curve
in ZGLn(A). Indeed, if t runs through A1, all of the matrices

tX + (1− t)Y,

centralize A, and only finitely many of them (a proper Zariski-closed subset) can have de-
terminant zero. �
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Thus our subset S of pairs (O, τ) (see Section 3.4) is just the set of unipotent conjugacy
classes; then Corollary 3.10 lets us deduce simultaneously the two claims of the following
theorem:

Theorem 4.7. For G = GLn, the Springer functor is an equivalence of categories, and the
Springer correspondence is a bijection between irreducible representations of Sn and unipotent
conjugacy classes in GLn.

We note that this bijection was proved without any counting (unlike, for instance, the proof
of the classical bijection in [FH] Section 4.2, which only shows injectivity, then uses counting
to conclude), and is thus fairly nice from a combinatorial perspective—except, perhaps, for
the fact that the (absolutely crucial) action of W on S had a non-explicit construction: it in-
volved Goresky-Macpherson extension followed by restriction to a complementary subspace.
All the rest is explicit, however: see Proposition A.1.

Springer’s interpretation ([S2]) of the inverse map of the Springer correspondence also
becomes very nice in the case of GLn: for a unipotent conjugacy class O and u ∈ O, the
corresponding irreducible representation of Sn is just the cohomology group

H2 dim(Bu)(Bu; Q).

Appendix A. Representation theory over k-linear abelian categories

Our main object of interest, the Springer sheaf S, lives in a certain abelian category (of
perverse sheaves), and carries moreover an action of a finite group W (the Weyl group of a
reductive group). This section, quite formal, explores some operations which arise in such a
context.

Let k be a field, and W a finite group. Consider a k-linear abelian category P, and
suppose that all of the morphism spaces of P are finite-dimensional. We will be entertaining
Morita-like discussions of the left adjoint k-linear functors from the category WRep of finite-
dimensional k-representations of W to P. But first, notation: let PW be the (k-linear abelian)
category whose objects are the objects S ∈ P with a right action of W, and whose morphisms
are the W-equivariant morphisms in P. The basic proposition is:

Proposition A.1. Let P be a k-linear abelian category with finite-dimensional morphism
spaces. Then the category of left adjoint functors WRep → P (morphisms being natural
transformations) is equivalent to PW, via evaluation of the functor at the element k[W]
(which carries the obvious right action).

Also, if the order of W is invertible in k, every k-linear functor WRep→ P is a left adjoint;
hence, also, we can omit “left adjoint” from the previous sentence.

Proof. In fact, another interpretation of PW is as the category of P-valued functors from the
full subcategory of WRep consisting of just the object k[W]; our association is just restriction
of functors. Because every object of WRep has a finite presentation by k[W], and left adjoints
preserve right-exact sequences, an extension of an element S of PW to a left adjoint functor
L on all of WRep is necessarily unique, given by

L(ρ) = coker(Sm → Sn)

if k[W]m → k[W]n → ρ → 0 is a presentation of ρ. To finish, we just need to see that
this prescription actually defines a left adjoint functor. But indeed, since k[W] ∈ WRep just
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co-represents the forgetful functor to vector spaces, L is clearly left adjoint to P(S,−); and
recall that functoriality then comes for free.

If the order of W is invertible in k, then WRep is semi-simple, and so any k-linear functor
from it is exact, hence right-exact; then the above argument furnishes a right adjoint. �

For S ∈ PW, denote by S⊗W− the corresponding functor WRep→ P. The next proposition
gives compatibility properties of the association S 7→ S ⊗W −.

Proposition A.2. Suppose that the order of W is invertible in k. Let P and Q be k-linear
abelian categories with finite-dimensional morphism spaces, and let F : P→ Q be a k-linear
functor between them (not necessarily exact). Then for S ∈ PW, we have F (S) ∈ QW in the
obvious way, and for ρ ∈ WRep,

F (S ⊗W ρ) = F (S)⊗W ρ(1)

(actually an isomorphism of functors WRep→ Q). On the other side, if W′ is a subgroup of
W, then S also has a restricted W′-action, and

Res(S)⊗W′ ρ
′ = S ⊗W Ind(ρ′),(2)

both being functors (in ρ′) from W′Rep to P; and if S ′ ∈ PW′, then Ind(S ′) := S ′ ⊗W′ k[W]
has a right action of W, and

Ind(S ′)⊗W ρ = S ′ ⊗W ′ Res(ρ),(3)

both being functors from WRep to P.

Proof. In cases respectively (1), (2), (3), by the previous proposition, we need only check
that evaluation at respectively ρ = k[W], ρ′ = k[W′], ρ = k[W] gives isomorphic members of
respectively, QW, PW′ , PW. In all cases, this is trivial. �

Given the equivalence in Proposition A.1, one would expect properties of S ⊗W − to be
reflected in properties of S. The next proposition gives a few examples of this.

Proposition A.3. Suppose again that the order of W is invertible in k. Let S ∈ PW, and
set L = S ⊗W −. This is automatically an exact functor, WRep being semi-simple. We
furthermore have

(1) L is fully faithful if and only if the map k[Wop] → P(S,S) induced by the action of
W is an isomorphism;

(2) Assuming the equivalent conditions of (1), L is thick (i.e. its essential image is closed
under subquotients) if and only if S is semi-simple;

(3) Assuming the conditions of (1) and (2), L is Serre (i.e. its essential image is also
closed under extensions) if and only if P1(S,S) = 0.

Proof. For (1), note that, since L is a left adjoint, it is fully faithful if and only if its unit
idP → R ◦ L is an isomorphism. By Proposition A.1, we can check this just at the object
k[W], where, recalling the definition of the right adjoint in the proof of that proposition, it
becomes exactly the required condition.

For (2), “only if” is easy: a thick fully faithful exact functor sends semi-simple objects to
semi-simple objects, and k[W] ∈ WRep is semi-simple.

For “if”, we first note that, since every representation is a direct sum of direct summands
of k[W], everything in the essential image of L is a direct sum of direct summands of S, and
is thus semi-simple with simple parts a subset of the simple parts of S. Since a subquotient
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of a semi-simple object is also semi-simple, with simple parts moreover a subset of those of
the original object, it will suffice to show that the simple parts of S are in the essential image
of L. However, a decomposition of k[W] into simple parts yields a decomposition of S into
parts with trivial endomorphism ring, by fullness of L; and these parts must be semi-simple,
since S is. But then they can’t have more then one simple part, or else they’d have too
many endomorphisms; thus they are simple. So we have decomposed S into simple parts in
the essential image of L, and this completes the proof of “if”.

For (3), recall that P1(S,S) classifies extensions of S by itself. If L is Serre, each such
extension comes from an extension in WRep, all of which are trivial; so P1(S,S) = 0. Con-
versely, if P1(S,S) is trivial, then so is P1(T , T ′) if T and T ′ are direct sums of direct
summands of S; but everything in the essential image of L is a direct sum of direct sum-
mands of S, since everything in WRep is a direct sum of direct summands of k[W]. Thus all
the relevant extensions are split, and so trivially remain in the essential image of L. �

We can illustrate this theory with a classical example, which, despite its involving many
of our main objects, is not used in the paper.

Example (Weyl’s construction). Let V be a finite-dimensional complex vector space, and
let P be the category of finite-dimensional representations of the reductive group GL(V ). For
all n ≥ 1, the element V ⊗n of P carries the obvious right action of Sn. If n ≤ dim(V ), then
the three conditions in the above Proposition are satisfied—the first by [FH] Lemma 6.23 and
Exercise 6.29, and the last two by the fact that P is semi-simple ([FH] Exercise 15.51). Thus,
we have a Serre embedding of the category of finite-dimensional representations of Sn into
P, and in particular irreducible representations of Sn give rise to irreducible representations
of GL(V ).

If n > dim(V ), the only thing that fails in the above discussion is the injectivity of the
action map C[Sop

n ]→ P(V ⊗n, V ⊗n); Exercise 6.29 of [FH] only implies surjectivity. But the
proof of the above Proposition shows that, even just assuming surjectivity, irreducible rep-
resentations of Sn still give simple elements of P, i.e. irreducible representations of GL(V )
(though many will be trivial: see [FH] Theorem 16.3 (1)). One can show ([FH], Prop. 15.47)
that all irreducible representations of GL(V ) are obtained this way, for varying n; this is
Weyl’s construction.

We also remark that, if A is any finite k-algebra, the results in this section admit an easy
extension to a description of the left-adjoint functors from the category of finitely-presented
left A-modules to P, with the same proofs (the hypothesis about the order of W should be
replaced by the requirement that A be semi-simple, and the analog of Ind is of course the
usual base change to an extension ring). We have avoided this generality in order to have
our language resemble that of the rest of the paper more closely.

Appendix B. G-equivariant perverse sheaves

In fact, the abelian category in which the Springer sheaf S most naturally lives is not
a usual category of perverse sheaves on a variety, but rather a category of G-equivariant
perverse sheaves. In this section, we will give the definitions and results necessary to be able
to use such a notion.
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B.1. Preliminaries on smooth maps. The key to the definition of G-equivariant perverse
sheaves is that normal perverse sheaves satisfy smooth descent (Proposition B.3). Thus, we
start with a study of smooth maps and their interaction with perverse sheaves.

Let f : X → Y be a smooth map of varieties, of relative dimension d (i.e., all fibers are
equidimensional of constant dimension d ≥ 0; in particular f is surjective). By [BBD] page
109, the functor f ∗[d] : D(Y)→ D(X ) is t-exact, and so induces an exact functor on perverse
sheaves, which is moreover fully faithful and thick if the fibers of f are connected ([BBD]
Proposition 4.2.5 and Corollary 4.2.6.2). These functors f ∗[d] being fundamental for us, we
introduce notation and an oft-to-be-cited lemma concerning them.

Definition B.1. Let f : X → Y be a smooth map of relative dimension d. We set f∗=
f ∗[d] = f ![−d] (note, self-dual), a functor D(Y)→ D(X ). If s is a section of f , we similarly
use s∗ to denote s∗[−d], a functor D(X )→ D(Y).

Lemma B.2. Notation as in the above definition.

(1) On the essential image of f∗, we have that s∗= s![d] (also self-dual) and is t-exact.
(2) Now restrict f∗ to a functor P(Y) → P(X ). If the fibers of f are connected, then

s∗ restricted the essential image of f∗ gives the inverse functor to f∗ (c.f. [BBD]
Proposition 4.2.5).

Proof. For (1), note that, if D is the Verdier duality operation,

Ds∗f∗F = DF = s∗f∗DF = Ds![d]f∗F ;

applying D gives the formula. For t-exactness, we just saw that s∗ is self-dual, so it suffices
to see right-t-exactness. Let F ∈ D(Y), and let {Yi} be a stratification of Y on which F has
locally constant cohomology. Then {f−1(Yi)} is such a stratification for f∗Y , and {Yi} again
is such a stratification for s∗f∗F ; so the dimension estimate dim(Yi) + d = dim(f−1(Yi)) lets
us conclude.

Part (2) is obvious just from s∗f∗= id. �

We will soon state and prove smooth descent for perverse sheaves; but first, recall the
usual simplicial variety associated to a map f : X → Y ; here is the first part of it (omitting
the degeneracies, which are all base changes of the diagonal d : X → X ×Y X ):

X ×Y X ×Y X

p12 //
p13 //
p23 //

X ×Y X p2 //

p1 //
X

Note that, when f is smooth, these fiber products are the same in varieties and in schemes:
see Lemma 2.3. Now we state the result.

Proposition B.3. Let f : X → Y be smooth of relative dimension d. The functor f∗ induces
an equivalence of categories between P(Y) and the category consisting of pairs (F , ι) where
F ∈ P(X ) and ι : p1

∗F ' p2
∗F is an isomorphism satisfying the compatibilities

(1) d∗(ι)= idF ;
(2) p13

∗(ι) = p23
∗(ι) ◦ p12

∗(ι).

(The maps (F , ι)→ (F ′, ι′) in this category being those maps F → F ′ which intertwine ι
and ι′).
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Proof. More precisely, the functor is G 7→ (f∗G, id), where id actually stands for the canon-
ical isomorphism p∗1f

∗G ' p∗2f
∗G arising from the equality f ◦ p1 = f ◦ p2; note that the

compatibilities (1) and (2) are easily verified in this case.
Since perverse sheaves are étale-local ([BBD] 2.1.24) and the whole situation plays nice

with base-change, the fact that surjective smooth morphisms have étale-local sections lets us
reduce to the case where f itself has a section s. But then we can define an inverse functor,
namely (F , ι) 7→ s∗F (part of the claim being that this is perverse; we’ll check this at the
end). It’s clear that the composed functor on P(Y) is the identity; for the other direction,
we need that (F , ι) ' (f∗s∗F , id). But indeed,

f∗s∗F = (sf × id)∗p1
∗F ' (sf × id)∗p2

∗F = F ,

the last equality coming from idX = p2 ◦ (sf × id); and it is easy to see (using condition (2))
that this isomorphism, defined via ι, intertwines ι and id. To finish, we need that s∗F is
perverse. However, the just-proved isomorphism F ' f∗s∗F shows that F is in the essential
image of f∗, and so this follows from Lemma B.2 (2). �

Now we turn to our subject of interest. Let G be a algebraic group of dimension d, and
X a G-space. We also have a simplicial variety in this situation; here is the first part of
it (again, we omit the degeneracies, which are all base-changes of the identity section e : •
→ G):

G× G×X

id×a //
m×id //
id×p //

G×X p //

a //
X

Here a is the action map, p is projection, and m : G × G→ G is the group multiplication.
Recall that each of these is smooth with fibers isomorphic to G (in fact, each is isomorphic
to a projection from G). Thus, we may apply Lemma B.2 to any of them. Now, here is the
main definition:

Definition B.4. The category PG(X ) of G-equivariant perverse sheaves on X is defined to
be the category of pairs (F , ι) where F ∈ P(X ) and ι : a∗(F) ' p∗(F) is an isomorphism
satisfying the compatibilities

(1) (e× id)∗(ι) = idF ;
(2) (m× id)∗(ι) = (id× p)∗(ι) ◦ (id× a)∗(ι).

Remark. One obtains an equivalent category if one leaves out condition (1): this is be-
cause, given any ι : a∗(F) ' p∗(F), we can replace it with ι ◦ a∗(e× id)∗(ι−1) and obtain
an isomorphic object satisfying (1). This remark (which could have also been made about
Proposition B.3) will simplify matters when we turn to functoriality (Appendix B.5)—though
one can still verify, using Lemma B.2 (1), that the functors we define will preserve condition
(1).

The intuition is that we think of PG(X ) as being the category of perverse sheaves on
the quotient X/G. It’s clear that PG(X ) is a Q-linear abelian category admitting an exact,
faithful (forgetful) functor to P(X ), which we think of as q∗, with q : X → X/G the quotient
map; c.f. Lemma B.2. This intuition guides us in every case; however, we note that it is
more than just intuition in certain cases (take H = G in Proposition B.9).
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We also want to remark that the notion of a G-equivariant perverse sheaf affords a sub-
stantial technical simplification in the case when G is connected (a fact which one easily
guesses, thinking of the forgetful functor as q∗ and recalling [BBD] Proposition 4.2.5):

Proposition B.5. Suppose that G is connected. Then the forgetful functor PG(X )→ P(X )
is fully faithful and thick, and its essential image consists of those F ∈ P(X ) for which there
merely exists an isomorphism a∗F ' p∗F .

Proof. We first identify the essential image. Suppose we have F ∈ P(X ) with ι : a∗F ' p∗F .
By the reasoning of the remark following the definition, we can assume ι satisfies (1) of the
definition. Then it automatically satisfies (2). Indeed, (2) is a question of equality among
two maps (m× id)∗a∗F → (id× p)∗p∗F ; but both give idF under (e× id)∗(e× id× id)∗,
so they must be equal, by Lemma B.2 (2).

Now we show full fidelity. Let (F , ι) and (F ′, ι′) be in PG(X ); the claim is that any map
ϕ : F → F ′ automatically intertwines ι and ι′. But this is a question of an equality of two
maps a∗F → a∗F ′, both of which give ϕ under (e× id)∗ by condition (1) of the definition;
so we have equality by Lemma B.2 (2).

Now we show thickness, using the claim about the essential image. Let F ∈ P(X ) with
a∗F ' p∗F , and let G ∈ P(X ) be a subquotient of F . By [BBD] Corollary 4.2.6.2, there is a
G ′ ∈ P(X ) with p∗G ′ ' a∗G; but applying e∗ gives that G ′ ' G, showing that a∗G ' p∗G ′ '
p∗G and thereby finishing the proof. �

Corollary B.6. If G is connected and X is a G-space, then PG(X ) is artinian and noetherian.

Proof. Clear from the corresponding fact for P(X ) ([BBD] Theorem 4.3.1). �

Because of this proposition, if G is connected, we will often identify PG(X ) with its essential
image in P(X ); so we will speak of an F ∈ P(X ) as being G-equivariant, i.e. as satisfying
a∗F ' p∗F .

Since we are primarily interested in connected groups, one might ask why we use the more
complicated original definition, rather than simply defining PG(X ) to be the appropriate full
subcategory of P(X ) as indicated by this proposition. Leaving aside philosophical objec-
tions to this alternate approach, the most basic reason is that even if our original group is
connected, non-connected groups can arise from it as stabilizers of actions, and must be con-
sidered: see Proposition B.13. Now, in what follows, the reader will find many propositions
where the group is assumed to be connected, and many where it is not; this dichotomy is
never arbitrary, but in fact dictated by pragmatism: if we will require the proposition in the
non-connected case, we will deal with the non-connected case; if not, we will make our lives
easier and invoke the preceding proposition.

We also would like to caution that the forgetful functor to P(X ) is not necessarily Serre,
i.e. (in the above language) an extension of G-equivariant perverse sheaves need not be
G-equivariant; we will now pause to give a specific example of this, and talk a bit about
extensions of equivariant perverse sheaves.

B.2. Extensions of equivariant perverse sheaves. We recall the following lemma, which
is our starting-point.

Lemma B.7. Let D be a triangulated category, and P the heart of a t-structure on D. Then
for X, Y ∈ P, we have P1(X, Y ) = D1(X, Y ), i.e., extensions in P of Y by X are classified
by maps X → Y [1] in D.
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Proof. Follows simply from [BBD] Theorem 1.3.6 and Corollary 1.1.10. �

We note that the analogous statement is false for higher extensions, as the following ex-
ample from algebraic topology shows. Let S be the homotopy category of spectra, which is
triangulated via the usual suspension and cofiber sequences. Then S admits a t-structure
given by the stable homotopy groups (the verification of the t-structure axioms uses the
technique of attaching cells to kill homotopy groups). Its heart is the category of Eilenberg-
Maclane spectra, which is equivalent to the category of abelian groups, and the maps
Sn(K(A,m), K(A,m)) in question are exactly what give stable cohomological operations.
For instance, the previous lemma applied to the current situation gives the Bockstein opera-
tions associated to an extension of abelian groups, and the existence of Steenrod operations
shows that the lemma does not hold for higher extensions (which are all trivial for abelian
groups).

Now we give the desired classification of extensions; it is as simple as one can reasonably
wish.

Proposition B.8. Let G be an algebraic group, and X a G-space. Assume, for simplicity,
that G is connected. Then for F ,G ∈ PG(X ), the extensions P1

G(F ,G) are classified by the
maps G → F [1] in D(X ) which are equivariant in the sense that they intertwine ιG and ιF [1].

Proof. Lemma B.7 gives the statement when we remove the subscripts indicating G-equivariance;
by Proposition B.5, then, we need only see that, for a map ϕ : F → G[1] in D(X ), the cor-
responding extension of F by G is G-equivariant if and only ϕ itself is G-equivariant, i.e.
intertwines ιF and ιG[1]. This is a simple exercise in triangulated categories using the ideas
in the proof of Proposition B.5. �

Now we give an example showing that the forgetful functor PG(X ) → P(X ) is not nec-
essarily Serre. By the preceding proposition, we need to give a non-equivariant F → G[1].
For this, take G = Gm, the multiplicative group, and X = A1 with the obvious action. If
j : Gm → A1 is the inclusion, then j∗QGm [1] and QA1 [1] are both equivariant and perverse;
but any map QA1 [1]→ j∗QGm [2] classifying a nontrivial cohomology class in H1(Gm) will be
non-equivariant, because such a class pulls back to two different things under the action and
projection maps Gm × Gm → Gm.

B.3. Change-of-group. Thus far we have dealt with a fixed group G; now we will vary G
and consider relations between the resulting categories PG. We start with the following:

Proposition B.9. Let G be a linear algebraic group, X a G-space, and H a closed normal
subgroup of G. If there is a geometric quotient f : X → X/H which is étale-locally H-
principal, then f∗ induces an equivalence of categories PG/H(X/H) ' PG(X ).

Proof. The map from the simplicial variety describing the action of G on X to the simplicial
variety describing the action of G/H on X/H (bolded pull-back along which gives our functor)
is just given at every stage by modding out by the obvious action of H, a smooth map; thus,
using Proposition B.3, we can identify PG/H(X/H) with a descent-type category associated
to the appropriate bisimplicial varitety whose first row is the action simplicial variety for
G on X and whose first column is the simplicial variety associated to the map f as in
Proposition B.3. However, there is a splitting for this bisimplicial variety, induced by the
closed immersion X ×X/H X → G × X given by (x, x′) 7→ (h, x′) if hx′ = x. (This is not
literally a map of varieties, but actually an étale-local map: over trivializing U → X/H, it
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is just the inclusion H × U → G × U . However, an étale-local map is good enough for us,
since we only care about pulling perverse sheaves back along it). We leave it as an exercise
to show that the appropriate shifted pullback along this closed immersion is t-exact on the
essential image of a∗ and p∗ (using the idea of Lemma B.2 (1)), and to deduce on general
terms that the bisimplicial descent category is isomorphic to the simplicial descent category
for the first row, as desired. �

This proposition admits a corollary, which uses the notation of [S], page 95—the pertinent
point being that, for an algebraic group G, closed subgroup H, and H-space Y , the notation
G×HY stands for a (geometric) quotient of G × Y by the action of H given by h · (g, y) =
(gh−1, hy), and is itself a G-space in the obvious way. This quotient always exists as a variety,
at least assuming that G is linear algebraic and Y is quasi-projective; we sketch the proof,
since it’s not in [S]. As remarked in [S], Lemma 5.5.8, if the projection G → G/H has local
sections, the space G ×H Y can be constructed by gluing together the U × Y where U runs
over an open covering of G/H by sets on which G → G/H has a section. Now, G → G/H
doesn’t always have local sections, but it does have étale-local sections, being smooth and
surjective; so we get an étale-local construction this way. To make it Zariski-local, note
that, by refining these étale maps, we can assume them all to be Galois over their image.
This, together with the classical fact that the quotient of a quasi-projective variety by a
finite group always exists as a variety, lets us descend to the Zariski case. Now, here is the
corollary.

Corollary B.10. Let G be a linear algebraic group, H a closed subgroup, and Y a quasi-
projective H-space. Then the categories PG(G×HY) and PH(Y) are equivalent via mutual
pullback to G× Y.

Proof. The map p : G × Y → G ×H Y is étale-locally H-principal, by the above-outlined
construction; so Proposition B.9 implies that p∗ identifies PG(G×HY) with PG×H(G × Y).
But the same argument (the roles of G and H being switched) applies to G × Y → Y , and
identifies PH(Y) with the same category. �

We finish the change-of-group section with the following result (which illustrates how much
easier working with connected groups is; compare with Proposition B.9):

Proposition B.11. Let G be a connected linear algebraic group, and H a connected normal
subgroup. If X is a G/H-space, then we have PG(X ) = PG/H(X ) (as full subcategories of
P(X ); see Proposition B.5).

Proof. By [BBD] Proposition 4.2.5, pullback along G × X → G/H × X is fully faithful and
thick; in particular it reflects isomorphisms. �

B.4. The case of finitely many orbits. A case of particular interest for us is when X has
only finitely many G-orbits, since this is satisfied for a reductive G acting via conjugation
on its unipotent locus U (Proposition 2.2 (1)). We start with just one orbit, which can be
handled by Corollary B.10.

Lemma B.12. Let G be a linear algebraic group, X a homogeneous G-space, and x0 ∈ X . Set
H = Stab(x0). The category PG(X ) is equivalent to that of finite-dimensional representations
of H/H◦, the group of components of H. Furthermore, each object of PG(X ) is in fact a G-
equivariant local system shifted by dim(X ).



26 DUSTIN CLAUSEN

Proof. Applying Corollary B.10 to the case Y= x0, a point, we deduce that PG(X ) is equiv-
alent to PH(•) (see [S] Corollary 5.5.4); that this is equivalent to the desired category is
immediate straight from the definition. The local system claim follows from the fact that
Proposition B.3, Proposition B.9, and Corollary B.10 work just as well for local systems as
perverse sheaves, with the same proofs (replacing the bold-faced f∗ with normal f ∗); and on
a point the notions coincide. �

We remark that the G-equivariant projection G/H◦ → G/H, which is Galois with group
H/H◦, provides another realization of this equivalence of categories, through the usual cor-
respondence between local systems and representations of the fundamental group.

Now we come to the main proposition of this section. It is an analog of [BBD] Theorem
4.3.1, though slightly more precise.

Proposition B.13. Let G be a connected linear algebraic group, and X a G-space having
only finitely many orbits. For an orbit O, denote by Stab(O) the stabilizer of a fixed element
of O. Then the simple objects of PG(X ) correspond exactly to pairs (O, τ), where O is a
G-orbit on X and τ is an irreducible finite-dimensional representation of Stab(O)/ Stab(O)◦.

Proof. For the inclusion j : Z → X of a smooth, connected, locally closed subvariety and
a local system L on Z, denote by FZ,L the element j!∗(L[dim(Z)]) of P(X ). Proposition
B.5 implies that the forgetful functor PG(X ) → P(X ) preserves and reflects simple objects,
so by [BBD] Theorem 4.3.1, the simple objects of PG(X ) are exactly the FZ,L which are
G-equivariant, for L irreducible.

Each pair (O, τ) does give rise to such an FZ,L, namely by taking Z = O and L the local
system corresponding to τ as in Lemma B.12. These FZ,L = FO,τ are indeed G-equivariant,
by Proposition B.15; what we need is firstly that they are mutually non-isomoprhic, and
secondly that any G-equivariant FZ,L is isomorphic to one of them. Both facts will follow
from the following lemma, concerning regular perverse sheaves on a variety:

Lemma B.14. Let X be a variety, and Z and Z ′ two smooth, connected, locally closed
subvarieties of X . If L, respectively L′, is a local system on Z, repsectively Z ′, then FZ,L =
FZ′,L′ if and only if there is a smooth, connected, locally closed Z ′′ ⊆ Z ∩ Z ′ dense in both
Z and Z ′ with L|Z′′ = L′|Z′′.

Proof. For “only if”, suppose FZ,L = FZ′,L′ ; so in particular their supports are the same, i.e.
Z = Z ′. Then both Z and Z ′ are open dense in this common closure, and we can take Z ′′
to be their intersection; we will have the equality of restricted local systems simply because
restriction composed with Goresky-Macpherson extension is the identity ([BBD] Proposition
2.1.9).

For “if”, we may as well assume Z ′′ = Z ′ (otherwise we’d apply the same argument twice),
and replacing X with Z we may assume Z ′ ⊆ Z are both open. But then Lemma 4.3.2 of
[BBD] shows that the conditions for being the Goresky-Macpherson extension of L[dim(Z)]
are a subset of those for L′[dim(Z ′)], so that the sheaves must be equal. �

The “only if” part of the lemma immediately implies that the FO,τ are mutually non-
isomorphic, since two orbits either agree or are disjoint. On the other hand, let Z and L
be arbitrary such that F := FZ,L is G-equivariant. Then the support Z of FZ,L is G-stable,
and hence a finite union of orbits; thus there is an orbit O open in Z. The restriction F|O is
G-equivariant, perverse, and simple; thus by Lemma B.12 it is the shift by dim(O) = dim(Z)
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of some local system on O, corresponding to some irreducible τ . Then the lemma gives that
F = FO,τ , as desired. �

B.5. Functoriality and the equivariant derived category (Bernstein-Lunts). We
need to discuss functoriality for equivariant perverse sheaves. However, a problem imme-
diately presents itself: just as in the non-equivariant case, the usual functors f∗, f!, f

∗, f !

associated to a map f : X → Y of G-spaces do not necessarily respect perversity; thus,
there is no such functoriality on the level of perverse sheaves. This will necessitate the intro-
duction of a larger category, an equivariant constructible bounded derived category DG(X ),
which is the natural domain for these pushforward and pullback maps. Before turning to
this, however, we start with functors which do respect perversity; here the extension to the
equivariant case is easy.

Proposition B.15. Let G be an algebraic group. We have the following:

(1) For a G-space X , a Verdier duality anti-equivalence D : PG(X )→ PG(X );
(2) For an inclusion j : Z → X of a locally closed G-stable subvariety of a G-space, a

Goresky-Macpherson exetnsion functor j!∗ : PG(Z)→ PG(X );
(3) For two G-spaces X and Y, an external product � : PG(X )×PG(Y)→ PG(X × Y).

All of these maps satisfy their usual compatibilities and properties, and the forgetful functor to
the non-equivariant situation intertwines these maps with their non-equivariant counterparts.

Proof. In all cases, the construction is immediate from the usual operation commuting with
a∗ ands p∗. For (1), this is clear; for (2), see [BBD] page 110 and for (3), [BBD] page 111.
One must, of course, also recall that the usual operation does in fact preserve perversity,
which in the third case is [BBD] Proposition 4.2.8. The least transparent of the equivariant
definitions concerns D, because of its contravariance: we set D(F , ι) = (DF , Dι−1). �

Now we turn to the more complicated f∗, f!, f
∗, f !. As remarked above, we need an equi-

variant constructible bounded derived category DG(X ) in which to work. This is not a simple
matter; the naive guesses all have defects. We will not construct it ourselves, but instead
refer the reader to [BL], and simply state its main properties, which are all we will need from
it.

Here, for simplicity, we assume that G is connected, and think of PG(X ) as a full subcat-
egory of P(X ) through Proposition B.5.

Proposition B.16. Let G be a connected linear algebraic group. If X is a G-space, there
is a triangulated t-category DG(X ) and a t-exact (forgetful) functor F : DG(X )→ D(X ); we
have the following properties:

(1) F identifies the heart of DG(X ) with PG(X ), and moreover reflects perversity;
(2) Let H be a closed normal subgroup of G. If there is a geometric quotient f : X →
X/H which is étale-locally H-principal, then there is an equivalence of t-categories
DG(X ) ' DG/H(X/H) intertwining F and f∗;

(3) If f : X → Y is a map of G-spaces, we have associated functors f∗, f!, f
∗, f ! satisfying

their usual properties (the pertinent part for us being the adjunctions). Both F and
the isomorphism of (2) intertwine these operations with their usual counterparts.

From these properties we can draw several simple consequences. For instance:

Proposition B.17. Let G be a connected linear algebraic group, and H a closed connected
subgroup of G. If X is a G-space, there is a natural restriction functor R = RG

P : DG(X ) →
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DH(X ), which F intertwines with the identity D(X )→ D(X ); moreover, R has a right adjoint
I = IG

H .

Proof. The same proof as in Corollary B.10 shows that property (2) above implies DH(X ) '
DG(G×HX ); through this isomorphism, we can define R = a∗ and I = a∗[− dim(G/H)], where
a : G×HX → X is given by the action map (isomorphic to the projection G/H×X → X ). �
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