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Chapter 1
Introduction

1.1 History

Theoretical computer science is concerned with studying the ultimate capabilities of computing and can
be divided into two areas: algorithms and complexity theory. The study of algorithms focuses on finding
resource-efficient procedures for solving computational problems, while complexity theory focuses on proving
that such problems require a certain amount of such computational resources as time, space, randomness,
parallelism, etc. Put differently, whereas algorithms establish upper bounds on the hardness of problems,
results in complexity theory give lower bounds.

The search for such upper and lower bounds has its origins in Hilbert’s Entscheidungsproblem: find an
algorithm that, given any statement in first-order logic, either produces a proof or concludes that none
exists. Church and Turing notably showed that if Turing machines are a universal model of computation,
this problem is undecidable [17, 52].

But computer scientists are typically concerned with settings where agents are resource-bounded, in
which case the Entscheidungsproblem would ask: does there exist an efficient algorithm that, given any
statement in first-order logic, either produces a short proof or concludes that no short proof exists? In
passing to this finitary formulation, we effectively recover the famous P vs. NP problem, and indeed this
was its original formulation in Gödel’s famous 1956 letter to von Neumann. Equivalently, it asks whether
the class of problems for which one can quickly verify a proposed solution (NP) is the same as the class of
problems for which one can quickly find such a solution (P).

While it is strongly believed that P ≠ NP, i.e. there is a significant lower bound on the time required to
solve the hardest problems in NP, progress towards proving such a lower bound has been notoriously minimal,
to the extent that some of the most famous theorems in this direction have been so-called “barrier” results
showing that an overwhelming majority of techniques for proving lower bounds in complexity theory cannot
separate P and NP [1, 3, 46]. And whereas people observed in the 1980’s that proving P ≠ NP is equivalent to
proving that the hardest problems in NP require exponentially large Boolean circuits to compute, the best
known lower bound on circuit size for any problem [28] is only linear in the size of the input!

This lack of progress might compel an upper bounds enthusiast to seek new algorithmic techniques for
solving problems in NP, or a lower bounds enthusiast to seek complexity theoretic techniques that evade
the existing barrier results. To a reader of either persuasion, the relative lack of structure in the problem
statement of P vs. NP makes it unclear where such techniques might come from. As we will see in this
thesis, it turns out that some of the most promising techniques in both areas have been rooted in geometry.

1.2 Holographic Algorithms

Over the past fifty years, the CS theory community has accumulated a rich arsenal of deterministic polynomial-
time algorithms, ranging from linear and semidefinite programming to primality testing and dynamic pro-
gramming. In Part 1 of this thesis, we focus on one of the more recent additions to this collection, Valiant’s

1



1.3. PERMANENT VS. DETERMINANT 2

framework of holographic algorithms. Originally motivated by the problem of classically simulating certain
components of quantum computation [58], holographic algorithms have since been used to solve a number
of counting problems that previously would have been conjectured to be intractable [59, 60, 62].

At the core of every holographic algorithm is the fact that the determinant of a matrix is easy to compute.
Specifically, holographic algorithms exploit the fact that counting perfect matchings in planar graphs is as
easy as computing determinants, a fact statistical physicists discovered some decades ago [29, 50]. The idea
then is to show other counting problems are easy by reducing them to counting perfect matchings in planar
graphs. To this end, a classical reduction would take a given problem instance φ and map it to some Ω for
which the number of solutions to φ is in one-to-one correspondence with the number of perfect matchings
of Ω, but the issue is that the range of problems for which this strategy would work is impossibly narrow.
Instead, a holographic reduction takes φ to an Ω for which the number of solutions to φ agrees with the
number of perfect matchings of Ω but for which no one-to-one correspondence necessarily exists. Holographic
algorithms get their name from the way they allow multiple strands of computation to come together in a
custom-built mixture reminiscent of quantum interference in order to produce the answer.

This mixture is made possible by a so-called basis change. Roughly speaking, PerfMatch(Ω) can be
realized as an inner product ⟨u, v⟩ for vectors u, v encoding the local constraints of φ, so applying a linear
transformation to u and the dual transformation to v preserves this inner product, extending the range of
vectors that can be used to encode φ’s constraints. One of the primary questions in the past few years
regarding the ultimate capabilities of holographic algorithms has been to understand the full power this
change of basis affords.

In Part 1 of this thesis, we explore the problem of quantifying the power of basis change and see that this
problem and holographic algorithms more generally have intriguing connections to the geometry of spinor
varieties. By design, a problem admits a holographic solution if and only if a particular system of polynomial
equations is solvable, and understanding the kinds of counting problems that can be solved by holographic
algorithms turns out to be related to understanding the SL(n)-orbits of spinor varieties.

1.3 Permanent vs. Determinant

On the complexity side of things, a starting point is to pass from the Boolean setting to an algebraic
one. In 1979, Valiant [54, 55] introduced algebraic analogues of P and NP together with polynomials that
captured these algebraic complexity classes, namely the determinant and permanent polynomials. Both
are exponentially large sums of products, yet whereas the determinant is easy to compute, the permanent
appears to be very difficult to compute.

Valiant posed the following algebraic analogue of P ≠ NP:

Conjecture 1.3.1 (Valiant’s conjecture). The permanent of an m ×m matrix M cannot be computed as
the determinant of an n × n matrix M ′ whose entries are affine linear forms in those of M unless n is
super-polynomial in m.

Whereas holographic algorithms take advantage of how special the determinant polynomial is in order
to show certain problems are easy to solve, attempts to prove Valiant’s conjecture try to take advantage of
how special the determinant polynomial is in order to show other polynomials are very far from sharing the
same properties.

After homogenizing, one can formulate Valiant’s conjecture geometrically as a claim about the relationship
between orbits of polynomials: for a given m, does the orbit of detn under the action of End(n2) contain
that of `n−m permm for some n super-polynomial in m? In the first half of Part 2 of this thesis, we explore
some previous approaches to this problem.

One difficulty with trying to separate these orbits is that they are not cut out by polynomial equations,
so naturally one can relax the problem by comparing the Zariski closures of these orbits instead. In [44],
Mulmuley/Sohoni put forth an approach, their so-called geometric complexity theory (GCT) program, to
separate the closures of these orbits by finding distinguishing representation-theoretic “obstructions” in their
coordinate rings. Notably, their techniques seem to avoid all known barriers by making use of properties of
the permanent and determinant that do not hold for general polynomials.

While passing to the closure puts the tools of algebraic geometry at one’s disposal, the extent to which
this relaxation differs from Valiant’s original conjecture remains somewhat mysterious. Understanding this
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necessitates understanding the geometry of the boundaries of these orbit closures, which we explore in the
second half of Part 2 of this thesis.

1.4 Our Contributions

In our exploration of holographic algorithms, our main result is to resolve the following decade-old open
problem dating back to at least [59]: for a given domain size of counting problems (e.g. counting the number
of k-colorings in a graph is a problem over domain size k), what is the smallest basis transformation matrix
needed to simulate all holographic algorithms over that domain size? This is crucial to classifying what
holographic algorithms are capable of accomplishing for counting problems over all domain sizes. Specifically,
we prove the following in Chapter 3:

Theorem 1.4.1. Any holographic algorithm over domain size k using a full rank signature can be simulated
by a holographic algorithm using a 2⌊log2 k⌋ × k basis matrix.

A major step in our approach is to introduce a new coordinate-free interpretation of the algebraic prop-
erties characterizing holographic algorithms. A preliminary version of this result appeared in [15].

For free, this result also gives a new translation of the holographic framework over domain sizes k = 2K

into the language of spinor varieties, extending the characterization given in [34] over domain size k = 2.
In our study of geometric techniques for separating the permanent and determinant, we introduce a new

combinatorial technique for analyzing irreducible components on the boundary of GL(n2) ⋅ [detn] and use
this to completely classify boundary components for n = 3 in Section 5.4. This reproduces the following
recent result that was coincidentally proven in [27] during the course of this project:

Theorem 1.4.2. The only irreducible components of the GL(9)-orbit closure of det3, are the component
consisting of degenerate End(9)-translates of det3, and the GL(9)-orbit of the polarization

∂det2,1(Wskew,Wsym),

where Wskew and Wsym are the generic skew-symmetric and symmetric 3 × 3 matrix respectively.

The third result of this work is to construct the first known infinite family of boundary components of
Detn for even n in Section 5.5. The rest of this thesis is expository, devoted to presenting what the author
views as particularly beautiful connections between geometry and the P vs. NP problem.

1.5 Organization

In Chapter 1, we center our exposition around the three most substantial lower bounds for the determi-
nantal complexity of the permanent, which draw on tools from classical differential geometry and highest
weight theory, and briefly introduce Mulmuley/Sohoni’s GCT program of finding representation-theoretic
obstructions in coordinate rings.

In Chapter 2, we focus on a specific problem in algebraic geometry that arises from the GCT program:
classifying components on the boundary of GL(n2) ⋅ [detn]. We motivate this with a negative result of Kumar
[31] that says this orbit closure is non-normal, so the extension problem of determining which functions on
the orbit extend to the orbit closure is difficult. The boundary components problem turns out to be related to
the long-standing problem of finding maximal linear subspaces on V (detn), which we discuss at length. We
then present the proof of Theorem 1.4.2 due to [27], which uses resolution of singularities, before presenting
our own proof of the same result and our result on infinite families of boundary components.

In Chapter 3, we develop Valiant’s holographic framework and introduce new coordinate-free interpreta-
tions of the algebraic properties characterizing holographic algorithms. In addition, we review the connections
established in [34] between holographic algorithms over domain size 2 and the geometry of spinor varieties
and their SL(n)-orbits.

In Chapter 4, we present our proof of Theorem 1.4.1. In [34], Landsberg et al. gave an interpretation of
holographic algorithms over the Boolean domain in terms of orbits of spinor varieties, and as a straightforward
consequence of our Theorem 1.4.1, we are able to extend their interpretation to k = 2K .
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The only assumptions on background that this work makes are a rudimentary understanding of classical
complexity theory, representation theory, invariant theory, and algebraic geometry. In the appendix, we
include reviews of the basic complexity classes, the representation theory of the general linear group, the
algebraic Peter-Weyl theorem, affine complex algebraic groups, the basic algebraic theory of spinors, and
proofs of some minor details mentioned in the body of the thesis.



Part I

Algorithms

5



Chapter 2
Holographic Algorithms

Holographic algorithms were originally introduced by Valiant in [57, 58] as a method for classically simulating
certain quantum gates in polynomial time. Roughly, they work by reducing counting problems to the problem
of counting perfect matchings in planar graphs, which is known to be tractable. The unique aspect of these
reductions is that they are “many-to-many,” i.e. for a given problem instance, they do not establish a one-
to-one bijection between the set of solutions and the corresponding set of perfect matchings, even though
the quantities of both happen to agree. Instead, the intuition is that multiple strands of computation get
combined in a “holographic” mixture with exponential, custom-built cancellations specified by a choice of
basis vectors to produce the final answer.

Valiant asked whether matchgates could be used to derive other polynomial-time algorithms, and in recent
years the framework has been applied to obtain a wide array of surprising polynomial-time algorithms for
seemingly intractable problems [59, 60, 61, 62], the only criterion for their existence being the solvability of
certain finite systems of polynomial equations. The subtext is that while there is an overwhelming consensus
in the complexity theory community that P ≠ NP, the justifications are somewhat tenuous for being based
largely on the intuition that the algorithmic methods available to us for solving problems deterministically in
polynomial time don’t seem sufficient for solving NP-complete problems. Indeed, the problems holographic
algorithms can solve would have been deemed intractable for such reasons prior to the introduction of
holographic algorithms. Understanding the ultimate limitations of this framework therefore seems like a
basic prerequisite for understanding why the separation P ≠ NP should hold.

In this chapter, we introduce the basic theory of holographic algorithms. We work through an illustrative
example in Section 2.1 before formalizing the framework in Section 2.2. Then in Section 2.3, we discuss
the defining algebraic properties of holographic algorithms and provide an original re-formulation of these
properties that will prove essential to proving our main theorem in the next chapter. Finally, we give a
geometric interpretation of holographic algorithms in terms of spinor varieties in Section 2.4, drawing upon
ideas from [34].

2.1 Motivation

2.1.1 FKT algorithm

In [55], Valiant showed that the problem of computing the permanent for a matrix from Mn×n({0,1}) is
#P-complete. Because the number of perfect matchings in a bipartite graph is equal to the permanent of
its adjacency matrix M ∈ Mn×n({0,1}), this implies that counting the number of perfect matchings even in
a bipartite graph is a #P-complete problem. More generally, for weighted directed graphs G, we can define
the perfect matching polynomial PerfMatch(G) by

PerfMatch(G) = ∑
M

∏
(i,j)∈M

Aij ,

6
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whereA denotes the (skew-symmetric) weighted adjacency matrix ofG. The problem of computing PerfMatch
is likewise #P-complete.

A famous result in statistical mechanics states however that the same problem for planar graphs can be
solved in polynomial time. The eponymous algorithm due jointly to Fisher and Kasteleyn [29] and Temperley
[50] takes advantage of the fact that 1) PerfMatch(G) looks quite similar to the polynomial

Pf(A) = ∑
M

sgn(πM) ∏
(i,j)∈M

Aij , (2.1)

called the Pfaffian of A, where sgn(πM) denotes the sign of the permutation corresponding to perfect
matching M , and 2) Pf(A)2 = det(A) [43], which we know how to compute quickly. Their observation was
that for planar graphs, the edges can be directed in such a way that the Pfaffian and perfect matching
polynomial agree.

Theorem 2.1.1 ([29, 50]). Let G′ be a weighted undirected graph. There exists an orientation of the edges
giving rise to a directed graph G with adjacency matrix A for which PerfMatch(G) = Pf(A). In particular,
the problem of counting the number of perfect matchings in a planar graph can be solved in polynomial time.

The FKT algorithm is a key ingredient in the holographic framework, under which one seeks to reduce
counting problems to the problem of counting perfect matchings in planar graphs.

2.1.2 #7Pl-Rtw-Mon-3CNF

To illustrate the nature of these reductions before formally defining all the parts that go into the holographic
approach, we provide a fairly informal exploration of one of its more notable success stories. That said, this
subsection may be skipped if the reader prefers to dive straight into definitions.

Consider the canonical #P-complete problem of counting the number of satisfying assignments to a 3-
CNF φ1 If φ is monotone, i.e. if φ has no negations, we may associate to it a bipartite graph Gφ = (Vφ,Eφ)
with a left vertex for every unique literal v, a right vertex for every clause C, and an edge connecting any v
and C if v occurs in C.

To simplify things, we will insist that φ be monotone, read-twice (every literal appears at most twice in
φ), and planar (Gφ has a planar embedding). We denote the problem of counting the number of satisfying
assignments to such φ by #Pl-Rtw-Mon-3CNF. According to the following result whose proof we omit in
this work, this is still intractable.

Theorem 2.1.2 ([65]). #Pl-Rtw-Mon-3CNF is #P-complete.

Even if we just ask for the parity of the number of satisfying assignments, this problem remains intractable.
In general, denote the corresponding problem modulo k by #kPl-Rtw-Mon-3CNF.

Theorem 2.1.3 ([59]). #2Pl-Rtw-Mon-3CNF is ⊕P-complete.

One of the early miracles of the holographic approach was the following:

Theorem 2.1.4 ([59, 12]). #7Pl-Rtw-Mon-3CNF has a polynomial-time solution.

We now sketch a proof of this. Intuitively, imagine that every left vertex v in Gφ emits signals along the
one or two edges (called wires) connected to it indicating whether the corresponding literal in φ is assigned 0
or 1. #7Pl-Rtw-Mon-3CNF is characterized by two local constraints on these signals: 1) for each left vertex
v, the signals along the edges connected to v must agree, 2) for each right vertex C, at least one of the three
incoming signals must be 1 in order for clause C in φ to be satisfied.

We’d like to replace the left and right vertices of Gφ respectively with small planar graphs G and R,
called matchgates, whose perfect matching properties encode these local constraints in such a way that the
number of perfect matchings of the graph G′

φ obtained after these replacements is equal to the number of
satisfying assignments to φ.

1Recall that a 3-CNF is a Boolean formula φ of the form ⋀i(x
i
1∨x

i
2∨x

i
3), where xij are (not necessarily distinct) {0,1}-valued

variables, and ∨ and ∧ denote the Boolean OR and AND operations. A satisfying assignment is an assignment of {0,1} to each
variable for which φ evaluates to 1.
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So for any choice of signals x ∈ {0,1}∣Eφ∣ along the wires of Gφ, denote by Z the set of wires wi of Gφ
for which xi = 1. Consider the induced subgraph G′

φ/Z. We must have that PerfMatch(G′
φ/Z) equals 1 if

x satisfies the two local conditions and 0 otherwise. But PerfMatch(G′
φ/Z) is the product of all copies

of PerfMatch(G/Z) and PerfMatch(R/Z) across left vertices v and right vertices C. This vanishes if
and only if PerfMatch(G/Z) = 0 and/or PerfMatch(R/Z) = 0. On the other hand, if PerfMatch(G/Z) =

PerfMatch(R/Z) = 1, then PerfMatch(G′
φ/Z) = 1.

Then it suffices to construct a G for which the number of perfect matchings upon removing either both
vertices or neither vertex incident to a wire is 1, and upon removing exactly one vertex incident to a wire
is 0; and an R for which the number of perfect matchings upon removing at least one vertex incident to a
wire is 1, and upon removing no vertices is 0. We would then say that such graphs G and R have standard
signatures (1,0,0,1) and (1,1,1,1,1,1,1,0)T .

The issue is that the latter vector cannot possibly be a standard signature: removing an odd number of
vertices and an even number of vertices cannot both give a nonzero number of perfect matchings. This is the
so-called parity condition of standard signatures. But the situation is still salvageable: Valiant’s insight was
to use a change of basis to extend the range of feasible signatures. The intuition is that PerfMatch(Ω) can be
regarded as a vector pairing ⟨u, v⟩ between a tensor product u ∈ C⊗2n ≃ (C2)⊗n of copies of (1,0,0,1) and a
tensor product v ∈ C∗2n ≃ (C∗2)⊗n of copies of (1,1,1,1,1,1,1,0). Transforming u by the action of some basis
matrix M ∈ GL2(C) and v by the dual action preserves the pairing, so in fact it suffices to find an appropriate
M taking both G and R to valid standard signatures. In [12], Cai and Lu found that remarkably, this is

possible over F7: take M = (
1 3
6 5

) and standard signatures (3,0,0,5) and (0,3,3,0,3,0,0,5), corresponding

to the matchgates in Figures 2.1a and 2.1b.

(a) Standard signature (3,0,0,5) (b) Standard signature (0,3,3,0,3,0,0,5)

Figure 2.1: Gadgets for #7Pl-Rtw-Mon-3CNF

The point Valiant makes in [57, 58] is that the same reasoning by which people believe P ≠ NP, namely that
none of the existing frameworks for obtaining efficient algorithms can solve an NP-complete problem, would
have suggested that #7Pl-Rtw-Mon-3CNF is intractable prior to the introduction of holographic algorithms.
This suggests that to arrive upon the desired separation of P and NP, we need a better understanding of
the possibilities of polynomial-time computation. For this reason, determining the ultimate capabilities of
holographic algorithms appears to be a crucial step.

2.2 Preliminaries

In this section, we formalize the notions introduced in the previous section.
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2.2.1 Background

Denote the Hamming weight of string α by wt(α), and define the parity of α to be the parity of wt(α).
Given 1 ≤ i ≤m, define ei ∈ {0,1}m to be the bitstring with a single nonzero bit in position i. The parameter
m is implicit, and when this notation is used, m will be clear from the context. Denote by 1m the length-m
bitstring consisting solely of 1’s.

We review some basic definitions and results about holographic algorithms. For a comprehensive intro-
duction to this subject, see [60].

Definition 2.2.1. A matchgate Γ = (G,X,Y ) is defined by a planar embedding of a planar graph G =

(V,E,W ), input nodes X ⊆ V , and output nodes Y ⊆ V , where X ∩Y = ∅. We refer to X ∪Y as the external
nodes of Γ.

We say that Γ has arity ∣X ∣+∣Y ∣. In the planar embedding of G, the input and output nodes are arranged
such that if one travels counterclockwise around the outer face of G, one encounters first the input nodes
labeled 1,2,...,∣X ∣ and then the output nodes ∣Y ∣,...,2,1.

If Γ has exclusively output (resp. input) nodes, we say that Γ is a generator (resp. recognizer). Otherwise,
we say that Γ is an ∣X ∣-input, ∣Y ∣-output transducer.

Definition 2.2.2. A basis matrix with basis size ` over domain size k is a 2` × k matrix M = (aαi ), where
rows and columns are indexed by α ∈ {0,1}` and i ∈ [k] respectively. The domain size should be interpreted
as the range over which variables in the counting problem can take values, so for instance, problems related
to counting certain k-colorings in a graph are problems over domain size k. The basis size should then be
interpreted roughly as the number of bits needed to encode each of these k colors.

Definition 2.2.3. The standard signature of a matchgate Γ of arity n` is a vector of dimension 2n` which
will be denoted by Γ, where for αi ∈ {0,1}`, Γα1⋯αn denotes the entry of Γ indexed by α1 ○ ⋯ ○ αn. If Z is
the subset of the external nodes of Γ for which α1 ○ ⋯ ○ αn is the indicator string, then

Γα1⋯αn = PerfMatch(Γ/Z).

Here, if A = (Aij) is the adjacency matrix of Γ, PerfMatch is the polynomial in the entries of A defined by

PerfMatch(A) = ∑
M

∏
(i,j)∈M

Aij ,

with the sum taken over the set M of all perfect matchings of Γ.

The following lemma follows from the definition of standard signatures.

Lemma 2.2.4. Suppose R is the standard signature of a recognizer of arity n` and T the standard signature
of a transducer with s inputs and ` outputs. Then R′

= RT⊗n is the standard signature of a recognizer
matchgate of arity ns.

Definition 2.2.5. A column (resp. row) vector of dimension kn is said to be a generator (resp. rec-
ognizer) signature realizable over a basis M if there exists a generator (resp. recognizer) matchgate Γ
satisfying M⊗nG = G (resp. RM⊗n = R). We say that a collection of recognizer and generator signatures
R1, ...,Ra,G1, ...,Gb is simultaneously realizable if they are realizable over a common basis M .

In particular, if M is square, the signature of a matchgate with respect to the standard basis is the
standard signature. Also note that in terms of coordinates, we have that

Gα1⋯αn = ∑
j1,...,jn∈[k]

Gj1⋯jnaα1

j1
⋯aαnjn

and
Rj1⋯jn = ∑

α1,...,αn∈{0,1}`
Rα1⋯αna

α1

j1
⋯aαnjn .
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Definition 2.2.6. A matchgrid Ω = (G,R,W ) is a weighted planar graph consisting of a set of g generators
G = {G1, ...,Gg}, a set of r recognizers R = {R1, ...,Rr}, and a set of w wires W = {W1, ...,Ww}, each of
which has weight 1 and connects the output node of a generator to the input node of a recognizer so that
every input and output node among the matchgates in G ∪R lies on exactly one wire.

Define the underlying graph of Ω to be the graph with g + r vertices and w edges constructed from Ω
by replacing each matchgate with a vertex and each edge between external nodes of matchgates Gi and Rj
with an edge between the new pair of vertices corresponding to these matchgates.

Definition 2.2.7. Suppose Ω = (G,R,W ) is a matchgrid with g generators, r recognizers, and w wires, and
let M be a basis for Ω. Define the Holant to be the following quantity:

Holant(Ω) = ∑
z∈[k]w

⎛

⎝

g

∏
i=1

Gyii

r

∏
j=1

R
xj
j

⎞

⎠
.

Here, z = y1 ○ ⋯ ○ yg = x1 ○ ⋯ ○ xr such that yi ∈ [k]∣Yi∣ and xj ∈ [k]∣Xj ∣ for Yi the output nodes of Gi and Xj

the input nodes of Rj , and Gi and Rj denote the signatures of their respective matchgates under basis M .

Valiant’s Holant theorem states the following.

Theorem 2.2.8 (Theorem 4.1, [60]). If Ω is a matchgrid over a basis M , then Holant(Ω) = PerfMatch(Ω).

As the Fisher-Kasteleyn-Temperley algorithm [29, 50] can compute the number of perfect matchings of
a planar graph in polynomial time, Holant(Ω) can be computed in polynomial time as long as Ω is planar.

The following observation about the Holant, alluded to in Section 2.1.2, will prove useful in Section 2.4
when we give a geometric interpretation of the holographic framework.

Observation 1. Holant(Ω) is a vector pairing ⟨G,R⟩, where G = ⊗Gi and R = ⊗Ri. Here, the tensor products
are ordered in a way compatible with the wiring of Ω.

2.2.2 Matrix form of signatures

It will be convenient to regard signatures not as vectors but as matrices.

Definition 2.2.9. For generator signature G, the t-th matrix form G(t) (1 ≤ t ≤ n) is a k × kn−1 matrix
where the rows are indexed by 1 ≤ jt ≤ k and the columns are indexed by j1⋯jt−1jt+1⋯jn in lexicographic
order.

Definition 2.2.10. For recognizer signature R, the t-th matrix form R(t) (1 ≤ t ≤ n) is a kn−1 × k matrix
where the rows are indexed by j1⋯jt−1jt+1⋯jn in lexicographic order and the columns are indexed by 1 ≤

jt ≤ k.

We would also like to regard standard signatures as matrices; if basis M is square, the following definitions
are special cases of the above.

Definition 2.2.11. For standard signature G, the t-th matrix form G(t) (1 ≤ t ≤ n) is a 2` × 2(n−1)` matrix
where the rows are indexed by αt and the columns are indexed by α1⋯αt−1αt+1⋯αn.

Definition 2.2.12. For standard signature R, the t-th matrix form R(t) (1 ≤ t ≤ n) is a 2(n−1)` × 2` matrix
where the rows are indexed by α1⋯αt−1αt+1⋯αn and the columns are indexed by αt.

One can check that G(t) and G(t), and R(t) and R(t), are related as follows.

Lemma 2.2.13. If G =M⊗nG, then

G(t) =MG(t)(MT
)
⊗(n−1).
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Lemma 2.2.14. If R = RM⊗n, then

R(t) = (MT
)
⊗(n−1)R(t)M.

We will denote by G(t)σ the row vector indexed by σ, G(t)ζ the column vector indexed by ζ, and G(t)σζ
the entry of G in row σ and column ζ. We use analogous notation for matrices R, G, and R. In general, if
Γ is any matrix, we will sometimes refer to the entry Γσζ as the “entry (indexed by) (σ, ζ).”

In general, if Γ is a matrix with rows indexed by {0,1}a and columns indexed by {0,1}b, and S ⊂ {0,1}a

(resp. S ⊂ {0,1}b), we will let ΓS (resp. ΓS) denote the submatrix of Γ consisting of rows (resp. columns)
indexed by S. Where Γ is clear from context, we will denote the row span of ΓS (resp. column span of ΓS)
by span(S).

Lastly, a column/row is called odd (resp. even) if its index is odd (resp. even).

2.2.3 Degenerate and full rank signatures

Definition 2.2.15. A signature G (generator or recognizer) is degenerate iff there exist vectors γi (1 ≤ i ≤ n)
of dimension k for which G = γ1 ⊗⋯⊗ γn.

Lemma 2.2.16 (Lemma 3.1, [8]). A signature G is degenerate iff rank(G(t)) ≤ 1 for 1 ≤ t ≤ n.

Definition 2.2.17. A signature G is of full rank iff there exists some 1 ≤ t ≤ n for which rank(G(t)) = k.

By Lemma 2.2.13, if signature G is of full rank, then for the corresponding standard signature G, we
have that rank(G(t)) = k for some t. Over domain size 2, by Lemma 2.2.16, all signatures not of full rank
are degenerate, and holographic algorithms exclusively using such signatures are trivial because degenerate
generators can by definition be decoupled into arity-1 generators. Over domain size k ≥ 3 however, it is
unknown to what extent holographic algorithms exclusively using signatures not of full rank trivialize. In
[8], the collapse theorems over domain sizes 3 and 4 were proved under the assumption that at least one
signature is of full rank, so we too make that assumption.

2.2.4 Clusters

One of the key results in our proof of the general collapse theorem is the existence within any matrix-form
standard signature of a full-rank square submatrix whose entries have indices satisfying certain properties.
In this section we make precise those properties.

Definition 2.2.18. A set of 2m distinct bitstrings Z = {x1, ..., x2m} ⊂ {0,1}n is an (m,n)-cluster if there
exists s ∈ {0,1}n and positions p1, ..., pm ∈ [n] such that for each i ∈ [2m], xi = s ⊕ (⊕j∈J epj) for some
J ⊂ {p1, ..., pm}. We write Z as s+{ep1 , ..., epm}. Note that for a fixed cluster, s is only unique up to the bits
outside of positions p1, ..., pm. If a cluster Z ′ is a subset of another cluster Z, we say that Z ′ is a subcluster
of Z.

Definition 2.2.19. In Γ, a 2m×2m submatrix Γ′ is a m-cluster submatrix if there exist (m,`)- and (m, (n−
1)`)-clusters Σ and Z such that Γ′ = (Γσζ )

σ∈Σ
ζ∈Z (here we omit the parameters n and ` in the notation as they

will be clear from context).

2.3 Matchgate identities and consequences

2.3.1 Parity condition and matchgate identities

The most obvious property that standard signatures satisfy is the parity condition: because a graph with
an odd number of vertices has no perfect matchings, the indices of the nonzero entries in G have the same
parity. It trivially follows that in G(t), columns G(t)ζ and G(t)η, if both nonzero, are linearly independent
if ζ and η are of opposite parities. The same holds for the rows of G(t).
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In [9] it is shown algebraically that the parity condition in fact follows from the so-called matchgate
identities which we present below, quadratic relations which together form a necessary and sufficient condition
for a vector to be the standard signature of some matchgate.

As in Cai and Fu’s proof of the collapse theorem for domain size 4, we will make heavy use of the
matchgate identities stated below. Wherever we invoke them, they will be for generator matchgates, so we
focus on this case.

Theorem 2.3.1 (Theorem 2.1, [9]). A 2`×2(n−1)` matrix Γ is the t-th matrix form of the standard signature
of some generator matchgate iff for all ζ, η ∈ {0,1}(n−1)` and σ, τ ∈ {0,1}`, the following matchgate identity
holds. Let ζ ⊕ η = eq1 ⊕⋯⊕ eqd′ and σ ⊕ τ = ep1 ⊕⋯⊕ epd , where q1 < ⋯ < qd′ and p1 < ⋯ < pd. Then

d

∑
i=1

(−1)i+1Γ
(σ⊕ep1

⊕epi)
ζ Γ

(τ⊕ep1
⊕epi)

η =
d′

∑
j=1

±Γ
(σ⊕ep1

)
(ζ⊕eqj )

Γ
(τ⊕ep1

)
(η⊕eqj )

. (2.2)

Here the ± signs depend on both j and, if qj is after the t-th block, the parity of d. If d is even,

d

∑
i=1

(−1)i+1Γ
(σ⊕ep1

⊕epi)
ζ Γ

(τ⊕ep1
⊕epi)

η = εζ,η
d′

∑
j=1

(−1)j+1Γ
(σ⊕ep1

)
(ζ⊕eqj )

Γ
(τ⊕ep1

)
(η⊕eqj )

, (2.3)

where εζ,η ∈ {±1} is positive (resp. negative) if the number of qj preceding the t-th block is odd (resp. even).

Remark 2.3.2. If d + d′ is odd, (2.2) is trivial by the parity condition.

We will be making extensive use of the matchgate identities in this paper, but we will typically not care
about the εζ,η sign on the right-hand side of (2.3). For this reason, it will be convenient to make the following
definition.

Definition 2.3.3. A 2` × 2m matrix M is a pseudo-signature if for all σ, τ for which wt(σ ⊕ τ) is even, its
entries satisfy the corresponding identity (2.3) up to a factor of ±1 on the right-hand side.

Standard signatures and cluster submatrices are all examples of pseudo-signatures.

Observation 2. If M is a pseudo-signature, then its transpose MT is a pseudo-signature.

2.3.2 Matchgate identities and determinants

We now derive from the matchgate identities some basic linear algebraic properties of the columns of pseudo-
signatures. By Observation 2, these also apply for the rows.

Firstly, we have the following immediate consequence of Theorem 2.3.1. We specifically consider the
case where wt(ζ ⊕ η) is even and, by Remark 2.3.2, wt(σ ⊕ τ) is even. So write ζ ⊕ η = eq1 ⊕⋯⊕ eq2d′ and
σ ⊕ τ = ep1 ⊕⋯⊕ ep2d

.
Reverse the roles of ζ and η in (2.3). Subtract the resulting equation from (2.3) to find

2d

∑
i=1

(−1)i+1
(Γ

(σ⊕ep1
⊕epi)

η Γ
(τ⊕ep1

⊕epi)
ζ − Γ

(σ⊕ep1
⊕epi)

ζ Γ
(τ⊕ep1

⊕epi)
η ) =

εζ,η
2d′

∑
j=1

(−1)j+1
(Γ

(σ⊕ep1
)

(ζ⊕eqj )
Γ
(τ⊕ep1

)
(η⊕eqj )

− Γ
(σ⊕ep1

)
(η⊕eqj )

Γ
(τ⊕ep1

)
(ζ⊕eqj )

) ,

or equivalently,

2d

∑
i=1

(−1)i+1

RRRRRRRRRRRR

Γ
(σ⊕ep1

⊕epi)
ζ Γ

(σ⊕ep1
⊕epi)

η

Γ
(τ⊕ep1

⊕epi)
ζ Γ

(τ⊕ep1
⊕epi)

η

RRRRRRRRRRRR

= εζ,η
2d′

∑
j=1

(−1)j+1

RRRRRRRRRRRRRR

Γ
(σ⊕ep1

)
(ζ⊕eqj )

Γ
(σ⊕ep1

)
(η⊕eqj )

Γ
(τ⊕ep1

)
(ζ⊕eqj )

Γ
(τ⊕ep1

)
(η⊕eqj )

RRRRRRRRRRRRRR

(2.4)
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Example 2.3.4. Suppose d = d′ = 1. Then (2.4) becomes

2 ∣
Γσζ Γση
Γτζ Γτη

∣ = 2εζ,η

RRRRRRRRRRRR

Γ
σ⊕ep1

ζ⊕eq1
Γ
σ⊕ep1

ζ⊕eq2
Γ
σ⊕ep2

ζ⊕eq1
Γ
σ⊕ep2

ζ⊕eq2

RRRRRRRRRRRR

,

so in particular, the matrix on the left is singular iff the latter is.
More generally, only suppose that d = 1. Then (2.4) becomes

2 ∣
Γσζ Γση
Γτζ Γτη

∣ = εζ,η
2d′

∑
j=1

(−1)j+1

RRRRRRRRRRRRRR

Γ
(σ⊕ep1

)
(ζ⊕eqj )

Γ
(σ⊕ep1

)
(η⊕eqj )

Γ
(σ⊕ep2

)
(ζ⊕eqj )

Γ
(σ⊕ep2

)
(η⊕eqj )

RRRRRRRRRRRRRR

(2.5)

so in particular, the matrix on the left-hand side is singular if all 2d′ matrices on the right-hand side are
singular.

In other words, if ` = 2 so that Γ only has four rows, columns ζ and η as defined above are linearly
dependent if all pairs of neighboring columns are linearly dependent. We shall see in the next section
(Corollary 2.3.6) that this is true even when Γ has an arbitrary number of rows.

2.3.3 Wedge products of columns

Motivated by Example 2.3.4, we’d like to study the set of all 2× 2 determinants ∣
Γσζ Γση
Γτζ Γτη

∣ given two column

vectors Γζ and Γη of the same parity. These are merely the coefficients of the wedge product Γζ ∧ Γη
under the standard basis {vσ ∧vτ}σ,τ∈{0,1}2` , σ<τ (where the relation σ < τ denotes lexicographic ordering) of

Λ2C2` , the second exterior power of C2` . The matchgate identities imply the following consequence about
the relationships among the wedge products Γζ ∧ Γη as ζ and η vary.

Lemma 2.3.5. If ζ1, η1, ζ2, η2, ..., ζm, ηm are even indices for which

m

∑
ν=1

aν (Γζν ∧ Γην ) = 0 (2.6)

for some a1, ..., am ∈ C, then

m

∑
ν=1

εζν ,ηνaν (
2dν

∑
i=1

(−1)j+1Γζν⊕epν
i
∧ Γην⊕epν

i
) = 0, (2.7)

where for each ν, wt(ζν ⊕ ην) = 2dν and ζν ⊕ ην = epν1 ⊕⋯⊕ epν
2dν

.

Proof. For convenience, we will denote εζν ,ην by εν . First, we rewrite (2.7) in terms of coordinates as

m

∑
ν=1

ενaν
⎛

⎝

2dν

∑
i=1

(−1)i+1
∑
σ<τ

RRRRRRRRRRRR

Γσζν⊕epν
i

Γσην⊕epν
i

Γτζν⊕epν
i

Γτην⊕epν
i

RRRRRRRRRRRR

(vσ ∧ vτ)
⎞

⎠
= 0, (2.8)

where σ < τ denotes lexicographical ordering. Note that the determinants that appear in the left-hand side
of (2.8) are zero when σ and τ are of opposite parity. Moreover, depending on the parity of the signature Γ,
either all such determinants are also zero for σ and τ even, or they are all zero for σ and τ odd.

Rearranging the order of summations in (2.8), the desired identity becomes

∑
σ<τ

(vσ ∧ vτ) ⋅
⎛

⎝

m

∑
ν=1

ενaν
2dν

∑
i=1

(−1)i+1

RRRRRRRRRRRR

Γσζν⊕epν
i

Γσην⊕epν
i

Γτζν⊕epν
i

Γτην⊕epν
i

RRRRRRRRRRRR

⎞

⎠
= 0. (2.9)

For a fixed pair σ < τ , let wt(σ ⊕ τ) = 2d′ and σ ⊕ τ = eq1 ⊕⋯ ⊕ eq2d′ . If we apply (2.4) and rearrange the
order of summation once more, the coefficient of vσ ∧ vτ above becomes

m

∑
ν=1

aν ⋅
2d′

∑
j=1

(−1)j+1

RRRRRRRRRRRR

Γ
σ⊕eqj
ζν

Γ
σ⊕eqj
ην

Γ
τ⊕eqj
ζν

Γ
τ⊕eqj
ην

RRRRRRRRRRRR

=
2d′

∑
j=1

(−1)j+1
m

∑
ν=1

aν

RRRRRRRRRRRR

Γ
σ⊕eqj
ζν

Γ
σ⊕eqj
ην

Γ
τ⊕eqj
ζν

Γ
τ⊕eqj
ην

RRRRRRRRRRRR

.
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But note that if we expand (2.6) in terms of coordinates, the term

aν

RRRRRRRRRRRR

Γ
σ⊕eqj
ζν

Γ
σ⊕eqj
ην

Γ
τ⊕eqj
ζν

Γ
τ⊕eqj
ην

RRRRRRRRRRRR

is precisely the coefficient of vσ⊕eqj ∧ vτ⊕eqj in the expansion of (2.6) in terms of coordinates and hence zero

by assumption, so (2.9) holds as desired.

Corollary 2.3.6. Let ζ, η ∈ {0,1}(n−1)` be such that ζ⊕η = ⊕2d
j=1 epi . If column Γ(ζ⊕epi) is linearly dependent

with column Γ(η⊕epi) for 1 ≤ i ≤ 2d, then column Γζ is linearly dependent with column Γη.

Corollary 2.3.7. Let ζ, η ∈ {0,1}(n−1)` be such that ζ⊕η = ⊕2d
i=1 epi . If there exists i ∈ [2d′] such that column

Γζ⊕epi is linearly dependent with column Γη⊕epi for i = 1, ..., ĵ, ...,2d′, where ĵ denotes omission of index j,
and if Γζ is also linearly dependent with column Γη, then Γζ⊕epj and Γη⊕epj are linearly dependent.

Lemma 2.3.5 says that any linear relation among wedges of even columns yields a linear relation among
wedges of odd columns, and vice versa.

Lastly, we need the following elementary result in multilinear algebra.

Lemma 2.3.8. If v1, ..., vn are linearly independent in vector space V , then the set of all vi ∧vj for i < j are
linearly independent in Λ2V .

Combining this with Lemma 2.3.5 yields the following key ingredient to the analysis in Section 3.3.

Lemma 2.3.9. Suppose ζ0, η ∈ {0,1}K such that ζ0 ≠ η, and the indices in T = {ζ1, ..., ζm} ⊂ {0,1}K are
distinct and have the same parity. Suppose further that ζ0 ≠ ζ1, ..., ζm. Let ζi⊕η = epi1⊕⋯⊕epidi

for 0 ≤ i ≤m,

where di ∶= wt(ζi ⊕ η). Define

S ∶= ⋃
0≤i≤m,1≤j≤di

{η ⊕ epij , ζi ⊕ epij} ⊂ {0,1}K

not in the sense of multisets, that is, we throw out duplicates so that the strings in S are all distinct.
Suppose the columns indexed by S are linearly independent. Then

Γζ0 /∈ span(Γζ1 , ...,Γζm) (2.10)

If wt(η ⊕ ζ0) ≥ 4 and j∗ ∈ [d0], then (2.10) holds even if only the columns indexed by S′ ∶= S/{ζ0 ⊕ ep0
j∗
}

are linearly independent.

Proof. We first prove the claim without the assumption that wt(η ⊕ ζ0) ≥ 4. Suppose to the contrary that
Γζ0 = ∑

m
i=1 aiΓζi so that Γζ0 ∧ Γη − ∑

m
i=1 aiΓζi ∧ Γη = 0. By Lemma 2.3.5, this linear relation implies the

following linear relation among wedges of columns of the other parity:

εζ0,η
⎛

⎝

d0

∑
j=1

(−1)j+1Γζ0⊕ep0
j

∧ Γη⊕e
p0
j

⎞

⎠
−
m

∑
i=1

εζi,ηai
⎛

⎝

di

∑
j=1

(−1)j+1Γζi⊕epi
j

∧ Γη⊕e
pi
j

⎞

⎠
= 0 (2.11)

We claim this is a nontrivial linear relation contradicting the linear independence of the columns in-
dexed by S. For each of the m + 1 sums indexed by 1 ≤ j ≤ di appearing in (2.11), if di = 2, rewrite

∑
di
j=1(−1)j+1Γζi⊕epi

j

∧ Γη⊕e
pi
j

as 2Γζi⊕epi
1

∧ Γη⊕e
pi
1

.

After this consolidation, note that the wedge products in (2.11) are now all distinct. Certainly for any
j, j′ ∈ [di] where di ≥ 4, Γζi⊕epi

j

∧ Γη⊕e
pi
j

and Γζi⊕epi
j′
∧ Γη⊕e

pi
j′

are linearly independent. For i, i′ such that

di = 2 and di′ > 2, 2Γζi⊕epi
1

∧ Γη⊕e
pi
1

and any Γζi′⊕epi′
j

∧ Γη⊕e
pi
′
j

are linearly independent as ζi ⊕ η ≠ ζi′ ⊕ η,

contradicting the assumption that {ζ1, ..., ζm} are distinct. Similarly, for i, i′ such that di > 2 and di′ > 2,
any Γζi⊕epi

j

∧ Γη⊕e
pi
j

and any Γζi′⊕epi′
j′
∧ Γη⊕e

pi
′
j′

are linearly independent as ζi ⊕ η ≠ ζi′ ⊕ η.

We conclude that (2.11), after consolidating sums for which di = 2, consists of a nonzero number of
linearly independent wedge products of columns indexed by S, so (2.11) is indeed a nontrivial linear relation
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among the wedge products Γs ∧ Γs′ for s, s′ ∈ S. But all columns indexed by S are linearly independent by
assumption, so this linear relation contradicts Lemma 2.3.8 and the linear independence of columns indexed
by S.

For the second part of Lemma 2.3.9, we claim that (2.11) is still a nontrivial relation. Pick any k ≠ j∗

inside [d0]. Because d0 ≥ 4,
ζ0 ⊕ ep0

k
, η ⊕ ep0

k
≠ η ⊕ ep0

j∗
. (2.12)

We have already taken care of the case where Γζ0+ep0
j∗

/∈ span(S′) above, so suppose instead that

Γζ0+ep0
j∗

= ∑
s∈S′

bsΓs. (2.13)

If we consolidate sums for which di = 2 in (2.11) as above and substitute (2.13) into the resulting equation,
the wedge products that (2.11) now contains also include ones of the form Γs ∧ Γη+e

p0
j∗

, which cannot be

linearly dependent with Γζ0⊕ep0
k

∧ Γη⊕e
p0
k

by (2.12).

Every other wedge product in (2.11) is of the form Γζi⊕epi
j

∧Γη⊕e
pi
j

and also cannot be linearly dependent

with ±Γζ0⊕ep0
k

∧ Γη⊕e
p0
k

or else, as before, we’d find that ζi ⊕ η = ζk ⊕ η, contradicting the assumption that

{ζ1, ..., ζm} are distinct.
It follows that if we rewrite the left-hand side of (2.11) in the form ∑s,s′∈S′ bs,s′Γs ∧Γs′ (uniquely because

by Lemma 2.3.8 the Γs ∧Γs′ are linearly independent), bζ0⊕ep0
k
,η⊕e

p0
k

≠ 0. So (2.11) is still a nontrivial linear

relation, contradicting Lemma 2.3.8 and the linear independence of columns indexed by S.

2.4 Relation to spinor varieties

In [34], Landsberg et al. observed that the Matchgate Identities are the same quadratic relations that cut
out the variety of pure spinors. In Appendix A.7, we very briefly develop the basic algebraic theory of
spinors, mostly following [16, 64], and we use it here first to get from the definition of pure spinors as the
spinors representative of maximal totally isotropic subspaces to a characterization of them as vectors of
sub-Pfaffians.

In addition, [34] reformulated the theory of holographic algorithms over the Boolean domain as an
SL(2)-orbit containment problem, and we describe some parts of their formulation here, with a view towards
extending it to arbitrary domain sizes.

2.4.1 Characterization as sub-Pfaffians

Let V be an n-dimensional vector space equipped with a quadratic form Q of maximal isotropic index and
for simplicity assume n = 2m is even. Pick a splitting of V into maximal totally isotropic subspaces N ⊕ P .

Define the spinor variety SN = Sm as the variety of all maximal totally isotropic subspaces of V . SN
has two isomorphic components S+N ⊂ S+ ∶= ⋀

even V and S−N ⊂ S− ∶= ⋀
odd V consisting of even and odd pure

spinors, respectively. We will denote the corresponding spinor variety for V ∗ by SN∗ = Sm∗.

Lemma 2.4.1. A generic point on S+m is parametrized by sub-Pfaffians of a generic m×m skew-symmetric
matrix.

Proof. We first show that in an open neighborhood of N , maximal totally isotropic subspaces Z are
parametrized by m×m skew-symmetric matrices. To such a Z we may associate an m×2m matrix MZ which,
after a change of basis, we may assume to be of the form (Im M ′

Z) for some M ′
Z ∈ Mm×m(C). Because Z

is totally isotropic, if B is the n × n matrix associated to the polarization of Q, then MZ ⋅ B ⋅M
T
Z = 0, from

which we conclude that M ′
Z must be skew-symmetric.

Let N and P have bases {e1, ..., em}, {f1, ..., fm} for which B(ei, ej) = δij , and suppose N ∈ S+m. As before,
denote by e and f the products e = ∏ ei and f = ∏ fi. Then by the above, for any totally isotropic Z of
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dimension m near N , there exists a skew-symmetric M ′
Z ∶= (aij) for which Z has a basis (ei+∑j>i aijfj)1≤i≤m.

The pure spinor corresponding to Z is

m

∏
i=1

⎛

⎝
ei +∑

j>i
aijfj

⎞

⎠
=
⎛

⎝
∑

S⊂[m]
Pf[m]/S(M)∏

i/∈S
ei
⎞

⎠
⋅ f,

where Pf[m]/S(M) denotes the Pfaffian of the submatrix of M consisting of rows and columns indexed by
[m]/S. So we conclude that vectors of sub-Pfaffians parametrize points in S+m.

In [9], the relations among the sub-Pfaffians of a generic m ×m skew-symmetric matrix were shown to
be exactly the same as those among the entries of a standard signature.

Henceforth, denote the set of sub-Pfaffians of a matrix x ∈ Λ2N by sPfaff(x), where (sPfaff(x))S = PfS(x).
Dually, denote the set of sub-Pfaffians of a matrix x ∈ Λ2N∗ by sPfaff∧

(x), where (sPfaff∧
(x))S = Pf[m]/S(x).

2.4.2 Holographic algorithms and orbit containment

Recall that if there are n wires in matchgrid Ω, Holant(Ω) is a pairing ⟨u, v⟩ for u ∈ C2n the tensor product
of all generator signatures and v ∈ C∗2n the tensor product of all recognizer signatures. The point of
holographic algorithms is that u and v are in “special position” so that that the pairing takes only poly(n)
steps to compute rather than O(2n) steps if they were general.

The effectiveness of holographic algorithms rests in part in the ability to solve “global” problems by
encoding local constraints with short matchgate signatures and tensoring these together to produce u and v.

Lemma 2.4.2. If maximal isotropic subspace N ⊂ V decomposes as N1 ⊕ ⋯ ⊕Ng, then there is a natural

inclusion ι ∶ ŜN1 ×⋯× ŜNg ↪ ŜN . Specifically, if for each 1 ≤ j ≤ g we have that vj = sPfaff(xj) for some skew-
symmetric matrix xj, then ι sends (v1, ..., vg) to sPfaff(x), where x is a block matrix with blocks x1, ..., xg.

Remark 2.4.3. Pure spinors Gi can also be interpreted as vectors lying in the Spin(V )-orbit of the highest
weight vector of the/one of the spin representation(s) of soni . In this case, Lemma 2.4.2 is simply a con-
sequence of the fact that the tensor product of highest weight vectors for different subgroups Gi ⊂ G with
compatible Weyl chambers is itself a highest weight vector for G.

Lemma 2.4.2 implies that as long as the edges incident to generators in Ω are labeled “contiguously” in
the following sense, ⊗iGi is also a pure spinor.

Definition 2.4.4. An edge order on matchgrid Ω is a bijective labeling of the w wires with indices from [w].
A generator order is an edge order such that for each generator Gi in Ω, the indices of the wires incident to
external nodes of Gi are adjacent. Recognizer orders can be defined analogously.

Holographic algorithms also rely on the fact that if u ∈ Sn and v ∈ Sn∗, then ⟨u, v⟩ can be computed
efficiently.

Lemma 2.4.5. For x ∈ Λ2N and y ∈ Λ2N∗,

⟨sPfaff(x), sPfaff∨
(y)⟩ = Pf(x̃ + y),

where x̃ is the matrix given by x̃ij = (−1)i+j+1xij.

Proof. The following identity was observed in [49].

Claim 2.4.6.
Pf(x + y) = ∑

∣S∣ even

sgn(S)PfS(x)Pf[m]/S(y),

where sgn(S) = (−1)σ(S)+∣S∣/2 for σ(S) = ∑i∈S i.

This identity implies the lemma because PfS(x) = sgn(S)PfS(x̃).
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The role of the basis matrix is thus to move signatures G1, ...,Gg and R1, ...,Rr simultaneously into
spinor varieties. First consider basis size ` = 1 and domain size k = 2, in which case we can take M ∈ SL2(C).
SL2(C) has a natural action on C⊗2n = (C2)⊗n and (C∗)⊗2n = (C2∗)⊗n, from which we obtain Definition 2.2.5.
Specifically, the action of M is given by

Gi ↦M⊗niGi Rj ↦ Rj(M
−1

)
⊗nj . (2.14)

By the above, we can conclude the following:

Proposition 2.4.7. If there is an edge order on matchgrid Ω which is simultaneously a generator and
recognizer order, and if under appropriate base change M we have that each matchgate signature is contained
in a spinor variety, i.e. of the form sPfaff(ui) or sPfaff∨

(vj) for some skew-symmetric matrix u ∈ Λ2N or
v ∈ Λ2N∗, then

Holant(Ω) = sPfaff(G̃ +R),

which can be computed in poly(n) time.

Remark 2.4.8. We will not deal with the issue of the existence of such an edge order for a given Ω except
to say that it exists, for instance, when the underlying graph of Ω is planar (this is the premise of the FKT
algorithm and was shown in [38]).

Now consider the following problem fundamental to understanding the limitations of holographic algo-
rithms and studied extensively by Cai et al. in [4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

Question 2.4.9 (Simultaneous Realizability Problem). Given a generator signature G and a recognizer
signature R, does there exist a basis M over which they are simultaneously realizable?

Here, G and R should be thought of as the same as those defined in Observation 1, i.e. tensor products of
smaller signatures. Over the Boolean domain, we can now easily reinterpret this geometrically as a question
about SL2(C)-orbits. Denoting the arities of G and R by m1 and m2 respectively, we know that SL2(C)

acts naturally on Sm1 × Sm2∗.

Question 2.4.10 (Orbit Containment Problem- Boolean). Does the orbit SL2(C) ⋅(Sm1 ×Sm2∗) contain the
point (G,R)?

In [10], it is shown that there is a deterministic polynomial time algorithm for deciding simultaneous
realizability provided that G and R are symmetric, that is, each of their entries only depends on the
Hamming weight of its index. This implies a deterministic polynomial time algorithm for deciding orbit
containment for such points (G,R).

Over domain size k and basis size `, the geometric interpretation is slightly more subtle. For one,
signatures and standard signatures no longer live in the same space. In addition, there is not necessarily a
natural action ofM2`×k on (Ck∗)⊗n because basis M might not have a right inverse, let alone a unique one.
We will return to this question in the next chapter and conclude that the simultaneous realizability problem
over domain k can still be formulated as an orbit containment problem.



Chapter 3
Basis Collapse

Fundamental to understanding the ultimate limitations of Valiant’s holographic framework is understanding
the power afforded by the change of basis. Indeed, one major direction of study in this field concerns better
understanding the relationship between the two key parameters of the basis change: domain and basis size.
It is not unreasonable to expect that for a given domain size k, increasing the basis size ` extends the range
of counting problems that can be solved. But if this were always the case, understanding the holographic
framework’s limitations would be rather hopeless: there’s a potentially unbounded range of dimensions of
basis matrix that we need to consider, each one more versatile than the last.

We may ask instead: over a given domain size k, is there a smallest basis size ` for which any holographic
algorithm over domain size k can be simulated by one with a basis size of `? To prove such a general basis
collapse theorem has been a long-standing open problem in this area, and in this chapter we resolve this
problem.

In Section 3.1, we mention some previous work in this area, further motivate the need for such a collapse
theorem, and formally state the conjecture that we will prove. We outline our general approach in Section 3.2
and implement it in the remaining sections. At the very end, we make a few remarks about how this result
is relevant to the interpretation of holographic algorithms in terms of spinor varieties.

3.1 History and Other Motivations

The first holographic algorithms studied were on domain size 2, dealing with counting problems involving
matchings, 2-colorings, graph bipartitions, and Boolean satisfying assignments, and almost exclusively used
bases of size 1. The first holographic algorithm over the Boolean domain to use a basis of size 2 was the
one given in [59] for #7Pl-Rtw-Mon-3CNF. It was suspected at the time that this might be an example
where increasing basis size adds power to the holographic approach, but as we saw in Section 2.1.2, [12]
subsequently demonstrated that #7Pl-Rtw-Mon-3CNF can be solved with a basis of size 1.

In [11], Cai and Lu then showed to the contrary that on domain size 2, any nontrivial holographic
algorithm with basis of size ` ≥ 2 can be simulated by one with basis of size 1. In other words, for all `, the
class of domain size 2 problems solvable with basis size ` collapses to the class solvable with basis size 1.

That this collapse theorem restricted the focus to basis matrices in GL2(C) allowed Cai and his collab-
orators to initiate a systematic study of the structural theory of holographic algorithms over the Boolean
domain [4, 5, 6, 7, 8, 9, 10, 11, 12, 13], compiling what amounts to a catalogue of such constructions that
turns the process of finding basic holographic reductions into something essentially algorithmic. For exam-
ple, as a corollary to their results in [10], they noted that the modulus 7 appears in #7Pl-Rtw-Mon-3CNF
because it is a Mersenne prime and that more generally, there is a polynomial-time holographic algorithm
for #2k−1Pl-Rtw-Mon-kCNF.

On the other hand, the theory for holographic algorithms over higher domains is almost wholly under-
developed because of the absence of a general basis collapse theorem.

In [8], Cai and Fu showed that holographic algorithms on domain sizes 3 and 4 using at least one full-rank

18
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signature collapse to basis sizes 1 and 2 respectively. They conjectured that for domain size k, we get a
collapse to basis size ⌊log2 k⌋ and suggested a heuristic explanation that for domain size k = 2K , we only
need log2 k bits to encode each of the k colors.

3.2 Our Techniques

3.2.1 Our results and techniques

We prove Cai and Fu’s conjecture in the affirmative for all domain sizes.

Theorem 3.2.1. Any holographic algorithm on domain size k using at least one matchgate with signature
of rank k can be simulated by a holographic algorithm with basis size ⌊log2 k⌋.

As Cai and Fu noted in [8], their “information-theoretic” explanation for the collapse theorems on domain
sizes up to 4 is insufficient to explain why holographic algorithms on domain size 3 collapse to basis size 1
and not just 2.

To prove their collapse theorem on domain size 3, Cai and Fu actually showed that the bases of holographic
algorithms on domain size 3 which use at least one full-rank signature must be of rank 2 rather than 3. They
then invoked the main result of Fu and Yang [21] which reduces holographic algorithms on domain size k
with bases of rank 2 to ones on domain size 2.

Our key observation is that this phenomenon occurs at a much larger scale. As a bit of informal back-
ground, the standard signature of a matchgate G is a vector encoding the perfect matching properties of
G. By indexing appropriately, we can regard the standard signature as a matrix Γ. The entries of this
matrix are known [9] to satisfy a collection of quadratic polynomial identities called the Matchgate Identities
(MGIs), and by using these identities together with some multilinear algebra, we prove the following:

Theorem 3.2.2 (Rank Rigidity Theorem). The rank of the standard signature matrix Γ is always a power
of two.

We can then conclude that the basis of a nontrivial holographic algorithm on domain size k must be of
rank 2`, where ` is the largest integer for which 2` ≤ k. With this step, together with a generalization of
Fu and Yang’s result to bases of rank k, we show it is enough to prove a collapse theorem for holographic
algorithms on domain sizes that are powers of two. Cai and Fu [8] achieved such a collapse theorem for
domain size 4 by proving that 1) any standard signature of rank 4 contains a full-rank 4×4 submatrix whose
entries have indices are “close” in Hamming distance, 2) full-rank 4 × 22n−2 standard signatures have right
inverses that are also standard signatures.

For 1), the proof in [8] used algebraic techniques involving the matchgate identities, but these methods
seem to work only for domain size 4. We instead show that the required generalization of 1) to arbitrary
domain sizes almost trivially follows from the rank rigidity theorem and the MGIs. Roughly, we prove the
following:

Theorem 3.2.3 (Cluster Existence - informal). If Γ is a 2` × 2(n−1)` matrix of rank at least k realizable as
the standard signature of some matchgate, then there exists a 2⌈log2 k⌉ × 2⌈log2 k⌉ submatrix of full rank in Γ
whose column (resp. row) indices differ in at most ⌈log2 k⌉ bits.

For 2), the proof in [8] nonconstructively verifies that the set of all invertible 4×4 matrices satisfying the
matchgate identities up to sign forms a group under multiplication. 4×4 matrices are easy to handle because
there is only one nontrivial MGI in this case. Rather than generalizing this approach, we note that Li and
Xia [39] proved a very similar but more general result under a different framework of matchgate computation
known as character theory, showing that the set of all invertible 2K × 2K matrices realizable as matchgate
characters forms a group under multiplication for all K. It turns out their technique carries over with minor
modifications into the framework of signature theory that we consider, and we use it to show the following:

Theorem 3.2.4 (Group Property - informal). If G is a generator matchgate with 2K × 2(n−1)K standard
signature G of rank 2K , then there exists a recognizer matchgate with 2K(n−1) × 2K standard signature R
such that G ⋅R = I2K , where I2K denotes the 2K × 2K identity matrix.
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Our general collapse theorem then follows from our generalizations of 1) and 2). This result gives a way
forward for the development of the structural theory of holographic algorithms on higher domain sizes in the
same vein as Cai et al.’s work on domain size 2. In [62], Valiant gave examples of holographic algorithms on
domain size 3, but holographic algorithms on higher domain sizes have yet to be explored. Our result shows
that for domain size k, we can focus on understanding changes of basis in M2⌊log2 k⌋×k(C) rather than over
an infinite set of dimensions, just as the collapse theorem of Cai and Lu [11] showed that on the Boolean
domain, they could focus on understanding changes of basis in GL2(C).

3.2.2 Organization

In Section 3.3, we prove Theorems 3.2.2 and 3.2.3. In Section 3.4, we then prove Theorem 3.2.4. In
Section 3.5, we generalize the main result of Fu and Yang [21] to bases of rank k and reduce proving a
collapse theorem on all domain sizes to proving one on domain sizes equal to powers of two. Finally, in
Section 3.6, we prove the desired collapse theorem, Theorem 3.2.1, on domain sizes equal to powers of two
by invoking the results from Section 3.3.

3.3 Rigidity and Cluster Existence

In this section, we will prove the rigidity theorem and the cluster existence theorem, informally stated as
Theorems 3.2.2 and 3.2.3. Now that we have introduced the appropriate terminology, we first state both
precisely.

Theorem 3.3.1 (Rank Rigidity - formal). If Γ is a 2` × 2m pseudo-signature, then rank(Γ) is a power of 2.
Equivalently, for all κ ≥ 1,

rank(Γ) ≥ 2κ + 1⇒ rank(Γ) ≥ 2κ+1 (3.1)

Theorem 3.3.2 (Cluster Existence - formal). If Γ = G(t) for some matchgate G of arity n`, and rank(Γ) ≥ k,
then there is a ⌈log2 k⌉-cluster submatrix of full rank.

To prove Theorem 3.3.2, we claim it is enough to show the following:

Theorem 3.3.3. If Γ is a 2` × 2m pseudo-signature such that rank(Γ) ≥ k, then there exists a (⌈log2 k⌉,m)-
cluster Z for which ΓZ is of full rank.

Equivalently, for all κ ≥ 1,

rank(Γ) ≥ 2κ + 1⇒ ∃ (κ + 1,m)-cluster Z such that rank(ΓZ) = 2κ+1 (3.2)

Proof of Theorem 3.3.2. Apply Theorem 3.3.3 to Γ to obtain ΓZ . By Observation 2, ΓTZ is also a pseudo-
signature. Apply Theorem 3.3.3 to ΓT to get the desired cluster submatrix.

Note that for fixed κ, (3.2) implies (3.1). We will jointly prove Theorem 3.3.1 and Theorem 3.3.3 by
induction on k. Cai and Fu have already shown both for k ≤ 4; we take these results as our base case. We
complete the following two inductive steps.

Inductive Step 1. If implication (3.2) holds for 1 ≤ κ ≤K − 1, then implication (3.1) holds for 1 ≤ κ ≤K.

Inductive Step 2. If implication (3.1) holds for 1 ≤ κ ≤ K and implication (3.2) holds for κ ≤ K − 1, then
implication (3.2) also holds for κ =K.

Note that once we have proven the rigidity and cluster existence theorems, we additionally obtain the
following.

Corollary 3.3.4. If G is a full-rank matchgate signature on domain size k, it is only realizable over bases
M of rank at most 2⌊log2 k⌋.

Proof. If k is a power of two, the claim is trivial. If not, assume G is a generator (standard signatures of
recognizer are also pseudo-signatures, so the argument in that case is analogous). If rank(G(t)) = k and
rank(M) ≥ 2⌊log2 k⌋ + 1, then by Lemma 2.2.14, 2⌊log2 k⌋ + 1 ≤ rank(G(t)) ≤ k. But Theorem 3.3.1 would then
imply rank(G(t)) ≥ 2⌊log2 k⌋+1 > k, a contradiction.
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3.3.1 Rank rigidity theorem

In this subsection, we complete the former inductive step, and in the next, we complete the latter.
Before we prove Inductive Step 1 in its entirety, we take care of the case where m = K + 1. While this

might appear to be the simplest case because m is minimal, it will turn out that cases where m is greater
will reduce to this case. For this reason, the wedge product machinery introduced in Section 2.3 is used
exclusively in the proof of this case.

Once we take care of this case, we will essentially show that if standard signature Γ is any wider, i.e.
if m > K + 1, then if Z is a cluster of size greater than 2K indexing columns of rank at least 2K + 1, we
can always find a proper subcluster also indexing columns of rank at least 2K + 1, or else the matchgate
identities would erroneously imply that certain columns which are known to be linearly independent are
linearly dependent.

We begin with the case of m =K + 1.

Theorem 3.3.5. If Γ is a 2` × 2K+1 pseudo-signature such that rank(Γ) ≥ 2K + 1, then rank(Γ) = 2K+1.

Proof. Because we assume implication (3.2) holds for κ = K − 1, Γ contains a (K,m)-cluster Z = s ⊕
{e1, ..., êj , ..., eK+1} of linearly independent columns; denote the even indices of Z by Z0 and the odd ones
by Z1. Because rank(Γ) > 2K , there exists t /∈ Z for which Γt /∈ span(Z). Denote the parity of t by b ∈ {0,1},
and denote by b the opposite parity.

Select any t′ = t ⊕ ei∗ for i∗ ≠ j and apply Lemma 2.3.9 to ζ0 = t′, η = t ⊕ ej , T = Zb to conclude that
Γt′ /∈ span(Zb).

Let Sd1,d2 denote the set of column indices ζ /∈ Z for which wt(ζ ⊕ t) = d1 and wt(ζ ⊕ t′) = d2. Note that
because wt(t⊕ t′) = 1, Sd1,d2 is empty if ∣d1 − d2∣ ≠ 1.

We will show by induction on D that the columns indexed by (⋃
D
d=0 Sd,d+1 ∪ Sd+1,d) ∪ Z are linearly

independent for all 0 ≤D ≤K. The definition of t and the argument above for t′ give the base case of D = 0.
For the inductive step, for each d let d0 and d1, respectively denote the even and odd value in {d, d+ 1}.

As columns indexed by Sd0,d1 and columns indexed by Sd1,d0 have opposite parity, it suffices to show that
the columns indexed by T 0

D ∶= (⋃
D
d=0 Sd0,d1

) ∪Zb are linearly independent, and that the columns indexed by

T 1
D ∶= (⋃

D
d=0 Sd1,d0

) ∪Zb are linearly independent.
Within this inductive step, we will further induct on the elements within SD0,D1 and SD1,D0 . Specifically,

suppose we have already proven that for some subset S′D0,D1
⊂ SD0,D1 , all columns indexed by T 0

D−1∪S
′
D0,D1

are linearly independent, and that for S′D1,D0
∶= {u ⊕ ei∗ ∶ u ∈ S′D0,D1

} ⊂ SD1,D0 , all columns indexed by

T 1
D−1 ∪ S

′
D1,D0

are linearly independent. Select any u /∈ S′D0,D1
and apply Lemma 2.3.9 to ζ0 = u, η = t′ ⊕ ej ,

T = T 0
D−1 ∪S

′
D0,D1

to see that Γu /∈ span(T 0
D−1 ∪S

′
D0,D1

). Note that when wt(ζ0⊕ η) ≥ 4, we do not yet know

that Γζ0⊕ei∗ = Γu⊕ei∗ lies outside span(T 1
D−1 ∪ S

′
D1,D0

), that is, we do not know whether all the columns
indexed by the set S defined in Lemma 2.3.9 are linearly independent, but the second part of Lemma 2.3.9
says that we may still conclude that Γu /∈ span(T 0

D−1 ∪ S
′
D0,D1

) because the columns indexed by S/{u⊕ ei∗}
are linearly independent.

Lastly, apply Lemma 2.3.9 to ζ0 = u⊕ei∗ , η = t⊕ej , T = T 1
D−1∪S

′
D1,D0

to see that Γu⊕ei∗ /∈ span(T 1
D−1 ∪ S

′
D1,D0

).
Note that here we only need to invoke the first part of Lemma 2.3.9 we already know that Γζ0⊕e∗ = Γu lies
outside span(T 0

D−1 ∪ S
′
D0,D1

).

We are now ready to complete Inductive Step 1.

Completion of Inductive Step 1. As we remarked earlier, implication (3.2) for a fixed value of κ implies
implication (3.1) for that value of κ, so we just need to show that implication (3.1) also holds for κ =K.

Suppose to the contrary that there exists pseudo-signature Γ of rank k such that 2K + 1 ≤ k < 2K+1.
Without loss of generality, we may assume that for all clusters Z ⊊ {0,1}m, rank(ΓZ) ≤ 2K ; otherwise,
replace Γ by ΓZ for some small enough cluster Z such that rank(ΓZ) ≥ 2K + 1 and rank(ΓZ′) ≤ 2K for all
subclusters Z ′ ⊊ Z. Furthermore, by Theorem 3.3.5, we may assume m >K + 1.

Lemma 3.3.6. If Z = s + {ep1 , ..., epK} is a (K,m)-cluster of linearly independent columns in Γ, then any
column Γt for which ti = si for some i ≠ p1, ..., pK lies in the span of the columns indexed by Z.
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Proof. If to the contrary there existed such a Γt not lying in the span of Z so that ti = si for some i ≠ p1, ..., pK ,
then if Z ′ is the (m−1,m)-cluster of column indices ζ for which ζi = si, ΓZ′ contains t and all of Z and thus
has rank at least 2K + 1, contradicting our assumption on the ranks of the proper subclusters of Γ.

By the inductive hypothesis, Γ contains a (K,m)-cluster Z of linearly independent columns s+{ep1 , ..., epK}.
As s is only uniquely defined modulo the bits in positions p1, ..., pK , we will leave those bits of s unspecified
for now.

Because k > 2K , there exists t /∈ Z for which all columns indexed by Z ∪ {t} are linearly independent.
Moreover, by Lemma 3.3.6, tj = sj for all j /∈ {p1, ..., pK}. Let Z ′ denote the cluster t + {ep1 , ..., epK}. Set
si = ti for i ∈ {p2, ..., pK}; we will set sp1 to be 0 or 1 depending on the parity of the number m −K of bits
outside of positions p1, ..., pK .

Case 1. m −K is even.

Set sp1 = tp1 so that s and t have the same parity.

Claim 3.3.7. If u /∈ Z ′ and ui = si for each i ∈ {p1, ..., pK}, then Γu and Γs are linearly dependent.

Proof. For each i ∈ {p1, ..., pK} and j /∈ {p1, ..., pK}, let Ti denote the cluster of all column indices u for which
ui = si, and let T ji denote the cluster of all column indices u for which ui = si and uj = sj . Let Zi = Z ∩ Ti;

obviously Zi ⊂ T
j
i ⊂ Ti.

Because T ji is a cluster properly contained in {0,1}m, we inductively know that rank(ΓT ji
) ≤ 2K . And

because Zi ⊂ T
j
i , rank(ΓT ji

) ≥ 2K−1. But if rank(ΓT ji
) ≥ 2K−1 + 1, then by inductive hypothesis (3.2) applied

to ΓT ji
for κ =K − 1, rank(ΓT ji

) ≥ 2K . In other words, rank(ΓT ji
) is either 2K−1 or 2K .

We will show that the latter is impossible. Suppose to the contrary that rank(ΓT ji
) = 2K .

Then because T ji ⊂ Ti and rank(ΓTi) = 2K = rank(ΓT ji
), it follows that span(Ti) = span(T ji ). For any

u ∈ T ji , Γu ∈ span(Z) by Lemma 3.3.6, so

span(Z) ⊃ span(T ji ) = span(Ti).

But Ti contains t, and by definition Γt /∈ span(Z), a contradiction.
We conclude that rank(ΓT ji

) = 2K−1. Then because Zi ⊂ T
j
i and rank(ΓZi) = 2K−1 = rank(ΓT ji

), it follows

that span(Zi) = span(T ji ).
In particular, all columns indexed by ⋂Kk=1 T

j
pk

lie in ⋂Kk=1 span(Zpk) = span({s}). Our choice of j was
arbitrary, so we get the desired claim.

From the above claim and the fact that we’re assuming m > K + 1, we conclude that Γs⊕ej for any
j /∈ {p1, ..., pK} lies in the span of Γs. But s and s ⊕ ej are of opposite parity, so by the parity condition,
Γs⊕ej = 0 for all such j. Applying Corollary 2.3.6 to s and t, it follows that Γs and Γt are linearly dependent,
a contradiction.

Case 2. m −K is odd.

Set sp1 = tp1 so that s and t have the same parity.

Claim 3.3.8. For any u ∈ {0,1}m, if u /∈ Z ′ and ui = si for all i ∈ {p2, ..., pK}, then:

1. If u and s have the same parity, then Γu and Γs are linearly dependent.

2. If u and s have the opposite parity, then Γu and Γs⊕ep1
are linearly dependent.

Proof. The proof is the same as that of Claim 3.3.7, the only subtlety being that s and t now only necessarily
agree on bits p2, ..., pK . By the argument there, all columns indexed by T ji lie in span(Zi) for i = p2, ..., pK . In
particular, for all j /∈ {p1, ..., pK}, all columns indexed by ⋂Kk=2 S

j
pk

lie in ⋂Kk=2 span(Zpk) = span({s, s⊕ ep1}).
So given u /∈ Z ′, write Γu = αΓs+βΓs⊕ep1

. If u and s have the same parity, β = 0 by the parity condition, so
Γu ∈ span({s}). If u and s have the opposite parity, α = 0 by the parity condition, so Γu ∈ span({s⊕ep1}).
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Pick any j /∈ {p1, ..., pK} and define s∗ = s ⊕ ej and t∗ = t ⊕ ej . s
∗ and t∗ both satisfy the hypotheses of

Claim 3.3.8 and have parity opposite to that of s, so by the latter case of Claim 3.3.8, they are both linearly
dependent with Γs⊕ep1

. But Γs⊕ep1
≠ 0 because s ⊕ ep1 ∈ Z and the columns indexed by Z are linearly

independent, so Γs∗ and Γt∗ are linearly dependent with each other.
To show Γs and Γt are linearly dependent, we wish to apply Corollary 2.3.7 to s∗, t∗, noting that s∗⊕ t∗ =

ej ⊕∑j′/∈{j,p2,...,pk} ej .
For any j′ /∈ {j, p2, ..., pK}, note that s∗ ⊕ ej′ and t∗ ⊕ ej′ both satisfy the hypotheses of Claim 3.3.8 and

have the same parity as s, so by the former case of Claim 3.3.8, they are both linearly dependent with Γs.
But Γs ≠ 0 because s ∈ Z and the columns indexed by Z are linearly independent, so Γs∗⊕ej′ and Γt∗⊕ej′ are
linearly dependent with each other.

Applying Corollary 2.3.7 to s∗ and t∗, it follows that Γs and Γt are linearly dependent, a contradiction.

3.3.2 Existence of cluster submatrix

Completion of Inductive Step 2. As in inductive step 1, we may assume without loss of generality that for
all clusters Z ⊊ {0,1}m, rank(ΓZ) ≤ 2K . If m = K + 1, then by the inductive hypothesis that (3.1) holds for
κ =K, we’re done. So suppose m >K + 1.

By the second part of the inductive hypothesis, implication (3.2) holds for 1 ≤ κ ≤K − 1, so Γ contains a
(K,m)-cluster Z of linearly independent columns s + {ep1 , ..., epK}.

As in inductive step 1, we can apply Lemma 3.3.6 to Z to see that all columns outside the span of
the columns indexed by Z must be indexed by Z ′ = t + {ep1 , ..., epK}, where t = (s⊕⊕i≠p1,...,pK ei). But

∣Z ′∣ = ∣Z ∣ = 2K , and rank(Γ) ≥ 2K+1 by implication (3.1) for κ = K, so the columns indexed by Z ∪ Z ′

are linearly independent. Because m > K + 1, there exist columns not indexed by either Z or Z ′, and by
Lemma 3.3.6 applied once to Z and once to Z ′, these columns are in both span(Z) and span(Z ′) and thus
must be zero.

If s and t are of the same parity, apply Corollary 2.3.6 to s and t to find that Γs and Γt are linearly
dependent, a contradiction.

If s and t are of opposite parity, apply Corollary 2.3.7 to s⊕ ej and t⊕ ej ⊕ ep1 for any j /∈ {p1, ..., pK} to
find that Γs and Γt⊕ep1

are linearly dependent, a contradiction.

3.4 Group Property of Standard Signatures

We will now prove the following generalization of the group property result over domain size 4 due to Cai
and Fu (Theorem 5.5, [8]):

Theorem 3.4.1. If G is a generator matchgate of arity Kn with standard signature G, and rank(G(t)) = 2K

for some t, then there exists a recognizer matchgate of arity Kn such that G(t)R(t) = I2K .

Roughly, we invoke Theorem 3.3.3 to obtain a full-rank K-cluster submatrix G′ of G(t) with column
indices belonging to cluster ζ + {ep1 , ..., epK}. Assume without loss of generality that ζpi = 0 for all i ∈ [K].
We will show that the matrix obtained by replacing G′ in G(t) with (G′)−1 and the remaining entries with
zeroes is the standard signature of some arity-Kn recognizer.

We first fix some notation. Denote G(t) by Γ. Suppose that nodes p1 < ⋯ < pm ∈ [Kn] belong to blocks
before the t-th, and nodes pm+1 < ⋯ < pK ∈ [Kn] belong to blocks after the t-th. For expository purposes, we
wish to use a particular permutation (q1, ..., qK) of (p1, ..., pK), so for i ≤ m, let qi = pm−i+1, and for i > m,
let qi = pK+m−i+1 (see Figure 3.1). If the column indices of Γ are of the form i1⋯iK(n−1), those of G′ are of
the form ip1⋯ipK .

In [39], Li and Xia gave a constructive proof that in the character theory of matchgates, the 2K × 2K

character matrices of invertible K-input, K-output matchgates form a group under matrix multiplication.
One can check that their construction carries over to show that the 2K × 2K standard signatures of such
matchgates likewise form a group, but unfortunately this is not enough to prove Theorem 3.4.1, as G′ alone
is merely a pseudo-signature and may not be realizable as the standard signature of a K-input, K-output
matchgate. That said, Theorem 3.4.1 can still be proved with minor modifications to Li and Xia’s approach.
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We begin with a toy example motivating the notation in the previous paragraphs. Suppose that for each
i ∈ [K], there exists an edge of weight 1 such that the i-th external node in block t and external node qi are
both incident only to this edge. Note that in this case, G′ is a symmetric permutation matrix and thus equal
to its own inverse. We can easily construct a recognizer R out of G for which G(t)R(t) = I2K as follows.
Remove all non-external nodes of G, as well as all edges incident to nodes outside of block t and nodes
q1, ..., qK . For external node i outside of block t such that i /∈ {q1, ..., qK}, if ζi = 0, attach a distinct edge
of weight 1 to node i and designate the other endpoint of the edge as the ith external node of R; if ζi = 1,
attach a distinct path graph of length 2 consisting of two edges of weight 1, and denote the other endpoint
of the path as the ith external node of R. By construction, in the 2K(n−1) × 2K matrix R(t), the submatrix
indexed by rows q1, ..., qK is equal to G′, and all other entries are zero. Because G′ = (G′)−1, G(t)R(t) = I2K
as desired.

See Figure 3.1 for an example of this construction.

Figure 3.1: Toy example of G reduced at i = 1, ...,K. Here, ` = 5, K = 5, m = 3. Black nodes in G denote
nodes 1, ...,K in block t and nodes q1, ..., qK . External nodes of G and R are shown in black/gray.

Definition 3.4.2. For i ∈ [K], if i ≤ m (resp. i > m), G is reduced at i if there exists an edge of weight 1
in G connecting the i-th external node in block t and external node qi such that these two nodes are both
incident only to that edge.

To prove Theorem 3.4.1, it is enough to reduce to the special case of the toy example above where Γ is
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realizable by a generator G reduced at all i ∈ [K]. The rest of this section will be dedicated to proving the
following:

Lemma 3.4.3. If Γ is the standard signature of a generator of arity Kn reduced at 1, ..., i, there exist non-
singular K-input, K-output transducers L1, ..., Lr and K(n−1)-input, K(n−1)-output transducers R1, ...,Rs
such that Lr⋯L1 ⋅ Γ ⋅R1⋯Rs is the standard signature of a generator reduced at 1, ..., i + 1.

We first give a sufficient characterization of standard signatures of matchgates reduced at 1, ..., i in terms
of the entries of their standard signatures.

The following terminology is borrowed from [39].

Definition 3.4.4. Let M be any 2r × 2c matrix whose rows and columns are indexed by σ ∈ {0,1}r and
τ ∈ {0,1}c respectively. Γστ is an edge entry of M iff r + c − 2 ≤ wt(σ) +wt(τ) < r + c.

Lemma 3.4.5. Γ is the standard signature of a generator G that is reduced at i if Γ satisfies the following:

1. (G′)1K

1K = (G′)1K⊕ei
1K⊕eqi

= 1.

2. (G′)στ = 0 for all other edge entries of G′ for which σ ∈ {1K ,1K ⊕ ei} or τ ∈ {1K ,1K ⊕ eqi}.

To show this, it suffices to prove the following useful consequence of the matchgate identities, first observed
in [7] and translated below to our setting of standard signatures in matrix form.

Lemma 3.4.6 (Theorem 4.2, [7]). If (G′)1K

1K ≠ 0, the entries of G′ are uniquely determined by (G′)1K

1K and
the edge entries of G′.

Proof. Assume that these entries uniquely determine all entries Γστ for which wt(σ) + wt(τ) ≥ m for some
m ≤ n− 2. We proceed by downward induction on m (by the parity condition, if m is even, the case of m+ 1
follows immediately from that of m). Then for σ, τ ∈ {0,1}K such that wt(σ) + wt(τ) = m − 2, apply (2.3)
from Theorem 2.3.1 to σ ∶= σ, ζ ∶= τ , τ ∶= 1K , and η ∶= 1K . One can check that the resulting identity consists

of (G′)στ ⋅ (G
′)1K

1K and terms which have already been uniquely determined by the inductive hypothesis, so

because (G′)1K

1K ≠ 0, we conclude that (G′)στ is also uniquely determined.

Observation 3. If Γ is the standard signature of a generator reduced at i, (G′)σ⊕eiτ⊕eqi
= (G′)στ , and if σi ≠ τqi ,

(G′)στ = 0.

Proof. By hypothesis, external node i of block t and external node qi are only connected to each other. If
σi ≠ τqi , (G′)στ counts the number of perfect matchings of Γ where, among other conditions, exactly one of
these two nodes is removed, and no such matching exists. On the other hand, if σi = τqi , then (G′)στ and
(G′)σ⊕eiτ⊕eqi

count the number of perfect matchings in which, among other conditions, both of these two nodes

are removed, or neither is. The number of perfect matchings in either scenario is the same.

Let G′
i be the 2K−i × 2K−i submatrix of G′ consisting of entries (G′)στ for which σj = 0 for j = 1, ..., i and

τj = 0 for j = q1, ..., qi. If the row and column indices of G′ are of the form i1⋯iK and ip1⋯ipK respectively,
the row and column indices of G′

i are of the form ii+1⋯iK and ipi+1⋯ipK respectively. When referring to
the row (resp. column) of G′ containing a row ii+1⋯iK (resp. column ipi+1⋯ipK ) of G′

i, we use the notation
0i ○ii+1⋯iK (resp. 0i ○ipi+1⋯ipK ) to denote its index in G′. For example, column 0i ○1K−i of G′ is the column
of G′ indexed by σ ∈ {0,1}K for which σq1 = ⋯ = σqi = 0 and σqi+1 = ⋯ = σqK = 1, and this contains column
1K−i of G′

i.

Corollary 3.4.7. If Γ is the standard signature of a generator that is reduced at 1, ..., i, then Γ is the standard
signature of a generator reduced at 1, ..., i + 1 if Γ satisfies the following:

1. (G′
i)

1K−i
1K−i = (G′

i)
1K−i⊕ei+1

1K−i⊕eqi+1

= 1

2. (G′
i)
σ
τ = 0 for all other edge entries of G′

i such that σ ∈ {1K−i,1K−i ⊕ ei+1} or τ ∈ {1K−i,1K−i ⊕ eqi+1}.
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Proof. Apply Observation 3 to each of 1, ..., i, and invoke Lemma 3.4.5.

Proof of Lemma 3.4.3. We execute the transformation Γ = Γ(0) ⇒ Γ(1) ⇒ Γ(2) ⇒ Γ(3) ⇒ Γ(4) outlined
below.

1. (Γ(0) ⇒ Γ(1)): Turn the entry indexed by (1K−i,1K−i) in G′
i to 1.

2. (Γ(1) ⇒ Γ(2)): Turn edge entries of G′
i in row or column 1K−i to 0.

3. (Γ(2) ⇒ Γ(3)): Turn entry (1K−i ⊕ ei+1,1
K−i ⊕ eqi+1) in G′

i to 1.

4. (Γ(3) ⇒ Γ(4)): Turn all other edge entries in G′
i in row 1K−i ⊕ ei+1 or column 1K−i ⊕ eqi+1 to zero.

We need not care what these transformations do to entries outside of G′, but we must ensure they preserve
the fact that Γ is the standard signature of a generator reduced at 1, ..., i. To do this, for each matrix M by
which we left- or right-multiply Γ, if σ does not index a row (resp. column) of G′

i, the only nonzero entry of
M in row (resp. column) σ will be 1 in column (resp. row) σ.

In each step j, we will for convenience refer to Γ(j−1) as Γ.

Step 1. (Γ(0) ⇒ Γ(1)): Turn the entry indexed by (1K−i,1K−i) in G′
i to 1.

We first show how to move a nonzero entry c ∶= (G′
i)
σ∗
τ∗ of G′

i into entry (1K−i,1K−i) of G′
i.

For each j for which i < j ≤K, we would like a 2K×2K standard signature Cj such that left-multiplication
of Γ by Cj interchanges row σ in G′ with σ⊕ej for all σ ∈ {0,1}K , and a 2K(n−1)×2K(n−1) standard signature
Dj such that right-multiplication of Γ by Dj interchanges column τ in G′ with τ ⊕eqj . We could then define

L1 = ∏j∶σ∗j =0Cj and R1 = ∏j∶τ∗j =0Dj , and L1 ⋅ ΓR1 would have nonzero entry c at index (1K−i,1K−i) of G′
i

and still be the standard signature of a matchgate reduced at 1, ..., i.
Cj (resp. Dj) is the permutation matrix whose only nonzero entry in row σ ∈ {0,1}K (resp. σ ∈

{0,1}K(n−1)) is 1 in column σ ⊕ ej (resp. column σ ⊕ eqj ) if G′
i contains entries from Γσ (resp. Γσ), and 1

in column σ otherwise. Cj and Dj are certainly nonsingular.
To construct the K-input, K-output transducer realizing Cj as a standard signature, begin with a (K,K)-

bipartite graph where for every ν ≠ j, left node ν and right node ν are connected by an edge of weight 1.
Add an extra vertex between left node j and right node j, and draw a path of length two connecting these
three vertices, where both edges of the path have weight 1. This construction is shown in Figure 3.2a.

The K(n − 1)-input, K(n − 1)-output transducer realizing Dj as a standard signature is similarly con-
structed, the only difference being that the bipartite graph has left and right vertex sets of size K(n − 1),
and the path of length two is drawn between left node qj and right node qj .

Next, we want to scale all of the entries of L1ΓR1 by a factor of 1/c, so define L2(c) to be the diagonal
matrix whose entry at index 1K−i is 1/c and whose entries at all other indices are 1. Obviously L2(c) is
nonsingular and satisfies the matchgate identities (2.3). We take Γ(1) = L2(c)L1Γ(0)R1.

Step 2. (Γ(1) ⇒ Γ(2)): Turn edge entries of G′
i in row or column 1K−i to 0.

We demonstrate how to do this for edge entries in column 1K−i. Firstly, edge entries (1K−i ⊕ ej ,1
K−i)

in G′
i are already zero by the parity condition.1 To set each of the remaining edge entries in this column

to zero, we will proceed in reverse lexicographic order over the rows 1K−i ⊕ ej ⊕ ek of G′
i and at each step

left-multiply Γ by a matrix Lj,k3 which corresponds in Γ to subtracting b ∶= (G′
i)

1K−i⊕ej⊕ek
1K−i times row 0i ○1K−i

of G′ from row 0i ○ (1K−i ⊕ ej ⊕ ek) of G′.

Lj,k3 must be a matrix whose nonzero entries include diagonal entries equal to 1 and entry (0i○(1K−i⊕ej⊕
ek),0

i ○ 1K−i) equal to −b. A standard signature satisfying these conditions can be realized by the following
matchgate: construct a (K,K)-bipartite graph in which left node ν and right node ν are connected by an
edge of weight 1 for all ν, and left nodes j and k are also connected by an edge of weight −b. The standard
signature of this matchgate is nonsingular. The construction is shown in Figure 3.2b.

Lj,k3 additionally has nonzero entries (σ⊕ej ⊕ek, σ) equal to −b for all σ ∈ {0,1}K , i.e. left-multiplication

by Lj,k3 corresponds to subtracting b times row σ from row σ ⊕ ej ⊕ ek. These extraneous side effects do

1As characters of general matchgates with omittable nodes do not satisfy the parity condition necessarily, the proof of the
group property in [39] requires an extra construction to turn edge entries (1K−i

⊕ ej ,1
K−i
) to zero. This is an instance where

our proof of the group property for signatures is easier than that for characters.
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not however affect any of the progress we’ve made as the rows 1K−i ⊕ ej ⊕ ek of G′
i are taken in reverse

lexicographic order.
The only issue is that the matchgate we have constructed is not necessarily planar. But by Lemma A.6.1

in Appendix A.6, there exists a planar matchgate with standard signature equal to Lj,k3 , except at nonzero

off-diagonal entries other than (0i ○ (1K−i ⊕ ej ⊕ ek),0
i ○ 1K−i), where it may differ from Lj,k3 by a factor of

−1, but by the reasoning in the previous paragraph, this does not matter. Denote the standard signature of
this planar matchgate by L′j,k3 .

To achieve step 2 for edge entries in rows 1K−i as well, we can define matrices R′j,k
3 analogously. We can

thus take Γ(2) = (∏i+2≤j,k≤K L
′j,k
3 ) ⋅Γ(1) ⋅ (∏i+2≤j,k≤K R

′j,k
3 ), where the indexing in the products respects the

abovementioned reverse lexicographic order.

Step 3. (Γ(2) ⇒ Γ(3)): Turn entry (1K−i ⊕ ei+1,1
K−i ⊕ eqi+1) in G′

i to 1.

Note that c′ ∶= (G′
i)

1K−i⊕ej
1K−i⊕eqk

must be nonzero for some j, k ∈ [K] or else (G′
i) is singular. As in Step 1, we

will first left-multiply Γ by some L4 to move this nonzero entry to row 1K−i ⊕ ei+1 and then right-multiply
by some R4 to move it to column 1K−i ⊕ eqi+1 . Unfortunately, multiplying by Cj or Dj defined in Step 1
would interfere with the progress made so far in Steps 1 and 2.

Instead, L4 must be a matrix whose only nonzero entry in row (resp. column) 0i ○ (1K−i ⊕ ej) is 1 in
column (resp. row) 0i ○ (1K−i ⊕ ei+1), and whose only nonzero entry in row (resp. column) 0i ○ (1K−i ⊕ ei+1)

is 1 in column (resp. row) 0i ○ (1K−i ⊕ ej). A signature satisfying these conditions can be realized by the
following matchgate: construct a (K,K)-bipartite graph in which left node ν and right node ν are connected
by an edge of weight 1 for all ν ≠ j, i + 1. Connect left node j to right node i + 1 and left node i + 1 to right
node j with edges of weight 1. The standard signature L4 of this is nonsingular. The construction is shown
in Figure 3.2c.

L4 also has nonzero entries (i1⋯ij⋯ii+1⋯iK , i1⋯ii+1⋯ij⋯iK), so left-multiplication by L4 corresponds
to switching row 0i ○ (i1⋯ii+1ii+2⋯ij⋯iK) with row 0i ○ (i1⋯ijii+2⋯ii+1⋯iK) for all ii+1, ..., iK ∈ {0,1}.
Multiplication by L4 affects neither the progress we’ve made on entry (1K−i,1K−i) of G′

i because all bits in
the row and column indices are equal, nor the progress on the edge entries in row 1K−i and column 1K−i of
G′
i because these get swapped with each other and were already all zero, keeping them equal to zero.

As before, the only issue is that the matchgate constructed is not planar. But by Lemma A.6.2 in
Appendix A.6, there exists a planar matchgate whose standard signature agrees with L4 at every entry up
to sign. By the above, that the nonzero entries other than (0i ○ 1K−i ⊕ ej ,0

i ○ 1K−i ⊕ ei+1) and (0i ○ 1K−i ⊕

ei+1,0
i ○ 1K−i ⊕ ej) may be −1 does not matter. Furthermore, if either entry (0i ○ 1K−i ⊕ ej ,0

i ○ 1K−i ⊕ ei+1)

or (0i ○ 1K−i ⊕ ei+1,0
i ○ 1K−i ⊕ ej) were −1, at worst we may eventually need to replace c′ with −c′, but the

argument still holds. Denote the standard signature of this planar matchgate by L′4. We can analogously
define R′

4.
Next, we scale entry (1K−i⊕ei+1,1

K−i⊕eqi+1) of G′
i by a factor of 1/c′, so we take Γ(3) = L2(c

′)L′4Γ(2)R′
4.

Step 4. (Γ(3) ⇒ Γ(4)): Turn all other edge entries in G′
i in row 1K−i ⊕ ei+1 or column 1K−i ⊕ eqi+1 to zero.

We demonstrate how to do this for edge entries in column 1K−i ⊕ eqi+1 of G′
i. To set each of the edge

entries in this column to zero, we will proceed in reverse lexicographic order over the row indices 1K−i ⊕ ej

of G′
i and at each step left-multiply Γ by a matrix Lj5 which subtracts b ∶= (G′

i)
1K−i⊕ej
1K−i⊕eqi+1

times row 0i ○ 1K−i

of G′ from row 0i ○ (1K−i ⊕ ej) of G′.

Lj5 is a matrix whose nonzero entries include diagonal entries equal to 1 and entry (0i ○ (1K−i ⊕ ej),0
i ○

(1K−i⊕ei+1)) equal to −b. A signature satisfying these conditions can be realized by the following matchgate:
construct a (K,K)-bipartite graph in which left node ν and right node ν are connected by an edge of weight
1 for all ν, and connect left node j to right node i + 1 by an edge of weight −b. The standard signature of
this matchgate is nonsingular. The construction is shown in Figure 3.2d.

Lj5 additionally has nonzero entries (0i ○ (σ ⊕ ej ⊕ ei+1),0
i ○ σ) equal to −b for all σ ∈ {0,1}K−i such that

σj = 1 and σi+1 = 0, i.e. for all such σ, left-multiplication by Lj5 corresponds to subtracting b times row 0i ○σ
of G′ from row 0i ○ σ ⊕ ej ⊕ ei+1 of G′. As before, these extraneous side effects do not affect the progress
we’ve made in this step because the edge entries in column 1K−i ⊕ eqi+1 of G′

i are being taken in reverse
lexicographic order. They also certainly do not affect row 1K−i, nor do they affect column 1K−i as 1K−i does
not satisfy the above criteria for σ.
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Again, the issue is that the matchgate constructed is not planar, but by Lemma A.6.3 in Appendix A.6,
there exists a planar matchgate with standard signature equal to Lj5 except possibly at the nonzero off-
diagonal entries other than (0i ○ (1K−i⊕ ej),0

i ○ (1K−i⊕ ei+1)), where it may differ by a factor of −1. Denote

the standard signature of this planar matchgate by L′j5 .

To achieve step 4 for edge entries in rows 1K−i⊕ ei+1 as well, we can define matrices R′j
5 analogously. We

can thus take Γ(4) = (∏i+2≤j≤K L
′j
5 ) ⋅ Γ(3) ⋅ (∏i+2≤j≤K R

′j
5 ), where the products respect the abovementioned

reverse lexicographic order.

3.5 Reducing to Domain Size 2K

In this section we use Theorem 3.3.1 to reduce proving a basis collapse theorem over all domain sizes to
proving one over domain sizes 2K . The result we will prove is the following generalization of the main result
in [21] whose strategy we follow.

Theorem 3.5.1. Suppose Theorem 3.2.1 has been proven for domain size r. If recognizer signatures
R1, ...,Ra and generator signatures G1, ...,Gb on domain size k > r belonging to matchgrid Ω are simul-
taneously realizable on a 2` × k basis M of rank r and R1 is of full rank, then there exists a basis M ′ of size
at most ⌊log2 r⌋ on which they are simultaneously realizable.

We’ll need some preliminaries before we can prove this. Express M as (α1 α2 ⋯ αk) where each

αi is a 2`-dimensional column vector. Let i1, ..., ir ∈ [k] be column indices of M for which M i1⋯ir ∶=

(αi1 αi2 ⋯ αir) is of full rank. Define sub-signature Ri1⋯ir to consist of entries (Rj1⋯jn) of R ranging

over all j1, ..., jn ∈ {i1, ..., ir} ⊂ [k]. We can define the sub-signature Gi1⋯ir of a generator analogously.
Equivalently,

Ri1⋯ir = R(M i1⋯ir)⊗n (3.3)

Lemma 3.5.2. For a recognizer R realizable on basis M , if there exists t for which rank(R(t)) ≥ r, then
rank(Ri1⋯ir(t)) = r.

Proof. By Lemma 2.2.14, R(t) = (MT )⊗(n−1)R(t)M , so rank(R(t)) ≥ r. By (3.3) and Lemma 2.2.13,
Ri1⋯ir(t) = ((M i1⋯ir)T )⊗(n−1)R(t)M i1⋯ir , so rank(Ri1⋯ir(t)) = r.

For such a recognizer R, define for each w ∈ [k] a nkn−1-dimensional column vector bw by

bw = (Rw1⋯11 ⋯ Rwk⋯kk R1w⋯11 ⋯ Rkw⋯kk ⋯ R11⋯1w ⋯ Rkk⋯kw)
T

(3.4)

and define Ai1⋯ir to be the nk(n−1) × r matrix whose jth column is bij .

Observation 4. rank(Ai1⋯ir) = r.

Proof. Ri1⋯ir(t) is a submatrix of Ai1⋯ir and already has rank r by Lemma 3.5.2.

Observation 5. As M has rank r, every column αw can be expressed as a linear combination ∑
r
j=1 x

ij
wαij .

Denote the r × k matrix (x
ij
w) of these coefficients by Xi1⋯ir .

Lemma 3.5.3. For each w ∈ [k], Ai1⋯irX = bw has the unique solution X = (xi1w ⋯ xirw )
T

.

Proof. A solution for X exists and is unique because rank(Ai1⋯ir) = r by Observation 4. To check that
the purported solution for X is correct, pick any entry Rj1⋯jt−1wjt⋯jn of bw. By definition of recognizer
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signatures,

Rj1⋯jt−1wjt⋯jn = ⟨R,αj1 ⊗⋯⊗ αjt−1 ⊗ αw ⊗ αjt+1 ⊗⋯⊗ αjn⟩

= ⟨R,αj1 ⊗⋯⊗ αjt−1 ⊗
⎛

⎝

r

∑
j=1

xijwαij
⎞

⎠
⊗ αjt+1 ⊗⋯⊗ αjn⟩

=
r

∑
j=1

xijw ⋅ ⟨R,αj1 ⊗⋯⊗ αjt−1 ⊗ αij ⊗ αjt+1 ⊗⋯⊗ αjn⟩

=
r

∑
j=1

xijwRj1⋯jt−1ijjt+1⋯jn .

Here ⟨⋅, ⋅⟩ denotes the inner product.

The content of Lemma 3.5.3 is that to any such R we can get a matrix Xi1⋯ir without needing to know
the actual basis M realizing R.

Lemma 3.5.4. If rank(R1(t)) ≥ r for some t, then recognizers R1, ...,Ra are simultaneously realizable on
some basis of rank r iff the following conditions hold:

1. rank(Ri1⋯ir1 (t)) = r for some i1, ..., ir ∈ [k].

2. There exists a unique r × k matrix Xi1⋯ir = (x
ij
w) such that Ai1⋯irX = bw has the solution X =

(xi1w ⋯ xirw )
T

for each w ∈ [k].

3. There exists a 2`×r basis M(r) such that the Ri1⋯irj are simultaneously realizable on M(r) for all j ∈ [a].

4. Rj = R
i1⋯ir
j X⊗n

i1⋯ir for all j ∈ [a].

Proof. Suppose R1, ...,Ra are simultaneously realizable are some basis M . Conditions 1 and 2 follow from
Lemma 3.5.2 and Lemma 3.5.3 respectively. Take M(r) to be M i1⋯ir , and condition 3 follows from the defini-
tion of sub-signature. By Observation 5, Xi1⋯ir satisfies M(r)Xi1⋯ir =M , so Rj = RjM

⊗n = RjM
⊗n
(r)X

⊗n
i1⋯ir =

Ri1⋯irj X⊗n
i1⋯ir , and condition 4 follows.

Conversely, suppose conditions 1-4 hold. Condition 3 tells us that there is some M(r) for which Ri1⋯irj =

Rj (M(r))
⊗n

for all j ∈ [a]. Then

Rj = R
i1⋯ir
j X⊗n

i1⋯ir = Rj(M(r))
⊗nX⊗n

i1⋯ir = Rj(M(r)Xi1⋯ir)
⊗n,

so R1, ...,Ra are simultaneously realizable on M ∶=M(r)Xi1,...,ir .

Theorem 3.5.5. If recognizer signatures R1, ...,Ra and generator signatures G1, ...,Gb in matchgrid Ω are
simultaneously realizable on a basis of rank r and there exists t for which rank(R1(t)) ≥ r, then there exist
recognizer signatures Ř1, ..., Řa and generator signatures Ǧ1, ..., Ǧb in matchgrid Ω′ over domain size r that
are simultaneously realizable on a 2` × r basis M(r). Furthermore,

Holant(Ω) = Holant(Ω′
). (3.5)

Proof. We first construct Ř1, ..., Řa, Ǧ1, ..., Ǧb. Xi1,...,ir obtained from R1 via Lemma 3.5.3 has rank r, so
let X ′

i1⋯ir be the k × k invertible matrix for which Xi1⋯irX
′
i1⋯ir = (Ir ∣ 0r×(k−r)), where Ir is the r × r

identity matrix and 0r×(k−r) denotes the r × (k − r) matrix consisting solely of zeroes. For each j ∈ [a], let

R′
j = Rj(X

′
i1,...,ir

), and let Řj be the sub-signature (R′
j)

1⋯r. Likewise, for each j ∈ [b], let G′
j be defined by

Gj = (X ′
i1⋯ir)

⊗nG′
j , and let Ǧj be the sub-signature (G′

j)
1⋯r.

Claim 3.5.6. For all j, Řj = R
i1⋯ir
j and Ǧj = G

i1⋯ir
j .
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Proof. We need to check that
Řj = Rj(M

i1⋯ir)⊗n (3.6)

(M i1⋯ir)⊗nǦj = Gj . (3.7)

Indeed,

R′
j = RjM

⊗n
(X ′

i1⋯ir)
⊗n

= Rj(M
i1⋯ir)⊗nX⊗n

i1⋯ir(X
′
i1⋯ir)

⊗n

= Rj (M
i1⋯ir ∣ 0r×(k−r))

⊗n
,

proving (3.6). Similarly,

Gj =M
⊗nGj

=M⊗n
(X ′

i1⋯ir)
⊗nG′

j

= (M i1⋯ir ∣ 0r×(k−r))
⊗n
G′
j ,

proving (3.7).

We conclude that Ř1, ..., Řa, Ǧ1, ..., Ǧb are simultaneously realizable on the basis M(r) ∶=M
i1⋯ir .

To check that the Holants agree, first note that if R′
1, ...,R

′
a,G

′
1, ...,G

′
b lie in a corresponding matchgrid Ω′′,

Holant(Ω) = Holant(Ω′′) because we’re just applying a basis change from M to MX ′
i1⋯ir . And Holant(Ω′) =

Holant(Ω′′) because the operation of taking sub-signatures does not lose any information in this case, i.e.
(R′

j)σ = 0 for all σ ∈ [k]n/[r]n.

For the next two results, suppose recognizer signatures R1, ...,Ra and generator signatures G1, ...,Gb in
matchgrid Ω are simultaneously realizable on a basis of rank r and there exists t for which rank(R1(t)) ≥ r.

Theorem 3.5.7. If the recognizer signatures Ř1, ..., Řa and generator signatures Ǧ1, ..., Ǧb constructed in
Theorem 3.5.5 are also simultaneously realizable on a 2`

′
× r basis M ′

(r) of rank r, then recognizer signatures

R1, ...,Ra and generator signatures G1, ...,Gr are simultaneously realizable on the 2`
′
× k basis M ′

(r)Xi1⋯ir ,
where Xi1⋯ir is obtained from R1 by Lemma 3.5.3.

Proof.
Rj = R

i1⋯ir
j X⊗n

i1⋯ir = ŘjX
⊗n
i1⋯ir = R(M ′

(r)Xi1⋯ir)
⊗n,

where the first equality holds by condition 4 of Lemma 3.5.4, the second by Claim 3.5.6, the third by definition
of M ′

(r). Likewise, because

Ǧj = (Ir ∣ 0r×(k−r))G
′
j =Xi1⋯irX

′
i1⋯irG

′
j ,

we have that
Gj =M

⊗n
(r)Ǧj = (M(r)Xi1⋯ir)

⊗nX ′⊗n
i1⋯irG

′
j = (M(r)Xi1⋯ir)

⊗nGj ,

so we conclude that R1, ...,Ra,G1, ...,Gb are indeed simultaneously realizable on M(r)Xi1⋯ir .

We are now ready to prove Theorem 3.5.1.

Proof of Theorem 3.5.1. By Theorem 3.5.5, signatures Ř1, ..., Řa and Ǧ1, ..., Ǧb on domain size r are simul-
taneously realizable on a 2` × r basis.

By definition, Ř1 = R
i1⋯ir
1 , and because R1 was assumed to be full-rank, Lemma 3.5.2 tells us that Ř1 is

full-rank. Then by the hypothesis that Theorem 3.2.1 has already been proven for domain size r, there exists
a 2⌊log2 r⌋ × r basis M ′

(r) on which Ř1, ..., Řa and Ǧ1, ..., Ǧb are simultaneously realizable. By Theorem 3.5.7,

R1, ...,Ra and G1, ...,Gb are simultaneously realizable on 2⌊log2 r⌋ × k basis M ′ ∶=M ′
(r)Xi1⋯ir .

By Corollary 3.3.4 and Theorem 3.5.1, it remains to prove collapse theorems for holographic algorithms
on domain sizes k = 2K and over bases of full rank, after which we get the following corollary.

Corollary 3.5.8. Any holographic algorithm on a basis of size ` and domain size k not a power of 2 which
uses at least one generator signature of full rank can be simulated on a basis of size at most 2⌊log2 k⌋.
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3.6 Collapse Theorem For Domain Size 2K

The following is a direct generalization of the argument from Section 5.3 of [8], but we include it for com-
pleteness. We will take G to be a generator signature of full rank on domain size k = 2K , basis M to be
a 2` × 2K matrix of rank 2K , and G = M⊗nG to be the corresponding standard signature of arity n`. By
Theorem 3.3.2 applied to the transpose of G(t), there exists a cluster Z = s + {ep1 , ..., epK} of rows of full
rank in G(t). Denote by MZ the submatrix of M consisting of rows with indices in Z.

Lemma 3.6.1. MZ is invertible.

Proof. The (k,n`) cluster submatrix of G(t) of full rank whose existence is guaranteed by Theorem 3.3.2 is
a submatrix of MZG(t)(MT )⊗(n−1), so MZ has rank at least 2K . But MZ is a 2K × 2K matrix, so MZ is
invertible.

Following the notation of [8], now denote the column vector (MZ)⊗nG of dimension 2Kn by G∗←Z and

the column vector (MZ)⊗(t−1)⊗M ⊗(MZ)⊗(n−t) ⋅G of dimension 2Kn+`−K by Gt
c←Z . Because MZ and G(t)

both have rank 2K , G∗←Z and Gt
c←Z also have rank 2K . We check that these can be realized as standard

signatures.

Lemma 3.6.2. G∗←Z is the standard signature of a generator matchgate of arity Kn.

Proof. Take the matchgate G, and in each block, attach an edge of weight 1 to external node i (1 ≤ i ≤ `) if
si = 1. In the matchgate G′ we get from these operations, designate external nodes p1, ..., pK in each block
as the new external nodes of G′. The resulting matchgate realizes G∗←Z .

Lemma 3.6.3. Gt
c←Z is the standard signature of a generator matchgate of arity Kn −K + `.

Proof. The proof of Lemma 3.6.3 is almost identical to that of Lemma 3.6.2, except block t is treated
differently. Take the matchgate G, and in each block except the t-th one, attach an edge of weight 1 to
external node i (1 ≤ i ≤ `) if si = 1. In the matchgate G′ we get from these operations, take the external
nodes to be all ` external nodes in block t, as well as nodes p1, ..., pK in every other block. The resulting
matchgate realizes Gt

c←Z .

Now define T =M(MZ)−1. Here is the key step of the collapse theorem, making use of Theorem 3.4.1.

Lemma 3.6.4. T is the standard signature of a K-input, `-output transducer.

Proof. We first express T in terms ofG∗←Z andGt
c←Z . If the entries ofGt

c←Z are indexed by (i1,1⋯i1,K)⋯(it−1,1⋯it−1,K)(i′1⋯i
′
`)(it+1,1⋯it+1,`)⋯(in,1⋯in,K),

denote by Gt
c←Z

(t) the matrix form of Gt
c←Z in which the rows are indexed by i′1⋯i

′
` and the columns are

indexed by (i1,1⋯i1,K)⋯(it−1,1⋯it−1,K)(it+1,1⋯it+1,`)⋯(in,1⋯in,K).
Observe that

G =M⊗nG = T⊗n(MZ
)
⊗nG = T⊗nG∗←Z

so that
Gt

c←Z
= (TZ)⊗(t−1)

⊗ T ⊗ (TZ)⊗(n−t)G∗←Z . (3.8)

Putting both sides of (3.8) in matrix form, we conclude that

Gt
c←Z

(t) = TG∗←Z
(t). (3.9)

Applying Theorem 3.4.1 to the arity-Kn standard signature G∗←Z , we have a recognizer whose standard
signature R satisfies G∗←Z

(t)R(t) = I2K . Right-multiplying both sides of (3.9) by R(t), we find that

Gt
c←Z

(t)R(t) = T.

Say that the generator realizing Gt
c←Z as a standard signature has external nodes Xi,1, Xi,2, ..., Xi,K

in block i for each i ≠ t, and external nodes Yt,1 ,..., Yt,` in block t. Say that the generator realizing R as a
standard signature has external nodes Zi,1, ..., Zi,K in each block i.

Construct the transducer Γ realizing T as a standard signature by connecting Xi,j with Zi,j for all i ≠ t,
j ∈ [K]. Designate Yt,1, ..., Yt,` to be the output nodes of Γ and Zt,1, ..., Zt,K to be the input nodes of Γ.
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From Theorem 3.6.4 we obtain the collapse theorem for domain size 2K .

Theorem 3.6.5. Any holographic algorithm on a basis of size ` and domain size 2K which uses at least one
generator signature of full rank can be simulated on a basis of size K.

Proof. Suppose the holographic algorithm in question uses signatures Ri,Gj (1 ≤ i ≤ r, 1 ≤ j ≤ g) defined
by RiM

⊗mi = Ri and Gj =M
⊗njGj over basis M . Say that G1 has full rank, and let Z = s + {ep1 , ..., epK}

denote the full-rank (K, `)-cluster of rows in G1 which must exist by Theorem 3.3.3. By Lemma 3.6.4,
T ∶=M(MZ)−1 is the standard signature of some transducer matchgate Γ. Let R′

i = RiT
⊗mi and G′

j = G
∗←Z
j ;

by Lemma 2.2.4, R′
i is the standard signature of some recognizer, and by Lemma 3.6.3, G′

j is the standard

signature of some generator. We conclude that the Ri,Gj can be simultaneously realized on the basis MZ

of size K.

3.6.1 A final word on spinor varieties

Let k = 2K . Recall that in Section 2.4, we noted that a geometric interpretation of the simultaneous
realizability problem over higher domains was tricky because there is no longer a natural action ofM2`×k on

(Ck
`∗)⊗n. Theorem 3.2.1 tells us we can at least restrict to the case of ` = ⌊log2 k⌋ =K, while Theorem 3.5.1

tells us we can assume M has maximal (row) rank.
It follows that, analogous to Question 2.4.10, we can interpret the simultaneous realizability problem over

domain size k as a question of orbit containment. Denote the arities of G and R by m1 and m2 respectively.

Question 3.6.6 (Orbit Containment Problem- Domain Sizes k = 2K). Does the orbit GL(k) ⋅ (Sm1 × Sm2∗)

contain the point (G,R)?
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Figure 3.2: Transducers realizing row/column operations in steps 1-4
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Chapter 4
Lower Bounds with Geometry

4.1 P versus NP and Determinant vs. Permanent

In this section we present Valiant’s model for algebraic complexity and show that it is equivalent to a problem
about determinantal complexity of the permanent, which will pave the way for the geometric approach to
proving hardness results in this chapter. The mathematics here will be fairly formal and elementary, and the
proofs of the results in this section are unrelated enough to the rest of this thesis that they can be skipped
on a first reading.

Throughout we will be working over C.

4.1.1 Algebraic Complexity Classes

In algebraic complexity, the analogues to Boolean circuits and Boolean functions will be arithmetic circuits
and polynomials.

Definition 4.1.1. An arithmetic circuit C is a labeled directed acyclic graph which consists of vertices of
indegree 0, called input gates, and vertices of indegree 2, called computation gates, among which is a single
vertex of outdegree 0, called the output gate. Input gates are labeled with constants in C or formal variables,
and computation gates are labeled by × or +. A circuit is inductively said to compute a polynomial as
follows: an input gate computes the polynomial given by its label, and a computation gate f ∈ {×,+} with
incoming neighbors that compute polynomials p and q respectively computes f(p, q). We then say that C
computes the polynomial computed by its output gate.

The number of gates is the size of C. The length of the longest path from an input gate to the output
gate is the depth of C. The degree of C is the degree of the polynomial computed by C.

Whereas in the Boolean setting, complexity of a function is determined by the minimal resources needed
for a Turing machine to compute it, in the algebraic setting, complexity of a polynomial is determined by
the size and degree of the smallest circuit which can compute it. Algebraic complexity classes are merely
sets of sequences of polynomials.

Definition 4.1.2. A sequence of polynomials (pn) is said to lie in VP if there exists a corresponding sequence
of circuits (Cn) computing (pn) for which size(Cn),deg(Cn) ≤ poly(n).

(pn) is said to lie in VNP if there exists a polynomial ` and a corresponding sequence (qn) ∈ VP for which
pn(x) = ∑s∈{0,1}`(∣x∣) qn(x, s).

We note the obvious inclusion VP ⊂ VNP. Valiant conjectured in [54] that the reverse inclusion does not
hold:

Conjecture 4.1.3. VNP /⊂ VP.

35
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Central to the classical theory of NP-hardness is the notion of reductions in which computation of one
Boolean function is shown to reduce to that of another. In the algebraic setting, reductions will be modeled
by affine linear transformations on the variables of polynomials.

Definition 4.1.4. Let f ∈ C[V ], g ∈ C[W ]. If there exists an affine linear map Ã ∶ V →W for which f = g○Ã,
then we say that f is a projection of g. We call Ã the corresponding g-representation of f . For g = detn, we
will call Ã a determinantal representation of f .

A sequence (pn) is a p-projection of (qn) if there exists some t(n) ≤ poly(n) for which pn is a projection
of qt(n) for all n.

It is straightforward to check that VP and VNP are closed under p-projections. This allows us to define
an algebraic notion of hardness with respect to these classes.

Definition 4.1.5. Let C be an algebraic complexity class which is closed under p-projections. A sequence
(pn) is C-hard if any (qn) ∈ C is a p-projection of (pn). (pn) is C-complete if it both lies in C and is C-hard.

As we alluded to in the introductory chapter, the key players in the geometric approach to complexity
will be the determinant and permanent polynomials. Roughly speaking, the determinant is easy to compute,
e.g. by Gaussian elimination, whereas the permanent seems not to be, and as we will show, they are suitable
algebraic analogues of P and NP.

To motivate the former, let us first check that detn and permn respectively lie in VP and VNP.

Lemma 4.1.6. (detn) ∈ VP.

Proof. We cannot simply invoke Gaussian elimination because arithmetic circuits do not support division by
formal variables. Instead, the strategy is to exploit the following facts: 1) the determinant of a matrix M is
the product of its eigenvalues λj , 2) the power sums pj ∶= ∑j λ

i
j can be computed efficiently, 3) elementary

symmetric polynomials ek in the eigenvalues can be recovered efficiently from these power sums.
For 2), note that pj = trace(M i). In the circuit that we construct for detn, we will construct gates

computing p1(λ), ..., pn(λ) by first inductively constructing gates computing all n3 entries in M,M2, ...,Mn.
If the gates for M i−1 have already been constructed, it takes O(n3) additional gates to construct those for
M i, for a total of O(n4) intermediate gates. For each M i, we include an extra addition gate, with incoming
neighbors the diagonal entries of M i, that computes pj(λ). It thus takes ∑

n
i=1O(n4) = O(n5) gates to

compute p1(λ), ..., pn(λ).
For 3), the Newton-Girard identities say that

ek =
1

k

k

∑
i=1

(−1)i−1ek−i ⋅ pi,

so to compute en(λ) = detn, we inductively construct gates for all ek(λ). e1(λ) is merely p1(λ). If the gates
for e1(λ), ..., ek−1(λ) have been constructed, then k multiplication gates above the gates for ek−i and pi,
O(k) addition gates summing over these multiplication gates, and a final multiplication gate between this
sum and the scalar 1/k suffice to compute ek(λ), for a total of O(k) gates.

To conclude, the circuit we’ve constructed requires O(n5) + ∑
n
i=1O(k) = O(n5) gates, and detn ∈ VP as

desired.

Lemma 4.1.7 ([55]). (permn) ∈ VNP.

Proof of Lemma 4.1.7. We wish to define a sequence of polynomials (qn) taking as inputs M ∈ Mn×n(C) and
S ∈ Mn×n({0,1}) such that qn(M,S) = ∏

n
i=1M

i
σ(i) if S is a permutation matrix corresponding to permutation

σ, or qn(M,S) = 0 otherwise. If we can show that (qn) ∈ VP, we are done because permn(M) = ∑S qn(M,S).
A matrix S is a permutation matrix if and only if 1) no row or column has more than a single 1, 2) no row

or column has all zeroes. S satisfies 1) if and only if q1
n(S) = ∏i,j,k,`(1 − S

i
jS

k
` ) does not vanish, where the

product is taken over all (i, j) ≠ (k, `) for which i = k or j = `. S satisfies 2) if and only if q2
n(S) = ∏i∑j S

i
j

does not vanish. So (q1
n ⋅ q

2
n)(S) equals 1 if S is a permutation matrix and vanishes otherwise. So

qn(M,S) = (q1
n ⋅ q

2
n)(S) ⋅

n

∏
i=1

n

∑
j=1

M i
jS

i
j
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clearly satisfies the desired properties. Moreover, it is clear that each factor requires at most O(n3) gates,
so (qn) thus defined lies in VP.

Unfortunately, it is unknown whether detn is VP-hard, and in fact there are no known natural polynomials
that are complete for VP. The determinant is an important enough polynomial that people decided to modify
the definition of VP to get a class for which detn was complete. The definition of this alternative class VPws
is somewhat artificial, and the proof of completeness, due to Malod and Portier [40], is fairly irrelevant to
the rest of this thesis. For this reason, we relegate it to Section A.2 of the appendix and merely state their
result and show (permn) ∈ VNP.

Theorem 4.1.8 ([40]). (detn) is VPws complete.

We are led to conjecture that VNP /⊂ VPws. By Theorem 4.1.8, it is enough to show that no sequence in
VNP is a p-projection of (detn). To this end, we introduce the following important definitions.

Definition 4.1.9. The determinantal complexity of p ∈ SdV ∗, denoted dc(p), is the smallest n for which p
is a projection of detn.

On the other hand, Valiant [55] showed that the permanent polynomial perfectly captures the class VNP.
We will omit the proof of this result.

Theorem 4.1.10 ([55]). (permn) is VNP-complete.

By Theorem 4.1.10, VNP /⊂ VPws is therefore equivalent to the following conjecture.

Conjecture 4.1.11 (Valiant’s conjecture). dc(permm) grows faster than any polynomial in m.

4.1.2 Valiant’s conjecture as an orbit containment problem

We can frame this as an orbit containment problem as follows. Let V = Cm
2

and W = Cn
2

.

Definition 4.1.12. Take ` a linear coordinate on C1 and take any linear inclusion C1 ⊕ V ↪ W so that
`n−m permm ∈ SnW ∗. Then permm = detn ○ Ã if and only if

End(W ) ⋅ `n−m permm ⊂ GL(W ) ⋅ detn. (4.1)

Proof. Suppose permm = detn ○ Ã. Pick any basis {xij} of W ∗ and regard Ã as an n×n matrix with entries
affine linear in {xij}. Homogenizing using `, we find that `n−m permm = detn ○B, where B is a matrix with
entries homogeneous linear forms in {xij} and `, so (4.1) follows.

In the other direction, (4.1) implies that there exists some B as above. But then

`−m permm = `−ndetn ○B = detn ○ (`
−1
⋅B),

so we take Ã to be the n × n matrix where each xij/`j in `−1 ⋅B is replaced by xij . Then permm = detn ○ Ã
as desired.

This perspective will motivate the GCT approach to Valiant’s conjecture which we present in Section 4.4.

4.1.3 Symmetries of detn and permm

Let G be a reductive group acting on a vector space W . G has an induced action on SdW ∗ given by
g ⋅ p(v) = p(g−1 ⋅ v).

Definition 4.1.13. The symmetry group of a polynomial p ∈ SdV ∗ is defined by

Gp ∶= {g ∈ G ∣ g ⋅ p = p}.

The projective symmetry group of p is defined by

Gp ∶= {g ∈ G ∣ [g ⋅ p] ∈ [p]}.

Define the character of p to be the group homomorphism χp ∶ Gp → C∗ for which g ⋅ p(y) = χp(g)p(y).
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It is a well-known theorem of Frobenius that transpose and left- and right-multiplication by elements of
GL(n) are the only projective symmetries of the determinant.

Theorem 4.1.14 ([20]). Let Cn
2

= E ⊗ F . Then

Gdetn ≃ ((SL(E) × SL(F )) /µn) ⋉Z2

Gdetn ≃ ((GL(E) ×GL(F )) /C∗
) ⋉Z2.

On the other hand, it is also known that transpose and left- and right-multiplication by permutation
matrices with entries scaled arbitrarily are the only projective symmetries of the permanent.

Theorem 4.1.15 ([41]). Let Cm
2

= E ⊗ F , and let TE denote the maximal torus of diagonal matrices and
N(TE) its normalizer, which we know to be TE ⋉ Sm. Then

Gpermm
≃ ((N(TE) ×N(TF )) /µm) ⋉Z2

Gpermm
≃ ((N(TE) ×N(TF )) /C∗

) ⋉Z2.

One useful property of the determinant and permanent is that they are characterized by their symmetries.

Definition 4.1.16. A polynomial p ∈ SnW ∗ is said to be characterized by its symmetries if for any q ∈ SnW ∗

for which Gp ⊆ Gq, there exists some λ ∈ C∗ for which p = λ ⋅ q.

We will show that this is the case for p = detn and p = permm; the key step is the Cauchy formula, which
just follows by Schur-Weyl duality (see Theorem A.4.1 in Appendix A.4).

Lemma 4.1.17 (Cauchy formula). Let A,B be vector spaces. As a GL(A) × GL(B)-module, Sd(A ⊗ B)

decomposes into irreducibles as
Sn(A⊗B) =⊕

π

SπA⊗ SπB,

where the sum is taken over all partitions π of d.

Proof. Using the definition of the symmetric power, rearranging, and applying Schur-Weyl duality, we see
that

Sd(A⊗B) = ⊕
π,µ

([π] ⊗ SπA⊗ [µ] ⊗ SµB)
Sd

= ⊕
π,µ

([π] ⊗ [µ])Sd ⊗ SπA⊗ SµB.

Sd-modules are self-dual so that ([π] ⊗ [µ])Sd = HomSd([π], µ]), so by irreducibility of the Sd-modules
[π], [µ] and Schur’s lemma, HomSd([π], [µ]) is a copy of C if π = µ and 0 otherwise.

Lemma 4.1.18. detn and permn are characterized by their symmetries.

Proof. Take A,B in the Cauchy formula to both be copies of Cn. Then a highest weight vector of S1n(A)⊗

S1n(B) = ΛnA⊗ΛnB is the unique vector, up to a scalar factor, invariant under SL(A)×SL(B). So in fact detn
is characterized just by Godetn

. Likewise, the permanent lies in the unique line of weight (1, ...,1)A×(1, ...,1)B
inside Sn(A) ⊗ Sn(B) = Sn(A) ⊗ Sn(B) which is invariant under (TA ⋉WA) × (TB ⋉WB).

4.2 A First Lower Bound with Differential Geometry

Before introducing the machinery of geometric complexity theory, we first explore the geometry that can
arise from the problem of determining determinantal complexity of polynomials. In this section, we present
Mignon-Ressayre’s quadratic simple lower bound on the determinantal complexity of the permanent using
classical differential geometry. Roughly speaking, we show that the rank of the second fundamental form
is 2n at any smooth point of {detn = 0}, but m2 at a carefully chosen point of {permn = 0}, implying a
quadratic lower bound for determinantal complexity of the permanent.
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4.2.1 Second fundamental form

We briefly recall the setup for the second fundamental form of a hypersurface Z ⊂ Pn. Define the Gauss map
GZ ∶ Z → Pn∗ to send point x ∈ Z to TxZ. If Z = V (f) for some polynomial f ∈ C[z0, ..., zn], then in terms
of coordinates, the Gauss map is given by

GZ ∶ x↦ [
∂F

∂z0
(x), ...,

∂F

∂zn
(x)] .

Identifying tangent planes in Pn∗ with normal vectors in Sn and noting that TGZ(x)S
n is parallel to TxZ, we

can regard the differential of the Gauss map as an endomorphism

d(GZ)x ∶ TxZ → TxZ.

This endomorphism gives rise to the quadratic form Q(v) = −d(GZ)x(v) ⋅ v; its corresponding bilinear form
(v,w) ↦ −d(GZ)x(v)⋅w corresponds to a map which we denote by T 2

xf ∈ Hom(TxZ,T
∗
xZ). This is the second

fundamental form of Z at x. In terms of coordinates, the second fundamental form is given by the Hessian
of f , namely

T 2
xf = {

∂f

∂xi∂xj
}

1≤i,j≤n
.

Lemma 4.2.1. If ι ∶ V ↪ Pn is an inclusion of some subspace V , then rank(T 2
xf) ≥ rank(T 2

x (f ○ ι)).

Proof. The dual map ι∗ corresponding to restriction of linear functionals is clearly linear. T 2
x (f ○ ι) is the

restriction to V of ι∗ ○ T 2
xf , so the rank of the former cannot exceed that of the latter.

We will borrow the notation of Mignon-Ressayre and denote the second fundamental form of a hypersur-
face V (f) at a point p by T 2

p f .

4.2.2 Mignon-Ressayre’s bound

It remains just to compute the second fundamental forms of the determinantal and permanental hypersur-
faces. Fix a generic n × n matrix of indeterminates A; for row indices i, i′ and column indices j, j′, denote
by Aii′,jj′ the matrix obtained from removing rows i, j and columns i′, j′. By construction, we have the
following.

Lemma 4.2.2. For row indices i, i′ and column indices j, j′,

(T 2
Apermn)

ii′,jj′
= {

0, for i = i′ or j = j′

permn−2(Aii′,jj′), otherwise

(T 2
Adetn)ii′,jj′ = {

0, for i = i′ or j = j′

(−1)i+i
′+j+j′detn−2(Aii′,jj′), otherwise

Lemma 4.2.3. For any singular n × n matrix M , rank(T 2
Mdetn) ≤ 2n.

Proof. Up to a scalar factor, translating M by Gdetn preserves T 2
Mdetn, so we may assume that M is the

diagonal matrix with k 0’s and n − k 1’s, in that order.
If k > 2, then T 2

Mdetn is the zero matrix. If k = 2, then the only nonzero entries are (11,22), (22,11),
(12,21), and (21,12). If k = 1, then the nonzero entries are (11, ii), (ii,11), (1i, i1), and (i1,1i) for all
i ≥ 2. This matrix’s rows are spanned by rows 11, nn, and 1i and i1 for all i > 1, so rank(T 2

Mdetn) ≤ 2n as
claimed.

Lemma 4.2.4. There exists a point M for which permn(M) = 0 such that T 2
M permn is invertible, so

rank(T 2
M permn) = n

2.

To prove this, we will use the following convenient fact.
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Proposition 4.2.5. An MN ×MN matrix T with the block decomposition

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 U U ⋯ U
U 0 V ⋯ V
U V 0 ⋱ ⋮

⋮ ⋮ ⋱ ⋱ V
U V ⋯ V 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

for invertible N ×N matrices U,V is invertible.

Proof. We can left-multiply T by the diagonal (U−1, I, ..., I) and thereby assume that U = I. Suppose to the
contrary that ker(T ) has a nonzero element (v1 v2 ⋯ vM) so that

v2 +⋯ + vM = 0 (4.2)

v1 + V v2 +⋯ + V v̂i +⋯ + V vM = 0 (4.3)

for each 2 ≤ i ≤M . (4.2) applied to (4.3) implies that for each i, v1 = V vi, and this applied to (4.2) implies
(M − 1)v1 = 0. So v1 = ⋯ = vM = 0 as desired.

Proof of Lemma 4.2.4. The particular point that we will evaluate T 2 permn on is the matrix

M =

⎛
⎜
⎜
⎜
⎝

1 − d 1 ⋯ 1
1 1 ⋯ 1
⋮ ⋮ ⋮ ⋮

1 1 ⋯ 1

⎞
⎟
⎟
⎟
⎠

.

One readily checks that M indeed lies on the permanental hypersurface; denoting T 2
M permn by T , we can

also check that

Tii′,jj′ = {
(d − 2)!, if 1 ∈ {i, j, i′, j′}
−2(d − 3)! otherwise

Finally, we apply Proposition 4.2.5 to

U = (d − 2)!

⎛
⎜
⎜
⎜
⎝

0 1 ⋯ 1
1 0 ⋱ ⋮

⋮ ⋱ ⋱ 1
1 ⋯ 1 0

⎞
⎟
⎟
⎟
⎠

, V = (d − 3)!

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 d − 2 d − 2 ⋯ d − 2
d − 2 0 −2 ⋯ −2
d − 2 −2 0 ⋱ ⋮

⋮ ⋮ ⋱ ⋱ −2
d − 2 −2 ⋯ −2 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

which are themselves invertible by Proposition 4.2.5, to conclude that T 2
M permn is invertible.

Having exhibited this discrepancy between second fundamental forms, we can now prove a quadratic
separation between permanent and determinant.

Theorem 4.2.6. dc(permm) ≥m2/2.

Proof. Suppose there were some affine Ã ∶ Mm(C) → Mn(C) for which permm = detn ○ Ã. We claim that
Ã is injective. If to the contrary there were some nonzero φ in its kernel, then permm remains invariant
under translation by φ so that for any M ∈ Mm(C), the functional corresponding to T 2

M permm lies in the
hyperplane Ann(φ) ⊂Mm(C)∗. This implies that the image of T 2

M permm lies in Ann(φ) so that T 2
M permm

is not of full rank, a contradiction.
Denote by p the restriction of detn to the image of Ã. Because Ãmust be injective, there is an isomorphism

between V (p) and V (permm). So apply Lemma 4.2.4 to get a point M on the former for which rank(T 2
Mp) =

m2. By Lemmas 4.2.1 and 4.2.3, m2 ≤ 2n, giving the desired lower bound on dc(permm).
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4.3 A Better Lower Bound Assuming Symmetries

First fix some notation. We will write determinantal representations Ã as Λ+A for fixed matrix Λ ∈Mn(C)

and linear map A ∶ Mm(C) →Mn(C). We will be interested in the projective symmetries of the determinant
polynomial which also fix the determinantal representation.

Definition 4.3.1. For Ã = Λ +A a determinantal representation of P ∈ SmV ∗, define the symmetric group
of the determinantal representation Ã to be GA = {g ∈ Gdetn ∣ g ⋅A(V ) = A(V ), g ⋅Λ = Λ}.

4.3.1 Respecting symmetry

Roughly speaking, we say that a determinantal representation of P respects the symmetries of P if the
symmetries of the P can be recovered from those of the determinant polynomial, that is, from applying
row/column operations and transposes to Ã.

By definition the action of GA on Mn(C) fixes A(V ), so formally define the representation ρA ∶ GA →
GL(A(V )) given by restricting the action of GA to A(V ). If P is nondegenerate, then A ∶ V → A(V )

is bijective, so we get a representation ρA ∶ GA → GL(V ) which sends g to the linear transformation
v ↦ A−1 ○ ρA(g) ○A(v).

Definition 4.3.2. Ã respects the symmetries of P if Im(ρA) = GP . More generally, Ã respects G ⊂ GP if
G ⊂ Im(ρA).

Example 4.3.3. Consider the nondegenerate quadratic form Q = ∑
M
j=1 z

2
j ∈ S2CM∗. It is well-known

that GQ = C∗ × O(M), where O(M) is the orthogonal group on CM . We claim that the determinantal

representation Ã given by

Q = detM+1 (
0 −ZT

Z I
)

respects the symmetries of Q, where Z = (x1, ..., xM)T and I is the M ×M identity matrix. Pick one
such symmetry (λ,B) ∈ GQ and consider the corresponding symmetry of detM+1 given by g ∶ M ↦

(
λ 0
0 B

)Z (
λ−1 0
0 B

)

−1

. We claim that ρA sends this to (λ,B). Indeed, ρA(g) ∈ GL(A(CM)) is the lin-

ear transformation

(
0 −ZT

Z 0
) ↦ (

λ 0
0 B

)(
0 −ZT

Z 0
)(
λ−1 0
0 B

)

−1

= (
0 −(λBZ)T

λBZ I
) ,

and ρA(g) = A
−1 ○ρA(g) ○A ∈ GL(V ) is thus the map Z ↦ λBZ, i.e. the symmetry of Q given by (λ,B). So

ρA is indeed surjective.

We now append the condition of respecting symmetries to the definition of determinantal complexity.

Definition 4.3.4. The equivariant determinantal complexity of a polynomial P ∈ SmV ∗, denoted edc(P ),

is the smallest n for which there is a determinantal representation Ã ∶ V → Cn
2

of P that respects the
symmetries of P .

4.3.2 Preliminaries

Whereas the best lower bound known for the determinantal complexity of permn is merely quadratic, Lands-
berg and Ressayre obtain an exponential lower bound for the equivariant determinantal complexity of permn.

First, we need some preliminaries. Let Λn−1 ∈ Mn(C) denote the matrix with 1’s in the last n−1 diagonal
entries and 0’s elsewhere. Denote the image and kernel of Λn−1 by H ⊂ Cn and `1 ∈ Cn respectively. To
distinguish the domain and target of matrices inMn(C), let `2 be a copy of `1 in the target so thatMn(C)

can be parametrized as

Mn(C) = (
`∗1 ⊗ `2 H∗ ⊗ `2
`∗1 ⊗H H∗ ⊗H

) .
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We additionally need the following basic results in the theory of complex algebraic groups. Recall that a
complex algebraic group is unipotent if there is a subgroup H of the group Un of upper triangular matrices
with 1’s on the diagonal for which G ≃H.

Lemma 4.3.5. For any complex algebraic group G, there exists a unipotent radical Ru(G), i.e. a maximal
normal unipotent subgroup, and a Levi factor L ⊂ G for which G = Ru(G)L. Moreover, L and G/Ru(G) are
reductive.

Theorem 4.3.6 (Malcev’s Theorem, [47], Theorem 5, Chapter 6). For any Levi factor L ⊂ G and reductive
H ⊂ G, there exists g ∈ Ru(G) for which gHg−1 ⊆ L.

We will also use the following result on the rank of Λ in determinantal representations.

Lemma 4.3.7 ([63]). Let V (P )sing ⊂ V denote the singular locus of the hypersurface cut out by P ∈ SmV ∗.

If codim(V (P )sing) ≥ 5 and Ã = Λ +A is a determinantal representation of P , then rank(Λ) = n − 1.

Proof. By the chain rule, if Ã(v) ∈ V (detn)sing, then v ∈ V (P )sing. Note that V (detn)sing consists of

matrices of rank at most n−2, which have codimension 4 inMn(C). So the set of v for which rank(Ã(v)) ≤
n − 2 is either empty or of codimension is at most 4.

Obviously if this set is empty, we’re done: rank(Ã(v)) ≥ n − 1, so taking v = 0 gives the desired claim.
If instead this set is of codimension at most 4, then by our hypothesis that codim(V (P )sing) ≥ 5, the claim
still follows.

For this reason, we may assume, after transforming Λ by symmetries of detn, that Λ = Λn−1. With this
in mind, we define one more symmetry group:

Gdetn,Λn−1 = {g ∈ Gdetn ∣ g ⋅Λn−1 = Λn−1}.

Lemma 4.3.8. Gdetn,Λn−1 ≃ [GL(`2) ×GL(H) ⋉ (H⊕H∗ ⊗ `2)] ⋉ Z2. Specifically, every element in this
symmetry group is of the form

M ↦ (
λ 0
v g

)M (
1 φ
0 g

)

−1

(possibly post-composed with a transpose) for some g ∈ GL(H), λ ∈ GL(`2) = C∗, v ∈H, φ ∈H∗.

Proof. Pick some element of Godetn
and denote it by M ↦ AMB−1; because it fixes Λn−1, A and B stabilize

H and `2 respectively and are thus of the form

A = (
λ 0
v g

) , B = (
λ′ φ
0 g′

)

In fact, AΛn−1B = Λn−1 also forces g = g′, so the claim follows.

This in fact yields a Levi decomposition Gdetn,Λn−1 as

L = (GL(`2) ×GL(H)) ⋉Z2, Ru(Gdetn,Λn−1) = (H⊕H∗
⊗ `2) (4.4)

4.3.3 Exponential lower bound on Q

We work through a toy example to illustrate the general argument.

Theorem 4.3.9. Let Q be the nondegenerate quadric defined in Example 4.3.3. edc(Q) ≥M + 1.

Proof. Roughly, we will obtain a reductive subgroup L of Gdetn,Λn−1 mapping onto GQ, after which we can
use the fact that A ∶ V → A(V ) is an Lo-equivariant embedding to argue that H must contain at least one
copy of V , giving our lower bound.

Specifically, take a Levi decomposition of ρ−1
A (GQ) = Ru(H)L. ρA(R

u(H)) is normal unipotent inside
GQ, but because GQ ≃ C∗ ×O(M) is reductive and thus has trivial unipotent radical, ρA(R

u(H)) is trivial.
But ρA is still surjective, so ρA(L) = GQ. In fact, we even have that ρA(L

o) = GQ because GQ is connected.
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By Theorem 4.3.6, we may assume without loss of generality that L lies in the Levi factor in Lemma so
that Lo ⊂ GL(`2)×GL(H). A ∶ V → A(V ) is an L0-equivariant embedding of V into irreducible Lo-submodule
A(V ) ⊂Mn(C), so the component of A(V ) in `∗1⊗`2 must be zero. The component in `∗1⊗H cannot also be
zero, or else Q = detn ○ Ã is zero, so `∗1 ⊗H must contain a copy of V . We conclude that dim(H) ≥ dim(V ),
yielding the lower bound of edc(Q) ≥M + 1.

4.3.4 Exponential lower bound on permn

Landsberg and Ressayre [37] showed that in fact one can get an exponential lower bound on determinantal
complexity of the permanent provided the determinantal representation respects just half of the permanent’s
symmetries.

First, recall from Theorem 4.1.15 that if Cm
2

= E ⊗ F , then

Gpermm
≃ ((N(TE) ×N(TF )) /C∗

) ⋉Z2.

Henceforth, denote TE and N(TE) = TE ⋉ Sm by T and N respectively. For A,B ∈ T and Mσ,Mτ ∈ Sm,
(AMσ,BMτ) ∈ ((N(TGL(E)) ×N(TGL(F )) /C∗) corresponds to the action M ↦ (AMσ) ⋅M ⋅ (BMτ)

−1, and
Z2 corresponds to the transpose as usual.

Theorem 4.3.10. If m ≥ 3 and Ãm ∶ Mm(C) → Mn(C) is a determinantal representation of permm that
respects N , then n ≥ 2m − 1.

Proof. Analogous to the first half of the argument for Theorem 4.3.9, we could try lifting the symmetries
we’re preserving, in this case N , to some reductive subgroup G ⊂ GA for which the restriction of ρA to G
is finite and surjects onto N . We could try using the trick above of taking a Levi decomposition of ρ−1

A (N)

and conjugating using Theorem 4.3.6 to produce a reductive subgroup of (GL(`2) ×GL(H)) ⋉ Z2 mapping
onto N . The first obstacle we encounter is that unlike in the case of Q, Gpermn

is not connected, so we can’t
just take our lift G to be Lo.

We can remedy this by passing to an index 2 subgroup of L. The quotient of Gdetn,Λn−1 by its identity
component is Z2. Define L′ to be L ∩Godetn,Λn−1

so that L/L′ embeds in Z2, implying L′ is either all of L
or an index 2 subgroup of L. Recalling that N ≃ T ⋉ Sm and noting that the alternating group Am is the
unique index 2 subgroup of Sm, we conclude that ρA(L

′) ⊇ T ⋉Am; replacing L′ by a subgroup if necessary,
we may assume that ρA(L

′) = T ⋉Am.
Unfortunately, this is not enough for us to mimic the proof of Theorem 4.3.9, because in fact the lift G

we are looking for cannot exist: there is no finite universal cover of Sm.
For the time being, let us ignore this fact and proceed to examine the decomposition of Mn(C) as

(`1⊕H)∗⊗(`2⊕H) as before. Denote by E the standard representation of L′ via ρA; A(V ) is an L′-module
isomorphic to E⊕m. As before, that A equivariantly embeds V into Mn(C) forces the `∗1 ⊗ `2 component of
A(V ) to be zero, while the nonvanishing of the determinant of the matrix of indeterminates given by A(V )

implies the `∗1 ⊗H component must be nonzero and contain an H1 ≃ E.
We can quickly rule out the case that H∗

1 ⊗ `2 ≃ E, which only occurs when m = 2.
In the other case, pick a complement S1 of H1 in H which is stable under the action of L′. We can assume

theH∗
1⊗S1 component of A(V ) does not vanish, because otherwise the determinant of the (`1⊕S1)

∗⊗(`2⊗S1)

component of A(V ) is the same as that of the (`1 ⊕H)∗ ⊗ (`2 ⊗H) component. So inside S1 there is some
irreducible L′-module H2 for which H∗

1 ⊗H2 contains a copy of E. Proceeding in this fashion, we obtain a
sequence of irreducible L′-submodules H1, ...,Hk which terminates at k ≥ 2 for which E ≃H∗

k ⊗ `2.
It would be convenient if the list of blocks `∗1 ⊗H1,H

∗
1 ⊗Hi+1 (1 ≤ i ≤ k), and H∗

k ⊗ `2 that we’ve found so
far containing copies of E is the complete list of nonzero blocks in A(V ). We will show this is indeed true,
but to do so and also better understand the L′-modules Hi, we need to return to the question of lifting L′

further.
While no finite universal cover of the Sm component of N exists, we can nevertheless construct a finite

cover of the T component of N .
We know ρA maps L′o onto T , so in fact the identity component of the center of L′o, does as well.

Denoting this by Zo, we get an injection of the group of characters X(T ) of T into X(Zo). On the one
hand, we have a map πA ∶ L′/L′o → Am given by quotienting out L′o and its image in ρA, and on the other,
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we have an action of L′/L′o on Zo just given by conjugation, again quotiented out by L′o. These actions
satisfy

ρA(g ⋅ z) = πA(g) ⋅ ρA(z)

for any g ∈ L′/L′o, implying that X(T ) and ker(ρA) ∩Z
o are stable under the respective actions of L′/L′o.

We can now produce a subtorus T̃ ⊂ Zo that is a finite cover of T via ρA. Define ΓQ to be the complement
of X(T )⊗Q inside X(Zo)⊗Q that is stable under the action of L′/Lo, and define Γ = ΓQ ∩X(Z0). We take

our lift of T to be T̃ ∶= {t ∈ Zo ∶ χ(t) = 1 ∀χ ∈ Γ}, and because ρA restricted to T̃ is a finite morphism onto
T , we can identify X(T ) with an index-k0 subgroup of X(T̃ ) for some finite k0, i.e. we get embeddings

k0X(T̃ ) ⊂X(T ) ⊂X(T̃ ).

Equivariance and T̃ now give a straightforward proof that `∗1 ⊗H1,H
∗
1 ⊗Hi+1 (1 ≤ i ≤ k), and H∗

k ⊗ `2
are the only nonzero blocks of A(V ). Indeed, we have a one-parameter subgroup γ ∶ C∗ → T̃ given by
ρA ○ γ(t) = tk0 IdE which acts with weight k0 on E and acts trivially elsewhere. It remains to bound the
dimensions of the Hi; we do this by studying the their weights as T̃ -modules. More generally, consider any
irreducible L′-module W and take its isotypic decomposition as a T̃ -module:

W = ⊕
χ∈Wt(T̃ ,W )

Wχ.

Recall that L′ acts on T̃ by conjugation and thus also on X(T̃ ). By definition, L′o acts trivially on the torus
Zo, and because T̃ is a central subtorus of L′o, by rigidity of tori we conclude that L′o also acts trivially on
T̃ and thus on X(T̃ ).

So now we have an (L′/L′o)-action on X(T̃ ), under which Wt(T̃ ,W ) is stable. But for any χ ∈ Wt(T̃ ,W ),

⊕σ∈L′/L′oWσ⋅χ is L′-stable and thus must be all of W by irreducibility of W . We conclude that Wt(T̃ ,W ) =

(L′/L′o) ⋅ χW and thus that k0Wt(T̃ ,W ) = Am ⋅ χW .
From the set of all such χW , we pick a distinguished weight as follows. Define εi ∈ χ(T ) to send an

element (tjk) to its i-th diagonal entry tii. The collection of Am-dominant weights {a1ε1 + ⋯ + amεm ∶ a1 ≥

⋯ ≥ am−1, am−2 ≥ am} is a fundamental domain for the action of Am on X(T ), so take χW to be the unique
Am-dominant weight for which k0Wt(T̃ ,W ) = Am ⋅ χW .

Now apply the above to the case of W = Hi. We find that dim(Hi) ≥ ∣Am ⋅ χHi ∣. In the basis {εi}, we
call the number of nonzero coordinates of χ ∈X(T ) the length `(χ). Then if ` = `(χHi), the Am-orbit of χHi
is of size (

n
`
). To obtain the desired exponential lower bound, we show that there are weights χHi of almost

every possible length.
To this end, note that

k0Wt(T̃ ,H∗
i ⊗Hi+1) = {−σ1χHi + σ2χHi+1 ∣ σ1, σ2 ∈ Am}.

Because E ⊆ H∗
i ⊗Hi+1, k0Wt(T̃ ,E) ⊆ k0Wt(T̃ ,H∗

i ⊗Hi+1), and the weights of the standard representation
are simply the characters εi, we conclude that χHi+1 = σ ⋅ χHi + k0εi for some σ ∈ Am and i ∈ [m]. In other
words,

`(χHi+1) ≤ `(χHi) + 1.

Furthermore, `(χHk) ≥ m − 1 because 1) H∗
k ⊗ `2 ≃ E and 2) χ`2 is Am-invariant so that χ`2 is some scalar

multiple of ε1 +⋯ + εm.
In conclusion, we have a subsequence Hj1 , ...,Hjm−1 for which `(Hji) = i, so

n = 1 + dimH ≥ 1 +
m−1

∑
i=1

dimHji ≥ 1 +
m−1

∑
i=1

(
m

i
) = 2m − 1,

as desired.

Landsberg and Ressayre showed that Grenet’s determinantal representation is equivariant, making this
exponential lower bound tight.
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4.4 Orbit Closures and Obstructions

We sketch here the program put forth by Mulmuley and Sohoni in [44] in anticipation of the material
discussed in the next chapter.

4.4.1 Orbit closures

The issue with Definition 4.4.1 is that the relevant geometric objects turn out not to be cut out by polynomial
equations and are thus not amenable to study via the techniques of algebraic geometry. Motivated by this,
Mulmuley and Sohoni considered a stronger version of Valiant’s conjecture involving the Zariski closures of
the orbit mentioned in Section 4.1.2.

Define the projective orbit closures

Detn ∶= GL(W ) ⋅ [detn], P ermm
n ∶= GL(W ) ⋅ ([`n−m permm])

and modify Definition 4.4.1 as follows.

Definition 4.4.1. Let V ⊂W and P ∈ Sm(V ∗), and take ` a linear coordinate on C1 with a linear inclusion
C1⊕V ↪W so that `n−mP ∈ SnW ∗. The border determinantal complexity dc(P ) is the smallest n for which

GL(W ) ⋅ [`n−mP ] ⊂Detn.

Conjecture 4.4.2 ([44]). dc(permm) grows faster than any polynomial in m.

Mulmuley and Sohoni’s approach, roughly speaking, is to study the coordinate rings of Detn and Permm
n

and look for GL(W )-modules that for m = poly(n) appear in the former but not the latter. We will make
this notion more precise in subsection 4.4.3, but we first need to set up some preliminaries in classical
representation theory.

4.4.2 Coordinate rings of orbits

Throughout this subsection, let G be a reductive group. The algebraic Peter-Weyl theorem gives a direct-sum
decomposition of C[G] into irreducible (G ×G)-modules indexed by all irreducible G-modules:

Theorem 4.4.3 (Algebraic Peter-Weyl). If G is a reductive algebraic group, the G ×G-module C[G] de-
composes as

C[G] =⊕
λ

Vλ ⊗ V
∗
λ ,

where the direct sum is over all isomorphism classes of irreducible G-modules Vλ.

We prove this in Appendix A.3.

Example 4.4.4. From Theorem 4.4.3, we get a decomposition of the coordinate ring of Sd. It is an
elementary fact in representation theory that the discrete Fourier transform gives a one-to-one correspondence
between irreducible representations of a finite group G and conjugacy classes of G. The conjugacy classes
of Sd correspond to the distinct partitions of d, i.e. tuples (p1, ..., pr) ∈ Nr for which p1 + ⋯ + pr = d and
p1 ≥ ⋯ ≥ pr. We conclude that C[Sd] = ⊕π[π]

∗ ⊗ [π]. But [π]∗ ≃ [π] because the dual of an irreducible
representation ρ has corresponding character equal to the conjugate of that of ρ, so in fact

C[Sd] =⊕
π

[π] ⊗ [π] (4.5)

as an Sd × Sd-module, where π ranges over all partitions of d.

Noting that the ring of regular functions on the quotient G/H can be identified with the ring C[G]H of
regular functions on G which fix H, we also get the following corollary to Theorem 4.4.3.
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Corollary 4.4.5. If H ⊂ G is a closed subgroup, then as a G-module, C[G/H] decomposes as

C[G/H] =⊕
λ

V
⊕dim(V ∗

λ )H
λ , (4.6)

where the sum is taken over the irreducible G-modules.

Definition 4.4.6. Let G act on some set X. The stabilizer of P ∈X in G is defined by

GP ∶= {g ∈ G ∣ g ⋅ P = P}. (4.7)

In particular, if G acts on some vector space V , then for a given p ∈ V we can apply Corollary 4.4.5 to
Gp to get an isotypic decomposition of the coordinate ring G ⋅ p, namely

C[G ⋅ p] =⊕
λ

V
⊕dim(V ∗

λ )Gp
λ . (4.8)

In the setting of GCT, for W = Cn
2

, take G = GL(W ), V = P(SnW ∗), and p = [detn] or [`n−m permm].
As we saw in Lemma 4.1.18, detn and permm are characterized by their symmetries, so by (4.8), the orbit
of any polynomial p that is characterized by its symmetries is the unique one with its coordinate ring.

Remark 4.4.7. It is believed that the characterization of detn and permm by their symmetries should play
a big role in the resolution of the Mulmuley/Sohoni conjecture, and because this property does not hold
for general polynomials in SnW ∗, this should allow the GCT program to evade Razborov/Rudich’s natural
proofs barrier [46] in a way that other attempts to separate P vs. NP have not been able to.

4.4.3 Representation-theoretic obstructions

One way to separate Detn and Permm
n is to look for modules in C[Permm

n ] that do not occur in C[Detn].
We would like first to find explicit modules in I(Detn) with the ultimate hope that `n−m permm does not

vanish on them. We may decompose Sym(V ) into I(Detn) ⊕C[Detn] so that any module lying in Sym(V )

but not in C[Detn] must lie in I(Detn).
This leads us to the first kind of obstruction to look for.

Definition 4.4.8. An irreducible G-module Vλ is an orbit occurrence obstruction if Vλ occurs in Sym(V )

but not in the coordinate ring of the orbit, i.e. V
∗Gdetn

λ = 0.

The advantage of such obstructions is that we already have a nice characterization of the coordinate ring
of G ⋅ [detn] by Lemma 4.4.5, but the drawback is that potentially useful orbit occurrence obstructions are
very difficult to find. One way to relax this is to look for modules that occur with differing multiplicities in
the coordinate rings being compared. In the above discussion, to find an irreducible G-module appearing
in I(Detn), it is enough to find an irreducible G-module of higher multiplicity inside Sym(V ) than in
C[G/Gdetn].

Definition 4.4.9. An irreducible G-module Vλ is an orbit representation-theoretic obstruction if the multi-
plicity of Vλ in Sym(V ) exceeds that of Vλ in the coordinate ring of the orbit, which is equal to dim(Vλ)

∗Gdetn .

The issue is that to test `n−m permm on any such obstruction Sπ(W ), we would need an explicit realization
of Sπ(W ) in I(Detn).

In any case, we can relax our search for modules further by asking only for those appearing in Sym(V )

with higher multiplicity than in C[Detn].

Definition 4.4.10. An irreducible G-module Vλ is an occurrence obstruction if Vλ occurs in Sym(V ) but
not in C[Detn]

More generally, Vλ is a representation-theoretic obstruction if the multiplicity of Vλ in Sym(V ) exceeds
that of Vλ in the coordinate ring of C[Detn].

That said, (non-orbit) occurrence or representation-theoretic obstructions, while more useful, are harder
to determine because the general problem of deciding which functions in C[G/Gdetn] extend to C[Detn], the
extension problem, is especially difficult. More generally, it is still not entirely clear how Mulmuley/Sohoni’s
conjecture differs from Valiant’s in passing to the closure, and we will address this in the next chapter.
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4.5 A First Lower Bound with GCT

In this section, we upgrade Mignon-Ressayre’s lower bound on dc(permm) to one on dc(permm).

Theorem 4.5.1 ([36], Theorem 1.0.1). dc(permm) ≥m2/2.

The discrepancy in ranks between the second fundamental forms of the determinantal and permanental
hypersurfaces still lies at the core of this result, but to account for passing to the Zariski closure, we will
interpret this discrepancy as one between dimensions of dual varieties. For a hypersurface V (P ) ⊂ PW cut
out by P ∈ SdW ∗, we define its dual variety V (P )∗ to be the Zariski closure of the set of all hyperplanes
tangent to V (P ) at smooth points of V (P ). For a vector space W of dimension N , define the variety
Dualk,d,N ⊂ P(SdW ∗) to be the Zariski closure of the set of degree-d irreducible hypersurfaces in PW for
which dimV (P )∗ ≤ k.

To show Theorem 4.5.1, we will show that whereas Detn ⊂Dual2n−2,n,n2 , Permm
n /⊂Dual2n−2,n,n2 unless

n ≥m2/2.

4.5.1 Hessians and dual varieties

The key connection between Mignon-Ressayre’s and Landsberg et al.’s approaches is the following dimension
formula due to B. Segre. The proof we give follows [22].

Lemma 4.5.2 (B. Segre). dimV (P )∗ = rank(T 2
xP ) − 2 for x a general point on V (P ).

Proof. The smooth points on V (P ) are dense, so we can pick x to be smooth. Denote by [h] the point in
V (P )∗ ⊂ W ∗ corresponding to TxV (P ). It is enough to show that dim T̂xV (P )∗ = rank(T 2

xP ) − 1. Take
some curve ht ⊂ V (P )∗ for which h0 = h. Recall that TxV (P ) is the image of V (P ) under the Gauss

map G(x) ∶= ( ∂P
∂zi

(x), ..., ∂P
∂zn

(x)) ∈ W ∗. Equivalently, we can regard the Gauss map as sending x to the

polarization ∂n−1,1P (x, ⋅). We can then write ht = ∂n−1,1P (xt, ⋅) for some curve xt ⊂ V (P ). It follows that
h′0 = ∂n−2,1,1P (x,x′0, ⋅). This is nonzero so long as x′0 ≠ λx, so the dimension of the span of all such velocity
vectors h′0 is one less than the rank of the Hessian ∂n−2,2P (x, ⋅) = T 2

xV (P ), as desired.

Lemma 4.2.3 thus implies that dimV (detn)
∗ = 2n − 2, i.e. that the dual variety of the determinantal

hypersurface is highly degenerate. Lemma 4.5.2 implies that for an irreducible P ∈ SdW ∗ to have a dual
variety of dimension at most k, det(T 2P ) restricted to any (k + 3)-dimensional subspace F ⊂ W must
vanish on points of V (P ). Equivalently, for any such F , P must divide Q ∶= det(T 2P ∣F ) ∈ SeW ∗, where
e ∶= (k + 3)(d − 2).

4.5.2 Conditions for P to divide Q

We wish to find conditions on their coefficients that must hold if P divides Q. In [36], the authors were
motivated not just by the problem of lower-bounding dc(permm), but by that of finding defining equations
for Dualk,d,N . Our focus is only on the former, so for the sake of brevity we can afford to be a bit crude with
the equations we obtain, as in Section 6.6.5 of [32]. For P to divide Q, there must exist some R ∈ Se−dW ∗

for which Q = PR. Picking some basis {F1, ..., FD} of Se−dW ∗, where D = (
e−d+n−1
e−d ), we note that this R

exists iff
F1P ∧ F2P ∧⋯ ∧ FDP ∧Q = 0.

this gives rises to equations in P which cut out some variety, call it Dk,d,N ⊃Dualk,d,N .

4.5.3 Landsberg et al.’s bound

By Lemmas 4.2.3, 4.2.4, and 4.5.2, we know that Detn ⊂D2n−2,n,n2 while [permm] /∈D2n−2,n,n2 for n <m2/2.
However, we cannot say anything at this point about [`n−m permm] because it is not irreducible. The good
news is that the (non)degeneracy of the dual variety of an irreducible P implies the (non)degeneracy of the
dual variety of any “padded” version of P :
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Lemma 4.5.3. Let U = CM and L = C and suppose we have a linear inclusion U∗ ⊕ L∗ ⊂ W ∗. For ` ∈ L∗

nonzero and P ∈ SmU∗ irreducible, if [P ] ∈ Dk,m,M and [P ] /∈ Dk−1,m,M , then [`n−mP ] ∈ Dk,n,N and
[`n−mP ] /∈Dk−1,n,N .

Proof. Picking an appropriate basis for W , we can write T 2(`n−mP ) in (M,1,N −M −1)×(M,1,N −M −1)
block matrix form as

T 2
(`n−mP ) =

⎛
⎜
⎝

`n−mT 2P 0 0
0 (n −m)(n −m − 1)`n−m−2P 0
0 0 0

⎞
⎟
⎠
.

By assumption, dimV (P )∗ = k. For a general F ∈ G(k + 2,W ), det(T 2P ∣F ) ≠ 0 because [P ] /∈ Dk−1,m,M , so
`n−mP does not divide det(T 2(`n−mP )∣F ) and thus [`n−mP ] /∈Dk−1,n,N . Likewise, for any F ∈ G(k + 3,W ),
det(T 2P ∣F ) = 0 because [P ] ∈Dk−1,m,M , so det(T 2(`n−mP )∣F ) is identically zero or divisible by `n−mP . We
conclude that [`n−mP ] ∈Dk,n,N .

By Lemma 4.5.3, Permm
n /⊂D2n−2,n,n2 for n <m2/2, and Theorem 4.5.1 follows.



Chapter 5
Boundary Components of Detn

In this chapter, we ask the following fundamental problem in geometry:

Question 5.0.4 (Boundary Component Problem). Classify the irreducible components of ∂Detn.

As we will see in Section 5.1, because of a negative result of Kumar [31] on the non-normality of Detn, this
question is necessary for better understanding what it takes to find representation-theoretic obstructions.
The boundary component problem turns out to be closely related to the classical question of finding maximal
linear subspaces on the determinantal hypersurface, so in Section 5.2, we present two theorems of Atkinson
[2] and Eisenbud and Harris [19] on what is known about this problem in low dimensions, with a view towards
applying these in our own results. The proof we give of these two theorems will follow that of Eisenbud and
Harris.

In Section 5.3, we present a recent result of Huttenhain giving a complete classification of boundary
components for Det3 based on resolution of singularities. We then provide our own more elementary, com-
binatorial proof of their result based on examining sums of polarizations of det3.

Beyond considering the low-dimensional case, one can also ask for families of boundary components over
an infinite set of dimensions. In Section 5.5, we produce a new such family for even n.

5.1 Motivation: the extension problem

If we are to have any hope of finding representation-theoretic obstructions, we need to understand exactly
what changes when we pass from C[GL(W ) ⋅detn] to C[GL(W ) ⋅ detn], i.e. which functions on the GL(W )-
orbit extend to the boundary. Indeed, we might initially hope that all such functions extend, by Hartog’s
phenomenon:

Lemma 5.1.1 (Algebraic Hartog’s). If X is a normal variety and V ⊂ X is a closed subset for which
codim(V ) ≥ 2, then any function f ∶ X/V → C extends uniquely to some f̃ ∶ X → C, i.e. the restriction map
Γ(X,OX) → Γ(X/V,OX) is an isomorphism.

Proof. Consider the rational map X → P1 corresponding to f and denote its graph by Γ ⊂ X × P1. Its fiber
over ∞ lies inside (X/V ) × {∞} and therefore has codimension at least 2. If the fiber is nonempty, i.e. if
Γ ∩ (X × {∞}) ≠ ∅, then because X × {∞} is cut out of X × P1 locally by a single equation, the fiber would
have codimension at most 1, a contradiction. So Γ and X × {∞} do not intersect, and we conclude that
the projection Γ → X is finite. It is also birational, so by normality of X, Γ → X is an isomorphism. We
therefore obtain the unique extension f̃ of f as desired.

Unfortunately, as we shall now see, Kumar [31] showed thatDetn is not normal, so Hartog’s does not apply
(even if Detn were normal, we would still need to deal with extending functions defined off a codimension 1
subvariety). Kumar’s result necessitates a better understanding of the geometry of the boundary of Detn.

49
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We begin by fixing some notation. Let E be an n-dimensional vector space and W = E ⊗ E∗. Let
G = GL(W ) and G′ = SL(W ), and denote by Ω, Ω, and Ω′ respectively the varieties G ⋅ detn, G ⋅ detn, and
G′ ⋅ detn (there is an implicit dependence of these varieties on n).

Theorem 5.1.2. For n ≥ 3, Ω is not normal.

The general outline of Kumar’s argument is as follows. First, to show Ω is not normal, it’s enough to
show that Z ∶= Ω//G′ is not normal. We then show that the ideal of the boundary of Ω is the radical of
the ideal generated by some nonzero G′-invariant f0 ∈ I. Now suppose Z is normal. We find in the isotypic
decomposition of C[Ω]G

′
a root (in the sense of radicals) of f0. Normality of Z implies that f0 lies in C[Z],

and extending this function to all of Sn(W ∗), we get a nonzero G′-invariant in Sd(Sn(W ∗)) of degree d
smaller than is possible by a result of Howe [26] (see Theorem 5.1.9 below), a contradiction.

We begin with the following basic fact.

Lemma 5.1.3. G′ ⋅ detn is closed in SnW ∗.

Proof. We will make use of the following result proved in [30].

Claim 5.1.4 ([30], Corollary 5.1). Let H be a reductive group acting on some vector space V , and let x ∈ V .
If H has no nontrivial central one-parameter subgroup and the stabilizer of the line [x] is not contained in
any proper parabolic subgroup of H, then H ⋅ x is closed.

We wish to take H in the claim to be G′ and x to be detn. Obviously G′ is reductive and has no
nontrivial central one-parameter subgroup. For the second hypothesis, we apply Theorem 4.1.14, by which
we know the identity component G0

detn
≃ (SL(E)×SL(E∗))/µn, where µn is the group of nth roots of unity

acting diagonally on SL(E) × SL(E∗). It is evident that G′
detn

contains G0
detn

, and the latter certainly does
not stabilize any proper subspace of W . We conclude that G′

detn
is not contained in any proper parabolic

subgroup of G′, so applying Kempf’s result, we see that G′ ⋅ detn is indeed closed.

Corollary 5.1.5. An irreducible G′-module M occurs in the isotypic decomposition of C[Ω′] iff it occurs in
that of C[Ω] as well, i.e. any such M occurs in C[Ω] iff M contains nonzero G′

detn
-invariants.

Proof. By algebraic Peter-Weyl, it suffices to show that C[Ω]d injects into C[Ω′] for each d ≥ 0. Indeed,
suppose we have some f in the kernel of the restriction map φd ∶ C[Ω]d → C[Ω′], i.e. f vanishes over Ω′.
Because f is homogeneous of degree d, we also know f vanishes over C ⋅Ω′ and thus over C ⋅Ω′ = Ω. But for
f to vanish over all of Ω, it would have to be the zero function.

Lemma 5.1.3 will now allow us to give the key step of showing the existence of the G′-invariant f0. Let
I ⊂ C[Ω] denote the ideal of ∂Ω.

Lemma 5.1.6. I contains a nonzero G′-invariant f0.

Note that if we can show that the closure of any G′-orbit Y in ∂Ω/{0} contains 0, then we are done. This
would imply that ∂Ω//G′ ≃ {0}, in which case we could take f0 to be any nonzero homogeneous polynomial
in C[Z], and it obviously vanishes at {0}, implying that f0 ∈ I.

To prove this claim about G′-orbits, we will prove that every closed G′-orbit Y ′ ⊂ Y which avoids zero is
the G′-orbit of a scalar multiple of detn. Then Y ′ = G′ ⋅ (λ ⋅detn) ⊂ G ⋅detn = Ω for some λ ∈ C∗, contradicting
the fact that Y ′ ⊂ Y lies on the boundary of Ω.

Define the C∗-equivariant map σ ∶ C → Ω by λ ↦ λndetn, where C∗ acts on C by multiplication and on
Ω via the action induced by the action on SnW ∗, namely λ ⋅ p = (λ−1In2) ⋅ p. Post-compose σ with the GIT
quotient map π ∶ Ω→ Z to get a map σ ∶ C→ Z. σ is dominant because Ω is obviously dense in Ω. We claim
moreover that σ pulls {0} ∈ Z back to {0} ∈ C. But this follows from Lemma 5.1.3.

Next, we can reformulate the conditions that σ respectively is dominant and pulls {0} back to {0} alge-
braically as conditions that the corresponding map on coordinate rings is injective and pulls the augmentation
ideal of C[Z] back to that of C[C]. We are done given the following result from commutative algebra:

Lemma 5.1.7. Let R,S be nonnegatively graded, finitely generated integral domains over C with zeroeth
component C and augmentation ideals mR,mS respectively. If graded algebra homomorphism f ∶ R → S is
injective, and the corresponding map f∗ ∶ SpecS → SpecR satisfies (f∗)−1(mR) = {mS}, then S is integral
over R.
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Proof. The hypothesis on f∗ implies that mS is the only maximal ideal in S containing f(mR), so in

particular,
√
f(mR) = mS and thus md

S ⊂ f(mR) for some d > 0. Thus, S/f(mR) is a finite-dimensional
C-vector space, implying S is a finitely generated R-module. It is a basic fact of commutative algebra that
this implies integrality of S over R.

Proof of Lemma 5.1.6. Because the map on coordinate rings corresponding to σ is integral, σ is finite and
thus surjective.

5.1.1 Examining the isotypic decomposition of C[Ω]
G′

In this section, we finish off the proof of Theorem 5.1.2. First, note that in the argument for Lemma 5.1.6,
any member f0 ∈ C[Ω]G

′
suffices. We will show that any such f0 is set-theoretically a defining equation for

all of ∂Ω, i.e. V (f0) = ∂Ω. Indeed, more generally:

Lemma 5.1.8. If M is a nonzero G-submodule of I, then V (M) = ∂Ω.

Proof. By hypothesis, ∂Ω is contained in V (M). Suppose to the contrary that the containment is proper.
Then because M is a G-submodule, V (M) is G-stable and therefore must be all of Ω, meaning M is the
zero module, a contradiction.

Taking M = ⟨f0⟩ the ideal generated by f0, we conclude that for any f0 ∈ C[Ω]G
′
,

√
⟨f0⟩ = I. (5.1)

We are now ready to prove Theorem 5.1.2.

Proof of Theorem 5.1.2. It suffices to show that Z = Ω//G′ is not normal. Suppose to the contrary.
G is reductive, and Gdetn is also reductive by Theorem 4.1.14, so by Matsushima’s theorem (see The-

orem A.5.5 in Appendix A.5) Ω is affine, and we may invoke algebraic Peter-Weyl to obtain the isotypic
decomposition

C[Ω]
G′

≃ ⊕
a∈Z

San2 (E) ⊗ (San2 (E)
∗)
Gdetn .

The Weyl modules San2 appearing in the decompostion of C[Ω]G
′

correspond to the characters g ↦
(detg)a. So by Theorem 4.1.14, if n(n − 1)/2 is even, all maps in S∗

an2 (E) are fixed by members of Gdetn

because these all have determinant 1; we conclude that dim(S∗
an2 (E))Gdetn = 1. If n(n− 1)/2 is odd but a is

even, this remains true, but if a is odd in this case, no maps in S∗
an2 (E) are fixed, and dim(S∗

an2 (E))Gdetn = 0.

Endow C[Ω]G
′

with the natural grading d based on the power zmd by which the matrix z ⋅ In2 acts on

different members of C[Ω]G
′
. Then we can pick a generator f̂0 in C[Ω]G

′
pnn, where pn = 1 if n(n−1)/2 is even

and pn = 2 if n(n − 1)/2 is odd, so that

C[Ω]
G′
≥0 ≃ ⊕

a>0

C ⋅ f̂a0 .

We can now invoke (5.1): pick any f0 ∈ C[Ω]G
′
, and take the smallest d > 0 for which f̂d0 = f0.

Here is where assumption of the normality of Z breaks down: it implies that f̂0 is actually in C[Ω]G
′

pnn and

thus pulls back via the surjective restriction map C[Sn(W ∗)] → C[Ω] to a nonzero element of C[Sn(W ∗)]G
′

pnn.

This gives a nonzero polynomial in the plethysm Spnn(Sn(W ∗))G
′
. Finally, we invoke the following result

from [26]:

Theorem 5.1.9 ([26], Section 4.3). S`(Sp(Cn))G
′
= 0 if ` < n.

Because we assume n ≥ 3, pnn < n2, so we get a contradiction.
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5.2 Linear subspaces of V (detn)

Before we examine the problem of classifying boundary components more closely, we will take a detour
by looking at a related classical problem in algebraic geometry. Given a linear subspace of matrices M ⊂

Matm,n(C), define its rank to be the highest rank of any member of M ; denote this by rank(M).

Question 5.2.1. For a given n, what are the maximal linear spaces M ⊂ Matn,n(C) for which rank(M) < n?

Put differently, this question asks whether we can classify all non-extendable linear spaces on the deter-
minantal hypersurface.

The connection between Question 5.2.1 and Question 5.0.4 is as follows. Denote the space of n × n
matrices by W . Define the Gdetn -invariant rational map φ ∶ PEnd(W ) ⇢ Detn sending [a] ∈ PEnd(W ) to
[detn ○ a]. If one could resolve the indeterminacies of φ, then the image under the resolved map would be
Detn. The connection to finding maximal linear subspaces of V (detn) is that the indeterminacy locus of φ
is the set of all [a] for which a(W ) consists solely of singular matrices, and such an a(W ) would be a linear
subspace of V (detn). So while Question 5.2.1 is beautiful in its own right, it is also essential to solving
Question 5.0.4, and in Sections 5.3 and 5.4, we will see this carried out in low dimensions.

In any case, this section will focus solely on solving Question 5.2.1 in low dimensions.

5.2.1 First examples

Throughout, we will alternately regard linear spaces of n×n matrices as sitting insideMn,n(C), or as sitting
inside Hom(V,W ) = V ∗ ⊗W for n-dimensional vector spaces V,W . We will also often denote spaces of
matrices using matrices of indeterminates. For instance, we can denote the space of all 3×3 skew-symmetric
matrices by the parametrization

Wskew =
⎛
⎜
⎝

0 a b
−a 0 c
−b −c 0

⎞
⎟
⎠
.

We can describe Wskew in the following coordinate-free manner: given an arbitrary vector space V , we have
a map V ↪ Hom(V,Λ2V ) sending any v ∈ V to the multiplication map in the exterior algebra, namely the
map ⋅∧v ∶ V → Λ2V . When dim(V ) = 3, we recover Wskew as the image of V under this identification. When
dim(V ) = 4, the image of V is the space of matrices

⎛
⎜
⎜
⎜
⎝

b c d 0 0 0
−a 0 0 c d 0
0 −a 0 −b 0 d
0 0 −a 0 −b −c

⎞
⎟
⎟
⎟
⎠

. (5.2)

As we shall see, this matrix will be of particular significance to answering Question 5.2.1.
Other obvious spaces of singular n × n matrices come to mind, like those with at least one row/column

of zeros or more generally a block of zeros of height m and width at least n −m + 1. These form another
important class of matrix spaces.

Definition 5.2.2. M ⊂ Hom(V,W ) is a compression space if there exist subspaces V ′ ⊂ V , W ′ ⊂ W such
that

1. codim(V ′) + dim(W ′) = k

2. M “compresses” V ′ into W ′, i.e. for every A ∈M , A(V ′) ⊂W ′.

5.2.2 Equivalence and primitivity

In any case, question 5.2.1 seems rather unreasonable as stated; given any such space M of n × n matrices,
there are infinitely many other such spaces (in fact an entire Gdetn -orbit) that we could get out of it. So as
a first step, we will quotient out by this action:

Definition 5.2.3. M,N ∈ Mn×n(C) are equivalent if they differ by an action of Gdetn .
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Modding out by this equivalence does not however stop us from producing spaces of n′ × n′ matrices for
n′ ≠ n. For n′ > n, we have the following example.

Example 5.2.4. If M ∈ Mn,n(C) is the space of skew-symmetric matrices, then the (n + 1) × (n + 1) block

matrix M ′ = (
M ∗

0 ∗
) is a space of singular matrices, and rank(M ′) = rank(M) + 1. Here, the asterisks

denote that the corresponding entries are distinct indeterminates. We say that M ′ is imprimitive and has
primitive part M .

We define primitivity in a coordinate-free manner. Intuitively, M is primitive if its low rank comes from
that of some submatrix, under an appropriate choice of basis.

Definition 5.2.5. For V ′ ⊂ V , W ′ ⊂W , let πV ′,W ′ be the projection from Hom(V,W ) to Hom(V ′,W /W ′)

which sends any φ ∶ V →W to the composition

V ′
↪ V

φ
Ð→W →W /W ′.

We say M ⊂ Hom(V,W ) is imprimitive if there exist V ′,W ′ for which rank(M) = rank(π−1
V ′,W ′(πV ′,W ′(M))),

in which case πV ′,W ′(M) is called the primitive part ; if no such V ′,W ′ exist, we say M is primitive.

Example 5.2.6. For any n, the space of all skew-symmetric n×n matrices is primitive. Compression spaces
are imprimitive and in fact have primitive part zero.

We can now try asking Question 9 differently having circumscribed it somewhat.

Question 5.2.7. For a given n, up to equivalence, what are the primitive maximal subspaces of singular
n × n matrices?

In [2], Atkinson solved this for n = 3,4. We follow the bundle-theoretic proof due to Eisenbud and Harris
in [19], which holds more generally for all spaces of matrices M for which a certain associated vector bundle
has first Chern class equal to 1.

Theorem 5.2.8 ([19], Theorem 1.1). The primitive maximal subspaces of singular 3 × 3 matrices are all
equivalent to the space of skew-symmetric matrices.

Theorem 5.2.9 ([19], Theorem 1.2). The primitive maximal subspaces of singular 4 × 4 matrices are all
equivalent to exactly one of

⎛
⎜
⎜
⎜
⎝

a b 0 0
0 0 a b
c 0 d 0
0 c 0 d

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

−a −b 0 0
c 0 −d −b
−b 0 a 0
d c 0 a

⎞
⎟
⎟
⎟
⎠

.

5.2.3 Two important sheaves

Fix vector spaces V and W of dimension v and w respectively. Let M ⊂ Hom(V,W ) be a (rank k) space of
matrices and let P = PM ; we would like to encode all the information about M in terms of sheaves on P.
Consider the map of sheaves φ′M ∶ V ⊗OP(−1) →W ⊗OP which over A ∈ P sends v ⊗ λA to λA(v); one can
recover M from this: on the level of global sections, φ′M gives the map V ⊗M →W adjoint to the inclusion
M ↪ V ∗ ⊗W .

Consider also the dual φ′∗M ∶W ∗ ⊗OP → V ∗ ⊗OP(1); we want the targets of these two maps to have the
same amount of twisting, so twist the former map by OP(1) to get φM ∶ V ⊗OP → W ⊗OP(1). Define EM
and FM to be the image sheaves Im(φM) and Im(φ′∗M), both torsion-free of rank k. We can still almost
recover M from EM and FM alone. Indeed, V and W ∗ sit inside H0(EM) and H0(FM) so that M arises
as a projection of the space of linear maps associated to H0(EM) ⊗ OP → H0(FM)∗ ⊗ OP(1). Indeed, if
V = H0(EM) and W ∗ = H0(FM), then out of the map on global sections induced by this, we obtain the
same map V →W ⊗M∗ as before.
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Observation 6. EM and FM satisfy the following properties:

1. E and F are the subsheaves of E∗∗M and F∗∗M generated by global sections.

2. E∗∗M = F∗M(1) and F∗∗M = E∗M(1).

Note that the point of taking the double duals of these two sheaves is to exploit the fact that rank one
reflexive sheaves on P are locally free.

5.2.4 Criteria for compression spaces/primitivity

Lemma 5.2.10. The following are equivalent:

i) M is a compression space.

ii) EM and FM respectively contain trivial rank k1 and k2 vector bundles for which k1 + k2 = rank(M).

iii) E∗∗M is a direct sum of rank 1 sheaves, specifically copies of OP and OP(1).

Proof. i) ⇒ ii): Suppose V and W admit direct-sum decompositions V ′ ⊕ V ′′ and W ′ ⊕W ′′ for which M
sends V ′ and V ′′ into W ′ and W ′′ respectively. Because we are assuming that dimV ′′ + dimW ′ = k, φM
injectively sends V ′′ ⊗OP to W ′′ ⊗OP(1); hence, V ′′ ⊗OP is trivial, so its image under φM is as well, and
this is the desired trivial summand in EM , of dimension dim(V ′′). Taking the transpose of M , we similarly
get a summand in FM , of dimension dim(W ′).

ii) ⇒ iii): Because EM has a trivial summand of rank k1, so too does E∗∗M = F∗M(1) which thus also has a
trivial summand of rank k2 given by a direct sum of k2 copies of OP(1). Because k1 + k2 = k, iii) follows.

iii) ⇒ i): Consider what happens in the simplest case when Im(φM) is just a direct sum of k1 copies of
OP and k2 copies of OP(1), in which case H0(EM) = V , H0(FM) =W ∗, and E is reflexive. To produce the
requisite V ′ ⊂ V and W ′ ⊂W for M to be a compression space, denote by E ′ and F ′ the maximal summands
respectively in EM and F∗M that are direct sums of copies of OP. On global sections, the compositions
H0(EM) ⊗OP → EM → E

′ and F ′ → EM → H0(FM)∗ ⊗OP(1) respectively induce the maps φ1 ∶ V → H0(E ′)

and φ2 ∶H
0(F ′) →W .

Let V ′ = ker(φ1) and W ′ = im(φ2). Noting that reflexivity of E implies E = F∗(1), we thus see that in
the composition H0(EM ⊗ OP → EM = F∗(1) → H0(FM)∗ ⊗ OP(1), V

′ ⊗ OP is sent to W ′ ⊗ OP(1), so M
indeed carries V ′ into W ′. Moreover, codimV ′ + dimW ′ = k1 + k2 = k, so M is indeed a compression space.

Lastly, we can reduce the general case in which E∗∗M is a direct sum of rank 1 sheaves to the above case.
E∗∗M is reflexive so that these rank 1 sheaves are line bundles; in particular they must be copies of OP and
OP(1) because E∗∗ = F∗(1), so E∗∗M and F∗∗M are generated by their global sections just like their subsheaves
EM and FM . So if we replace EM and FM in the above discussion by E∗∗M and F∗∗M , we would conclude that
H0(E∗∗M ) ⊗OP →H0(F∗∗M )∗ ⊗OP(1) induces a map on global sections corresponding to a compression space
M ′. M is the projection of M ′, and rank(M) = rank(M ′), so M is a compression space as desired.

The following is a neat consequence of this that we will use in Section 5.4.

Corollary 5.2.11. If dim(M) = 2, then M is a compression space.

Proof. This follows from the Birkhoff-Grothendieck theorem characterizing torsion-free sheaves on P1:

Theorem 5.2.12 ([24]). Every torsion-free sheaf over P1 is the direct sum of line bundles.

P = PM is just the projective line, so by Theorem 5.2.12, EM is the direct sum of line bundles.
Lemma 5.2.10 tells us that M is a compression space.

Similar arguments give us the following characterization of primitivity.

Lemma 5.2.13. The following are equivalent:

i) M is imprimitive.
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ii) EM or FM has OP as a summand.

iii) E∗∗M or F∗∗M has a summand of rank 1.

Proof. i) ⇒ ii): Assume without loss of generality that dimV ≤ dimW . If rank(M) = dimV , then EM ≡

V ⊗OP and we’d be done, so assume rank(M) < dimV . If M is imprimitive, there exists a hyperplane H ⊂ V
for which

rank(M) = rank(π−1
(π(M))), (5.3)

where π ∶= πH,W . rank(π(M)) is simply rank(φM(H ⊗OP)), and rank(π−1(π(M))) = π(M)+1 from adding
back a column of indeterminates to π(M). Equality 5.3 therefore implies that if L is a complement of H in
V , then φM(L⊗OP) ≃ OP, and the desired result follows.

ii) ⇒ iii): EM is a subsheaf of E∗∗M , so this implication is trivial.
iii) ⇒ i): Suppose E∗∗M has a rank 1 summand. Because E∗∗M and F∗∗M are reflexive and E∗∗M = F∗M(1), the

rank 1 summand has to be either OP or OP(1). If the latter, then F∗M and thus F∗∗M has OP as a summand, so
assume E∗∗M has OP as a summand. Consider the map on global sections induced by V ⊗OP → EM → E

∗∗
M → OP.

Because EM and E∗∗M have the same rank, this map V → C cannot be identically zero. Take V ′ to be its
kernel and note that (5.3) holds for π = πV ′,W , proving imprimitivity of M .

5.2.5 Effective criterion for primitivity

While these criteria will be useful for proving the technical crux of Harris and Eisenbud’s result, at the
end of the day we will have produced spaces of matrices whose primitivity we need to verify in an effective
manner, e.g. with Macaulay2. To do this, we pass from the category of quasicoherent sheaves to that of
graded modules.

Define the polynomial ring S = C[M∗] and let fM be the map on graded free S-modules corresponding
to φM . Define EM to be the graded S-module corresponding to EM , equivalently the image of fM , and
FM to be the graded S-module corresponding to FM , equivalently the image of f∗M(1). Our criteria for
compression spaces and primitivity pass over easily to this setting by the following.

Lemma 5.2.14. Let E be a graded S-module generated in degree zero and E be the corresponding sheaf on
P. The following are equivalent:

i) S is a direct summand of E

ii) S is a direct summand of E∗∗

iii) OP is a direct summand of E

iv) OP is a direct summand of E∗∗

Proof. i) ⇔ iii) and ii) ⇔ iv) follow from the fact that E and E∗∗ are the quasicoherent sheaves over P
associated to the graded S-modules E and E∗∗. i) ⇒ ii) and iii) ⇒ iv) are obvious. It remains to prove
ii) ⇒ i), from which the corresponding implication iii) ⇒ iv) will follow. E and E∗∗ have the same rank, so
the map E → S induced by the projection map E∗∗ ↠ S given by assumption ii) is nonzero. In particular,
because S is generated in degree zero, E → S must be nonzero in degree zero, implying that it is also a
projection map.

Denoting the kernel of fM by KE
M and that of fM∗(1) by KF

M , we note that the presence or absence of
the direct summand S in EM or FM is not detected by KE

M or KF
M , giving the following effective test for

primitivity.

Lemma 5.2.15. If B (resp. B′) is the largest submodule of the minimal first syzygy of (KE
M)∗(1) (resp

(KF
M)∗(1)) that is generated in degree zero, then M is primitive if and only if rank(B) = rank(B′) = rank(M).
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5.2.6 Characterization of EM with low first Chern class

The Chern classes capture the extent to which a given vector bundle is trivial; we will use the first Chern
class throughout this subsection. While technically c1(EM) = d ⋅ c1(OP(1)), we will write c1(EM) = d for
convenience. If d = 0, i.e. if EM were trivial, then by Lemma 5.2.10 M would be a compression space, so we
assume that c1(EM), c1(FM) > 0.

Proposition 5.2.16. If k ≤ 3 and EM is nontrivial, then c1(EM) = c1(OP(1)).

Proof. Note that
c1(FM) ≤ c1(F

∗∗
M ) = c1(E

∗
M(1)) = k ⋅ c1(OP(1)) − c1(EM),

from which we conclude that c1(EM)+c1(FM) ≤ k ⋅c1(OP(1)). We can thus assume without loss of generality
that 1 ≤ d ≤ ⌊k/2⌋, so in particular, d = 1 when k ≤ 3.

This is enough to give the following characterization of EM , which forms the technical crux of Eisen-
bud/Harris’ proof of Theorems 5.2.8 and 5.2.9.

Theorem 5.2.17. If c1(EM) = 1 and OP is not a summand of EM , then EM is either OP(1) or the universal
quotient bundle QP over P.

Proof. Define Ψ ∶ P→ G ∶= G(v − k, V ) as the map sending any point A ∈ P to ker(A) ∈ G(v − k, V ).

Lemma 5.2.18. Ψ is a projection of P onto a smaller projective space P′embedded in G(v − k, V ) via the
Plücker embedding.

Proof. We know that outside some codimension ≥ 2 subvariety Σ ⊂ P, EM is locally free and thus the pullback
of the universal quotient bundle over G along Ψ. The fact that c1(EM) = 1 then implies that outside of Σ,
Ψ sends lines in P to lines in G (with respect to the Plücker embedding).

The following is a standard fact from Schubert calculus.

Lemma 5.2.19. If P′ is a linear space on G, then P′ is either a subspace of the set of (v−k)-planes containing
a particular (v − k − 1)-plane, or a subspace of the set of (v − k)-planes lying in a fixed (v − k + 1)-plane.

We can now proceed by casework on the particular linear space P′ that Ψ projects P onto.

Case 1. P′ is a subspace of the set of (v − k)-planes containing a particular (v − k − 1)-plane.

First, we may and shall quotient V out by the (v − k − 1)-dimensional subspace common to all planes in
P′ in order to take dim(V ) = k + 1. We claim that in this case, EM is the universal quotient bundle over P.
The strategy is to consider the exact sequence

0→ K → OP ⊗ V → EM → 0, (5.4)

where K ∶= ker(φM), and argue that (1) ker(φM) ≃ OP(−1) and 2) M = V .
Because rank(K) = (k + 1) − k = 1, (1) is a straightforward Chern class computation. The fact that K is

a second syzygy implies it is reflexive and thus a line bundle. Furthermore, by (5.4), c1(K) = c1(OP ⊗ V ) −

c1(EM) = −1, so we conclude that K ≃ OP(−1).
For 2), we show that the inclusion M ↪ Hom(V,W ) factors through a surjection M → V . First, because

M∗ =H0(OP(1)), K → OP ⊗ V factors through OP ⊗M . The map T ∶M → V induced by OP ⊗M → OP ⊗ V
is clearly surjective because K does not lie in any trivial summand of the target.

Next, if we dualize (5.4), twist once, and look at global sections, we have

0→H0
(E

∗
M ⊗OP(1)) →H0

(OP ⊗ V
∗
(1)) →H0

(OP(2)),

we see that Λ2V ∗ fits in as the kernel of H0(OP ⊗ V
∗(1)) → H0(OP(2)). In particular, we can factor φM∗

through the second Koszul complex map to get

φM∗ ∶ E∗M → OP ⊗Λ2V ∗
(−1) → OP ⊗ V

∗.
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To conclude, we have the diagram

OP ⊗M OP ⊗Λ2V (1)

0 - OP(−1) -

-

OP ⊗ V -

-

-

EM -

-

0

which exhibits the inclusion M → Hom(V,W ) as the composition M ↠ V followed by an inclusion
V ↪ Hom(V,Λ2V ) and a projection Hom(V,Λ2V ) ↠ Hom(V,W ). So because T is surjective, M = V ,
completing the proof for this case.

Case 2. P′ is a subspace of the set of (v − k)-planes lying in a fixed (v − k + 1)-plane.

We claim that in this case, EM is OP(1). We first show that rank(EM) = 1. Let V = V ′⊕V ′′ where V ′ is the
(v−k+1)-plane containing P′ and V ′′ is some (k−1)-dimensional complement. Because rank(φM(OP⊗V

′)) =

1, rank(φM(OP ⊗ V
′′)) = rank(OP ⊗ V

′′), so φM(OP ⊗ V
′′) ≃ OP ⊗ V

′′. In particular, EM = φM(OP ⊗ V
′) ⊕

(OP ⊗ V
′′), and the latter summand must vanish by the assumption that EM does not contain a copy of OP

as a summand, so rank(EM) = 1 as claimed.
E∗∗M is therefore some line bundle, say OP(1)⊗L for L ⊂W . Pick a complement W ′ ⊂W so that the map

EM → OP(1)⊗W
′ induced by EM → E

∗∗
M ⊗W is the zero map. Ignoring W ′, we see that of the family of maps

corresponding to the map OP⊗H
0(OP(1)) → OP(1), M is a projection. But this family is Hom(M∗,W ) ≃M ,

so the projection must in fact be the identity, and we conclude that EM ≃ OP(1).

A useful consequence of this is that all primitive spaces for det3 and det4 arise from taking certain
submatrices of (5.2).

Corollary 5.2.20. If M is primitive and c1(EM) = 1, then M is the image of a projection of Hom(M,Λ2M)

from a subspace of Λ2M . M consists of (dimM)×n matrices of rank dimM−1 for some dimM ≤ n ≤ (
dimM

2
).

Proof. Because M is primitive, neither EM nor FM has OP as a summand. In particular, EM also cannot
have OP(1) as a summand, or else E∗∗M = F∗M(1) has the same and EM has OP as a summand, a contradiction.
By Theorem 5.2.17, EM = QP. But QP is also the image of the second map d2M ⊗OP → Λ2M ⊗OP(1) in the
Koszul complex

0→ OP(−1)
d1
Ð→M ⊗OP

d2
Ð→ Λ2M ⊗OP(1) → ⋯.

We claim that fiberwise, this map is just multiplication in the Koszul complex. Indeed, explicitly, the
corresponding map on global sections sends y ∈ M to ∑i(yi ∧ y) ⊗ xi ∈ Λ2M ⊗M∗, where {yi} and {xi}
are dual bases for M and M∗ = H0(OP(1)) respectively. In the fiber over A ∈ P, this map sends y ∈ M to

∑i xi(A) ⋅ (yi ∧ y) = A ∧ y, as desired.
Writing Λ2M as some W ⊕W ′, we conclude that M is the image of the projection via πV,W ′ of the

subspace of Hom(M,Λ2M) corresponding to multiplication by members of M in the exterior algebra. If
V ≠ M or dimW ≤ dimM , then M would be imprimitive, so to get the second half of the corollary, it is
enough to note that this subspace has rank equal to rank(M) and specifically to dimM − 1.

Theorem 5.2.8 follows automatically from the above because when M is a space of 3 × 3 matrices, the
space of maps M ⊂ Hom(M,Λ2M) is parametrized by the generic 3 × 3 skew-symmetric matrix. For 4 × 4
matrices, we need to do some extra work because M ⊂ Hom(M,Λ2M) is parametrized by a 4 × 6 matrix, so
there are multiple projections to spaces of 4 × 4 matrices that we can consider.

5.2.7 Classification for det4

As a final step before we can apply Corollary 5.2.20 to classify the maximal primitive spaces on {detn = 0}
for n = 4, we need to understand the equivalence classes of such (rank dimM − 1) projections of spaces
M ⊂ Hom(M,Λ2M). Regard M as a space of maps M ⊂ Hom(M,Λ2M) via Koszul multiplication.

Lemma 5.2.21. For W ′ ⊂ Λ2M , if M ′ is the projection πM,W ′(M) and rank(πM,W ′(M)) = dimM −1, then
πM,W ′ ∶M →M ′ is an isomorphism.
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Proof. Suppose the kernel of πM,W ′ contains a nonzero A ∈ M , then for any A′ ∈ M not in the span of A,
the map πM,W ′(A′) given by ⋅ ∧A′ ∶M → Λ2M/W ′ has a kernel of dimension at least two, contradicting the
assumption that rank(M ′) =m − 1.

Lemma 5.2.22. If W ′,W ′′ ⊂ Λ2M , then πM,W ′(M) and πM,W ′′(M) are equivalent if and only if W ′ and
W ′′ are conjugates under the action of GL(M) on Λ2M .

Proof. In the easier direction, if W ′ and W ′′ are conjugate by some α ∈ GL(M), then Λ2α ∶ Λ2M → Λ2M
induces a map β ∶ (Λ2M)/W ′ → (Λ2M)/W ′′. For any A ∈M , Koszul multiplication by A is associated with
the corresponding diagram:

M
∧A- Λ2M - (Λ2M)/W ′

M

α

? ∧α(A)- Λ2M

Λ2α

?
- (Λ2M)/W ′′

β

?

This establishes an equivalence between πM,W ′(M) and πM,W ′′(M) via (α,β).
In the other direction, suppose πM,W ′(M) and πM,W ′′(M) are equivalent via some (α,β). It suffices to

show that the following diagram commutes

M ⊂ - M∗
⊗ ((Λ2M)/W ′

)

M

γ

?
⊂ - M∗

⊗ ((Λ2M)/W ′′
)

α−1 ⊗ β

?

if and only if γ = λα for a particular scalar λ, because the diagram obtained by taking adjoints

M ⊗M - (Λ2M)/W ′

M ⊗M

(λα) ⊗ α

?
- (Λ2M)/W ′′

β

?

exhibits the fact that M ′ and M ′′ are conjugate by Λ2α. To see that (5.2.7) commutes, note that for a given
⋅ ∧A ∈ Hom(M, (Λ2M)/W ′), the kernel is generated by A itself if A is generic, because rank(M ′) = m − 1.
Because α(A) is generic if A is generic, the same holds for ⋅ ∧α(A), so the linearity of γ and α implies that
γ must be a multiple of α as desired.

We are now ready to prove Theorem 5.2.9.

Proof of Theorem 5.2.9. By Corollary 5.2.20 and Lemmas 5.2.21 and 5.2.22, it suffices to classify all GL(M)-
orbits of 2-planes W ′ ⊂ Λ2M , where dimM = 4. Projectivizing, the problem becomes classifying all PGL(M)-
orbits of lines in P(Λ2M) = P5.

PGL(M) is the automorphism group of G ∶= G(1,3) and cannot send points on G to points off G, or
vice versa. For this reason, lines transverse to/tangent to/contained in G can only be mapped to other lines
transverse to/tangent to/contained in G, and the action of PGL(M) is transitive on these three classes,
giving exactly three PGL(M)-orbits of lines.

Let {xij ∣ i < j} be a basis for Λ2M . To look for representatives of these orbits, it will help to recall that
G is cut out the Plucker relation x12x34 − x13x24 + x14x23 = 0. Then the line parametrized by [αx12 + βx34]

is transverse to G, and if we take W ′ to be the corresponding 2-plane in Λ2M parametrized by αx12 +βx34,
then quotienting out by W ′ corresponds to removing the first and last columns of (5.2), giving the first
matrix in the statement of Theorem 5.2.9.
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The line parametrized by [α(x12 + x34) + βx13] is tangent to G, so quotienting out the corresponding
2-plane W ′ corresponds to removing the second column and subtracting the last column from the first in
(5.2) to give the second matrix in the statement of Theorem 5.2.9.

Lastly, the line parametrized by [αx12 +βx13] lies in G, so quotienting out the corresponding 2-plane W ′

corresponds to removing the first two columns of W ′ to give the matrix

⎛
⎜
⎜
⎜
⎝

d 0 0 0
0 c d 0
0 −b 0 d
−a 0 −b −c

⎞
⎟
⎟
⎟
⎠

.

But this is imprimitive because the the bottom-right 3 × 3 matrix is a translate of the space of 3 × 3
skew-symmetric matrices. On the other hand, the previous two matrices we obtained are primitive by
Lemma 5.2.15.

It remains to show that these two matrices are inequivalent. There are many ways to see this; one rather
heavy-handed way is to show that one “gives rise” to a boundary component on Det4, while the other does
not, a computation we will carry out at the end of Section 5.4 in Observation 10.

5.3 Boundary components of Det3

Among the irreducible components on ∂Detn, there is the obvious endomorphism component End(W ) ⋅

[detn]/GL(W ) ⋅ [detn] consisting of degenerate translates of [detn]. Here, we say that a polynomial p over

W is degenerate if there exists some nontrivial linear relation among { ∂
∂xi

p} for any basis {xi} of W .

For n = 3, Landsberg et al. showed in [36] that additionally, if we define P3 ∶= limt→0[det(Wskew+t⋅Wsym)],

then GL(W ) ⋅ P3 is an irreducible component.1 Only recently was it shown that these are the only two
irreducible components of ∂Det3.

Theorem 5.3.1. There are exactly two irreducible components in the boundary of Det3, namely End(W ) ⋅

[det3]/(GL(W ) ⋅ [det3]) and the GL(W )-orbit closure of P3.

In this section, we give the proof due to Huttenhain and Lairez in [27], in which they exhibited these two
boundary components as the exceptional divisor and proper transform of a particular blowup.

Proving Theorem 5.3.1 was one of the original goals of this work, but during the course of this project, it
was proven independently by Huttenhain and Lairez in [27] before all the details of our approach could be
worked out. Whereas their approach is by way of resolution of indeterminacies, as sketched at the beginning
of Section 5.2, ours is essentially combinatorial. We present their approach in this section and our own in
the next.

Recall the setup from the beginning of Section 5.2. Denote the space of 3×3 matrices by W and End(W )

by E. Define the Gdet3 -invariant rational map φ ∶ PE ⇢ Detn sending [a] ∈ PE to [det3 ○ a], and denote by
B its indeterminacy locus, i.e. the set of all [a] for which a(W ) consists solely of singular matrices. The
goal is to resolve the indeterminacies of φ, specifically on a carefully chosen open subset U ⊂ P(E).

For this particular U , we consider the closure of the graph X of φ∣U , and denote by ρ and ψ its projections
to U and Det3. Define Z to be the hypersurface of singular elements of P(E) and D its preimage under ρ.
By our choice of U , it will turn out that ψ surjects onto Det3 (Lemma 5.3.2), while ψ(X/D) = GL(W )⋅[det3]

by definition, so we conclude that ∂Det3 ⊂ ψ(D). But ρ will turn out to be the blowup along a smooth
subvariety B′ ⊂ B ⊂ U contained inside Z (Lemmas 5.3.3 and 5.3.5). So the preimage D of Z under this
blowup map has exactly two components, the exceptional divisor and proper transform, and we’re done.

5.3.1 Details of the argument

We will take U = P(E)ss, i.e. the set of semistable points under the action of Gdetn . This is the set of
[a] ∈ P(E) for which 0 /∈ Gdet3 ⋅ a, or equivalently the set of [a] ∈ P(E) for which there exists a non-constant
homogeneous f ∈ C[E]Gdet3 that does not vanish on a.

1See Example 5.4.4 in Section 5.4 for a proof. The actual statement of this result in [36] was for all odd n, and in Section 5.5
we discuss this more general result.
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Define
X = {([a], [det3 ○ a]) ∣ a ∈ P(E)ss}

and projection maps as shown in the following diagram:

X

U ∶= P(E)
ss ρ∣U -

�

ρ

Det3

ψ

-

Here the projection ρ is also the blowup of P(E)ss along the ideal sheaf corresponding to the vanishing
of det3 ○ a, which has as support the indeterminacy locus B ∩P(E)ss, and the regular map ψ is a resolution
of the indeterminacies of φ.

Lemma 5.3.2. ψ is surjective.

Proof. Because im(ψ) contains GL(W ) ⋅[det3], it suffices to show that im(ψ) is closed. Define the projective
variety T ∶= P(E) × P(C[W ]3) and let Gdet3 act upon it by h ⋅ ([a], [P ]) = ([h ⋅ a], [P ]). Obviously, T ss =
P(E)ss × P(C[W ]3), and because ψ is Gdet3-invariant, it factors through the GIT quotient and projective
variety T ss//Gdet3 . But we know that the GIT quotient map π ∶ T ss → T ss//Gdet3 sends Gdet3 -invariant
closed subsets to closed subsets. So if we write ψ as ψ′ ○ π for some regular ψ′ ∶ T ss//Gdet3 → P(C[W ]3), we
conclude that im(ψ) must be closed: as a closed subset of a projective variety, π(X) is itself a projective
variety, so ψ′ sends π(X) to a closed subset of P(C[W ]3), as desired.

By Theorem 5.2.8, we have a complete characterization of the components of B: for every [a] ∈ B, there
is a g ∈ Godet3

for which (g ⋅ a)(W ) is a subspace of one of the following spaces of matrices:

U cmp1 =
⎛
⎜
⎝

∗ ∗ 0
∗ ∗ 0
∗ ∗ 0

⎞
⎟
⎠
, (U cmp1 )

T
=
⎛
⎜
⎝

∗ ∗ ∗

∗ ∗ ∗

0 0 0

⎞
⎟
⎠
, U cmp2 =

⎛
⎜
⎝

∗ ∗ ∗

∗ 0 0
∗ 0 0

⎞
⎟
⎠
,Wskew =

⎛
⎜
⎝

0 a −b
−a 0 c
b −c 0

⎞
⎟
⎠
.

Denote the corresponding components of B by B1, B2, B3, and Bskew, respectively. It turns out that in
P(E)ss, the indeterminacy locus of φ only depends on Bskew.

Lemma 5.3.3. In B, only component Bskew intersects P(E)ss.

Proof. We verify that B1, B2, and B3 do not meet P(E)ss by showing that Gdet3 ⋅Bi contains zero for
i = 1,2. Indeed, note that

lim
t→0

⎛
⎜
⎝

t 0 0
0 t 0
0 0 t−2

⎞
⎟
⎠
U1

0 = 0, (U1
0 )
T lim
t→0

⎛
⎜
⎝

t 0 0
0 t 0
0 0 t−2

⎞
⎟
⎠
= 0, lim

t→0

⎛
⎜
⎝

t2 0 0
0 t−1 0
0 0 t−1

⎞
⎟
⎠
U2

0 = 0.

Lastly, we check that Bskew meets P(E)ss by exhibiting a nonconstant homogeneous Gdet3-invariant regular
function that does not vanish on a point in Bskew.

For general points M1,M2,M3 ∈W , consider τ0 ∶ E → C sending a ∈ E to

trace (a(p1) ⋅ adj(a(p2)) ⋅ a(p3) ⋅ adj(a(p1 + p2 + p3))) ,

where adj denotes the adjugate matrix. Then it is apparent that τ0 ∈ C[E]
Godet3 so that the map τ ∶ a ↦

τ0(a) + τ0(a
T ) is Gdet3 -invariant. Moreover, for three general linear forms `1, `2, `3 ∶ W → C and a point in

Bskew given by

b =
⎛
⎜
⎝

0 `1 −`2
−`1 0 `3
`2 −`3 0

⎞
⎟
⎠
,

one can check that τ(b) ≠ 0, so B ∩ P(E)ss and Bskew ∩ P(E)ss indeed intersect.
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Let b be the point in Bskew ∩ P(E)ss obtained in the proof of Lemma 5.3.3.

Lemma 5.3.4. Bskew ∩ P(E)ss = [Gdet3 ⋅ b ⋅GL(W )].

Proof. Inclusion from right to left is obvious. For the other direction, suppose that [a] ∈ Bskew ∩ P(E)ss.
If a is of rank at most 2, then by Corollary 5.2.11, a(W ) is a compression space, i.e. a ∈ B1 ∪ B2 ∪ B3,
contradicting Lemma 5.3.3. If a is of rank at most 3, it also cannot lie in B1∪B2∪B3 and, up to a left-action
of Gdet3 , must have image Wskew. So a is a translate of b by a right GL(W )-action.

The following is the technical crux of the proof.

Lemma 5.3.5. Bskew ∩ P(E)ss is smooth and thus reduced so that ρ is the blowup of P(E)ss along it.

Proof. While we know that ρ is the blowup of P(E)ss along the ideal sheaf I generated by the conditions
imposed by det3 ○a = 0 and supported on B ∩P (E)ss = Bskew ∩P(E)ss, we need I to be reduced for ρ to be
the blowup of P(E)ss along Bskew ∩ P(E)ss. To show this, we will show that I is smooth.

But this ideal sheaf is fixed under the left and right actions of Gdet3 and GL(W ) respectively, just as
Bskew ∩ P(E)ss is an orbit under these actions by Lemma 5.3.4. It thus suffices to check at a single point
in this orbit, like [b], whether dimension of the tangent plane T[b]I at that point agrees with dimension of
Bskew. The latter is equal to dimT[b]Bskew, because the dimension of Bskew agrees with the tangent space
at any point of Bskew as Bskew is also an orbit.

Both tangent spaces’ dimensions can be computed in Macaulay2. They are given by

T[b]I = {c ∈ T[b]P(E) ∣ det(b + tc) = O(t2) ∀p ∈W}

T[b]Bskew = {mb+bc ∣m ∈ T1Gdet3 , c ∈ T1GL(W )} = {p ∈W ↦Mb(p)+b(p)N+b(c(p)) ∈W ∣M,N ∈W,c ∈ E},

and their dimensions turn out to equal 34.

Proof of Theorem 5.3.1. Because ρ is a blowup along a smooth subvariety in Z, D ∶= ρ−1(Z) consists of
exactly two components, the exceptional divisor and the proper transform. But ψ(X/D) = φ(GL(W )) =

GL(W ) ⋅ [det3], so ∂Det3 ⊂ ψ(D) which has at most two components, and we’re done.

5.4 An alternative technique

In this section, we give our own alternative proof of Theorem 5.3.1. Firstly, because the boundary of Detn
is GL(W )-stable and GL(W ) is connected, the boundary components are necessarily GL(W )-orbit closures
of single polynomials [q]. The results from Section 5.1, specifically the existence of an SL(W )-invariant f0

in I(∂Detn), give an easy characterization of what those orbits should look like.

Corollary 5.4.1 (Corollary to Lemma 5.1.6). The irreducible components of ∂Detn are of codimension one
in Detn.

Proof. We make use of the following elementary fact:

Claim 5.4.2 ([48], P. 76, Theorem 7). If f is a surjective map between irreducible varieties X → Y , then
any irreducible component of any fiber f−1(y) for y ∈ Y has dimension at least dim(X) − dim(Y ).

Because f0 is SL(W )-invariant and nonzero, it does not vanish on GL(W ) ⋅ [detn], so f0 ○ σ ∶ C → C is
nonzero and thus surjective. We already know σ is surjective, so f0 is also surjective and we’re done by the
above claim.

Given a polynomial [q] in ∂Detn, Corollary 5.4.1 gives us an easy way to check whether GL(W ) ⋅ [q] is
a boundary component.

Lemma 5.4.3. Let q ∈ SnW ∗ be a point on ∂Detn. Then GL(W ) ⋅ [q] is an irreducible component of ∂Detn
if and only if dim(Anngl(W ))(q) = 2n2 − 1.
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Proof. Denote GL(W ) by G. By the orbit-stabilizer theorem, dim(G ⋅ [q]) = dim(G) − dim(Gq). G/Gq is a
homogeneous space, so its dimension is equal to dim Lie(G/Gq) = g/Anng(q), where g = Lie(G). Because the

boundary components of GL(W ) ⋅ det3 are of codimension one and dim (Anng(detn)) = 2n2 − 2, the result
follows.

Example 5.4.4. We can show GL(W ) ⋅ [P3] is an irreducible component of ∂Det3 just by showing that
dim(Anngl(W ))(q) = 17. Explicitly, pick a basis {xij} for W and take the corresponding basis for gl(W )

given by {xij
∂

∂xk`
}. Act on q by each of these basis elements to produce a vector of 81 polynomials; regard

each as a point in C(9+3−1
3

), and dim (Anng(detn)) is merely the dimension of the kernel of the corresponding
81 × 165 matrix. A quick check in Macaulay2 gives the desired result.

So broadly speaking, we will show that no [q] ∈ ∂Detn gives rise to a new boundary component. Our
motivations for taking this approach to Question 5.0.4 are twofold. Firstly, while the reader shall find that the
casework-based arguments that will follow are tremendously involved, the primarily combinatorial techniques
that arise in the following give hope that after some streamlining of the argument in future iterations of
our proof, this approach can be generalized to Det4 and beyond. Secondly, this approach was originally
attempted by Oeding et al. [45], but their proof incorrectly operated under the assumption that only pure
polarizations of det3 could give rise to non-endomorphism components. A conceptual contribution of our
work in this section is to show that in fact sums of polarizations can as well.

To carry out our plan, we first need to understand what the condition [q] ∈ ∂Det3 imposes on q.

5.4.1 Preliminaries

Because Detn is constructible, its Zariski and Euclidean closures agree. So every polynomial in Detn is of
the form limt→0 g(t) ⋅ [detn] for g(t) ∈ GLn2(C[[t]]) a formal curve. We first show that any such g(t) can be
put in a certain normal form. For U ⊂Mn×n, let IdU denote the linear operator which is the identity on U
and kills everything in its complement.

Lemma 5.4.5. For any g(t) ∈ GLn(C[[t]]), there exists a direct sum decomposition W = U0 ⊕⋯⊕Um and
integers d0, ..., dm for which limt→0 g(t) ⋅ [x] = limt→0 h(t) ⋅ [x], where

h(t) =
m

∑
i=0

IdUi t
di .

Proof. We will show that there exist a(t), b(t) ∈ GLn(C[[t]]) for which g(t) = a(t) ⋅ h(t) ⋅ b(t), from which
the desired result will follow because limt→0 g(t) ⋅ [x] = a(0) ⋅ (limt→0 h

′(t) ⋅ [x]) = limt→0 h
′(t) ⋅ [x], where

h′(t) = ∑
m
i=0 IdU ′

i
tdi for U ′

i = b(0) ⋅U ⋅ b−1(0).

To find the desired a(t), b(t) for which g(t) as ∑
m
i=0 git

d′i . Take d0 = d
′
0 and let r0 denote the rank of g0.

Pick a, b ∈ GLn(C) for which a ⋅ g0 ⋅ b is a diagonal matrix whose diagonal consists of r0 1’s and n − r0 0’s.
Then there exist a′(t), b′(t) ∈ GLn(C[[t]]) such that a′(0) = a, b′0 = b, and a′(t) ⋅g(t) ⋅b′(t) is a block diagonal
matrix consisting of the r0 × r0 identity matrix in one block (corresponding to U0) and a matrix g′(t) in
GLn−r0(C[[t]]) with entries of order greater than d0. We are done by the inductive hypothesis on g′(t).

Now note that if we identify each space Ui with a matrix of indeterminates (which we will also call Ui),
then

g(t) ⋅ x = det(
m

∑
i=0

Ui ⋅ t
di) , (5.5)

which we can describe in terms of polarizations of the determinant polynomial.

Definition 5.4.6. For f ∈ SdW ∗ and partition π = (π0, ..., πm) of d, where π0 ≥ ⋯ ≥ πm ≥ 0, the polarization
of f with respect to π, denoted by ∂πf(x1, ..., xm) is the coefficient of tπ1

1 ⋯tπmm in the expansion of f(t1x1 +

⋯ + tmxm) as a polynomial in t1, ..., t`.
For notational convenience, if S denotes the set of indices i for which πi ≠ 0, then we will sometimes

alternatively write the polarization of f with respect to π as ∂πf(xS1 , ..., xSk).
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For our purposes, f will be the determinant polynomial, so we suppress f in the above notation and
denote the polarization of the determinant by ∂π. Furthermore, we will take the arguments of ∂π to be
matrices of indeterminates corresponding to subspaces Ui. The polarization ∂π then has the additional
interpretation as

∂π(U0, ..., Um) = ∑
S0⊔⋯⊔Sm=[m]∶∣Si∣=πi∀i

det(U∣S), (5.6)

where det(U∣S) denotes the matrix whose ith column is the ith column of Uj if i ∈ Sj . Because the
determinant polynomial is multilinear in the columns, we conclude that for g(t) defined above,

g(t) ⋅ x = ∑
π=(π0,...,πm)

∂π(U0, t ⋅U1, ..., t
m
⋅Um). (5.7)

Example 5.4.7. Let U0 be the space of skew-symmetric matrices
⎛
⎜
⎝

0 a −b
−a 0 c
b −c 0

⎞
⎟
⎠

and U1 the space of

symmetric matrices
⎛
⎜
⎝

d e f
e g h
f h i

⎞
⎟
⎠

so that M3×3(C) = U0 ⊕U1. Then if g(t) = IdU0 +t ⋅ IdU1 , then

g(t) ⋅ x = ∂3(U0) + t ⋅ ∂2,1(U0, U1) +O(t2).

∂3(U1) = det(U0) = 0, while

∂2,1(U0, U1) =

RRRRRRRRRRRRR

0 e f
−a g h
b h i

RRRRRRRRRRRRR

+

RRRRRRRRRRRRR

d a f
e 0 h
f −c i

RRRRRRRRRRRRR

+

RRRRRRRRRRRRR

0 e f
−a g h
b h i

RRRRRRRRRRRRR

.

We want to restrict the range of Ui that we need to consider. If U0 contains a full-rank matrix, then
limt→0 g(t) ⋅ x = g0 ⋅ x ∈ End(W ) ⋅ x, so we instead assume that detn vanishes on U0 (note that this gives yet
another connection between Question 5.2.1 and Question 5.0.4).

Henceforth we will take n = 3. To prove Theorem 5.3.1, we proceed by casework on the number of
subspaces Ui involved. For two subspaces, we show that Example 5.4.7 gives rise to the only boundary
component other than End(W ) ⋅ detn/GL(W ) ⋅ detn. For three or more subspaces, we first assume that
U0 and U1 are such that ∂2,1(U0, V ) and ∂1,1,1(U0, U1, V ) are not identically zero. We show that this is
sufficiently restrictive to force any such g(t) ⋅ x to lie in one of the two known boundary components. We
then show how to lift these assumptions to obtain Theorem 5.3.1 in general.

The following is a fact that we will implicitly and explicitly use in reasoning about orbit closures lying
in the endomorphism component.

Observation 7. Suppose Ui appears in polarizations q1, q2, ..., qk in q and the vanishing of all these polariza-
tions imposes m unique linear conditions on Ui. Then if dim(Ui) >m, q is degenerate.

Proof. In this case, we could write q as `1p1 +⋯`mpm for quadrics p1, ..., pm and linear forms `1, ..., `m in the

entries of Ui. But then the linear span of { ∂
∂xij

q} has dimension at most m < dim(Ui), so q is necessarily

degenerate.

5.4.2 Two subspaces

Suppose W = U0 ⊕ U1, and suppose U0 is not a GL(W )detn -translate of Wskew. By Corollary 5.2.11, we
can assume that U0 is a compression space. Furthermore, obviously q can only contain one polarization,
either ∂2,1(U0, U1) or ∂1,2(U0, U1). If ∂2,1(U0, U1) does not vanish, then rank(U0) = 2, and q is precisely the
determinant of ((U0)1 (U0)2 (U1)3) if the first two columns of U0 are linearly independent. In this case,
q is either degenerate or a GL(W )-translate of det3. If ∂2,1(U0, U1) does vanish so that rank(U0) = 1, then
q = ∂1,2(U0, U1) is precisely the determinant of ((U0)1 (U0)2 (U1)3) if the first column of U0 is nonzero.
Again, q is either degenerate or a GL(W )-translate of det3.
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5.4.3 Three or more subspaces

The coefficient of the lowest order term in the expansion of g(t) ⋅ x is some sum of polarizations q =

∑
`
j=1 ∂πj(U0, ..., Um). Henceforth, we will write the arguments to polarizations in increasing order of the

indices of the subspaces, e.g. if ∂1,1,1(Ui, Uj , Uk) appears in q, then i ≤ j ≤ k. Because q is the lowest-order
term in the expansion of the determinant of some formal curve, the following trivially holds:

Observation 8. If ∂1,1,1(Ui, Uj , Uk) and ∂1,1,1(Ui′ , Uj′ , Uk′) appear in q, it cannot be the case that (i, j, k) ≤
(i′, j′, k′) or (i, j, k) ≥ (i′, j′, k′). Moreover, if (a, b, c) is a triple for which (a, b, c) < (i, j, k) for some
∂1,1,1(Ui, Uj , Uk) appearing in q, then ∂1,1,1(Ua, Ub, Uc) = 0.

Throughout, we will be using the vanishing of such ∂1,1,1(Ua, Ub, Uc) to conclude that Ua, Ub, Uc satisfy
certain linear conditions.

Remark 5.4.8. In what follows, we will often say that the vanishing of a polarization, e.g. ∂1,1,1(Ui, Uj , V ),
imposes certain conditions on V . Here V should not be interpreted as any particular space of matrices;
rather, we are saying that the map φ ∶W → C given by V ↦ ∂1,1,1(Ui, Uj , V ) has a kernel defined by certain
linear conditions.

In order for q not to be degenerate, we must have that ⋃`j=1 S
j = {U0, ..., Um}, where Sj denotes the set

of indices i for which πji ≠ 0. So in order for q to be non-degenerate, it certainly cannot contain the terms
∂2,1(U0, Ui) for i <m, so we may assume these to vanish.

For now, assume that ∂2,1(U0, Um) does not vanish and thus belongs among the polarizations in q. We
note that as in Section 5.4.2, we may assume U0 is a compression space. Otherwise, if U0 = Wskew, the
vanishing of ∂2,1(U0, V ) for V = U0, ..., Um−1 imposes too many conditions on V .

Observation 9. ∂2,1(Wskew, V ) = 0 if and only if V ⊂Wskew.

As before, corollary 5.2.11 thus tells us U0 must be a compression space. We now proceed by casework
depending on whether U0 ⊂ U

cmp
1 or U0 ⊂ U

cmp
2 (recall that these were defined in Section 5.3).

5.4.4 U0 ⊂ U
cmp
1

As in Observation 9, we can check that ∂2,1(U
cmp
1 , V ) = 0 if and only if V ⊂ U cmp1 , which would impose three

conditions on V . But then, apart from ∂2,1(U0, Um), every other polarization appearing in q would vanish
because U0, ..., Um−1 ⊂ U

cmp
1 . It follows that U0 must be a small enough subspace of U cmp1 that this does not

hold. It is straightforward but tedious to verify the following.

Lemma 5.4.9. If U0 ⊂ U
cmp
1 and the vanishing of ∂2,1(U0, V ) imposes exactly two linear conditions on W ,

then U0 is a Gdet-translate of a subspace of U cmp1 ∩U cmp2 .

In this case, the vanishing of ∂2,1(U0, V ) still imposes enough conditions to force q to contain few terms.

Lemma 5.4.10. If U0 ⊂ U
cmp
1 is such that ∂2,1(U0, V ) = 0 imposes exactly two linear conditions on V , then

q consists solely of ∂2,1(U0, Um) and possibly ∂1,1,1(U0, U1, Um−1).

Proof. By Lemma 5.4.9, we can assume that the vanishing of ∂2,1(U0, V ) forces entries V 1
3 = V 2

3 = 0 for V =

U0, ..., Um−1. If the polarization ∂1,1,1(Ui, Uj , Um−1) appears in q, ∂1,1,1(U0, U1, Uk) = 0 for all 0 ≤ k <m − 1.
∂1,2(U0, V ) can be written as

∂1,2(U0, V ) = ∣
(U0)

1
1 V 1

2

(U0)
2
1 V 2

2
∣ ⋅ V 3

3 .

This does not factor unless there is a linear dependence between (U0)
1
1 and (U0)

2
1, but that would contradict

the fact that ∂2,1(U0, V ) = 0 imposes two linear conditions on V . We conclude that if ∂2,1(U0, V ) = 0
imposes exactly two linear conditions on V , then either U0, ..., Um−1 ⊂ U cmp1 or U0, ..., Um−1 ⊂ U cmp2 , giving
the desired conclusion about terms that appear in q. It is easy to see then that q is either degenerate or a
GL(W )-translate of det3.

The following is again straightforward but tedious to check.



5.4. AN ALTERNATIVE TECHNIQUE 65

Lemma 5.4.11. If U0 ⊂ U
cmp
1 and the vanishing of ∂2,1(U0, V ) imposes exactly one linear condition on W ,

then U0 is a Gdet-translate of a subspace of

Usq ∶=
⎛
⎜
⎝

a b 0
c d 0
0 0 0

⎞
⎟
⎠

.

We can assume U0 ⊂ U
sq, in which case all V for which ∂2,1(U0, V ) = 0 satisfy V 3

3 = 0. For now, assume
that ∂1,1,1(U0, U1, V ) is not identically zero over all such V . We proceed by casework on dim(U0), noting
that the difficulty of proof increases quite dramatically as dim(U0) decreases.

Lemma 5.4.12. If U0 = U
3
0 , then q consists solely of ∂2,1(U0, Um) and possibly ∂1,1,1(U0, U1, Um−1).

Proof. When U0 = U
3
0 , ∂1,2(U

3
0 , V ) can be written as −aV 2

3 V
3
2 + bV 2

3 V
3
1 + cV 1

3 V
3
2 − dV 1

3 V
3
1 , which vanishes if

and only if either x13 = x23 = 0 or x31 = x32 = 0. In either case, ∂1,1,1(U0, U1, V ) = 0 would impose the same
conditions on V and thus force an entire row or column of V to vanish, from which we would conclude that
q only contains the polarizations ∂2,1(U0, Um) and possibly ∂1,1,1(U0, U1, Um−1).

Lemma 5.4.13. If dim(U0) = 1 and q is non-degenerate, then q can only contain the terms ∂2,1(U0, Um),
∂1,1,1(U0, U1, Um−1), ∂1,1,1(U0, Ui, Um−2), and ∂1,1,1(U1, U1, Um−2).

Proof. The result for dim(U0) = 2 implies the same for dim(U0) = 3, so we will assume the former holds.
After row-reducing, we may assume that

U0 =
⎛
⎜
⎝

a 0 0
0 b 0
0 0 0

⎞
⎟
⎠

so that ∂1,2(U0, V ) = −aV 2
3 V

3
2 − bV

1
3 V

3
1 . The vanishing of ∂1,2(U0, U1) forces one of (U1)

2
3 or (U1)

3
2 to vanish,

and one of (U1)
1
3 or (U1)

3
1 to vanish. If U1 has a row or column of zeros, the vanishing of ∂1,1,1(U0, U1, Uk)

for k <m − 1 forces Uk to have the same, and the claim follows.
By the same reasoning, if instead U1 satisfies (U1)

1
3 = (U1)

3
2 = 0, then Uk satisfies these conditions for

k < m − 1, so q cannot contain any other polarization of the form ∂1,1,1(U0, Uj , Uk). Lastly, suppose to the
contrary that ∂1,1,1(Ui, Uj , Uk) appears in q for j ≥ 2 and i ≥ 1. Then det(U1) = 0 means either (U1)

3
1 or

(U1)
2
3 vanishes, or U1 satisfies some third linear condition. If the former, U1 has a row or column of zeros. If

the latter, the vanishing of ∂2,1(U1, Ui), ∂2,1(U1, Uj), and ∂2,1(U1, Uk) forces Ui, Uj , Uk to satisfy this third
condition, so ∂1,1,1(Ui, Uj , Uk) = 0, a contradiction.

The remainder of this subsection will be dedicated to resolving the last case of dim(U0) = 1, in which we
may assume after column/row reducing that

U0 =
⎛
⎜
⎝

a 0 0
0 λa 0
0 0 0

⎞
⎟
⎠
.

Assume that the remaining spaces U1, ..., Um lie in the complementary space of matrices for which the top-left
entry is zero.

Theorem 5.4.14. If dim(U0) = 1 and q is non-degenerate, then q gives rise to no new boundary compo-
nents. In particular, q at most contains the terms ∂2,1(U0, Um), ∂1,1,1(U0, U1, Um−1), ∂1,1,1(U0, Ui, Um−2),
∂1,1,1(U1, U1, Um−2), and ∂1,1,1(U1, Uj , Uk) for some i, j, k.

Proof. Intuitively, the argument is more involved in part because the vanishing of ∂1,1,1(U0, U1, V ) and
∂2,1(U0, V ) will not guarantee the vanishing of ∂1,2(U0, V ) and det(V ). But as we will show, that our
general method used so far must be executed more carefully is actually to be expected, because q can in fact
be non-degenerate and give rise to a boundary component.

Note that

∂1,2(U0, U1) = −a(λ(U1)
1
3(U1)

3
1 + (U1)

2
3(U1)

3
2) = −a ∣

λ(U1)
2
3 (U1)

1
3

(U1)
3
1 −(U1)

3
2
∣ ,
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and the maximal linear subspaces of this 2 × 2 determinant are all of codimension 2. We therefore need to
consider the following cases: 1) there are linear dependencies between (U1)

2
3 and (U1)

3
1 and between (U1)

3
2

and (U1)
1
3, 2) there are linear dependencies between (U1)

2
3 and (U1)

1
3 and between (U1)

3
2 and (U1)

3
1. Up to

simultaneous row/column operations on U0 and U1, we may assume that in 1), either (U1)
2
3 = (U1)

3
1 = 0,

while in 2), (U1)
2
3 = (U1)

1
3 = 0.

Case 1. There are linear dependencies between (U1)
2
3 and (U1)

1
3 and between (U1)

3
2 and (U1)

3
1.

Up to simultaneous row/column operations on U0, ..., Um, we may assume (U1)
2
3 = (U1)

3
1 = 0.

Lemma 5.4.15. q contains at most one polarization of the form ∂1,1,1(U1, Ui, Uj) for i ≥ 2.

Proof. If q contains such a polarization, then we know det(U1) = 0, so in addition to the vanishing of (U1)
2
3

and (U1)
3
1, U1 must satisfy a third linear condition: det(U1) has three linear factors corresponding to the

vanishing of (U1)
3
2, (U1)

1
3, and (U1)

2
1.

Subcase 1. (U1)
3
2 = 0 (the case of (U1)

1
3 = 0 is identical).

The vanishing of ∂1,1,1(U0, U1, V ) and ∂2,1(U1, V ) for V = U0, ..., Uj forces at least one of V 3
1 , V

3
2 to vanish.

If both must vanish, ∂1,1,1(U1, Ui, Uj) = 0, a contradiction. So the vanishing of ∂2,1(U1, V ) must impose the
same single condition on V as that of ∂1,1,1(U0, U1, V ), namely V 3

1 = 0. But we note that

∂2,1(U1, V ) = (U1)
1
3 ⋅ (

(U1)
2
1 (U1)

2
2

V 3
1 V 3

2
) ,

so for ∂2,1(U1, V ) = 0 to force V 3
2 to vanish as well, we must have that (U1)

2
1 = 0. The vanishing of

∂1,2(U0, Ui) and ∂1,2(U1, Ui) further imposes either the single condition of (Ui)
3
2 = 0 or the conditions

of (Ui)
2
1 = (Ui)

2
3 = 0. Consequently, ∂1,1,1(U1, Ui, Uj) factors as either (U1)

1
3(Ui)

2
1(Uj)

3
2 if (Ui)

3
2 = 0, or

(U1)
1
3(Ui)

3
2(Uj)

2
1 if (Ui)

2
1 = (Ui)

2
3 = 0.

Returning to the original claim, suppose q contains an additional term ∂1,1,1(U1, Ui′ , Uj′) for i′ > i. Then
∂1,1,1(U1, Ui, Ui′) = ∂1,2(U1, Ui) = ∂1,2(U1, Ui′) = 0 implies that V 3

2 = 0 or V 2
1 = V 2

3 = 0 for V = Ui, Ui′ .
But then the vanishing of ∂1,1,1(U1, Ui, Uj′) forces at least one of ∂1,1,1(U1, Ui, Uj) and ∂1,1,1(U1, Ui′ , Uj′) to
vanish, as desired.

Subcase 2. (U1)
2
1 = 0.

The vanishing of ∂1,1,1(U0, U1, V ) and ∂2,1(U1, V ) for V = U0, ..., Uj forces at least one of V 2
3 , V

3
1 , V

2
1 to

vanish. If all three must, then ∂1,1,1(U1, Ui, Uj) = 0, a contradiction. So the vanishing of ∂1,1,1(U0, U1, V )

and the vanishing of ∂2,1(U1, V ) must each impose a single condition. Let

H =
⎛
⎜
⎝

0 H1
2 H1

3

0 H2
2 0

0 H3
2 0

⎞
⎟
⎠

be the space containing U1. Then ∂1,1,1(U0,H,V ) = −a(λH1
3V

3
1 +H3

2V
2
3 ) while ∂2,1(H,V ) = −H1

3(H
2
2V

3
1 −

H3
2V

2
1 ), so in order for the vanishing of these to impose one condition each on V , there must exist linear

dependencies `1, `2 between H1
3 and H3

2 and between H2
2 and H3

2 respectively. H3
2 ≠ 0 or we reduce to the

previous subcase, so U1 must satisfy two additional linear conditions. In particular, dim(U1) ≤ 2.
Suppose that the vanishing of ∂1,1,1(U0,H,V ) and ∂2,1(H,V ) imposes conditions V 2

3 = µ1V
3
1 and V 2

1 =

µ2V
3
1 (we may assume that V 3

1 ≠ 0 or else ∂1,1,1(U1, Ui, Uj) = 0). Denoting by Vker ⊂ (U0)
c the space

containing U1 which is cut out by these conditions and the vanishing of (Vker)
3
3, note that ∂1,2(U0, Vker)

factorizes into the single variable of U0 and the forms (Vker)
3
1 and `1.

So if Vker additionally satisfies `1 = 0, then ∂1,2(U1, Vker) has a factor of (U1)
3
1, and its other factor is of

the form
λ(Vker)

1
2(U1)

3
1 + (Vker)

3
2`2. (5.8)

Returning to the original claim, suppose q contains another term of the form ∂1,1,1(U1, Ui′ , Uj′) for i′ > i.
If (Vker)

1
2 ≠ 0 in U1, then by the above, Ui′ must satisfy (Ui′)

3
1 = (Ui′)

3
2 = 0. Replacing U1 by Ui′ in the

above analysis, we reduce to the previous subcase. Alternatively, if (Vker)
1
2 = 0, then dim(U1) = 1 and Ui′

satisfies `2 = 0, in addition to (Ui′)
2
3 − µ1(Ui′)

3
1 = (Ui′)

2
1 − µ2(Ui′)

3
1 = `1 = 0. The subspace Vmax cut out by
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these conditions is such that ∂1,2(U1, Vmax) = 0. On the other hand, we know by the above that Ui satisfies
all but possibly `2 among these conditions; the subspace Vmax ⊂ V cut out by these conditions is such that
∂1,1,1(U1, Ui′ , V ) has a factor in V of `2, because ∂1,2(U1, Ui′) = 0. Ui thus also satisfies `2 = 0.

One can check that ∂1,1,1(U1, Vmax, Vker) = (U1)
3
2(Umax)

3
1`2. So because ∂1,1,1(U1, Ui′ , Uj′) ≠ 0 while

∂1,1,1(U1, Ui′ , Uj) = 0, Uj must satisfy `2 = 0, in which case ∂1,1,1(U1, Ui, Uj) = 0, a contradiction.

The last step of the above proof implies the following:

Corollary 5.4.16. If q contains the polarization ∂1,1,1(U1, Ui, Uj) for some i ≥ 2, then V = U2, ..., Ui−1

satisfy V 3
1 = 0.

Lemma 5.4.17. If q is non-degenerate, then ∂1,1,1(U1, Ui, Uj) cannot appear in q if i ≥ 2 and j > 2.

Proof. In subcase 1, polarizations of the form ∂2,1(U1, Ui) cannot appear in q. Otherwise, ∂1,1,1(U0, U1, Ui) =
0, and because we are assuming ∂1,1,1(U0, U1, V ) = 0 and ∂2,1(U1, V ) = 0 impose the same single condition
on V , there are at most four terms in q, namely ∂2,1(U0, Um), ∂1,1,1(U0, U1, Um−1), ∂1,1,1(U0, Ui, Uj) and
∂1,1,1(U1, Ui′ , Uj′).

All polarizations that appear in q and involve U1 have a linear factor in U1, namely the condition
(U1)

1
3 = 0. If ∂1,1,1(U0, Ui, Uj) appears in q for i > 1, it has a factor of (Ui)

2
3 and thus a factor in Uj , even if

i = j. Likewise, if ∂1,1,1(U1, Ui′ , Uj′) appears in q for i > 1, it also decomposes into three linear factors, as we
saw in subcase 1.

If i = j, then the collection of ∂
∂xij

∂1,1,1(U0, Ui, Uj) has dimension at most 2 because ∂1,1,1(U0, Ui, Uj)

factors. In order for q to not be degenerate, we conclude that dim(Uj) +dim(Uj′) +dim(Um−1) +dim(Um) ≤

2 + 1 + 1 + 1 = 5, with equality holding iff i = j = j′ (in which case ∂1,1,1(U1, Ui′ , Uj′) and ∂1,1,1(U0, Ui, Uj)
share a common factor in Ui). On the other hand, dim(U0)+dim(U1)+dim(Ui)+dim(Ui′) ≤ 1+1+1+1 = 4.
We conclude that U0 ⊕⋯⊕Um ≠W , a contradiction.

The argument is essentially the same for subcase 2, but we know additionally that i = i′ by Corol-
lary 5.4.16. Furthermore, unlike in subcase 1, q may contain ∂2,1(U1, Uk) for some k. By Observation 8 and
our assumptions by definition that j′ > i′, j > i, it follows that i = i′ < j′ < j, k <m − 1 <m. Furthermore, in
order for the polarizations in q to contain all subspaces U0, ..., Um, i must be 2.

But all polarizations in q have a linear factor in the highest-indexed space. ∂2,1(U0, V ) = 0 imposes
exactly one condition on V , so ∂2,1(U0, Um) has a linear factor in Um. ∂1,1,1(U0, U1, V ) = 0 imposes exactly
one condition, so ∂1,1,1(U0, U1, Um−1) has a linear factor in Um−1. By the same argument, ∂2,1(U1, Uk) has a
linear factor in Uk. ∂1,1,1(U0, Ui, Uj) and ∂1,1,1(U1, Ui′ , Uj′) have the same linear factor of V31 in V = Ui, Ui′ .
Because dim(U0) = dim(U1) = 1 in subcase 2, ∂1,1,1(U0, Ui, Uj) and ∂1,1,1(U1, Ui′) in fact factorize completely.
We conclude that dim(U0), ...,dim(Um) = 1, so m = 8. But in this case, at least one subspace will be missing
from among the polarizations in q, a contradiction.

Claim 5.4.18. If q contains no ∂1,1,1(U1, Ui, Uj) term, q must be degenerate.

Proof. In subcase 1, ∂2,1(U1, Uk) = 0, so each of ∂2,1(U0, Um), ∂1,1,1(U0, U1, Um−1), and ∂1,1,1(U0, Ui, Uj)
completely factors, so for U0 ⊕⋯⊕Um =W to hold, q would have to be degenerate.

In subcase 2, if ∂1,1,1(U0, U1, V ) = 0 imposes two conditions, namely V 2
3 = V 3

1 = 0, on V = U2, ..., Um−2,
then ∂1,1,1(U0, Ui, Uj) = 0. Moreover, ∂2,1(U1, Uk) decomposes into factors of (U1)

1
3, (U1)

3
2, and (Uk)

2
1, while

the collection of ∂
∂xij

∂1,1,1(U0, U1, Um−1) has dimension two, so dim(U1) ≤ 3 and dim(Um−1) ≤ 2, while

dim(U0) = dim(Um) = 1, so U0 ⊕⋯⊕Um ≠W .
Recall that for ∂1,1,1(U0, U1, V ) = 0 to impose exactly one condition V 2

3 −µ1V
3
1 = 0, U1 must satisfy some

additional `1. But then ∂1,1,1(U0, U1, Um−1) completely factors, with a factor of (U1)
3
2. ∂1,1,1(U0, Ui, Uj) also

completely factors, while ∂2,1(U0, Um) factors because dim(U0) = 1 and q is non-degenerate. For V ⊃ Uk
satisfying x23 − µ1x31, ∂2,1(U1, V ) = 0 imposes at most two conditions on V , namely V 3

2 = V 1
3 = 0. But

∂2,1(U1, Uk) also has a factor of (U1)
3
2 in U1, so dim(U1) ≤ 2. In conclusion, dim(Uk)+dim(Uj)+dim(Um−1)+

dim(Um) = 4, so dim(U0) +⋯ + dim(Um) ≤ 8, a contradiction.

Claim 5.4.19. If q contains ∂1,2(U1, U2) and is non-degenerate, then GL(W ) ⋅ [q] = GL(W ) ⋅ [P3].
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Proof. For subcase 2, as in the proof of Lemma 5.4.17, q only contains terms from ∂2,1(U0, Um), ∂1,1,1(U0, U1, Um−1),
∂1,1,1(U0, U2, Ui), ∂2,1(U1, Uj), and ∂1,1,1(U1, U2, U2). We know the first three of these factorize completely,
with a factor of (U1)

3
2 for ∂1,1,1(U0, U1, Um−1) and (U2)

3
1 for ∂1,1,1(U0, U2, Ui). Likewise, for ∂2,1(U1, Uj),

V1 ⊂ Vmax, and one can check that ∂2,1(Vmax, V ) has factors V 2
1 − µV 3

1 and ((Vmax)
3
2)

2. Lastly, recall from
the analysis of subcase 2 in Lemma 5.4.15 that ∂1,2(U1, U2) has a factor of (U2)

3
1, and its other factor is of

the form λ(U1)
1
2(U2)

3
1 + (U1)

3
2`2 (see (5.8)).

So dim(U1) ≤ 2, dim(U2) ≤ 2, and dim(U3) + ⋯ + dim(Um) ≤ 4. so for U0, ..., Um to span C9, these
inequalities must be equalities. Consider the decompositions U1 = A1 ⊕ B1 and U2 = A2 ⊕ B2, where A1

and A2 are spanned by (U1)
3
2 and (U2)

3
1 respectively, and B1 and B2 are some complements in U1 and

U2. What we have checked above is that ∂1,1,1(U0, U1, Um−1) = ∂1,1,1(U0, U
1
1 , Um−1) and ∂1,1,1(U0, U2, Ui) =

∂1,1,1(U0, U
1
2 , Ui).

So consider q′ = ∂2,1(U0 ⊕ A1 ⊕ A2,B1 ⊕ B2 ⊕ U3 ⊕ ⋯ ⊕ Um), which we now know is merely a GL(W )-
translate of q. This yields one of the two known boundary components; in particular, one can check that
U0 ⊕U1 ⊕U2 is in fact a Gdet-translate of Wskew, as claimed. The analysis for subcase 1 is similar.

Finally, suppose that the following Case 2 holds but Case 1 does not.

Case 2. There are linear dependencies `1, `2 between (U1)
2
3 and (U1)

3
1, and between (U1)

3
2 and (U1)

1
3 re-

spectively.

If q contains ∂1,1,1(U0, Ui, Uj) for some i > 1, then we know that ∂1,1,1(U0, U1, V ) = 0 for V = Ui, Uj , so
one of `1, `2, or V 3

3 must vanish in V . If all three do, then ∂1,1,1(U0, Ui, Uj) = 0, a contradiction. But if the
vanishing of ∂1,1,1(U0, U1, V ) were to impose only two linear conditions on V , namely V 3

3 = µ`1 + ν`2 = 0 for
some scalars µ, ν, there would have to be a linear dependency between (U1)

2
3 and (U1)

3
1, in which case we

reduce to Case 1.
If q contains ∂1,1,1(Ui, Uj , Uk) for some i ≥ 1, j > 1, we will argue in a similar way that such a polarization

would have to vanish. It is not hard to see that if there are no linear relations between (U1)
1
3 and (U1)

2
3

and between (U1)
3
1 and (U1)

3
2, then in addition to ell1 = `2 = 0, U1 satisfies three other linear conditions

m1 =m2 =m3 = 0. We may assume dim(U1) > 1, or else we obviously reduce to the previous case. We know
that ∂2,1(U1, V ) = 0 for V = Ui, Uj , Uk, so if V satisfied all m1 =m2 =m3 = 0, then we are done. Indeed, the
coefficients of ((U1)

1
3)

2, ((U1)
2
3)

2, and (U1)
1
3(U1)

2
3 in ∂2,1(U1, V ) for V satisfying `1 = `2 cannot be linearly

dependent linear forms because exactly one contains each of V 2
1 , V 1

2 , and V 2
2 , respectively. We conclude that

∂1,1,1(Ui, Uj , Uk) would vanish in q, a contradiction.
So q can only consist of some combination of ∂2,1(U0, Um), ∂1,1,1(U0, U1, Um−1), and ∂2,1(U1, Um−2). For

q to be non-degenerate, we must have m ≤ 4. By Lemma 7, dim(Um−2) ≤ 3, dim(Um−1) ≤ 2, and dim(Um) = 1.
Because U1 satisfies (U1)

3
3 = (U1)

3
2 = ell1 = `2 = m1 = m2 = m3 = 0, dim(U1) ≤ 2. In order for U0, ..., Um to

span C9, all these inequalities must be equalities. Now consider q′ = ∂2,1(U0 ⊕ U1, Um−2 ⊕ Um−1 ⊕ Um). q
and q′ are in the same GL(W ) orbit, so again q gives rise to no new boundary components, though as in

Claim 5.4.19, it may be the case that GL(W ) ⋅ [q] = GL(W ) ⋅ [P3].

We now drop our assumption that ∂1,1,1(U0, U1, V ) is not identically zero over all V for which ∂2,1(U0, V ) =

0. This is the case if and only if U1 ⊂ U
sq, in which case we also have that ∂2,1(U1, V ) = 0 is also identically

zero. So q must be of the form

q =
M

∑
µ=1

∂1,1,1(U0, Uiµ , Ujµ) +
N

∑
ν=1

∂1,1,1(U1, Ukν , U`ν )

for iµ, jµ, kν , `ν > 1.
Note that

q′ ∶=
M

∑
µ=1

∂1,1,1(U0 ⊕U1, Uiµ , Ujµ) +
N

∑
ν=1

∂1,1,1(U0 ⊕U1, Ukν , U`ν )

differs from q by ∑
N
ν=1 ∂1,1,1(U1, Uiµ , Ujµ), so if dim(U1) ≤ dim(U0), q

′ is a GL(W )-translate of q and uses
one fewer subspace, so we’re done.

The only case we still need to consider is thus when dim(U0) = 1. To show that dim(U1) must be 1,
suppose to the contrary and suppose q contains some polarization ∂1,1,1(U1, Ui, Uj) for i, j > 1, and let i here
be minimal among all such polarizations.
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Case 1. i = j.

In this case, ∂1,2(U1, Ui, Ui) is the only polarization in q which contains U1. Because of the vanishing
of ∂1,2(U0, Ui), in Ui there are linear dependencies `1, `2 either between (Ui)

2
3 and (Ui)

3
1 and between (Ui)

3
2

and (Ui)
1
3, or between (Ui)

3
1 and (Ui)

3
2 and between (Ui)

1
3 and (Ui)

2
3.

In the former case, ∂1,2(U1, Ui) would completely factorize, because two of its linear factors would corre-
spond to the vanishing of (Ui)

1
3, (Ui)

2
3 and (Ui)

3
1, (Ui)

3
2, so dim(U1) would have to be 1.

In the latter case, similar to before, we may assume after simultaneous row/column operations on
U0, ..., Um that in Ui, (Ui)

2
3 = (Ui)

3
1 = 0. This is enough for ∂1,2(U1, Ui) to completely factor because

two of its linear factors are (Ui)
1
3 and (Ui)

3
2.

Case 2. i < j.

If dim(U1) > 1, then dim(U0 ⊕ U1) > 2, so by Lemma 5.4.12 and the vanishing of ∂1,2(U0 ⊕ U1, Ui), Ui
satisfies either (Ui)

1
3 = (Ui)

2
3 = 0 or (Ui)

3
1 = (Ui)

3
2 = 0. Suppose q contains another term ∂1,1,1(U1, Ui′ , Uj′)

for i′ > i. The vanishing of ∂1,1,1(U0⊕U1, Ui, Ui′) and ∂1,1,1(U0⊕U1, Ui, Uj′) forces Ui′ and Uj′ to satisfy the
same pair of conditions, so ∂1,1,1(U1, Ui′ , Uj′) = 0.

Finally, we show that ∂1,1,1(U1, Ui, Uj) completely factorizes. If ∂1,1,1(U0, Ui, Uj) = 0 imposes (Uj)
1
3 =

(Uj)
2
3, then ∂1,1,1(U1, Ui, Uj) = 0. If not, ∂1,1,1(U1, Ui, Uj) has a linear factor in Uj corresponding to the

vanishing of both (Uj)
1
3 and (Uj)

2
3. Furthermore, in order for ∂1,1,1(U0, Ui, Uj) = 0 to impose a single

condition, there must exist a linear dependency (Ui)
3
1 = µ ⋅ (Ui)

3
2. But then ∂1,1,1(U1, Ui, Uj) has a factor of

(Ui)
3
2, so ∂1,1,1(U1, Ui, Uj) indeed completely factorizes and dim(U1) = 1 as desired.

Using similar methods to the above, we show in Appendix A.8 that the assumption ∂2,1(U0,W ) ≠ 0 can
be lifted.

5.4.5 U0 ⊂ U
cmp
2

We assume now that U0 is a subspace of U cmp2 but not a GL(W )det3 -translate of a subspace of U cmp1 . The
analysis simplifies substantially. Firstly, one can check that the following classification holds.

Lemma 5.4.20. If U0 ⊂ U
cmp
2 U0 is not a GL(W )det3-translate of a subspace of U cmp1 , and ∂2,1(U0, V ) = 0

does not force V to lie in U cmp2 , then U0 is a GL(W )det3 translate of either

⎛
⎜
⎝

m λ1o λ2n
n 0 0
o 0 0

⎞
⎟
⎠

or
⎛
⎜
⎝

0 λ1m λ2n
m 0 0
n 0 0

⎞
⎟
⎠
.

Note however that if the former held in Lemma 5.4.20, then if we pick the complement of U0 to be
the space of matrices whose first row is zero, terms not containing U0 cannot appear in q. In particular,
q consists of at most ∂2,1(U0, Um) and ∂1,1,1(U0, U1, Um−1) and therefore does not give rise to any new
boundary components.

Lemma 5.4.21. If U0 =
⎛
⎜
⎝

0 λ1m λ2n
m 0 0
n 0 0

⎞
⎟
⎠

, then q gives rise to no new boundary components.

Proof. For now, we will assume ∂1,1,1(U0, U1, V ) does not vanish identically on all V for which ∂2,1(U0, U1, V ) =

0. We claim that q consists of at most ∂2,1(U0, Um), ∂1,1,1(U0, U1, Um−1), and ∂2,1(U0, U1, Um−2).
Firstly, ∂2,1(U0, V ) = 0 imposes three conditions on V , namely V 2

2 = V 3
3 = 0 and λ1V

2
3 + λ2V

3
2 = 0. Now

suppose ∂1,1,1(Ui, Uj , Uk) appears in q for i ≥ 1 and j > 1. We claim that U1 ⊂ U
cmp
2 so that ∂1,1,1(U0, U1, V ) =

0 for V = Ui, Uj , Uk forces V ⊂ U cmp2 . In this case, ∂1,1,1(Ui, Uj , Uk) would vanish.
∂1,2(U0, U1) = 0 implies that U1 satisfies either (U1)

2
3 = (U1)

3
2 = 0, or (U1)

1
2 = λ1 ⋅ (U1)

2
1 and (U1)

1
3 =

λ2 ⋅ (U1)
3
1. In the former case, we’re done. In the latter, det(U1) = 0 implies that either U1 ⊂ U

cmp
2 , in which

case we’re again done, or (U1)
1
1 = 0. In this case, the condition ∂2,1(U1, V ) = 0 for V = Ui, Uj , Uk implies that

either U1 ⊂ U
cmp
2 , or V 1

1 = 0. Both of these would force ∂1,1,1(Ui, Uj , Uk) to vanish, a contradiction.
Similarly, suppose ∂1,1,1(U0, Uj , Uk) appeared in q for j > 1. ∂1,1,1(U0, U1, V ) = 0 for V = Uj , Uk forces V

to satisfy the same one or two conditions that U1 does as a result of ∂1,2(U0, U1) = 0, so ∂1,1,1,(U0, Uj , Uk)
must vanish.
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Finally, we remove the assumption that ∂1,1,1(U0, U1, V ) does not vanish identically on all V for which
∂2,1(U0, U1, V ) = 0. In this case

U1 ⊂
⎛
⎜
⎝

x 0 λ2y
0 0 0
y 0 0

⎞
⎟
⎠
.

Then either U0⊕U1 is a GL(W )det3 -translate of the first of the two spaces in Lemma 5.4.20, in which case q
at most contains an additional ∂1,1,1(U1, Ui, Uj) for some i, j, or U1 is such that ∂2,1(U0 ⊕ U1, V ) = 0 forces
V ∈ U cmp2 , in which case q still consists of at most ∂2,1(U0, Um), ∂1,1,1(U0, U1, Um−1), and ∂1,1,1(U0, U2, Um−2).

In any case, one can check that either q is either degenerate or a GL(W )-translate of det3.

5.4.6 Next steps

All of the above leads us to pose the following conjecture:

Conjecture 5.4.22. For every n, the irreducible components of Detn are the endomorphism component
and all orbit closures of polynomials of the form ∂n−1,1(U0, U1) for complementary subspaces U0 ⊕ U1 = W
such that det(U0) = 0.

This has yet to be refuted in 4 × 4 case: of the non-endomorphism components of Det4, we only know
two, both of which arise as such polarizations ∂3,1(U0, U1):

Observation 10 ([45]). Denote the two primitive maximal subspaces in Theorem 5.2.9 respectively by U0

and V0. Denote by U ′
0 the imprimitive space of 4 × 4 matrices obtained from Wskew ⊂ M3,3(C) in Ex-

ample 5.2.4. Pick complements U1, V1, U
′
1 for U0, V0, U

′
0 and define q1 = ∂3,1(U0, U1), q2 = ∂3,1(V0, V1), and

q3 = ∂3,1(U
′
0, U

′
1). Then GL(W ) ⋅ [q1] and GL(W ) ⋅ [q3] are irreducible components of Det4, but GL(W ) ⋅ [q3]

is not.

Proof. With the computational approach outline in Example 5.4.4, one can check in Macaulay2 that Anngl(W )(q1)

and Anngl(W )(q3) have dimension 31, while Anngl(W )(q2) has dimension 32. So by Lemma 5.4.3 the claim
follows.

5.5 Infinite families of components

It was shown in [36] that the construction Pn ∶= ∂n−1,1(Wskew,Wsym) gives rise to boundary components of
Detn more generally for arbitrary odd dimensions n (note that when n is even, Pn = 0).

Theorem 5.5.1. Let n ∈N be odd and define Pn = ∂n−1,1(Wskew,Wsym). Then GL(W )⋅[Pn] is an irreducible
component of the boundary of Detn distinct from End(W ) ⋅ [detn]/(GL(W ) ⋅ [detn]).

Sketch. That GL(W ) ⋅ [Pn] does not lie in the endomorphism component easily follows from checking that
V (Pn) is non-degenerate.

For the rest of the claim, first note that Pn ∈ ∂Detn because det(Wskew) = 0. By Lemma 5.4.3, we wish
to show that dim(Anngl(W )(Pn) = dim(Lie(GPn)) = 2n2 − 1.

Decompose W = E ⊗E into Λ2E ⊗ S2E.

End(W ) = End(Λ2E ⊗ S2E)

= End(Λ2E) ⊕End(S2E) ⊕Hom(Λ2E,S2E) ⊕Hom(S2E,Λ2E)

= (Λ2E ⊗Λ2E∗
) ⊕ (S2E ⊗ S2E∗

) ⊕ (Λ2E∗
⊗ S2E) ⊕ (S2E∗

⊕Λ2E).

By several applications of the Littlewood-Richardson rule, we may further decompose these four components
into GL(E)-submodules as

Λ2E ⊗Λ2E∗
= gl(E) ⊕ S22,1n−4(E)

S2E ⊗ S2E∗
= gl(E) ⊕ S4,2n−2(E)

Λ2E∗
⊗ S2E = sl(E) ⊕ S3,1n−3(E)
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S2E∗
⊗Λ2E = sl(E) ⊕ S32,2n−3(E).

The fact that dim(Lie(GPn)) = 2n2 − 1 follows from testing on highest weight vectors.
We will carry out one such computation explicitly. The following result will be useful later in this section

when we construct another infinite family of boundary components.

Lemma 5.5.2. Lie(GPn) has a component of dimension m2 − 1 in End(Λ2E,S2E).

Proof. Pick a basis eij = ei ⊗ ej for W = E ⊗E. This gives a basis {T ij
k̂l̂
} for End(E ⊗E), where T k`

îĵ
sends

eij to ek` and vanishes on all other ei′j′ . One can check that

T 1n
n̂n̂ − T

n1
n̂n̂ +

n−1

∑
i=2

(T 1j

ĵn̂
− T j1

ĵn̂
+ T 1j

n̂ĵ
− T j1

n̂ĵ
) (5.9)

is a highest weight vector of sl(E) = S2,1n−2E ⊂ End(Λ2E,S2E) in the decomposition of End(E ⊗ E) as a
GL(E)-module.

The Lie algebra action of T k`
îĵ

on SnW ∗ is given by ek` ⋅ ∂eij , so in particular, the highest weight vector

in (5.9) kills Pn as desired.

To find infinite families for even n, we can try looking for infinite families of spaces of singular matrices that
are not compression spaces. As noted in Section 5.2, one way to produce such a space is via Example 5.2.4:
for any even n, if Wskew denotes the space of (n − 1) × (n − 1) skew-symmetric matrices, then define

Wpad ∶= (
Wskew ∗

0 ∗
) , W c

pad ∶= (
Wsym 0
∗ 0

) .

Wpad is clearly a space of singular n × n matrices, and Wpad ⊕W
c
pad =W . Define Qn ∶= ∂n−1,1(Wpad,W

c
pad).

For instance, for n = 4,

Wpad =

⎛
⎜
⎜
⎜
⎝

0 α12 α13 x1

−α12 0 α23 x2

−α13 −α23 0 x3

0 0 0 y

⎞
⎟
⎟
⎟
⎠

, W c
pad =

⎛
⎜
⎜
⎜
⎝

β11 β12 β13 0
β12 β22 β23 0
β13 β23 β33 0
z1 z2 z3 0

⎞
⎟
⎟
⎟
⎠

,

and

Qn =

RRRRRRRRRRRRRRRRRR

0 α12 β13 x1

−α12 0 β23 x2

−α13 −α23 β33 x3

0 0 z3 y

RRRRRRRRRRRRRRRRRR

+

RRRRRRRRRRRRRRRRRR

0 β12 α13 x1

−α12 β22 α23 x2

−α13 β23 0 x3

0 z2 0 y

RRRRRRRRRRRRRRRRRR

+

RRRRRRRRRRRRRRRRRR

β11 α12 α13 x1

β12 0 α23 x2

β13 −α23 0 x3

z1 0 0 y

RRRRRRRRRRRRRRRRRR

.

As we saw in Observation 10, GL(W ) ⋅ [Q4] is a nontrivial boundary component of Det4. We now show that
this holds for all even n.

Theorem 5.5.3. Let n ∈ N be even. Then GL(W ) ⋅ [Qn] is an irreducible component of the boundary of
Detn distinct from End(W ) ⋅ detn/(GL(W ) ⋅ detn).

Proof. As in the proof of Theorem 5.5.1, checking that GL(W ) ⋅Qn is distinct from End(W ) ⋅detn/(GL(W ) ⋅

detn) amounts to checking that V (Qn) is not a cone.
For the rest of the claim, as before, we want to show dim(Lie(GQn)) = 2n2−1. For some linear coordinate

`, let E = E′ ⊕ `. Then E ⊗E decomposes into the blocks

(
Λ2E′ ⊕ S2E′ A

B `⊗ `
) , (5.10)

where A = E′ ⊗ ` and B = ` ⊗ E′. Pick bases {eΛ
ij}, {eSij}, {ai}, {bi}, and x for Λ2E′, S2E′, A, B, and `

respectively; these together form a basis for E ⊗E.
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Λ2E′ S2E′ A B `
∂eΛij 1 1 0 0 1

1 0 1 1 0
∂eSij 2 0 0 0 1

∂ai 2 0 0 1 0
∂bi 2 0 1 0 0
∂x 2 1 0 0 0

Table 5.1: Gradings for partial derivatives of Qn

For convenience, we say that p ∈ SdW ∗ is (d1, d2, d3, d4, d5)-graded if p is of degree d1, ..., d5 in Λ2E′,
S2E′, A, B, and ` respectively. Table 5.1 summarizes the gradings for the various partial derivatives of Qn

Because Lie(GQn) = Anngl(W )Qn, we want to show that there are 2n2 − 1 linear dependencies among all

T k`
îĵ
.Qn, where the T k`

îĵ
are defined with respect to the basis we have chosen for E ⊗E.

By the gradings in Table 5.1, there can only exist linear dependencies among

1) {eΛ
ij ⋅ ∂eΛk`Qn}, {eSij ⋅ ∂eSk`Qn}, {aj ⋅ ∂aiQn}, {bj ⋅ ∂biQn}, and x ⋅ ∂xQn

2) {bk ⋅ ∂eSijQn} and {x ⋅ ∂aiQn}

3) {ak ⋅ ∂eSijQn} and {x ⋅ ∂biQn}

4) {eΛ
ij ⋅ ∂eSk`Qn}

5) {eΛ
ij ⋅ ∂akQn}

6) {eΛ
ij ⋅ ∂bkQn}

7) {eSij ⋅ ∂akQn} and {bj ⋅ ∂xQn}

8) {eSij ⋅ ∂bkQn} and {aj ⋅ ∂xQn}

In 1), there is one linear dependency among members of {aj ⋅ ∂aiQn} and {bj ⋅ ∂biQn}, and one among
x ⋅ ∂xQn and members of {eSj ⋅ ∂eSi Qn}. Additionally, all (n − 1)2 members of {eΛ

j ⋅ ∂eΛi Qn} lie in the span of

{eSj ⋅ ∂eSi Qn}, {aj ⋅ ∂aiQn}, {bj ⋅ ∂biQn}, and x ⋅ ∂xQn. We conclude that there are exactly 1 + 1 + (n − 1)2 =

(n − 1)2 + 2 dependencies in case 1).
In 2), all n−1 members of {x⋅∂aiQn} are already in the span of {bk ⋅∂eSijQn}, so there are n−1 dependencies

in case 2). Analogously, there are n − 1 dependencies in case 3).
In 4), Lemma 5.5.2 tells us that there exactly (n − 1)2 − 1 dependencies.
In 5), every collection of (n− 1) − 1 members of {eΛ

ij ⋅ ∂akQn} has a unique linear dependency, for a total
of n− 1 dependencies. The same holds in case 6). On the other hand, one can check that in cases 7) and 8),
no dependencies exist.

We conclude that dim(Lie(GQn)) = 2(n − 1)2 + 1 + 4(n − 1) = 2n2 − 1 as desired.
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Appendix A
A.1 Complexity Classes

Theoretical computer scientists use the word language in an alphabet Σ to refer to subsets of Σ∗ = ∪∞n=1Σn.
For example, the set {0k1k ∣ k ∈N} is a language over the Boolean alphabet.

The basic model of computation used in complexity theory is the Turing machine, but for the

Definition A.1.1. A deterministic Turing machine M on an alphabet Σ consists of a read-only input tape
and k work tapes each containing a one-dimensional array of cells on which characters of Σ can be printed,
k + 1 heads over each of these tapes, a collection Q of possible internal states including an “accept” and
“reject” state, and a transition map Q × Σk+1 → Q × Σk × {L,R}k+1 which, given an internal state and all
character read by the heads, specifies the characters that the work tape heads should print on their respective
cells, the new internal state of the machine, and the directions that each of the heads should move next on
their respective tapes.

A Turing machine M is said to decide a language L over Σ if for every x ∈ {0,1}∗, M with initially empty
worktapes and an input tape consisting only of the characters of x eventually reaches the “accept” state if
x ∈ L and eventually reaches the “reject” state otherwise.

Definition A.1.2. A language L is in P if there exists a deterministic Turing machine M that decides L in
time poly(n), where n is the length of the input.

Definition A.1.3. A language L over Σ is in NP if there exists some polynomial p and a language L′ over
Σ ∪ {$} in P such that for every x ∈ L, there exists a corresponding certificate sx ∈ {0,1}p(∣x∣) for which
x$sx ∈ L′.

Two other complexity classes that we encounter in this work are #P and ⊕P, which can be thought of
respectively as the “counting” and “counting modulo 2” versions of NP: instead of determining whether a
certificate for a given input x exists verifying that x ∈ L, one is asked to count the number or parity of such
certificates.

Definition A.1.4. A function f ∶ Σ∗ → N is in #P if there exists some polynomial p and a language L ∈ P
for which f(x) equals the number of sx ∈ {0,1}p(∣x∣) for which x$sx ∈ L.

Definition A.1.5. A function f ∶ Σ∗ → {0,1} is in ⊕P if there exists some polynomial p and a language
L ∈ P for which f(x) equals the parity of the number of sx ∈ {0,1}p(∣x∣) for which x$sx ∈ L.

A.2 Weakly Skew Circuits

The following was first defined in [51].

Definition A.2.1. A weakly skew circuit is an arithmetic circuit C such that for any computation gate
labeled with ×, removal of that node in C separates the connected component of one of its incoming neighbors
from the rest of C. We call the other incoming neighbor a reusable gate.
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In other words, each multiplication gate must have one argument which is computed solely for that gate.
The motivation for this is that in the proof of Lemma 4.1.6, there is not much reuse of results of intermediate
computations.

Definition A.2.2. A sequence of polynomials (pn) is said to lie in VPws if there exists a corresponding
sequence of weakly skew circuits (Cn) computing (pn) for which size(Cn),deg(Cn) ≤ poly(n).

We now prove that (detn) is VPws-complete.

Proof of Theorem 4.1.8. To show (detn) ∈ VPws, one just has to check that in the proof of Lemma 4.1.6,
matrix multiplication can be simulated even by weakly skew circuits.

To show (detn) is VPws-hard, we first prove that the following construction is possible. In a weighted
directed acyclic graph G, define the weight of a path to be the product of the weights on its edges. Define
the weight of a pair of vertices (s, t) to be the sum of the weights of all paths connecting s and t.

Lemma A.2.3. Let C be a weakly skew circuit of size n with multiple outputs. Then there exists a weighted
directed acyclic graph G with at most n + 1 vertices, exactly one of which has indegree zero, such that for
every reusable gate p in C, there is a vertex tp ∈ G for which the weight of (s, tp) is the same polynomial that
is computed by p.

Proof. Naturally, the argument here is inductive and proceeds by casework on α. For brevity, we will only
illustrate the argument for when α is a multiplication gate. Suppose removal of p separates C into disjoint
circuits C1 and C2 which compute polynomials p1 and p2 respectively, and suppose C2 is the component
whose gates are not reusable. Inductively, we obtain graphs G1 and G2 and pairs of vertices (s, t1) and
(t, s2) whose weights agree with p1 and p2 respectively. One can check that G = (G1 ⊔G2)/(t1 ∼ s2) satisfies
the desired properties.

Now take any f ∈ VPws computed by some weakly skew C of size n and look at the corresponding graph
G guaranteed by Lemma A.2.3. We will show that m arises as an (n+1)×(n+1) determinant, specifically of
an adjacency matrix. Modify G by gluing together s and t, negating the weight of every edge, and attaching
a loop to every vertex other than s = t; denote the adjacency matrix of this new graph by A. By construction,
detn(A) = −f , so by adding an extra block of size 1 and single entry -1 to A, we get the desired (n+1)×(n+1)
matrix.

A.3 Algebraic Peter-Weyl Theorem

In this section we prove Theorem 4.4.3. For any finite-dimensional representation ρ ∶ G → GL(V ), define
the matrix coefficient map iV ∶ V ∗ ⊗ V → C[G] by iV (φ ⊗ v)(g) = φ(gv). The image of iV is the space of
matrix coefficients of V . We show that each isotypic component of type Vλ in C[G] is the space of matrix
coefficients of Vλ, from which the reductivity of G implies the decomposition in Theorem 4.4.3.

Lemma A.3.1. If V is irreducible and finite-dimensional, then iV is G×G-equivariant and injective. More-
over, iV (V ∗ ⊗ V ) equals the isotypic component of type V under the right-action of G and the isotypic
component of type V ∗ under the left-action of G.

Proof. We check G ×G-equivariance directly: for (φ, v) ∈ V ∗ ⊗ V , and (g1, g2) ∈ G ×G, we have that

iV (g1φ⊗ g2v)(g) = (g1φ)(gg2v) = φ(g
−1gg2v) = (g1 ⋅ (iV (φ⊗ v)) ⋅ g2) (g)

for all g ∈ G. For injectivity, this just follows from the fact that V ∗ ⊗ V is an irreducible G ×G-module so
that iV cannot have a kernel.

For the last part, we will prove it for the right-action of G; the other half is analogous. We want to show
that if ι ∶ V ↪ C[G] is any G-equivariant embedding under the right-action, then its image is contained
inside the space of matrix coefficients. Indeed, for any g ∈ G, ι(v)(g) = ι(gv)(1) = iV (α⊗v)(g), where α ∈ V ∗

is defined by v ↦ ι(v) ⋅ 1, so we’re done.
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A.4 Schur-Weyl Duality and Representations of GL(V )

Let V be any n-dimensional vector space. An understanding of the finite-dimensional irreducible GL(V )-
modules is crucial to the above search for obstructions. Consider the actions of GL(V ) and Sd on V ⊗d:

T (v1 ⊗⋯⊗ vd) = Tv1 ⊗⋯⊗ Tvn

σ(v1 ⊗⋯⊗ vd) = vσ−1(1) ⊗⋯⊗ vσ−1(d)

for T ∈ GL(V ) and σ ∈ Sd. It is apparent that these two actions commute. In fact, not only do the actions of
these two groups commute with each other, but in fact we shall show they are each other’s centralizers using
the double centralizer theorem. From this follows the famous Schur-Weyl duality, which gives a direct-sum
decomposition of V ⊗d encapsulating the relationship between finite-dimensional irreducible GL(V )-modules
and C[Sd]-modules.

Theorem A.4.1. For vector space V ,
V ⊗d

=⊕
π

SπV ⊗ [π]

as a GL(V ) × Sd-module, where the sum is taken over all partitions π of n, and SπV denotes the Weyl
module HomSd([π], V

⊗d). Note further that Sπ(V ) = 0 if `(π) ≥ dim(V )

The rest of this section will be devoted to proving this.

Definition A.4.2. If S ⊂ End(V ), then the centralizer S′ ⊂ End(V ) is defined by

S′ ∶= {X ∈ End(V ) ∣ Xs = sX ∀ s ∈ S}.

Theorem A.4.3 (Double Centralizer Theorem). If A ⊂ End(V ) is a completely reducible associative algebra,
then A = A′′.

Proof. Inclusion from left to right is obvious: every element of A′ commutes with every element of A, so
every element of A commutes with every element of A′, i.e. A ⊂ (A′)′.

In the other direction, take any T ∈ A′′, and select a basis v1..., vn of V . We claim there exists a ∈ A for
which T (vj) = avj for all j. Let w = v1⊕⋯⊕vn ∈ V

⊕n and consider an A-equivariant projection π ∶ V ⊕n → Aw.
By definition of A-equivariance, π ∈ A′, so T (π(w)) = π(T (w)). But T (π(w)) = T (w) while π(T (w)) ∈ Aw,
so

T (v1) ⊕⋯⊕ T (vn) = T (w) = aw = av1 ⊕⋯⊕ avn

for some a ∈ A as desired.

We now use this to show that GL(V ) and Sd are each other’s centralizers.

Lemma A.4.4. EndGL(V )(V
⊗d) = C[Sd].

Proof. By the double centralizer theorem, it is enough to show that the algebra EndC[Sd](V
⊗d) is generated

by GL(V ). But under the natural identification of End(V ⊗d) with (V ⊗ V ∗)⊗d, EndC[Sd](V
⊗d) is identified

with Sd(V ⊗V ∗). Inside (V ⊗V ∗)⊗d, the action of g belongs in Sd(V ⊗V ∗) for each g, and GL(V ) collectively
generates Sd(V ⊗ V ∗), so we’re done.

It remains to describe the isotypic components of G and EndG(W ) for W = V ⊗d and G = GL(V ).

Lemma A.4.5. For reductive group G and G-module W , the isotypic components of G and EndG(W ) in
W are the same. Moreover, if U is one such isotypic component arising from irreducible representations A
of G and B of EndG(W ), then U = A⊗B as a G ×EndG(W )-module, and

A = HomEndG(W )(B,U), B = HomG(A,U).
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Proof. It is enough to show that for any irreducible G-module A, we can take the corresponding EndG(W )-
module to be HomG(A,W ), and that correspondingly, for any irreducible EndG(W )-module B, we can
take the corresponding G-module to be HomEnd(G)(B,W ). We only show the former; the latter is entirely
analogous.

Specifically, we need to check 1) that HomG(A,W ) is indeed an irreducible EndG(W )-module, and 2)
that A⊗HomG(A,W ) is the isotypic component of A in W .

For 1), it is enough to show that the action of EndG(W ) on HomG(A,W ) is transitive, i.e. for any
s, t ∈ HomG(A,W ), there is some a ∈ EndG(W ) for which at = s. We can extend the map defined on tA
by multiplication by st−1 to an a′ ∈ EndG(W ) so that a′t defines an isomorphism A → sA. Post-composing
this with left-multiplication by s−1 gives an isomorphism and thus, by Schur’s lemma, multiplication by a
nonzero scalar λ. Define a = c−1a′, proving transitivity.

For 2), suppose U = A⊗B were the isotypic component of A. B certainly lies inside HomG(A,W ): to any
b ∈ B, associate the G-equivariant map a ↦ a ⊗ b. On the other hand, by definition of isotypic component,
all G-equivariant embeddings of A in W land in U , so HomG(A,W ) ⊆ B, and we’re done.

Theorem A.4.1 thus follows from Lemma A.4.5.

A.5 Complex Algebraic Groups

Definition A.5.1. An affine variety G over C for which there exist morphisms of varieties µ ∶ G ×G → G,
e ∶ Spec(k) → G, and ι ∶ G → G which give G the structure of a group, then G is a affine complex algebraic
group.

Let G be an affine complex algebraic group.

Definition A.5.2. G is reductive if every G-module decomposes as a direct sum of irreducible G-modules.

Example A.5.3. Denote the coordinate ring of the variety Cn
2+1 by C[x11, x12, ..., xnn, y]. GL(Cn) is an

algebraic group cut out by the equation det((xij)) ⋅y = 1, which enforces the condition that the determinants
of the matrices (xij) in GL(Cn) are nonzero. As we show in Theorem A.4.1 Appendix A.4, GL(Cn) is
reductive.

Definition A.5.4. A module is simple/irreducible if it contains no proper-submodules. An algebra A (resp.
algebraic group G) is completely reducible (resp. reductive) if every A-module (resp. G-module) has a
direct-sum decomposition into irreducible modules.

A useful fact about reductive groups that we use in Section 5.1 to prove Theorem 5.1.2 is the following:

Theorem A.5.5 (Matsushima, [42]). If G is a reductive group and H a subgroup, then G/H is affine if and
only if H is reductive.

A.6 Planarizing Matchgates

In the proof of Lemma 3.4.3, we made several initial constructions of transducers to achieve certain row and
column operations but noted that those constructions, specifically those shown in Figures 3.2b, 3.2c, 3.2d,
needed to be modified because they were not planar. Following the technique of Cai and Gorenstein [9], we
planarize those matchgates by replacing every edge crossing with the so-called crossover gadget X shown in
Figure A.1.

Because the standard signature X of the crossover gadget is given by X0000
= 1, X0101

= 1, X1010
= 1,

X1111
= −1, and Xσ

= 0 for all other σ ∈ {0,1}4 so that the standard signature remains invariant under any
cyclic permutation of the external nodes, the orientation of the copy of X placed over an edge crossing does
not matter.

We first make precise our operation of planarizing matchgates, following the terminology of [9]. If an
edge {u, v} of weight w crosses t other edges, replace each of the t crossings by a crossover gadget and replace
the edge by t + 1 edges connecting adjacent crossover gadgets. Of these t + 1 edges, assign t of them to have
weight 1 and the remaining one to have weight w. Call the union of the t + 1 edges the u-v-passage.

Given a non-planar matchgate Γ, denote the matchgate obtained from planarizing Γ by Γ′.
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Figure A.1: Crossover gadget. Unlabeled edges are of weight 1; labeled vertices are external nodes. Figure
from [9].

Observation 11. Let M be a perfect matching of Γ′ whose contribution c to PerfMatch(Γ′) is nonzero, and
let M ′ ⊂ M denote the edges not belonging to crossover gadgets. Then M ′ is the union of u-v-passages
corresponds to a perfect matching of Γ whose contribution to PerfMatch(Γ) is ±c.

Proof. If an edge incident to one of the external nodes, say node 1, of a crossover gadget is present in M ,
then the edge incident to node 3 of the crossover gadget must be present in M as well, as Xσ

= 0 if σ1 ≠ σ3.
We conclude that M is a union of u-v-passages. The corresponding perfect matching of Γ has contribution
±c because each of the nonzero entries of X is ±1.

We need to verify that the entries of Γ and Γ′ are equal except for a select number of entries which differ
by a factor of −1.

Lemma A.6.1. Let Γ be the K-input, K-output transducer shown in Figure 3.2b with signature Lj,k3 . There
exists a planar matchgate whose standard signature agrees with Γ on the main diagonal entries and entry
(1K ⊕ ej ⊕ ek,1

K), and agrees with Γ everywhere else up to sign.

Proof. Take the desired matchgate to be Γ′. Note that every subgraph of Γ has at most one perfect matching.
In other words, each entry of Γ arises from at most a single perfect matching. Therefore, by Observation 11,
Γ and Γ′ agree everywhere up to sign. Now consider any main diagonal entry Γ′

σ
σ = PerfMatch(Γ′/Z). If M

is a perfect matching of Γ′/Z making a nonzero contribution to PerfMatch(Γ′/Z), it corresponds to a perfect
matching of Γ/Z making a nonzero contribution to PerfMatch(Γ/Z). But the only such perfect matching
does not contain the edge between left node j to and left node k. Thus, the contribution of this matching
and that of M are both equal to 1.

If Γ and Γ′ disagree on entry (1K⊕ej⊕ek,1
K), modify Γ by multiplying the weight of the edge connecting

left nodes j and k by −1, and take the desired matchgate to be the corresponding Γ′.

Lemma A.6.2. Let Γ be the K-input, K-output transducer shown in Figure 3.2c with signature L4. There
exists a planar matchgate whose standard signature agrees with Γ everywhere up to sign.

Proof. Take the desired matchgate to be Γ′. As in the proof of Lemma A.6.1, every subgraph of Γ has at
most one perfect matching, so we already know Γ and Γ′ agree everywhere up to sign.

Lemma A.6.3. Let Γ be the K-input, K-output transducer shown in Figure 3.2d with signature Lj5. There
exists a planar matchgate whose standard signature agrees with Γ on the main diagonal entries and entry
(1K ⊕ ej ,1

K ⊕ eqi+1), and agrees with Γ everywhere else up to sign.

Proof. Take the desired matchgate to be Γ′. As in the proof of Lemma A.6.1, every subgraph of Γ has
at most one perfect matching and Γ and Γ′ agree on the main diagonal entries. If they disagree on entry
(1K ⊕ ej ,1

K ⊕ eqi+1), modify Γ by multiplying the weight of the edge connecting left node j to right node
i + 1 by −1, and take the desired matchgate to be the corresponding Γ′.
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A.7 Basic Facts about Spinors

A.7.1 Clifford algebras and the spin representation(s)

The route we take to define spinors is from the point of view of Clifford algebras. For convenience, we will
work over R, though the results that follow are valid over all fields of characteristic not equal to 2.

Let V be a vector space of dimension n equipped with a quadratic form Q, and let B denote the
polarization of Q, i.e. B(x, y) = Q(x + y) −Q(x) −Q(y). Denote by T (V ) the tensor algebra of V .

Definition A.7.1. The Clifford algebra C(V ) associated to V is the k-algebra T (V )/I, where I is the ideal
in T generated by elements of the form x⊗ x −Q(x).

We can decompose the grading T (V ) = ⊕
∞
r=0 V

⊗r as a direct sum of the even and odd gradings, denoted
T+(V ) and T−(V ) respectively. Correspondingly, denote by C+(V ) the algebra T+(V )/(T+(V ) ∩ I), and
C−(V ) similarly.

We begin with some elementary observations. First, pick an orthogonal basis {e1, ..., en} for C(V ) such
that B(ei, ej) = 0 for i ≠ j and B(ei, ei) = Q(ei). Equivalently, we have that e2

i = Q(ei) and eiej + ejei = 0.
The map sending ei1⋯eik to ei1 ∧⋯ ∧ eik for all {i1, ..., ik} ⊂ [n] gives the following:

Lemma A.7.2. C(V ) and ΛV are naturally isomorphic as vector spaces.

The following is a fairly standard fact.

Lemma A.7.3. Define Cp,q to be the Clifford algebra of a vector space W equipped with the quadratic form
Q(v) = ∑

p
i=1 v

2
i −∑

q
j=p+1 v

2
j . Every real Clifford algebra C(V ) is isomorphic to some Cp,q for p+ q = n, where

max(p, q) is called the isotropy index.

We are now ready to define the spin representation.

Lemma A.7.4. If n is even, then C(V ) is a central simple algebra. If n is odd, then C+(V ) is a central
simple algebra.

Proof. First assume that n is even and say that C(V ) = Cp,q for p < q, picking generators e1, ..., en as above
but assuming that we’ve diagonalized Q in such a way that εn−1 ≠ εn. Define elements f1 = e1⋯en−1 and
f2 = e1⋯en−2en; note that these satisfy f1f2 + f2f1 = 0 and f2

1 = −f2
2 and thus generate C1,1 ≃ M(2). So

Cp,q = Cp−1,q−1⊗M(2) = C0,q−p⊗M(2p), and it remains to show that C0,q−p is central and simple. But this
follows by Bott periodicity, by which C0,2m+8 = C0,2n ⊗M(16).

Next assume that n is odd. Define elements gi = e1ei for 1 < i < n; note that these satisfy gigj + gjgi = 0
and g2

i = −ε1εi. So if C(V ) = Cp,q, then C+(M) is isomorphic to Cp,q−1 or Cp−1,q, which we know from the
case of n even to be central simple.

Now let G denote the orthogonal group of transformations preserving B.

Definition A.7.5. The Clifford group Γ of G is the set of s ∈ C(M) for which conjugation of any x ∈M
gives something inside M . Let χ be the linear representation of Γ sending s to this conjugation map; call
this the vector representation of Γ.

In fact, χ sends Γ not just into End(C(M)) but into G: Q(sxs−1) = (sxs−1)2 = sx2s−1 = Q(x). One can
show that if the rank of Q is even (resp. odd), χ(Γ) is all of G (resp. the even-graded elements of G with
determinant one), though we’ll omit this proof.

For n even, because C(V ) is simple, there is a single simple representation up to isomorphism, and
we call this the spin representation. For n odd, because C+(V ) is simple, there is likewise a unique spin
representation of C+(V ).

Lemma A.7.6. If C(V ) is not simple, there are exactly two ways to extend the spin representation ρ+ of
C+(V ) to one of C(V ).

Proof. It is enough to prove the following claim.
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Claim A.7.7. If V is of odd dimension n = 2m+ 1, then the center of C(V ) is k[ε] for some odd element ε
for which ε2 = (−1)m+q.

Proof. For I ⊂ [n], define eI = ∏i∈I ei. If i ∈ I, then eIei = (−1)∣I ∣+1eieI ; otherwise eIei = (−1)∣I ∣eieI . Given
an element x ≠ 1 in the center of C(V ), write it as ∑I aIeI . Then the fact that xej = ejx for all j implies
that aI = 0 for all I except I = [n], so take ε = e1⋯en. It is straightforward to verify that ε2 = (−1)m+q.

Because C(V ) is not simple so that ε2 must be a square, and because we are working over R, ε2 = 1. To
finish the proof of the lemma, we can now write any x ∈ C(V ) uniquely as x1 + x2ε for x1, x2 ∈ C+(V ). The
maps x ↦ x1 + x2 and x ↦ x1 − x2 are homomorphisms φ1, φ2 ∶ C(V ) → C+(V ). Now simply post-compose
these with ρ+ to obtain two distinct representations ρ1, ρ2 of C(M). Suppose we had another representation
of C(M) extending ρ+, call it ρ′ and denote ρ′(ε) by σ. We know that σ2 is the identity map on the space
S of spinors, so S decomposes into eigenspaces of eigenvalue 1 or -1 with respect to σ. These eigenspaces
are preserved under the action of C+, so one of them must be zero for ρ+ to be simple. We conclude that
σ = ±I and thus that ρ′ agrees with either ρ1 or ρ2.

A.7.2 Pure spinors

The particular kinds of spinors which form the bridge between geometry and holographic algorithms are the
pure spinors, which will correspond to maximal linear subvarieties of the quadric Q = 0. We will assume
henceforth that Q is of maximal isotropic index and that, for simplicity, n = 2m is even. Pick a splitting of
V into maximal totally isotropic subspaces N ⊕ P and denote the spin representation by ρ.

Lemma A.7.8. The intersection between a minimal left ideal a and a minimal right ideal b of C(V ) is a
one-dimensional vector space.

Proof. A theorem due to Brauer tells us that there exist idempotents e, e′ for which a and b are respectively
generated in C(V ) by e and e′. Because e, e′ are idempotents, ρ(e), ρ(e′) are projections.

We claim that H ∶= kerρ(e) is a hyperplane. It is clear that a kills H, and conversely any element x ∈ C(V )

which kills H is equal to x ⋅ e, as ρ(e) acts as the identity on imρ(e). So a is precisely the annihilator of H,
and H is thus a hyperplane by minimality of a.

Likewise, we claim that D ∶= imρ(e′) is a line. It is clear that b sends D to itself, and conversely any
element x ∈ C(V ) which sends S to D is equal to e′ ⋅ x, as e′ acts as the identity on D. So b is precisely the
set of elements sending S to D, and D is thus a line by minimality of a.

To summarize, a ∩ b is the set of x ∈ C(V ) killing H and projecting S into D. Picking a generator y for
D, we see that for v /∈H, ρ(x)⋅v = λy, so x is uniquely determined by λ, and a∩b is indeed a one-dimensional
vector space.

Let Z be any other maximal totally isotropic subspace of V , and say Z generates the subalgebra CZ of
C(V ). Define f and fZ to be products of the basis elements of P and Z, respectively; by Lemma A.7.2, f
and fZ are uniquely defined up to a multiplicative factor.

Lemma A.7.9. C(V ) ⋅ f and fZ ⋅C(V ) are minimal left and right ideals respectively.

So by Lemma A.7.8, these two ideals intersect on some line SZ ⋅ f , and we call SZ ⊂ C(V ) the line of
representative spinors of Z.

Definition A.7.10. A pure spinor is any spinor representative of some maximal totally isotropic subspace
Z.

It turns out these spinors are “representative” in the following sense.

Proposition A.7.11 ([16]). If uZ is a representative spinor of Z, then Z is precisely the set of elements in
V which kill uZ .

Proof. Recall that for M of even dimension, χ(Γ) = G, meaning there must exist some s ∈ Γ by which P can
be conjugated to obtain Z. As such, we’ll assume that Z = P , in which case the corresponding line of pure
spinors contains uZ = 1. But ρ(x) for any x is multiplication by the component of x inside N , and this map
is zero iff this component is zero, i.e iff x ∈ P = Z.
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There is therefore a one-to-one correspondence between maximal totally isotropic subspaces of V and
lines of pure spinors.

A.8 Lifting Assumptions on U0 and U1

We proceed by casework on the polarization ∂1,1,1(Uα, Uβ , Um) that Um appears in as well as the smallest k
for which ∂1,1,1(U0, Uγ , V ) is not zero for all V on which ∂1,1,1(Uα, Uβ , V ) vanishes.

First, we note the following general fact:

Lemma A.8.1. If ∂2,1(U0, Ui) = 0 for all 0 ≤ i ≤m, then rank(U0).

Proof. Suppose to the contrary that U0 contains matrices of rank at least 2. The vanishing of ∂2,1(U0, Ui)
for each i imposes the same nontrivial linear condition on each Ui, so U0 ⊕⋯⊕Um ≠W .

After row/column operations, we may assume that U0 ⊂
⎛
⎜
⎝

a 0 0
b 0 0
c 0 0

⎞
⎟
⎠

.

A.8.1 α = 0

Lemma A.8.2. If dim(U0) = 3 and ∂2,1(U0, Um) = 0, then either V (q) is a cone or q lies in the orbit of
det3.

Proof. If dim(U0) = 3, pick the complement of U0 in C9 to be the space of matrices for which the leftmost
column is zero; U1, ..., Um all lie in this space. We conclude that no term of the form ∂1,1,1(Ui, Uj , Uk) for
i ≥ 1 appears in q, and q consists at most of ∂1,1,1(U0, U1, Um) and ∂1,1,1(U0, U2, Um−1).

Lemma A.8.3. If dim(U0) = 2 and ∂2,1(U0, Um) = 0, then q gives rise to no new boundary components.
In particular, q consists at most of ∂1,1,1(U0, U1, Um) and either ∂1,1,1(U0, U2, Um−1) or ∂2,1(U1, Um−1) for
some i, j.

Proof. The vanishing of ∂1,2(U0, U1) forces either 1) the middle and rightmost columns of U1 to be linearly
dependent, or 2) (U1)

3
2 and (U1)

3
3 to vanish.

Suppose 1) holds. After applying row/column operations, we may assume that the middle column of U1

is zero. We will show that no polarization of the form ∂1,1,1(U1, Ui, Uj) can appear in q. Suppose such a term
appeared for which 1 < i < j. Then ∂1,1,1(U0, U1, V ) = 0 forces the rightmost column of V to be zero unless
the entries of the middle column of U1 are all linearly dependent, i.e. ((U1)

1
2, (U1)

2
2, (U1)

3
2) = x ⋅ (1, λ, µ)

for some indeterminate x. In this case, the entries of the rightmost columns of Ui and Uj are likewise
related. The vanishing of ∂1,2(U1, Ui) then implies a) (U1)

3
1 = 0, b) the rightmost column of Ui vanishes, or

c) µ ⋅ (Ui)
1
2 = (Ui)

2
2.

If a) (U1)
3
1 = 0, then ∂1,1,1(U1, Ui, Uj) = 0 and we’re done. If b) the rightmost column of Ui vanishes or

c) µ ⋅ (Ui)
1
2 = (Ui)

2
2, then ∂1,1,1(U0, Ui, Uj) = 0 implies either the rightmost column of Uj vanishes as well,

or the middle column of Ui satisfies the same relations as does that of U1. In either case, ∂1,1,1(U1, Ui, Uj)
again vanishes.

The same analysis can be carried out if ∂1,2(U1, Ui) appears in q for i > 1. Assuming the entries of the
middle column of U1 are all linearly dependent as before, we see that the vanishing of ∂1,2(U0, Ui) implies
that of ∂1,2(U1, Ui).

Likewise, if any polarization ∂2,1(U1, Ui) appears in q, the vanishing of ∂1,1,1(U0, U1, Ui) either forces the
rightmost column of Ui to vanish, or at least forces (Ui)

1
3 and (Ui)

2
3 to satisfy the same relation that (U1)

1
2

and (U1)
2
2 do, which is enough for ∂2,1(U1, Ui) to vanish.

We conclude that if 1) holds, q at most consists of ∂1,1,1(U0, U1, Um) and ∂1,1,1(U0, Ui, Uj) for some i, j.
Now suppose 2) holds but 1) does not. If q contains some term of the form ∂1,1,1(U1, Ui, Uj) for 1 < i ≤ j,

then det(U1) = 0 implies (U1)
3
1 = 0. ∂2,1(U1, Ui) = ∂2,1(U1, Uj) = 0 implies (Ui)

3
1 = (Uj)

3
1 = 0. Finally, note

that ∂1,1,1(U0, U1, V ) = 0 forces V 3
2 = V 3

3 = 0 so that q does not contain more than one term containing U0.
We conclude that q at most consists of ∂1,1,1(U0, U1, Um) and ∂2,1(U1, Uj).
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The remainder of this section is devoted to proving the hardest case, namely when dim(U0) = 1.

Theorem A.8.4. If dim(U0) = 1 and ∂2,1(U0, Um) = 0, then q gives rise to no new boundary components.

After row/column operations, we may assume that U0 =
⎛
⎜
⎝

a 0 0
0 0 0
0 0 0

⎞
⎟
⎠

. To prove Theorem A.8.4 will proceed

by casework on the β for which ∂2,1(U0, Uβ , Um) appears in q.

Case 1. β = 1.

Proof. Suppose that ∂1,1,1(U1, Ua, Ub) appears for a, b ≥ 2. We will show that V (q) is a cone or q is a

GL(W )-translate of det3. ∂1,2(U0, U1) = 0 implies that in U1, (
x22 x32

x32 x33
) is singular, so after simultaneous

row/column operations on U0, ..., Um, we may assume x32 = x33 = 0 in U1. det(U1) = 0 then implies either

1) the last column of U1 is zero, or 2) M ∶= (
x21 x22

x31 x32
) is singular. Assume first that there are no no linear

dependencies between x22 and x33 in U1. Then if 1) holds, the vanishing of ∂1,1,1(U0 ⊕U1, U1, V ) forces the
rightmost column of V to be zero, so ∂1,1,1(U1, Ua, Ub) = 0, a contradiction. If 2) holds so that there is some
linear dependence between the columns of M in U1, the vanishing of ∂1,1(U0, U1, V ) forces x23 = x33 = 0 in
V , and the vanishing of ∂2,1(U1, V ) then forces such a V to have the same linear dependence as U1 between
the columns of M . We conclude again that ∂1,1,1(U1, Ua, Ub) = 0.

Finally, assume (U1)
2
2 = λ ⋅ (U1)

3
2 for some λ ∈ C. Then in order for det(U1) to vanish, either 1) holds,

(U1)
2
3 = (U1)

3
3 = 0, or (U1)

2
1 = λ ⋅ (U1)

3
1. In any case, ∂1,1,1(U0, U1, V ) = 0 implies that V 2

3 = λ ⋅ V 3
3 for

V = Ua, Ub, and ∂1,2(U0, Ua) then implies that either (Ua)
2
3 = (Ua)

3
3 = 0 or (Ua)

2
2 = λ(Ua)

3
2.

We claim that either every term in q omits the variable W 1
2 or W 2

1 and W 3
1 only ever appears together

in the linear factor W 1
2 − λ ⋅W

2
1 . This is trivially true for the polarizations in q containing U0.

Indeed, it is straightforward to check that this is the case for all polarizations in q when 1) holds because of
the vanishing of ∂2,1(U1, V ) for V = Ua, Ub. On the other hand, if 1) doesn’t hold and (U1)

2
3 = (U1)

3
3 = 0, then

∂1,1,1(U0, U1, V ) is identically zero, a contradiction. If neither of these scenarios holds and (U1)
2
1 = λ ⋅ (U1)

3
1,

then the vanishing of ∂2,1(U1, V ) for V = Ua, Ub implies every term in q omits the variable W 1
2 .

In conclusion, q would at most contain ∂1,1,1(U0, U1, Um), ∂1,1,1(U0, Uα, Uβ) and ∂2,1(U1, Uγ). One can
check that these terms completely factor; for V (q) not to be a cone, U0 ⊕ ⋯ ⊕ Um ≤ 1 + 3 + 3, but then
U0 ⊕⋯⊕Um ≠W a contradiction.

Case 2. β = 2.

Proof. ∂1,1,1(U0, U1, V ) ≡ 0 implies that U1 ∈ U
cmp
2 . We can assume that U1, ..., Um lie in the complement of

U0 for which (Ui)
1
1 = 0, and that U0 =

⎛
⎜
⎝

a 0 0
0 0 0
0 0 0

⎞
⎟
⎠

.

Pick the complement of U0 in C9 to be the space of matrices (xij) for which x11 = 0; U0, ..., Um−1 all

lie in this space. Then the vanishing of ∂1,2(U0, U2) implies that the minor ∣(
(U2)

2
2 (U2)

2
3

(U2)
3
2 (U2)

3
3
)∣ is zero. After

simultaneous row/column operations on U0, ..., Um, we may assume further that (U2)
3
2 = (U2)

3
3 = 0.

Lemma A.8.5. If dim(U1) = 1 and ∂2,1(U0,W ) is identically zero, then q omits a variable of U1.

Proof. We may assume U1 is of the form
⎛
⎜
⎝

0 W 1
2 0

λW 1
2 0 0

0 0 0

⎞
⎟
⎠

, where x = W 1
2 . We claim that q must omit

the variable W 2
1 . This is certainly the case for a polarization of the form ∂2,1(U1, Ui), or any polarization

in q containing U0. If ∂1,1,1(Ui, Uj , Uk) appears in q for 1 ≤ i < j ≤ k, the vanishing of ∂2,1(U1, V ) and
∂1,1,1(U0, U2, V ) for V = Ui, Uj , Uk implies that ∂1,1,1(U1, Uj , Uk) also omits the variable W 2

1 , completing the
proof of our claim.
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Lemma A.8.6. If dim(U1) ≥ 2, then either q omits a variable or consists of at most three terms: ∂1,1,1(U0, U2, Um),
∂1,1,1(U1, Ui, Uj), and ∂1,1,1(U2, Uk, U`) for some i, j, k, `.

Proof. We will assume

U1 =
⎛
⎜
⎝

0 W 1
2 0

W 2
1 0 0

0 0 0

⎞
⎟
⎠

(A.1)

. Indeed, if U1 had additional nonzero entries, the vanishing of ∂2,1(U0 ⊕ U1, V ) would impose two linear
conditions, and as we saw in Lemma 5.4.9, there would be at most two polarizations in q of the form
∂2,1(U1, Uj , Uk), and no polarizations of the form ∂2,1(Ui, Uj , Uk) for i ≥ 2. One could then readily check
that either V (q) is a cone or q is a GL(W )-translate of det3.

Returning to (A.1), the argument now is similar to that of Lemma A.8.5. Firstly, the vanishing of
∂1,2(U1, U2) implies that either (U2)

2
3 or (U2)

3
1 must be zero.

If (U2)
3
1 = 0, then ∂1,1,1(U0, U2, V ) = 0 for V = U0, ..., Um−1 forces either both (Ui)

3
2 and (Ui)

3
3 to vanish

for all i, or some linear combination of them to. If the former, any other polarization containing U0 would
vanish, any term of the form ∂1,1,1(U1, Ui, Uj) would omit W 1

2 . If however ∂1,1,1(U0, U2, V ) = 0 imposed some
condition ` = 0 on V = U0, ..., Um−1, this would mean there is a linear dependence between (U2)

2
2 and (U2)

2
3.

After simultaneous row/column operations on U0, ..., Um−1, we can assume (U2)
2
2 = 0 so that ` = (Ui)

3
2. One

can then check that q omits W 2
2 , and we’re done.

On the other hand, if (U2)
2
3 = 0, we claim that q omits either W 2

1 or W 1
2 . Indeed, ∂1,1,1(U0, U2, V ) = 0

and ∂2,1(U1, V ) impose the same single condition on V , so no term of the form ∂2,1(U1, Ui) appears in q. If
some ∂1,2(U1, Uj) appears in q, ∂1,2(U0, Uj) = 0 forces either (Uj)

3
2 or (Uj)

2
3 to vanish, either of which would

force ∂1,2(U1, Uj) to omit one of W 2
1 or W 1

2 . If some ∂1,1,1(U1, U2, Uk) appeared in q, then det(U2) = 0 forces
(U2)

3
1, (U2)

2
2, or (U2)

1
3 to vanish. The first or last would imply ∂1,1,1(U1, U2, Uk) omits one of W 2

1 or W 1
2 .

(U2)
2
2 = 0 would imply ∂1,1,1(U0, U2,W ) is identically zero, a contradiction.

Finally, if some ∂1,1,1(U1, Uj , Uk) appeared in q for j > 2, then ∂1,2(U0 ⊕ U1, Uj) = 0 forces one of the
following pairs to vanish: (Uj)

1
3 and (Uj)

2
3, (Uj)

2
3 and (Uj)

3
2, or (Uj)

3
1 and (Uj)

3
2. The first or last would

force ∂1,1,1(U1, Uj , Uk) to omit one of W 1
2 or W 2

1 .
It remains to handle the exceptional case where (Uj)

2
3 = (Uj)

3
2 = 0. Here we claim that q still gives

rise to no new boundary components.. Firstly note that ∂2,1(Ui, Uj) = 0 for all i ≤ 2. Suppose some
∂1,1,1(U0, Uk, U`) and ∂1,1,1(U1, Ui, Uj) appeared in q for k > 2. If k ≥ j, then the vanishing of ∂1,2(U0, Uk)
forces ∂1,1,1(U1, Ui, Uj) to omit one of W 1

2 or W 2
1 . If k < j, then the vanishing of ∂1,1,1(U1, Ui, Uk) forces

the same. We conclude that q contains at most three terms: ∂1,1,1(U0, U2, Um), ∂1,1,1(U1, Ui, Uj), and
∂1,1,1(U2, Uk, U`) for some i, j, k, `, and one readily checks that V (q) is a cone or q is a GL(W )-translate of
det3 in this case.

Case 3. β > 2.

Proof. This case follows easily from the previous one. If dim(U1) = 1 or dim(U2) = 1, then q will omit a
variable from U1 or U2, by Lemma A.8.5. Therefore, because U1, U2 ⊂ U cmp2 , dim(U1) = dim(U2) = 2, i.e.
U0 ⊕ U1 ⊕ U2 = U cmp2 . But then V for which ∂2,1(U0 ⊕ U1 ⊕ U2, V ) = 0 must lie in U cmp2 , so q contains
no polarizations ∂1,1,1(Ui, Uj , Uk) for i ≥ 2, except possibly some ∂2,1(U2, Uk). As we saw in the proof of
Lemma A.8.6, if q contains some ∂1,1,1(U1, Uj , Uk) and does not omit any variables, then the only polarization
in q that contains U0 is ∂1,1,1(U0, Uβ , Um). So as in Lemma A.8.6, the only terms that q contains if it does
not omit any variables are ∂1,1,1(U0, Uβ , Um), ∂1,1,1(U1, Ui, Uj), and ∂1,1,1(U2, Uk, U`) for some i, j, k, `, so
we’re done.

A.8.2 α = 1

Case 1. β = 1.



A.8. LIFTING ASSUMPTIONS ON U0 AND U1 88

Proof. Suppose that γ = 2. Then we are effectively in the setting of Case 2. In particular, if dim(U1) = 1,
the proof of Lemma A.8.5 exactly carries over to show that q omits one of W 1

2 or W 2
1 . If dim(U2) = 2, then if

(U2)
3
1 = 0, the proof of Lemma A.8.6 also exactly carries over to show that q omits W 2

2 . If (U2)
2
3 = 0 however,

we have to slightly modify the argument. In this case, recall that ∂1,1,1(U0, U2, V ) = 0 and ∂2,1(U1, V ) =

0 impose the same single linear condition on V . Whereas in the proof of Lemma A.8.6 we could then
conclude that q contains no term of the form ∂2,1(U1, Ui), here we know that q contains no term of the
form ∂1,1,1(U0, U2, Ui). Instead of showing that q either omits W 2

1 or W 1
2 from U1 or consists of the terms

∂1,1,1(U0, Uβ , Um), ∂1,1,1(U1, Ui, Uj), and ∂1,1,1(U2, Uk, U`) for some i, j, k, `, one can show that q omits W 2
2

or consists of the terms ∂1,1,1(U1, U1, Um), ∂1,1,1(U0, Ui, Uj), and ∂1,1,1(U2, Uk, U`).
Now suppose that γ > 2. As in the proof for Case 3, we can assume that U0 ⊕ U1 ⊕ U2 = U

cmp
2 , and the

analysis for γ = 2 above likewise carries over to the case of γ > 2.

Case 2. β ≥ 2.

Proof. By Lemma A.8.3 applied to U0⊕U1, we conclude that the only terms in q that do not contain U0 are
∂1,1,1(U1, U2, Um) and either ∂1,1,1(U1, U3, Um−1) or ∂2,1(U2, Um−1). In particular, β cannot exceed 2.

We first note that only one polarization in q can contain U0. Suppose to the contrary there were two,
∂1,1,1(U0, Ui, Uj) and ∂1,1,1(U0, Uk, U`), where i < k. Then taking U0 in Lemma A.8.3 to be U0 ⊕U1, we see
that ∂1,1,1(U0⊕U1, U2, V ) = 0 for V = Uk, U` forces Uk, U` to have rightmost columns with entries all linearly
dependent. ∂1,1,1(U0, Ui, V ) = 0 for V = Uk, U` then either implies that their rightmost columns vanish, or
that V 2

2 = V 3
2 = 0. Either forces ∂1,1,1(U0, Uk, U`) to vanish.

We conclude that q consists at most of ∂1,1,1(U1, U2, Um), ∂1,1,1(U0, Ui, Uj) for some i, j, and either
∂1,1,1(U1, U3, Um−1) or ∂2,1(U2, Um−1). So either V (q) is a cone or q is a GL(W )-translate of det3.

A.8.3 α ≥ 2

Note that α cannot exceed 2, or else U0 ⊕⋯⊕Uα is a space of rank 1 matrices, yet dim(U0 ⊕⋯⊕Uα) > 3, a
contradiction. So take α = 2.

Case 1. β = 2.

Proof. Just as Case 1 followed almost immediately from Case 3, so too does this case follow from Case 2. q
consists of at most ∂2,1(U2, Um), ∂1,1,1(U1, Ui, Uj), and ∂1,1,1(U0, Uk, U`) for some i, j, k, `, and we can check
that q gives rise to no new boundary components.

Case 2. β ≥ 3.

Proof. If Um appears in ∂1,1,1(U2, Ui, Um) for some i ≥ 3, then ∂2,1(U0 ⊕ U1 ⊕ U2,W ) is identically zero, so
we may assume

U0 ⊕U1 ⊕U2 =
⎛
⎜
⎝

a 0 0
b 0 0
c 0 0

⎞
⎟
⎠
. (A.2)

But then by Lemma A.8.2, q contains at most two terms with U2, namely ∂1,1,1(U2, U3, Um) and
∂1,1,1(U2, U4, Um−1). In addition, q has at most one term containing U0 and at most one containing U1.
This can be proved with the exact same technique as in Case 2. It follows that q contains at most four
terms: ∂1,1,1(U2, U3, Um), ∂1,1,1(U2, U4, Um−1), ∂1,1,1(U0, Ui, Uj), and ∂1,1,1(U1, Uk, U`), and it is easy to
check that either V (q) is a cone or q is a GL(W )-translate of det3.



Notations

C[X] Coordinate ring of X

C[X]d Degree-d component of C[X]

Γ Standard signature of matchgate Γ

[p] Point in PV corresponding to the line through p ∈ V

SdW ∗ Degree-d homogeneous polynomials over W

C∗ Units of C
V(p) Affine variety in W cut out by p

G complex affine algebraic group, usually reductive

Mm,n(k) Space of matrices with entries in field k

In n × n identity matrix

Γσζ Entry of matrix Γ in row σ and column ζ

Lie(G) Lie algebra associated to Lie group G

g.x Induced action of Lie algebra

Xsing Singular locus of X

G ⋅X Orbit of X under action of G

G ⋅X Zariski closure of orbit of X

X//G GIT quotient

Sn, An Symmetric and alternating groups on n elements

Wt(G,V ) Weights of G-module V

span(Z) Span of columns of a matrix M indexed by Z

Sπ(V ) Irreducible GL(V )-module associated to partition π

V ss Semi-stable points of V under action of some G

G(k,n) Grassmannian of k-planes in An.

∂πf π-th polarization of polynomial f

Sm Variety of pure spinors
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