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1

Acknowledgements. First and foremost, I would like to thank my family. Of
course I cannot put into words how much their support has meant to me. It was
my sister who first taught me arithmetic during long car rides when I was very
young, and, as is evidenced by this thesis, I still am just as excited about it all these
years later.

Next I would like to thank my advisor, Jacob Tsimerman, for teaching me a
tremendous amount of mathematics and always having a healthy dose of skep-
ticism when listening to my arguments. I am greatly indebted to him and Arul
Shankar for coming up with such a fun problem. I don’t know how they did it,
but I am lucky they are so skilled.

I would like to thank all my teachers, in mathematics, physics, computer sci-
ence, from Harvard, high school, LISG, and otherwise, for teaching me patiently
for all these years. In particular I would like to thank Prof.s Gaitsgory, Elkies,
Gross, Miller, and Gallian for advising me during my time at Harvard, Williams,
and Duluth. If it weren’t for Prof. Gallian’s constant encouragement I would have
never even considered asking for a problem. Actually I really must thank all my
professors at Harvard as well, but nobody wants to read a listing of the entire
Harvard faculty in a senior thesis.

Finally, I would like to thank my friends for being awesome. Obviously you
guys know who you are.

Also, more formally, I would like to thank Manjul Bhargava, Peter Bruin,
Noam Elkies, Henry Cohn, John Cremona, Roger Heath-Brown, Harald Helfgott,
Emmanuel Kowalski, Barry Mazur, Arul Shankar, Joseph Silverman, Katherine
Stange, Jacob Tsimerman, and Yukihiro Uchida for helpful conversations related
to work in this thesis.

I would of course also like to thank Anirudha Balasubramanian for helpful
conversations related to the Irwin-Hall distribution.[2]



CHAPTER

1

INTRODUCTION

Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.
— Leopold Kronecker.

1. History.

In August 1659, in his correspondence with Carcavi, Pierre de Fermat pro-
posed the following four problems. [15]

(1) Il n’y a aucun cube divisible en deux cubes.1

(2) Il n’y a qu’un seul quarré en entiers qui, augmenté du binaire, fasse un cube. Le

dit quarré est 25.2

(3) Il n’y a que deux quarrés en entiers, lesquels, augmentés de 4, fessent un cube.

Les dits quarrés sont 4 et 121.3

(4) Toutes les puissances quarrées de 2, augmentées de l’unité, sont nombres pre-

miers.4

Statement (4) is false. Statement (1) is the first case of a problem that remained
open for more than three-hundred and fifty years. In this thesis we will focus on
statements (2) and (3).

These are statements about integer solutions to certain equations. Statement
(2) asks about the number of integer solutions to y2 = x3 − 2. Statement (3) asks
about the number of integer solutions to y2 = x3−4. The similarity of the forms of
these equations is no coincidence. Fermat had developed his method of descent, in
which one takes a putative minimal counterexample and produces an even smaller
one to derive a contradiction, and applied it to each of these cases.

Earlier on in his letter to Carcavi, Fermat mentioned that

1There is no cube divisible into two cubes. [1]
2There is only one square of whole numbers which, when two is added to it, makes a cube. Said square is

25. [1]
3There are only two squares of whole numbers which, when 4 is added, make a cube. Said squares are 4 and

121. [1]
4All the square powers of two, with one added, are prime numbers. [1] By this, Fermat surely meant

iterated powers of two. But both are false. 23
2
+ 1 = 513 is certainly divisible by 3. More subtly,

22
5
+ 1 = 4294967297 is divisible by 641.
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2. THIS THESIS. 3

J’appelai cette manière de démontrer la descente infinie ou indèfinie,
etc.; je ne m’en servis au commencement que pour démontrer les
propositions négatives, comme, par exemple . . .

(5) Qu’il n’y a aucun triangle rectangle en nombres dont l’aire soit un nombre

quarré.5

Here he is asking about integer solutions to the simultaneous equations

a2 + b2 = c2 (the Pythagorean theorem), (1.1)

ab = 2n2 (the area of a triangle). (1.2)

Fermat knew that any solution of (1.1) and (1.2) in the integers must be of the form

a = p2 − q2,

b = 2pq,

c = p2 + q2,

for some integers p and q. Now let x := p
q , y := n

q2 . Then observe that y2 = x3 − x,

by (1.2). In reverse, if y2 = x3 − x with x and y 6= 0 rational, then let

A :=
x2 − 1

y
,

B :=
2x

y
,

C :=
x2 + 1

y
,

all rational numbers. Write them with a common denominator n, and let a, b, c be
their respective numerators. Then observe that a2 + b2 = c2, and ab = 2n2. This
establishes a bijection between rational solutions to y2 = x3 − x with y 6= 0 and
solutions of Fermat’s problem (5). Therefore Fermat’s achievement lay in showing
that there were no such rational solutions, again by his method of descent.

2. This thesis.

It is again no coincidence that the equation y2 = x3 − x shares the same form
as the previously considered equations y2 = x3 − 2 and y2 = x3 − 4. These are the
equations of elliptic curves, of the form

y2 = x3 +Ax+B

with A and B integral. In this thesis we consider the question of how many inte-
gral solutions such an equation can have. Specifically, we show that, on average,

it is at most an effective absolute constant.6 It is an old folklore conjecture that the
true average is zero. This is the first time the average has been proved to be finite.
This work is original to this thesis.

5I have called this manner of demonstration infinite descent, or indefinite descent, etc.; at first I only
used it to demonstrate negative propositions, such as . . . that there is no right triangle in whole numbers whose

area is a square number. [1]
6By “on average,” we mean the average taken when ordering by the height of the equation,

H(A,B) := max(4|A|3, 27|B|2). Further, we always mean “lim sup of the average” when we say

“average.” See Chapter 5 for precise details.
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To consider an average, one must first know that the numbers being aver-
aged are finite. Therefore we present a proof of a famous theorem of Siegel stating
that, indeed, these equations admit only finitely many integer solutions. This re-
quires the development of tools from the theory of Diophantine approximation,
chief among them the equally famous theorem of Roth determining how well an
algebraic number can be approximated by rationals. Each of these rests on an
understanding of the theory of heights, and so we explain the necessary results
throughout, beginning with a Chapter dedicated entirely to the Weil height. The
presentation is meant for a reader wholly unfamiliar with the tools of the field,
and so we provide explanations with the goal of exposition, rather than taking the
shortest path to presenting the titular result.

3. Notation.

Let us fix notation at the outset. By A ≪θ B we mean that there exists a
constant Cθ > 0, potentially depending only on θ, such that |A| ≤ Cθ|B|. By
A ≤ Oθ(B) we mean A ≪θ B. By A ≤ oθ(B), with an implicit limit n → ∞
understood, we mean that, for every ǫ > 0, there is an N depending only on θ and
ǫ for which, for every n ≥ N , one hasA ≤ ǫB as functions of n. In reverse,A≫θ B
means B ≪θ A, and A ≥ Ωθ(B) means A ≫θ B. Finally, A ≍θ B means A ≪θ B
and A ≫θ B. We will also list notations introduced later at the end of the thesis,
for the reader’s convenience.

Having set our notation, we will begin with the theory of heights.
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2

THE WEIL HEIGHT

1. Motivation.

We have mentioned Fermat’s method of descent, which proceeds by contra-
diction, beginning with a minimal counterexample and producing one yet smaller.
One delicate point is making precise what one means by minimal. For this one
needs a measure of complexity of solutions to equations. In the case of integral
solutions one such measure is furnished for free: given a solution P = (x, y) to,
e.g., y2 = x3 +Ax +B, take Hx(P ) := |x| as the “complexity” of the point P .

This is all well and good, but we have seen that rational solutions arise natu-
rally as well. We might proceed naı̈vely and put, given P = (x, y), Hx(P ) = |x|
again as a measure of complexity. But this would have two problems. First, we
would no longer be able to deduce a contradiction from Fermat’s method of de-
scent: there are strictly decreasing sequences of positive rational numbers uni-
formly bounded below by a positive constant. Second, this would not even agree
with our intuitive notion of “complexity”!

Specifically, consider the curve [12]

y2 = x3 + 3917x.

This has a rational point (“smallest”, in some sense) with x-coordinate equal to

1.319 . . .× 1070

5.488 . . .× 1068
.

The reader will agree that this is a point of enormous complexity. However, its ab-
solute value is 24.01 . . .. So, by our measure, it is less complicated than an integral
point with x-coordinate 25. Can this truly be considered an adequate measure of
complexity?

2. The multiplicative and logarithmic Weil heights.

For this reason we propose the following variation. Given a rational number
α = a

b with a and b coprime, define H(α) := max(|a|, |b|). This is the so-called

5



2. THE MULTIPLICATIVE AND LOGARITHMIC WEIL HEIGHTS. 6

(multiplicative) naı̈ve, or Weil, height of α. Note that this has been constructed both
so that the point we mentioned above has enormous height, and also so that it
extends our definition on nonzero integers. But now we are led to complain that
this is a nonlocal definition — if we know the prime factorizations of a and b, then
it seems unlikely we will be able to read off the multiplicative height of a

b .
Amazingly, our concerns are unfounded.

CLAIM 2.1. Let α ∈ Q be nonzero. Then

H(α) =
∏

v

max(|α|v, 1),

the product taken over the places1 of Q.

Therefore, to determine the height of α, we simply need to know the “sizes”
of α in all completions of Q: R, and Qp for each p. Motivated by this claim and

the ubiquity of the function log+ in complex analysis, we take logarithms of both
sides and define:

DEFINITION 2.2. Let α ∈ Q be nonzero. Then the (logarithmic) Weil height of α is

h(α) :=
∑

v

log+ |x|v,

where log+(x) := max(0, log x).

Thus the content of the claim is that h(α) = max(log |a|, log |b|) if α = a
b with

(a, b) = 1.

PROOF OF CLAIM 2.1. Write α = a
b with (a, b) = 1. Factor a = ±∏p p

vp(a)

and b =
∏

p p
vp(b). Then

|α|∞ =
|a|
b
,

and, for each prime p,

|α|p = pvp(b)−vp(a).

Moreover, since a and b are coprime, vp(b) − vp(a) = vp(b) or −vp(a) for all p.

Therefore max(|α|p, 1) = pvp(b) if p|b, and 1 otherwise. In particular
∏

p

max(|α|p, 1) = b.

Hence the right-hand side is

max(|α|∞, 1) · b = max(|a|, |b|),
as desired. �

Thus we have extended our notion of complexity to the rationals. We are not
yet done, since we will need to measure general algebraic numbers against ratio-
nals in due course, but we are close. Because Claim 2.1 reduces the issue to a local
problem in the case of the rationals, we are led to consider piecing together local
information in the case of a general algebraic number. After all, we understand
the local behaviour of finite-degree extensions of the rationals quite well. The only

1That is, pairwise inequivalent nontrivial absolute values of Q. These are given by the usual
(“Archimedean”, in the sense that the integers form an unbounded set) absolute value, and the p-adic

absolute values for all primes p.
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question is how to normalize so that our notion of height does not change under
embeddings K ⊆ L of subfields. This is solved by the following definition.

DEFINITION 2.3. Let K be a number field. Let α ∈ K be a nonzero element. The
absolute Weil height of α is

h(α) :=
∑

v

[Kv : Qv|Q ]

[K : Q]
log+ |α|v,

the sum taken over the places v of K .

That is to say, the sum is taken over nonconjugate embeddings K →֒ R or K →֒ C
(that is, pairwise inequivalent Archimedean absolute values on K extending that
of Q) and prime ideals p ⊆ oK of the ring of integers of K . The former induce
absolute values simply by restriction, and the latter induce absolute values via

|x|p := Np−vp(x), where vp(x) is the power of p appearing in the unique factoriza-
tion of the fractional ideal (x) ⊆ K generated by x, and Np := #|oK/p|. Such a
thing of course determines a place of Q, by restriction — this is what we mean by
the notation v|Q above.

The purpose of the weights
[Kv:Qv|Q

]

[K:Q] is to make the height invariant under

change of field — that is, independent of the field inside which we regard α. In-
deed they do work for this purpose, per the following.

CLAIM 2.4. Let K ⊆ L be an extension of number fields, and α ∈ K . Then

∑

v

[Kv : Qv|Q ]

[K : Q]
log+ |α|v =

∑

w

[Lw : Qw|Q]

[L : Q]
log+ |α|w,

the sums taken over places v of K and w of L, respectively.

PROOF OF CLAIM 2.4. Let w be a place of L. Let v be its restriction to K , and
u its restriction to Q. Recall that we obtain all places of K in this way — given
a place v of K , there is at least one place w of L extending v (simply embed L
in an algebraic closure of Kv and take its closure — writing Lw/Kv for the field

extension thus generated, |x|w := |NmLw/Kv
(x)|

1
[Lw:Kv ]
v works).

Therefore we may reorganize the sum over w into a sum over v, and then a
sum over w extending v. That is, the right-hand side is just

∑

v

[Kv : Qu]

[K : Q]

∑

w|v

[Lw : Kv]

[L : K]
log+ |α|w.

By definition |α|w = |α|v since w extends v. Thus we may simplify this to

∑

v

[Kv : Qu]

[K : Q]
log+ |α|v

∑

w|v

[Lw : Kv]

[L : K]
.

But the fact that
∑

w|v[Lw : Kv] = [L : K] is classical (after all,L⊗KKv ≃∏w|v Lw).
�

Thus we have a height function on Q̄. For our purposes, in fact this is enough.
But let us note two amusing properties of the absolute Weil height before we move
to putting it into use. For the reader just becoming acquainted with heights, rest
assured that they, as with any tool in mathematics, are much more easily under-
stood when actually used in a calculation or sufficiently complicated proof.
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3. Properties of the Weil height.

The first amusing (but structurally important) property is the so-called North-
cott property.

PROPOSITION 3.1 (Northcott property of the Weil height.). Let C > 0. The
number of nonzero algebraic numbers α ∈ Q̄ with h(α) < C and deg(α) < C is finite.

Therefore, for instance, the Weil height is an appropriate measure of complexity
for Fermat’s method of descent.

PROOF OF PROPOSITION 3.1. Note that it is certainly possible to have zero
height — e.g., h(1) = 0. Thus we must first show that there are only finitely many
algebraic numbers of zero height and bounded degree. But these are just the roots
of unity of bounded degree — indeed, if h(ζ) = 0, then |ζ| ≤ 1 under all absolute
values of Q(ζ), whence, by a classical theorem of Kronecker, ζ is a root of unity.
(Proof: Note that ζ is an algebraic integer. Let K/Q be the Galois closure of Q(ζ).
This is of degree at most C!. Observe that all absolute values of the first deg(ζ)
symmetric polynomials in the σζ, σ ∈ Gal(K/Q), are uniformly bounded in terms
of C, by our hypothesis. These are all integers, whence there are finitely many of
them. Since the hypothesis holds for all ζN , N ∈ Z+, by the pigeonhole principle

we find a > b > 0 and σ such that ζa = σ(ζb). Thus ζa
[K:Q]−b[K:Q]

= 1. Thus the
claim. Note also that by the product formula |ζ| = 1 at all places, but we didn’t
need this here.)

Now if h(α) < C, let d := deg(α), and write α = α1, . . . , αd (respectively,
a0 ∈ Z+) for the roots (respectively, leading coefficient) of the minimial polynomial

of α over Q. The discriminant of Q(α) divides ∆ := a2d−2
0

∏

i<j(αi − αj)
2 ∈ Z.

The height of ∆ is certainly at most 2C log |a0| + 2
∑

i<j h(αi − αj). But, via the

Archimedean and non-Archimedean triangle inequalities at the infinite and finite
places, respectively, in general one has h(x + y) ≤ log 2 + h(x) + h(y), the log 2
coming from the infinite places (specifically, |x + y| ≤ 2max(|x|, |y|), whereas the
finite places have no factor of 2). Thus

h(∆) ≪C log |a0|.
Since the greatest common divisor of the coefficients of the minimal polynomial
of α is 1, we must have log |a0| ≤ h(σk(α1, . . . , αd)) ≪C 1 for some symmetric
polynomial σk, 1 ≤ k ≤ d. We therefore find that |∆| is bounded uniformly in
terms of C.

Therefore Q(α) has discriminant bounded in terms of C, and degree at most
C. There are finitely many number fields of bounded degree and bounded dis-
criminant, whence all such α lie in a single number field K/Q.

But now α is forced to be integral at all primes with norm at least eC[K:Q]. Thus

α is an S-integer ofK for S a sufficiently large finite set. But if p ∈ S, |α|p ≤ eC[K:Q]

as well. Thus by scaling by n a product of finitely many prime powers (bounded
in terms of C and K) we may assume α is integral. But α then has norm bounded

by neC[K:Q] ≪C 1 in all embeddings of K into R or C. Thus all such α are roots of

a finite list of polynomials of bounded degree with integral coefficients.2 �

2Note to the reader: there is a slick proof of this theorem via Jensen’s formula and the theory of

the Mahler measure presented in Bombieri-Gubler’s book [11] as well.
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The second amusing property will not be proved here, simply because it is
somewhat orthogonal to the focus of this thesis. However, the proof is fun, and
the interested reader should consult [11] for the full details.

THEOREM 3.2 (Bilu’s equidistribution theorem.). Let αi ∈ Q̄ be distinct, nonzero,
and such that h(αi) → 0. Then the Galois orbits of the αi equidistribute on the unit circle.

That is, the measures determined by placing point masses at all conjugates of a

fixed αi limit to the Haar measure on the unit circle. For example, h(2
1
n ) = log 2

n →
0 as n → ∞. The Galois conjugates of 2

1
n are ζkn2

1
n , 0 ≤ k < n, ζn a primitive n-th

root of unity. Since 2
1
n → 1 in C, and since the roots of unity are dense on the unit

circle, the result is certainly plausible.
Though we will not prove Bilu’s theorem here, let us give an idea of what

goes into the proof. By Banach-Alaoglu, it suffices to show that any convergent
subsequence of the Galois orbit measures converges to Haar measure on the unit
circle. By Jensen it converges to some measure supported only on the unit circle.
It is seen to be absolutely continuous upon considering the growth rates of the
discriminants of the αi, all integers. By considering Fourier coefficients it also
follows that its Fourier coefficients agree with those of Haar measure. Thus the
theorem.

Finally, we leave the reader with an open problem.

QUESTION 3.3 (Lehmer’s conjecture.). Let α ∈ Q̄ be nonzero and not a root of
unity. Is h(α) deg(α) uniformly bounded below by a positive constant?

The quantity h(α) deg(α) is the logarithm of the so-called Mahler measure of α, a

complex-analytic measure of its minimal polynomial.3 The infimum is conjectured
to occur at the roots of x10 +x9 −x7 −x6 −x5 −x4 −x3 +x+1, a polynomial with
Mahler measure 1.1762 . . ..

Thus ends the introduction to Weil heights. We will now use them for some-
thing, namely proving that algebraic numbers cannot be approximated too well
by rationals, steadily improving on what we mean by “too well” until we arrive at
Roth’s Fields Medal-winning theorem. We will prove the weaker results in full as
well, if only to space out the introduction of the many new ideas in Roth’s proof.

3Specifically, the Mahler measure of the polynomial f(x1, . . . , xn) is

M(f) := exp

(∮

ζ1∈S1
· · ·

∮

ζn∈S1
dζ1 · · · dζn log |f(ζ1, . . . , ζn)|

)

.

By Jensen’s formula this agrees with the definition given above.
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3

ROTH’S THEOREM

1. Theorems we will prove.

In this Chapter we will prove the following theorem.1

THEOREM 1.1 (Roth’s theorem.). Let α ∈ Q̄. Let κ > 2. Then there are only
finitely many rationals β ∈ Q for which

|α− β| ≤ H(β)−κ.

A few remarks about this theorem. First, by a construction of Dirichlet (the
continued fraction expansion), for κ = 2 this theorem is, up to a constant, false.
Thus in a sense this is the optimal result.

Second, for α ∈ Q, write α = a
b with (a, b) = 1 and write β = c

d with (c, d) = 1.

Then, if α 6= β,
∣

∣

a
b − c

d

∣

∣ ≥ (bd)−1 ≫α H(β)−1, simply because the numerator is a
nonzero integer, hence of absolute value at least 1. Thus the result is immediate in
the case of rational α.

Finally, the proof of this theorem, were it to be presented in one and only one
go, would be impossible to follow. Therefore we prove two weaker variants of
the theorem, the first of which is rather basic but introduces the idea of auxiliary
polynomials, and the second of which further introduces the Wronskian method
and the central vanishing-nonvanishing tension (which arises via pigeonhole and
tremendous asymmetry, respectively) exploited in the proof. These theorems are
Liouville’s and Thue’s theorems, stated below. For the latter (and for Roth as well)
we will need Siegel’s Lemma, which implements the pigeonhole principle in pro-
ducing multivariate polynomials with vanishing properties (though we will state
it for underdetermined linear equations in the integers).

We state the aforementioned theorems below.

1As a reference the reader is encouraged to look in Bombieri-Gubler [11], whose bounds are often

stronger and more uniform.

10
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THEOREM 1.2 (Liouville’s theorem.). Let α ∈ Q̄. Let κ > deg(α). Then there are
only finitely many rationals β ∈ Q for which

|α− β| ≤ H(β)−κ.

THEOREM 1.3 (Thue’s theorem.). Let α ∈ Q̄. Let κ > deg(α)
2 + 1. Then there are

only finitely many rationals β ∈ Q for which

|α− β| ≤ H(β)−κ.

LEMMA 1.4 (Siegel’s Lemma.). LetN > M be positive integers. LetA = (Aij)
M,N
i=1,j=1

(Aij ∈ Z) be an M ×N matrix in the integers. Let ||A||∞ := maxi,j |Aij |. Then there is
a nonzero integer vector x = (xj)

N
j=1 (xi ∈ Z) for which Ax = 0 and

||x||∞ ≤ (3||A||∞N)
M

N−M ,

where ||x||∞ := maxi |xi|.

We begin with Liouville.

2. Liouville’s theorem.

Once one sees the degree of α factor in, one is immediately led to consider
the minimal polynomial of α, which is the only invariant containing the degree
of α that could possibly play a role. But then the point is clear: all the roots of
the minimal polynomial are irrational if α is irrational (we have already seen the
rational case, anyway), and so it cannot vanish on any rational number β. But if
β is so close to α, it must evaluate to something quite small on β as well! Since
we know the denominator of this nonzero number, we will derive a contradic-
tion by measuring precisely what is meant by “quite small.” Note that the whole
proof proceeds through properties of the minimal polynomial of α, whence our
terminology “auxiliary polynomial.”

PROOF OF LIOUVILLE’S THEOREM. Let p(x) ∈ Z[x] be the minimal polyno-
mial of α, of degree d := deg(α). Since, without loss of generality, α is irrational,
p(β) 6= 0. Therefore |p(β)| ≥ H(β)−d, since it is a nonzero rational with denomina-
tor at most H(β)d. But

p(β) = p(β)− p(α) = (β − α) · p(β) − p(α)

β − α
.

The second factor is bounded above by a constant only depending on α simply
by expanding out the relevant monomials (note that |β| ≤ |α| + 1 by hypothesis).
Inserting the upper bound of the hypothesis into the first term, we see that

H(β)−d ≤ |p(β)| ≪α H(β)−κ.

Once H(β) ≫α 1, this is a contradiction. Since there are finitely many rationals of
bounded height, the result follows. �

Next we turn to Thue’s theorem.
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3. Thue’s theorem.

Here the idea is to choose our auxiliary polynomial more intelligently. If we
restrict ourselves to one variable, unfortunately we cannot do any better than Li-
ouville — after all, if p(x) ∈ Z[x] vanishes on α, then automatically one has that
the minimal polynomial of α divides p. Thus the degree of p is larger than that
of the minimal polynomial, and so one obtains a worse bound for κ (namely,
κ ≤ deg p[≥ deg(α)]).

But, as with many problems in mathematics (see Maynard’s multidimensional
Selberg sieve for bounded gaps between primes for a recent example), adding
dimensions helps quite a bit. In the argument giving bounded gaps, one takes the
dimension to be quite large in order to use the geometry of a high-dimensional
simplex. We will see the exact same idea in Roth’s theorem — except our simplex
will be quite a bit larger (in volume) than the one used to prove the existence of
bounded gaps between primes. But even before that, we will see that already in

two dimensions one gets a significant improvement on Liouville’s theorem.2

The idea of the proof will be the following. Rather than taking one extremely
good approximation to α, let us take two. Specifically, take one approximation, say
β1, with very large height. Then take a second, say β2, with height much, much
larger than that of the first. This asymmetry in heights of these points will then
be exploited by using a highly asymmetric auxiliary polynomial in two variables
(asymmetric in the sense that its partial degrees will be orders of magnitude differ-
ent). We will first produce such an auxiliary polynomial vanishing to high order
at the point (α, α) via the pigeonhole principle. Then we will show that, due to
its asymmetry, some small-order derivative of this polynomial will not vanish at
(β1, β2). By replacing the original polynomial with this derivative and arguing as
in Liouville (the upper bound from the high-order vanishing at (α, α), the lower
bound from nonvanishing at (β1, β2) and rationality), we will obtain a contradic-
tion.

Therefore it will follow that there cannot exist two such approximations with
large, and quite different, heights. Thus finiteness will follow, but only in a qual-
itative sense, since this argument cannot rule out a single rational approximation
of tremendous height. (However, it can control the number of approximations,

which will be important to us in the proof of the titular result of this thesis.3)

2Indeed, it is certain that the need for many dimensions was realized already in Thue’s time,
but the technical difficulty in producing an auxiliary polynomial not vanishing on a rational point
constructed from approximations required some fifty years’ wait until Roth proved his Lemma. The

optimal result achieved by two-dimensional methods is the bound κ ≤
√
2d due to Dyson and Gel-

fond, after Siegel proved the bound κ ≤ 2
√
d. These results have historical significance because a

bound of shape κ ≤ o(d) allowed Siegel to prove that there are only finitely many integral points on
affine patches of curves of positive genus, and, more generally, those with at least three points at ∞,

like P1 − {0, 1,∞}. We will see the case of genus one curves shortly.
3In fact the control on the number of approximations is quite good. This is because one has a so-

called strong gap principle forcing the approximations to be doubly exponentially far apart! Specifically,

if q > q′ and p
q
, p′

q′
are both approximations to α with exponent κ = 2 + ǫ > 2, then

q−1q′−1 ≤
∣

∣

∣

∣

p

q
− p′

q′

∣

∣

∣

∣

≪α q−2−ǫ,

whence q′ ≥ q1+ǫ. That is to say, the denominators must grow like q, q(1+ǫ), q(1+ǫ)2 , . . . , q(1+ǫ)k , . . .

— doubly exponentially!
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In order to start, however, we will need to make precise the use of the pigeon-
hole principle above. This is Siegel’s Lemma.

3.1. Siegel’s Lemma. The statement of Lemma 1.4 suggests its proof, which
is to simply use that the number of integral points in a large box in N dimensions
grows much faster than the number of points in a similar box in M dimensions if
N > M .

PROOF OF SIEGEL’S LEMMA. Let

B(X) := {(xi)Ni=1 ∈ ZN : 0 ≤ xi ≤ X}.
First, #|B(X)| = (X + 1)N . Second,

A · B(X) ⊆ {(yj)Mj=1 ∈ ZM : −||A||∞NX ≤ yj ≤ ||A||∞NX}.

The latter set has size ((2||A||∞ + 1)NX)
M

. Once X > ((2||A||∞ + 1)N)
M

N−M ,
B(X) has more elements than A · B(X). Therefore there are x 6= y ∈ B(X) with
Ax = Ay. The vector x− y is of the desired form. �

Thus we have made good on our repeated invocation of “the pigeonhole prin-
ciple.” Now let us apply it.

3.2. Proof of Thue’s theorem.

PROOF OF THUE’S THEOREM. Suppose otherwise. By scaling (and then de-
creasing κ slightly) we had might as well take α to be an algebraic integer. Let β1
be a solution to |α− β1| ≤ H(β1)

−κ with h(β1) > A (we will choose A in terms of
α in due course). Let β2 be a solution to the same inequality with h(β2) > Ah(β1).

Let d1 ∈ Z+ be the nearest positive integer to deg(α)
2 · h(β2)

h(β1)
. The asymmetry we

will exploit is that d1 is much larger than 1, and our auxiliary polynomial will be
of partial degree bounded by (d1, 1).

Now to the construction of such a polynomial. First, let us find a polynomial
that vanishes to high order on (α, α).

CLAIM 3.1. Let ǫ > 0. Let M ≤ 2d1

deg(α) (1 − ǫ) be a positive integer. Then there is

a nonzero polynomial P (x, y) ∈ Z[x, y] with
−→
deg(P ) ≤ (d1, 1), coefficients bounded in

absolute value by

||P ||∞ ≪ eOα,ǫ(d1)

and such that

P (α, α), (∂xP )(α, α), . . . , (∂
M
x P )(α, α) = 0,

where ∂x := ∂
∂x and

−→
deg(P ) := (degx(P ), degy(P )).

PROOF OF CLAIM 3.1. Consider the following linear equations in aij , 0 ≤ i ≤
d1, 0 ≤ j ≤ 1:

d1
∑

i=0

1
∑

j=0

aij

(

i

a

)

αi+j−a = 0.

Write, for k ≥ deg(α), αk in terms of 1, α, . . . , αdeg(α)−1. Then set the coefficients of
each of the αi (0 ≤ i < deg(α)) equal to zero. This gives M deg(α) linear equations
for the aij . The size of the coefficients of each of the aij is at mostO(1)d1 ·Oα(1)

d1 =

eOα(d1), the first factor coming from the binomial coefficients (which are each at
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most 2d1), and the second from the repeated use of the linear relation αdeg(α) ∈
spanZ(1, . . . , α

deg(α)−1).
The number of aij is 2(d1 + 1) > M deg(α) by hypothesis. Therefore, by

Siegel’s Lemma, there are aij ∈ Z satisfying all of the considered equations, and
all bounded by

||(aij)d1,1
i=0,j=0||∞ ≤ exp(Oα,ǫ(d1)).

Let now P (x, y) :=
∑d1

i=0

∑1
j=0 aijx

iyj , and observe that therefore

(∂axP )(α, α) = a!

d1
∑

i=0

1
∑

j=0

(

i

a

)

aijα
i+j−a = 0.

This completes the proof. �

A few comments are in order. The bound on the coefficients of the poly-
nomial P will be more than enough for our purposes, but it would have been
far too weak had we not factored out the a! term in expressing the vanishing of
(∂axP )(α, α). Second, the point of the (1 − ǫ) term in the bound on M is for pre-
cisely the same reason: the bound on the coefficients Siegel provides has exponent
dim

codim = M deg(α)
2(d1+1)−M deg(α) . Since we would like to cancel the contribution of the

numerator, we are forced to take M to be on the same scale, but slightly smaller,

than 2d1

deg(α) . This will change nothing in the final bound.

Unfortunately for us our work does not end here. This is because we have no

control on whether or not P vanishes on (β1, β2).
4 However, for the purposes of

the final bound it will be enough to show that a derivative of small order — say, ǫM
— does not vanish (whence we are left with basically all of the vanishing at (α, α)
and nonvanishing at (β1, β2) if we work with this small-order derivative instead).
This is the result that was the bottleneck for fifty years before Roth proved his
Lemma. The method we use below will be of the same flavour.

CLAIM 3.2. Let ǫ > 0. Let M := ⌊ 2d1

deg(α) (1 − ǫ)⌋. Let P (x, y) be as guaranteed by

Claim 3.1. There is some a ≤ 1 +
Oα,ǫ(d1)

A such that

(∂axP )(β1, β2) 6= 0.

PROOF OF CLAIM 3.2. Write P (x, y) =: F (x) + yG(x). If F is proportional to
G (or vice versa), then the result is immediate since α is (without loss of generality)
irrational and thus F (β1) 6= 0 and β2 6= −1 (since h(β2) is large). Otherwise, let a
be minimal such that (∂axP )(β1, β2) 6= 0. Consider the following polynomial in x:

W (x) := det

(

F ∂xF
G ∂xG

)

.

Note that, for 0 ≤ m ≤ a − 1, (∂mx W )(β1) = 0 via bilinearity of the determinant,
since there is a linear relation among the rows of any matrix that appears after
differentiation:

(

(∂mx F )(β1), (∂
n+1
x F )(β1)

)

+ β2 ·
(

(∂mx G)(β1), (∂
n+1
x G)(β1)

)

= 0

4While an extensive commentary on where the naı̈ve attempts to control this fail would likely be
out of the scope of a senior thesis, suffice it to say that an attempt to both guarantee vanishing of all
the derivatives and nonvanishing at a single point will preclude the use of the pigeonhole principle
— indeed, were one able to do this in sufficient generality one would obtain a result contradicting

Dirichlet’s continued fraction construction! We leave it to the reader to do his own exploration.
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for 0 ≤ m,n ≤ a− 1. Therefore, being a univariate polynomial vanishing on β1 to
order a − 1, it must be divisible by the minimal polynomial of β1, also known as
q1x− p1, where β1 =: p1

q1
, to the same order. That is to say,

(q1x− p1)
a−1|W (x).

Since W (x) is not identically zero (consider the numerator of
(

F
G

)′
or
(

G
F

)′
), this

implies that the largest coefficient ofW (x) is at least max(|p1|, |q1|)a−1 = H(β1)
a−1.

But we know a bound for the largest coefficient of P , and therefore we may
bound the largest coefficient appearing in W . By definition it is at most

||W ||∞ ≤ exp(Oα,ǫ(d1)).

Therefore a ≤ 1 +
Oα,ǫ(d1)
h(β1)

. This completes the proof. �

Let now a be as guaranteed in Claim 3.2 for a polynomial P guaranteed by

Claim 3.1. (Here, as before, we take ǫ > 0 andM := ⌊ 2d1

deg(α) (1− ǫ)⌋.) LetQ(x, y) :=

(
∂a
x

a! P )(x, y). Since certainly a ≪α,ǫ d1 (indeed, by quite a margin), we have that
the bound on the coefficients of P persists, again because we have factored out the
factorial term:

||Q||∞ ≤ exp(Oα,ǫ(d1)).

Moreover, Q still vanishes to quite high order at (α, α):

Q(α, α), (∂xQ)(α, α), . . . , (∂M−a
x Q)(α, α) = 0.

Finally, we now have the crucial fact that

Q(β1, β2) 6= 0.

Now let us play these facts off one another to complete the proof. In the first
place, Q(β1, β2) is nonzero, so it is, in absolute value, at least

|Q(β1, β2)| ≥ exp(−d1h(β1)− h(β2)).

In the second place, Q(β1, β2) is quite close to Q(α, α), so it is quite small. Specifi-
cally, via Taylor expanding around (α, α), we have that

|Q(β1, β2)| ≪ eOα,ǫ(d1)
(

|α− β1|M−a + |α− β2|
)

≪ exp (Oα,ǫ(d1)−min((M − a)κh(β1), κh(β2))) .

Therefore we derive the inequality

κ ·min ((M − a)h(β1), h(β2)) ≤ d1h(β1) + h(β2) +Oα,ǫ(d1).

That is to say, since d1 is within 1 of deg(α)
2

h(β2)
h(β1)

> A,

κ ≤ d1
M − a

+ 1 +
Oα,ǫ(1)

A
≤ deg(α)

2
(1 + ǫ) +

Oα,ǫ(1)

A
.

Taking first ǫ very small (depending on α and κ) and then A very large (depending
on α, κ, and ǫ) derives a contradiction, completing the proof. �

Reiterating, our method of proof was the following. We first supposed there
were infinitely many such rational approximations in order to produce a sequence
β1, β2 of two of them starting at tremendous height and spaced out with tremen-
dous spaces between heights. Then we constructed a polynomial depending on
these approximations that was both very zero (i.e., vanished to enormous order)
at (α, α), and nonzero at (β1, β2). (To do this we first constructed a polynomial



4. ROTH’S THEOREM. 16

vanishing to high order at (α, α) by pigeonhole, and then showed that a small
derivative of it would not vanish at (β1, β2) because we could reduce to the uni-
variate case and force the coefficients of our polynomial to actually be quite large, a
contradiction.) Using this polynomial and proceeding as in Liouville, we obtained
a contradiction, thus affirming the original claim.

Now we may begin the proof of Roth’s theorem.

4. Roth’s theorem.

There will be many parameters in the proof. We leave it to the reader to trust
us to choose them carefully (and in the correct order) at the end.

PROOF OF ROTH’S THEOREM. Again, without loss of generality α is an alge-
braic integer. Let β1, . . . , βm be m solutions to the inequality in question with
h(β1) > A and h(βi) > Ah(βi−1) for i > 1.

Let d2

d1
, . . . , dm

d1
be continued fraction approximants to h(β1)

h(β2)
, . . . , h(β1)

h(βm) with

d1 > h(βm)[= maxi h(βi)], so that

|dih(βi)− d1h(β1)| ≪ 1.

Therefore

|dih(βi)− djh(βj)| ≪ 1

as well.
Now let us construct from this data an auxiliary polynomial which vanishes

to high order at (α, α, . . . , α). But how should we measure “high order” with
so many variables? We will measure it by the strength of the final upper bound
implied by the vanishing. As in the two-variable case, the resulting upper bound
will be of shape exp(−κ[µ1h(β1) + · · · + µmh(βm)]), where

∑

µi is minimal so
that (∂µ1

1 · · · ∂µm
m P )(α, . . . , α) 6= 0, for P our auxiliary polynomial (there may be

multiple such ~µs, but let us forget about this for the moment). This to optimize
this bound we would like µ1h(β1) + · · ·+ µmh(βm) to be as large as possible. But
d1h(β1) ≈ · · · ≈ dmh(βm), so that this is equivalent to asking that µ1

d1
+ · · ·+ µm

dm
be

as large as possible. This weighted degree of the operator ∂µ1

1 · · ·∂µm
m is what we

will use to measure the vanishing of our auxiliary polynomial.
Specifically, let, for a polynomial P ∈ Z[x1, . . . , xm] and (ξ1, . . . , ξm) ∈ Q̄m,

ind(P, (ξ1, . . . , ξm)) := max

{

µ1

d1
+ · · ·+ µm

dm
: (∂µ1

1 · · · ∂µm
m P )(ξ1, . . . , ξm) = 0

}

.

We will also use the notation ~ξ := (ξ1, . . . , ξm) and

∂~µ :=
∂µ1

1

µ1!
· · · ∂

µm
m

µm!
,

where we divide out by the factorials for the same reason as in the proof of Thue’s
theorem — namely, dividing by these factorials preserves integrality and makes

the coefficients quite a bit smaller. We will again employ the notation
−→
deg(P ) :=

(degx1
(P ), . . . , degxm

(P )) for the partial degrees of P .

CLAIM 4.1. Let ǫ > 0. Let 1
2 − ǫ ≤ t ≤ 1

2 − 1
A − Oǫ

(

√

deg(α)
m

)

. Then there

is a nonzero polynomial P (x1, . . . , xm) ∈ Z[x1, . . . , xm] of partial degrees bounded by



4. ROTH’S THEOREM. 17

−→
deg(P ) ≤ (d1, . . . , dm), coefficients bounded by

||P ||∞ ≤ exp(Oǫ,α(d1)),

and such that ind(P, (α, . . . , α)) ≥ mt.

The point is that we have
∏m

i=1(di + 1) ≈ d1 · · · dm many variables to satisfy

≈ deg(α)·vol
(

{(x1, . . . , xm) ∈ Rm : 0 ≤ x1 ≤ d1, . . . , 0 ≤ xm ≤ dm,
x1
d1

+ · · ·+ xm
dm

< mt}
)

many equations. Thus we need

deg(α) · vol
(

{(x1, . . . , xm) ∈ Rm : 0 ≤ x1, . . . , xm ≤ 1,
∑

xi < mt}
)

= deg(α) · Pr (X1 + · · ·+Xm < mt)

to be appreciably smaller than 1, whereXi are independent uniform random vari-

ables on [0, 1]. But the law of large numbers tells us that X1+···+Xm

m is basically
a point mass on m

2 , so that the probability term will decay extremely rapidly in
1
2 − t!5 In fact the tail probability will decay as the tail probability of a Gaussian,
by e.g. the Chernoff/Hoeffding bound (and one cannot do better because of the
central limit theorem).

PROOF OF CLAIM 4.1. Consider the linear equations

∑

0≤i1≤d1,...,0≤im≤dm

a(i1,...,im)

(

i1
µ1

)

· · ·
(

im
µm

)

αi1+···+im−µ1−···−µm = 0,

one for each ~µ for which 0 ≤ µ1 ≤ d1, . . . , 0 ≤ µm ≤ dm and µ1

d1
+ · · ·+ µm

dm
≤ mt,

in the variables a(i1,...,im) ∈ Z (0 ≤ i1 ≤ d1, . . . , 0 ≤ im ≤ dm).

Using the relation αdeg(α) ∈ spanZ(1, . . . , α
deg(α)−1), write this as deg(α) times

as many equations with integral coefficients by setting the resulting coefficients of
each αi, 0 ≤ i < deg(α), equal to zero.

There are thus

deg(α)·#
∣

∣

∣

∣

{

(µ1, . . . , µm) ∈ Zm : 0 ≤ µ1 ≤ d1, . . . , 0 ≤ µm ≤ dm,
µ1

d1
+ · · ·+ µm

dm
≤ mt

}∣

∣

∣

∣

many linear equations, each with coefficients bounded by exp(Oα(d1 + · · ·+ dm)).

There are
∏m

i=1(di + 1) ≥∏m
i=1 di many variables.6 So long as

#

∣

∣

∣

∣

{

(µ1, . . . , µm) ∈ Zm : 0 ≤ µ1 ≤ d1, . . . , 0 ≤ µm ≤ dm,
µ1

d1
+ · · ·+ µm

dm
≤ mt

}∣

∣

∣

∣

<
d1 · · · dm
deg(α)

(1 − ǫ),

Siegel’s Lemma will apply (again, we have added the (1− ǫ) to keep the exponent
in Siegel’s Lemma from growing).

Now the count of lattice points in the convex region {(x1, . . . , xm) ∈ Rm : 0 ≤
x1 ≤ d1, . . . , 0 ≤ xm ≤ dm,

x1

d1
+ · · · + xm

dm
< mt} is very nearly the volume of the

region. Indeed, this count is certainly the same as the volume of the region formed

5In fact the distribution is exactly a so-called Irwin-Hall distribution, which incidentally arises

when trying to prove that certain partition sequences are unimodal.
6The inequality we have used is not at all wasteful, since the di grow exponentially with very

large factor.
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by the union of closed hypercubes of length 1 centered at each of the lattice points.
But this region is contained in the region
{

(x1, . . . , xm) ∈ Rm : 0 ≤ x1 ≤ d1, . . . , 0 ≤ xm ≤ dm,
x1
d1

+ · · ·+ xm
dm

< mt+
1

2

(

1

d1
+ · · ·+ 1

dm

)}

.

Since the di grow exponentially (and A > 2 — indeed, by some margin) this is
further contained in the region
{

(x1, . . . , xm) ∈ Rm : 0 ≤ x1 ≤ d1, . . . , 0 ≤ xm ≤ dm,
x1
d1

+ · · ·+ xm
dm

< mt+
1

A

}

,

which has volume

(d1 · · · dm) · Pr
(

X1 + · · ·+Xm

m
< t+

1

A

)

,

where the Xi are independent uniform random variables on [0, 1]. The Hoeffding
inequality tells us that this is at most

≤ (d1 · · · dm) · e−2m( 1
2−t− 1

A
)2 .7

Thus for t at most 1
2 − 1

A − Oǫ

(

√

deg(α)
m

)

we have the desired upper bound for

the number of equations.
Therefore Siegel’s Lemma applies and we may find a solution

P (x1, . . . , xm) =:
∑

0≤i1≤d1,...,0≤im≤dm

a(i1,...,im)x
i1
1 · · ·ximm ∈ Z[x1, . . . , xm]

such that

||P ||∞ ≤ eOǫ,α(d1+···+dm) ≤ eOǫ,α(d1)

(since A > 2 and d1 > Ad2 > A2d3 > · · · > Am−1dm) and

ind(P, (α, . . . , α)) ≥ mt.

This completes the proof. �

So let ǫ > 0 be another parameter, and let P be as guaranteed in Claim 4.1
(once m,A ≫α,ǫ 1, so that there is some t for which the hypothesis holds). We
would like to take some small derivative of P produce a polynomial Q that does
not vanish on (β1, . . . , βm). To do this we will need the major achievement of
Roth’s proof, Roth’s Lemma.

CLAIM 4.2 (Roth’s Lemma.). Let P ∈ Z[x1, . . . , xm] be a polynomial with partial

degrees bounded above by
−→
degP ≤ (d1, . . . , dm) with d1 > Ad2 > · · · > Am−1dm and

coefficients bounded above by

||P ||∞ ≤ exp(Cd1),

with A > C > 28. Let βi ∈ Q be such that |dih(βi) − djh(βj)| ≪ 1 and h(β1) > A.
Then

ind(P, (β1, . . . , βm)) ≤ 2m

(

Cm

A

)
1

2m−1

.

7For an elementary argument giving this bound, see Bombieri-Gubler Lemma 6.3.5. I have simply
cited Hoeffding here because the proof of such a bound, albeit quite simple, is not at all the focus of

our efforts!
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The proof will proceed by induction on the number of variables m, just as in
the two-variable case (where we reduced to the univariate case via the Wronskian).
We will write ||~x||1 :=

∑ |xi| for the ℓ1-norm.

PROOF OF ROTH’S LEMMA. Let us first do the case m = 1. Note that, writing
β1 =: p1

q1
,

(q1x− p1)
d1ind(P,β1)|P (x1).

Since P is nonzero this implies that

H(β1)
d1ind(P,β1) ≤ ||P ||∞ ≤ exp(Cd1).

Therefore

ind(P, β1) ≤
C

h(β1)
≤ C

A
,

which is even stronger than the desired form.
Next, in the case m > 1, write

P (x1, . . . , xm) =:
s
∑

i=0

fi(x1, . . . , xm−1)gi(xm)

for some s ≤ dm and fi and gi all linearly independent. (An expression of this form

exists by writing P (x1, . . . , xm) =
∑dm

i=0 Pi(x1, . . . , xm−1)x
i
m and then combining

linearly independent terms (decreasing the number of summands at each step)
until termination.)

The claim is that linear independence forces there to be some WronskianW~µ(0),...,~µ(s)(x1, . . . , xm−1)

(with ||~µ(i)||1 =:
∑m−1

j=1 µ
(i)
j ≤ i) in the fi that does not vanish identically, where

W~µ(0) ,...,~µ(s)(x1, . . . , xm−1) := det
(

∂~µ(i)fj
)s

i,j=0
.

For the same reason there is also a Wronskian W
µ
(0)
m ,...,µ

(s)
m
(xm) (with µ

(i)
m ≤ i) in

the gi that does not vanish identically, where

W
µ
(0)
m ,...,µ

(s)
m
(xm) := det

(

∂
µ
(i)
m
gj

)s

i,j=0
.

(Here we have written ∂
µ
(i)
m

:=
∂µ

(i)
m

m

µ
(i)
m !

.)

To see this claim, note that otherwise all such Wronskians would vanish as
functions of t upon letting x1 = t, x2 = tN , . . . , xm = tN

m

, whereN ≫deg(fi),deg(gi)

1 is sufficiently large. Since N is so large, all the fi and gi are linearly independent
as functions of t. Thus we need only prove the nonvanishing of the Wronskian

W (t) := det
(

(∂itpj)(t)
)s

i,j=0
for univariate and linearly independent polynomials

p0(t), . . . , ps(t) ∈ Z[t], since then by the chain rule one of our original Wronskians
would not vanish (since the univariate Wronskian is a sum of terms proportional to
Wronskians formed with derivatives in the xi, by multilinearity of the determinant
and the product rule of differentiation).

But this is classical: the vanishing of the determinant implies that there are
some ai(t) ∈ Z[t] not all zero such that

∑s
i=0 ai(t)(∂

i
tpj)(t) = 0 for each j. Thus

we have found s + 1 linearly independent solutions to the (at most) s-th order
differential equation

a0(t)f(t) + a1(t)f
′(t) + · · ·+ as(t)f

(s)(t) = 0,
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which is impossible, by uniqueness of solutions to ordinary differential equations
(there is only an (at most) s-dimensional space of initial conditions).

Let thenU(x1, . . . , xm) :=W~µ(0) ,...,~µ(s)(x1, . . . , xm−1), V (xm) :=W
µ
(0)
m ,...,µ

(s)
m
(xm)

be the guaranteed nonvanishing Wronskians. Then

WP (x1, . . . , xm) := U(x1, . . . , xm−1) · V (xm)

= det

(

∂(
µ
(i)
1 ,...,µ

(i)
m−1,µ

(j)
m

)P

)s

i,j=0

is a nonvanishing Wronskian of P , with each ||(µ(i)
1 , . . . , µ

(i)
m−1, µ

(j)
m )||1 ≤ 2s ≤ 2dm.

Therefore, by expanding the determinant as a sum of products indexed by
permutations,

||WP (x1, . . . , xm)||∞ ≤ s!·22s·||P ||s∞ ≤ exp(s(log dm+Cd1+2)) ≤ exp((C+4)[(s+1)d1]).

Since U and V have disjoint sets of variables, the product UV has coefficients the
pairwise products of coefficients of U and V , without any summation. Thus also

||WP (x1, . . . , xm)||∞ = ||U(x1, . . . , xm−1)||∞ · ||V (xm)||∞.

Hence the same upper bound applies to both U and V .

But now note that
−→
deg(U) ≤ ((s + 1)d1, . . . , (s+ 1)dm−1), which are still sepa-

rated by a factor of A! We also of course have deg(V ) ≤ (s+ 1)dm.
Thus by the univariate case from the beginning of the argument we have that

ind(V, βm) ≤ C + 4

A
(s+ 1).

(The extra s + 1 term comes from the fact that the univariate case we use has ind
with weight (s+1)dm, rather than dm.) Moreover, by the induction hypothesis we
have that

ind(U, (β1, . . . , βm−1)) ≤ 2(s+ 1)(m− 1)

(

(C + 4)(m− 1)

A

)
1

2m−2

≤ 2(s+ 1)(m− 1)

(

(C + 4)m

A

)
1

2m−2

.

(Again, the factor of s+ 1 comes from the difference in weights.) Therefore

ind(WP , (β1, . . . , βm)) ≤ 2(m− 1)(s+ 1)

(

(C + 4)m

A

)
1

2m−2

+ (s+ 1)
C + 4

A
.

But if P vanishes to extremely high order at (β1, . . . , βm), then, even with all
these derivatives on P , this Wronskian determinant would still have many en-
tire rows which vanish to high order at (β1, . . . , βm). So certainly the determinant
would vanish!
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Let us make this precise. Consider the expansion of the determinant as a sum
of permutations. Since the sum certainly vanishes if all its constituent terms van-
ish, we have that

ind(WP , (β1, . . . , βm)) ≥ min
σ∈Ss

s
∑

i=0

ind
(

∂
(µ

(i)
1 ,...,µ

(i)
m−1,µ

(σ(i))
m )

P, (β1, . . . , βm)
)

≥ min
σ∈Ss

s
∑

i=0

max

(

0, ind(P, (β1, . . . , βm))− µ
(i)
1

d1
− · · · − µ

(i)
m−1

dm−1
− µ

(σ(i))
m

dm

)

≥
s
∑

i=0

[

max

(

0, ind(P, (β1, . . . , βm))− i

dm

)

− s

dm−1

]

≥
s
∑

i=0

[

max

(

0, ind(P, (β1, . . . , βm))− i

s

)

− 1

A

]

=

s
∑

i=0

max

(

0, ind(P, (β1, . . . , βm))− i

s

)

− s+ 1

A
,

where we have used that

ind(∂~µP, (ξ1, . . . , xm)) ≥ ind(P, (x1, . . . , xm))−
∣

∣

∣

∣

∣

∣

∣

∣

(

µi

di

)m

i=1

∣

∣

∣

∣

∣

∣

∣

∣

1

,

and that ind is always nonnegative.
Now in general

s
∑

i=0

max

(

0, x− i

s

)

≥ s+ 1

2
min(x, x2).

Indeed, if x ≥ 1, then max
(

0, x− i
s

)

= x− i
s , so that the sum is equal to

(s+ 1)

(

x− 1

2

)

≥ s+ 1

2
x.

Else, the sum is equal to

∑

0≤i≤xs

x− i

s
= (⌊xs⌋+ 1)x− ⌊xs⌋(⌊xs⌋+ 1)

2s

≥ x2s

2

(

1 +
1− {xs}

xs

)(

1 +
{xs}
xs

)

≥ s+ 1

2
x2

(here {a} is the fractional part of a ∈ R and ⌊a⌋ = a− {a} is the largest integer not
exceeding a). Here we have applied the inequality

(

1 +
1− {xs}

xs

)(

1 +
{xs}
xs

)

≥ 1 +
1

xs

[

≥ 1 +
1

s

]

— after all, for a, b > 1 one always has ab ≥ a + b − 1, since ab − a − b + 1 =
(a− 1)(b− 1).

Therefore we see that

ind(WP , (β1, . . . , βm)) ≥ (s+1)

(

min

(

1

2
ind(P, (β1, . . . , βm)),

1

2
ind(P, (β1, . . . , βm))2

)

− 1

A

)

.
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But we have already proved that

ind(WP , (β1, . . . , βm)) ≤ 2(s+ 1)(m− 1)

(

(C + 4)m

A

)
1

2m−2

+ (s+ 1)
(C + 4)

A

Therefore, since of course ind(P, (β1, . . . , βm)) ≤ m, multiplying through bym ≥ 1
if necessary gives

ind(P, (β1, . . . , βm))2 ≤ 4m(m− 1)

(

(C + 4)m

A

)
1

2m−2

+ 3m
(C + 4)

A

≤ 4m2

(

Cm

A

)
1

2m−2

.8

This completes the proof of Roth’s Lemma. �

Therefore let ǫ > 0, and A,m ≫α,ǫ 1 so that Claim 4.1 applies for some t with
1
2 − t ≤ ǫ − 1

mA . Let P be the polynomial guaranteed by Claim 4.1, and observe
that, by Roth’s Lemma (with C ≤ Oα,ǫ(1)),

ind(P, (β1, . . . , βm)) ≤ 2m

(

Cm

A

)
1

2m−1

.

Therefore there is some derivative (dividing out by factorials as usual)Q(x1, . . . , xm)
of P with

ind(Q, (α, . . . , α)) ≥ ind(P, (α, . . . , α)) − 2m

(

Cm

A

)
1

2m−1

≥ mt− 2m

(

Oα,ǫ(m)

A

)
1

2m−1

≥
(

1

2
− ǫ

)

m

onceA≫α,ǫ,m 1. Moreover, thisQ has the crucial property thatQ(β1, . . . , βm) 6= 0.
Finally, the coefficients of Q are bounded by

||Q||∞ ≤ exp

((

2m

(

Cm

A

)
1

2m−1

+Od,α(1)

)

d1

)

.

Again because A≫α,ǫ,m 1, this implies that

||Q||∞ ≤ exp(Oα,ǫ(d1)),

so the bound on the coefficients of P persists.

8Here we have used the inequality

(4m − 1)

(

(C + 4)m

A

) 1
2m−2

≤ 4m

(

Cm

A

) 1
2m−2

,

which holds once

1 +
4

C
≤

(

1 +
1

4m − 1

)2m−2

,

e.g. once C > 28.
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Now we are done. First, Q(β1, . . . , βm) 6= 0 implies

|Q(β1, . . . , βm)| ≥ exp(−d1h(β1)− · · · − dmh(βm))

≥ exp(−md1h(β1) +m).

Second, Taylor expanding Q about (α, . . . , α) implies that

|Q(β1, . . . , βm)| ≪ exp

(

O(m log d1) +Oα,ǫ(d1)− κ

(

1

2
− ǫ

)

md1h(β1)

)

,

where the exp(O(m log d1)) term comes from the O(m) derivatives on Q as well as

the d
O(m)
1 many ~µ ≥ ~0 with

∑m
i=1

µi

di
>
(

1
2 − ǫ

)

m and
∑m

i=1 µi ≤
(

1
2 − ǫ

)

md1. (The

count is at most the volume of the latter region with ǫ replaced by 0, for instance.)
This implies the inequality

κ ≤ 1
1
2 − ǫ

+Oα,ǫ

(m

A

)

.

Thus taking ǫ so small so that 1
1
2−ǫ

< κ, and then taking m ≫α,ǫ 1 suffi-

ciently large so that the required inequalities from above hold, and then taking
A ≫α,ǫ,m 1 sufficiently large so that the required inequalities above hold and so
that 1

1
2−ǫ

+ Oα,ǫ

(

m
A

)

< κ, we arrive at a contradiction, completing the proof of

Roth’s theorem. �

After this incredibly difficult proof, we would be remiss if we did not present
at least some application of our hard work. We will in fact do one better: we will
prove the utterly spectacular fact that an elliptic curve can only have finitely many
integral points.



CHAPTER

4

SIEGEL’S THEOREM

1. Siegel’s theorem and a sketch of proof.

In this Chapter we will prove Siegel’s theorem: that affine patches of elliptic
curves can only have finitely many integral points. Specifically, we will prove the

following theorem.1

THEOREM 1.1 (Siegel’s theorem.). Let A,B ∈ Z be such that 4A3 + 27B2 6= 0.
Then y2 = x3 +Ax+B has finitely many solutions x, y ∈ Z.

In particular this gives a qualitative response to Fermat’s challenges concern-
ing y2 = x3 − n for some n ∈ Z: for each fixed n, there are only finitely many such
solutions. Finding all of them is a different matter, of course!

The idea will be as follows. Write E : y2 = x3 + Ax + B for the curve in P2

determined by this equation. An infinite sequence of integral points Pn = (xn, yn)
of increasing height h(Pn) := h(xn) = log |xn| forms a sequence “converging” to
the point at infinity, which is the origin in the group law. But this convergence is
rather slow when measured in height. To speed it up, we use a tensor-power trick
of sorts, in that we use the ability to scale on an elliptic curve to get much faster
convergence. Specifically, by Mordell-Weil (which we won’t bother proving here),
there is a rational point R for which Pn ≡ R mod 3 for infinitely many n (hence
without loss of generality all n). Write Pn = 3Qn +R, with Qn a rational point.

Then by just writing down explicit formulas for tripling and adding on the

curve one sees that h(3Qn + R) = 9h(Qn) + OE,R(
√

h(Qn)). (Alternatively, one
can use the theory of the canonical height.) Moreover, since the Pn were converg-

ing to ∞, the Qn must be converging to some solution of 3R̃ = −R (without loss

of generality they all become near one R̃, since there are nine R̃’s and infinitely
many Pn), a point over a degree 18 extension of Q. In particular, its x-coordinate

1As a reference the reader is encouraged to look in Silverman’s book [31], where much stronger,

but less explicit, results are derived.
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is algebraic. But the distance from Pn to ∞ (e.g., inside C, via the universal cov-

ering map) is roughly |x(Pn)|− 1
2 . Since Pn = 3Qn + R, by writing down explicit

formulas one sees that this is essentially
∏

3R̃=−R

∣

∣

∣x(Qn)− x(R̃)
∣

∣

∣. By Roth, except

for finitely many exceptions, this is always at least

≫R exp (−(2 + ǫ)h(Qn)) ≥ exp

(

−
(

2

9
+OR(ǫ)

)

h(Pn)

)

in absolute value. On the other hand, it was roughly equal to |x(Pn)|−
1
2 = exp

(

− 1
2h(Pn)

)

by integrality. Therefore 1
2 ≤ 2

9 + OR(ǫ)! Taking ǫ sufficiently small (with respect
to R) results in a contradiction.

Let us now fill in the details to make this a rigorous argument.

2. Details.

PROOF OF SIEGEL’S THEOREM. Suppose otherwise. Let Pn ∈ E(Z) be an infi-
nite sequence of integral points with increasing height. By Mordell-Weil the group
E(Q)/3E(Q) is finite. By passing to a subsequence we may assume that all Pn are
congruent modulo 3. Write e.g. R := P1 (which is, without loss of generality, not
a 6-torsion point), so that all Pn ≡ R mod 3. Thus we may write Pn =: 3Qn + R,
with each Qn ∈ E(Q).

By passing to another subsequence we may assume that, in the complex topol-
ogy (e.g. via the uniformization ℘ : C ։ E(C)), among the nine solutions to

3R̃ = −R in E(Q̄), all the Qn are closest to a fixed R̃ ∈ E(Q̄). Note that x(R̃) is
algebraic, since multiplication by 3 is algebraic on E.

REMARK 2.1. In fact we have an explicit description of multiplication by n on an
elliptic curve: there are universal polynomials ψm in A,B, x, y, called the division poly-
nomials of E, for which

x(nP ) = x(P )− ψn−1(P )ψn+1(P )

ψ2
n(P )

.

These division polynomials are defined by

ψ0 = 0,

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6Ax2 + 12Bx−A2,

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3), and, inductively,

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1,

ψ2m =

(

ψm

2y

)

· (ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1).

By our description of multiplication by n and an examination of the recurrence, we may
obtain a precise description of ψn as a polynomial as follows. Its roots are precisely the

nonzero n-torsion points. Its leading coefficient is n. It is degree n2−1
2 when x is given

weight 1 and y given weight 3
2 . In fact under this grading it is homogeneous of this degree

if we also give A weight 2 and B weight 3.
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By e.g. the explicit description in the remark (or on general principles, since
both are functions vanishing to single order when 3Qn = −R), we find that

log |x(Pn)|−
1
2 =

∑

3R̃=−R

log
∣

∣

∣x(Qn)− x(R̃)
∣

∣

∣+OE,R(1).

Indeed,
∏

3R̃=−R

(

x(Qn)− x(R̃)
)

= ψ3(Qn)
2(x(Qn)− x(R)) − ψ2(Qn)ψ4(Qn)

= ψ3(Qn)
2 · (x(3Qn)− x(R))

= ψ3(Qn)
2 · (x(Pn −R)− x(R))

= ψ3(Qn)
2 ·
(

−x(Pn)− 2x(R) +
(y(Pn) + y(R))2

(x(Pn)− x(R))2

)

= ψ3(Qn)
2 · 2y(Pn)y(R) + 3x(Pn)x(R)

2 +Ax(Pn) + y(R)2 − 2x(R)3 +B

(x(Pn)− x(R))2
,

where we have used the explicit formulas for multiplication by 3 and point ad-
dition on the curve. But now as n → ∞ the dominant term in the numerator of
the second factor is y(Pn) ∼ x(Pn)

3
2 . The denominator grows like x(Pn)

2, whence

the claimed overall growth of this expression as x(Pn)
− 1

2 times a constant inde-

pendent of n (since Qn → R̃ for some R̃ such that 3R̃ = −R, which is a nonzero
distance away from a 3-torsion point — hence it is bounded away, by a bound
depending on E and R, from any zero or pole of ψ3).

Finally, it remains to show that this passage from Pn to Qn actually speeds up
convergence. Note first that (again)

x(Pn −R) =
(y(Pn) + y(R))2 − (x(Pn)− x(R))2(x(Pn) + x(R))

(x(Pn)− x(R))2

=
x(Pn)

2x(R) + 2y(Pn)y(R) + x(Pn)x(R)
2 +Ax(Pn) +B + y(R)2 − x(R)3

(x(Pn)− x(R))2
.

Since these are integral points, we therefore have that the numerator and denomi-
nator of this last expression are both integral. Note that the numerator grows like
x(Pn)

2 times a constant independent of n and the denominator grows like x(Pn)
2.

Since they can only decrease if they share a factor, this tells us that

h(3Qn) = h(P −R) ≤ 2h(Pn) +OE,R(1).
2

Now consider h(3Qn). Via our explicit formula from before, we have that

x(3Qn) = x(Qn)−
ψ2(Qn)ψ4(Qn)

ψ3(Qn)
, (2.1)

2We have not introduced the canonical height

ĥ(P ) := lim
k→∞

h(2kP )

4k

in order to remain self-contained. But the bound we have given is actually suboptimal, and we could
improve it through the theory of the canonical height. Specifically, the canonical height induces a
positive-definite inner product on E(Q)/E(Q)tors, and therefore satisfies the Cauchy-Schwarz inequal-
ity. Moreover it differs from the Weil height by a function bounded by a constant only depending on

the curve E. Thus we would derive h(P − R) ≤ h(P ) + OE,R(
√

h(P )), but anyway the suboptimal

bound is enough for our purposes.
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where

ψ2(Qn) = 2y(Qn),

ψ3(Qn) = 3x(Qn)
4 + 6Ax(Qn)

2 + 12Bx(Qn)−A2, and

ψ4(Qn) = 4y(Qn)
(

x(Qn)
6 + 5Ax(Qn)

4 + 20Bx(Qn)
3 − 5A2x(Qn)

2 − 4ABx(Qn)− 8B2 −A3
)

.

Note that the numerator of x(3Qn), ψ3(Qn)
2x(Qn) − ψ2(Qn)ψ4(Qn), is, upon

using the relation y2 = x3 + Ax + B, monic of degree 9. The denominator is of
degree 8. Therefore, on writing Qn =:

(

x
D2 ,

y
D3

)

and clearing denominators, we
see that the resulting numerator, an integer, is coprime to D. Thus any shared
factor with the resulting denominator, also an integer, must be coprime to D.

The resultant of the resulting numerator and denominator (over Z, as poly-

nomials in x) is invariant under the change of variables x 7→ xD.3 Thus we may
calculate this resultant in the case D = 1. In this case one may calculate explic-
itly that it is ∆12

E , where ∆E := −16(4A3 + 27B2) is the discriminant of the cubic
equation. Alternatively without setting D = 1 one would get this multiplied by

a power of D.4 In any case, the greatest common divisor is therefore uniformly
bounded in terms of E.

Now note that, since Qn is bounded away from the zeroes of ψ3, if x(3Qn) =
x(Pn−R) is large it must be because x(Qn) is large. But x(Pn−R) grows like x(Pn)
times a constant independent of n, simply from our explicit expression. Therefore

|x(Qn)| = |x|
|D|2 → ∞. Therefore h(Qn) = log |x| for n sufficiently large.

Hence upon clearing out factors ofD in Equation (2.1), we see that the x9 term
dominates in the numerator, and the x8D2 term dominates in the denominator.
Since the resulting numerator and denominator are essentially coprime (since their
greatest common divisor is bounded independently of n), when written in least
common terms x(3Qn) has height

h(3Qn) ≥ max(9 log |x|, 8 log |x|+ 2 log |D|)−OE(1) = 9h(Qn)−OE(1),

where the OE(1) term is from the potential decrease in numerator and denomina-
tor due to the presence of a common factor.

Thus, in sum we see that

9h(Qn) ≤ 2h(Pn) +OE(1).
5

Let us now put all these estimates together. First, let us express the fact that
the Pn are “converging to ∞.” This is expressed by

1

2
=

log |x(Pn)|
1
2

h(Pn)
.

Second, let us express the fact that Pn converges to ∞ if and only if Qn, defined by

3Qn +R = Pn, converges to a solution R̃ to 3R̃ = −R. By our estimate above, this

3More precisely, one immediately sees that the greatest common divisor over Q is 1. Clearing
denominators one gets that a linear combination of the two polynomials is an integer, whence invariant

under any change of variables.
4On general principles it is immediate that it should be some power of the discriminant. In any

case, one can simply ask e.g. Mathematica to do the computation.
5Moreover, we could have removed the 2 with the use of the canonical height.
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is expressed by

log |x(Pn)|
1
2 = log





∏

3R̃=−R

∣

∣

∣x(Qn)− x(R̃)
∣

∣

∣

−1



+OE,R(1).

Third, let us express the fact that the convergence of Qn to an R̃ is “faster” than
that of Pn to ∞. This is expressed by

9

2
h(Qn)−OE(1) ≤ h(Pn),

or
1

h(Pn)
≤ 2

9
· 1

h(Qn)
+ o(1).

Putting these together, we derive the following chain of inequalities once n is

large enough so that
∏

3R̃=−R

∣

∣

∣x(Qn)− x(R̃)
∣

∣

∣ ≤ 1.

1

2
=

log |x(Pn)|
1
2

h(Pn)

=

log

(

∑

3R̃=−R

∣

∣

∣x(Qn)− x(R̃)
∣

∣

∣

−1
)

h(Pn)
+ o(1)

≤
(

2

9
+ o(1)

) log

(

∑

3R̃=−R

∣

∣

∣x(Qn)− x(R̃)
∣

∣

∣

−1
)

h(Qn)
.

But, since there are nine distinct solutions to 3R̃ = −R, Qn can only get very
close to one of them to multiplicity one in this expression. Moreover, the closest it
can get, except for finitely many exceptions, is

∣

∣

∣
x(Qn)− x(R̃)

∣

∣

∣

−1

≤ H(Qn)
2+ǫ,

for any ǫ > 0. Therefore, except for finitely many exceptions,

log

(

∑

3R̃=−R

∣

∣

∣x(Qn)− x(R̃)
∣

∣

∣

−1
)

h(Qn)
≤ 2 + ǫ+

OR(1)

h(Qn)
= 2 + ǫ+ o(1).

Therefore we have derived the inequality

1

2
≤ 4 + 2ǫ

9
+ o(1).

This is false. Thus the contradiction, and the theorem is proved. �

3. Remarks on the method of proof.

Much of the work in the preceding section was to control the Weil height un-
der operations on the curve. This can be done in a much more succinct way using
the canonical height, but actually the explicit formulas are of utmost importance
in the philosophy behind the argument in the next Chapter. Specifically, it is an
explicit computation of the x-coordinate of the difference of two integral points,
as we have done twice now, that expresses the fact that integral points are qua-
siorthogonal in the Mordell-Weil lattice E(Q)/E(Q)tors under the pairing given by
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the canonical height. This quasiorthogonality, analogous to the quasiorthogonal-
ity enjoyed by rational points on higher genus curves (as observed by Mumford),
is the “reason” there are few integral points on an elliptic curve. We will see this
fleshed out in what follows.

Moreover, as a side remark, almost every exposition of Siegel’s theorem that
the author has found proceeds in precisely the same way. These turn out to be dif-
ficult arguments to make explicit, simply because they pass from the Weil height
to the canonical height and back multiple times, and this becomes problematic
when looking for bounds uniform in the curve E (especially when dealing with
points of small height). The presentation here errs on the side of being too explicit
in order to be elementary and concrete. If nothing else, this gives a different angle
on the argument.



CHAPTER

5

THE AVERAGE NUMBER OF
INTEGRAL POINTS ON AN

ELLIPTIC CURVE

1. Remarks on integral points.

We have now seen that the equation EA,B : y2 = x3 +Ax+ B, once the right-
hand side has no double roots, has finitely many solutions in the integers. So then,
how many?

First, there cannot be a uniform bound on the number of integral solutions.1

This is because there are elliptic curves with infinitely many rational points.2 Take
such a curve y2 = x3 + Ax + B and take an infinite sequence of rational points
(

xn

D2
n
, yn

D3
n

)

on it. Now observe that the curve

y2 = x3 +

[

A ·
N
∏

n=1

D4
n

]

x+

[

B ·
N
∏

n=1

D6
n

]

has at least N integral solutions:


xn ·





∏

1≤m≤N,m 6=n

D2
m



 , yn ·





∏

1≤m≤N,m 6=n

D3
m







 for 1 ≤ n ≤ N.

Second, this number is not an invariant of the curve, but rather of the affine
equation. So, while integral points may be extremely classical objects of study, one

1However, it may well be that if (A,B) = 1 a uniform bound might exist. We do not know what

to expect one way or another.
2For instance, the curve E : −139y2 = x3 + 10x2 − 20x + 8 is a famous example, but anyway

these curves arise with positive probability (conjecturally 1
2

) if one chooses A and B at random, a very

recent result of Bhargava and Skinner. [9]
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has to work a bit to pick out integral points from rational points, since one cannot
just e.g. evaluate the given functor of points on SpecZ. In general one can pick
these points out via the height associated to an ample line bundle, like the one
provided by the double cover x : E → P1 (our “Weil height”), but we will just
work completely explicitly. For the purposes of counting each elliptic curve once
and only once, however, we will impose the further restriction that if p4|A, then
p6 ∤ B. This associates exactly one such EA,B to each elliptic curve E over Q.

Third, there is actually an entirely explicit bound on the number of integral
points a curve can have. In fact, there is a bound on the height of any integral
point! This is provided by Baker’s method of lower bounds on linear forms in log-
arithms (and, more generally, lower bounds on linear forms in elliptic logarithms).
The resulting bound is as follows.

THEOREM 1.1 (Baker, [3]). Suppose |A| ≤ T 2 and |B| ≤ T 3. Let (x, y) ∈ Z2 be an
integral solution of y2 = x3 +Ax+B. Then

|x| ≤ e(10
6T )10

6

.

For the purposes of counting points, this bound appears to be horrible. But
this is only the case if one applies it naı̈vely. In fact, Helfgott-Venkatesh [22], in
deriving their bounds, used Baker’s result as a “stopping point” for their sphere
packing argument. Since the bound of Helfgott-Venkatesh will be a crucial in-
put for our arguments, in fact we will indirectly use Baker’s result as well. The
bound has since been improved by Stark and many others (see [31] for a discus-
sion), but still remains superexponential in T . Its interest lies in the fact that it is
effective, while Siegel’s theorem was not. This was because Roth’s theorem (or
even Thue’s theorem!) could not rule out a single approximation of tremendous
height — indeed, recall that we had to work with multiple approximations to our
algebraic number to get a contradiction — so that it could give no such bound on
the heights of integral points.

Now let us discuss the pointwise bounds on the number of integral points of
an elliptic curve that have been derived since Baker’s theorem.

2. Pointwise bounds.

Silverman and Hindry-Silverman were the first to make Siegel’s theorem ex-
plicit. In doing so, they proved the following theorems.

THEOREM 2.1 (Silverman, [29]). There is an effective absolute constantC for which

#|EA,B(Z)| ≪ Crank(EA,B)+ω(∆),

where ω(n) is the number of prime factors of n, and ∆A,B = −16(4A3 + 27B2) is the
discriminant of EA,B .

THEOREM 2.2 (Hindry-Silverman, [23]). There is an effective absolute constant C
for which

#|EA,B(Z)| ≪ Crank(EA,B)+σEA,B ,

where

σEA,B
:=

log |∆A,B|
log |NA,B|
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is the Szpiro ratio of EA,B (here NA,B is the conductor of EA,B).3

Conjecturally, the Szpiro ratio is always at most 6 + ǫ. This is equivalent to
the ABC conjecture. In any case, this absolute constant C is, in both cases, at least
on the order of 1010. In fact, even if one uses recent improvements to inputs to
the arguments in Hindry-Silverman (due to Petsche [28], who obtained a better
lower bound on the canonical height of a nontorsion point) one cannot make the
constant smaller than this order of magnitude. On the other hand it is quite easy
to show that most curves have Szpiro ratio at most, say, 100, so one might think
that this makes the second bound amenable to averaging.

But finiteness of the average of
(

1010
)rank(EA,B)

is far out of the reach of current

techniques.4 Recent spectacular results of Bhargava-Shankar (which will feature

centrally in this argument) have proven that the average of 5rank(EA,B) is finite —
indeed, it is at most 6. This is the extent of current techniques. Let us restate this
theorem for future reference below.

THEOREM 2.4 (Bhargava-Shankar, [6, 5, 8, 7]). Let n = 2, 3, 4, or 5. Then the
average size of the n-Selmer groups of the elliptic curves EA,B , when ordered by height, is
σ(n), the sum of divisors of n.

Here by height we mean

H(EA,B) := max(4|A|3, 27|B|2).
When combined with the inequality nrank(EA,B) ≤ #|Seln(EA,B)| provided by Ga-
lois cohomology, this implies that

lim sup
T→∞

∑

H(EA,B)≤T 6 nrank(EA,B)

∑

H(EA,B)≤T 6 1
≤ σ(n).

This is what we mean when we say that the average of 5rank(EA,B) is at most 6 —
in particular, an implicit lim sup is to be understood.

Next, there is another bound on the number of integral points due to Helfgott
and Venkatesh, who prove the following.

THEOREM 2.5 (Helfgott-Venkatesh, [22]). Let S be the set of primes dividing the
discriminant ∆A,B , along with ∞. Let s := #|S| = ω(∆) + 1. Then

#|EA,B(Z)| ≪ O(1)s · (log |∆|)2 · 1.33rank(EA,B).

To achieve this, Helfgott and Venkatesh observe that, much as in the case of
rational points on higher genus curves, integral points repel in the Mordell-Weil
lattice EA,B(Q)/EA,B(Q)tors. Specifically, one sees explicitly that points of close

3That is, NA,B =
∏

p|∆ pep , where ep = 1 if EA,B has multiplicative reduction at p, and ep ≥ 2

if EA,B has additive reduction at p, with equality if p 6= 2, 3. We will not bother with the description

at 2 or 3 — we will only use that e2 ≤ 8 and e3 ≤ 5.
4Assuming the Generalized Riemann Hypothesis (GRH) as well as the Birch and Swinnerton-

Dyer conjecture (BSD), however, we may average a quantity like
(

1010
)rank(EA,B)

, by the following
result of Heath-Brown.

THEOREM 2.3 (Heath-Brown, [20]). Assume GRH and BSD. Then the proportion of curves with rank

at least R, when ordered by height, is ≪ R−Ω(R) .

Therefore our main result follows on GRH and BSD from the work of Heath-Brown and Hindry–

Silverman. (One needs to show that most curves have nonnegligible conductor, but this is easy.)
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height have nontrivial angle between them under the pairing determined by the
canonical height. They then use bounds of Kabatiansky-Levenshtein on sphere
packing to bound the number of integral points in dyadic annuli of the Mordell-
Weil lattice. These dyadic annuli range all the way up to Baker’s bound, at which
point they may stop by Baker’s theorem.

This latter result is amenable to averaging. Indeed, on combining it with the
aforementioned theorem of Bhargava-Shankar and the observation that an integer

X has at most ≪ logX
log logX prime divisors, an application of Hölder’s inequality

gives the following.

COROLLARY 2.6 (Helfgott-Venkatesh). Let ǫ > 0. Then

#|EA,B(Z)| ≪ǫ T
ǫ · 1.33rank(EA,B).

Averaging this gives the following.

COROLLARY 2.7 (Helfgott-Venkatesh). Let ǫ > 0. Then the average number of
integral points on the elliptic curves EA,B , when ordered by height, is ≪ǫ T

ǫ.

Again, by this we mean that

lim sup
T→∞

∑

H(EA,B)≤T 6 #|EA,B(Z)|
∑

H(EA,B)≤T 6 1
≪ǫ T

ǫ.

There are also various theorems of Heath-Brown [19], Bombieri–Pila [10], and
others that control rational points of small height, but this bound resulting from
the work of Helfgott-Venkatesh is the best that may be derived from the literature.

Finally, let us also mention a recent result of Bhargava-Gross which deals with
rational points on higher genus hyperelliptic curves, for which Faltings’s theo-
rem plays the role of our Siegel’s theorem. They obtain the following bound via
invariant-theoretic means.

THEOREM 2.8 (Bhargava-Gross, [4]). The average number of rational points on odd
hyperelliptic curves of genus g > 2, when ordered by height, is ≪ 1. Indeed, it is less than
20.

3. This thesis.

It is a longstanding folklore conjecture that the number of integral points on a
randomly chosen elliptic curve should be zero. This expectation was mentioned
in Silverman’s 1986 edition of The Arithmetic of Elliptic Curves, for instance. From
the above, we see that the best bounds we have so far are that this number, conjec-
turally zero, does not grow too quickly.

In what follows we will prove that (the lim sup of) this average is finite. The
constant will be effective, but we will not calculate it here. The method is quite
general and needs only an input of Bhargava-Shankar type that allows one to av-

erage 4rank(E) over a given family.5 Moreover, if one allows a small, but growing,
number of quadratic twists of these curves, it seems that the method can prove

5For instance, a recent result of Kane [25] allows one to average all moments of 2-Selmers over a
certain family of quadratic twists of a curve with full rational 2-torsion. This improves on results of
Heath-Brown [17, 18] and Swinnerton-Dyer [33]. The corresponding result for curves with no rational
2-torsion has been studied by Klagsbrun-Mazur-Rubin [26], but it appears a result of Kane type has

not yet been achieved for these curves.
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that the average is indeed zero, but we will not present this here. The method
will be a blend of Helfgott-Venkatesh-type sphere packing, a uniform version of
Siegel’s theorem, and various improvements on bounds due to Silverman on the
difference between the Weil and canonical heights for the “average” elliptic curve.

The numerology behind the result is as follows. First, the Kabatiansky-Levenshtein
bound on the number of points on an (n − 1)-sphere with pairwise angles at
least 60◦ is ≪ 1.33n. Second, Siegel’s theorem, as we have presented it, pro-

ceeds by applying Roth’s theorem to 3rank(EA,B) many points of very large height.
We will have to apply Kabatiansky-Levenshtein (in EA,B(Q) ⊗Z R, a rank(EA,B)-
dimensional Euclidean space) a constant number of times for each of these points,
whence we will obtain a bound of shape

≪ 3rank(EA,B) · 1.33rank(EA,B) = 3.99rank(EA,B)

in this range. For points of small height we will proceed by a simple counting
argument. For points of intermediate height we will use Kabatiansky-Levenshtein
a constant number of times. The worst situation in this range will occur when the
heights of our points are too large to be bounded by our small height argument,
but very small so that the sphere packing obtains the worst bounds. This will occur
for integral points with x-coordinate on the order of T 5. It will turn out that the

resulting bound gotten by Kabatiansky-Levenshtein will be 2.2rank(EA,B), which is
fine for our purposes.

Thus the bottleneck will be averaging 3.99rank(EA,B) over our curves. But of
course we can do this, as we have noted above. Notice that the argument would
have failed had we written our large integral points Pn as Pn = 4Qn + R in the

previous Chapter, since averaging 4rank(EA,B) · 1.33rank(EA,B) = 5.32rank(EA,B) is
out of reach. Moreover, we would not have been able to prove Siegel’s theorem by
writing Pn = 2Qn +R. So in some sense things work out quite nicely for us.

In any case, let us get to the details. We will prove the following.

THEOREM 3.1. The average number of integral points on elliptic curves, when or-
dered by height, is finite. In other words,

lim sup
T→∞

∑

H(EA,B)≤T 6 #|EA,B(Z)|
∑

H(EA,B)≤T 6 1
≪ 1.

As always, the sum is taken over A,B for which ∆ := −16(4A3 + 27B2) 6= 0
and such that there is no prime p for which p4|A and p6|B. Note also that the
denominator is of order T 5. Thus we must prove that the numerator is bounded
by ≪ T 5.

As a final remark, though we have presented the previous Chapters for a
reader unfamiliar with the field, we will now assume that the reader is familiar
with the theory of elliptic curves. For instance, we will freely use that the canonical
height is quadratic and determines a positive-definite pairing on the Mordell-Weil
lattice, as well as other standard facts.

4. Proof of the Main Theorem.

PROOF OF THEOREM 3.1. We will break the sum into three parts. The first
part will account for the “trivial solutions”. If we knew the Hall-Lang conjecture
we would (almost) be able to stop there. The second part will account for the
integral points with intermediate height. For these we will use sphere packing
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arguments. The third will account for integral points of large height. For these
we will apply the estimate of Davenport-Roth [14], in the form given by Bombieri-
Gubler [11], on the number of large-height approximations that may be present
in the setting of Roth’s theorem. Before we do this we will have to “repel” our
integral point P away from the smallest integral point in its coset modulo 3, which
we have written R, via sphere packing arguments. Once P is of large enough
height as compared with R, Roth’s Lemma will kick in and tell us that there are
only a few possibilities left for P .

But first let us implement a few reductions. Fix a very small δ > 0 for the rest
of the argument. First, let us reduce to working with curvesEA,B withA,B nearly
coprime. This will guarantee that we have little additive reduction to worry about.
For this, apply the bound of Helfgott-Venkatesh. Specifically,

∑

(A,B)≥T δ

#|EA,B(Z)| ≪ǫ

∑

(A,B)≥T δ

T ǫ · 1.33rank(EA,B).

By Cauchy-Schwarz this is

≪ǫ T
ǫ





∑

(A,B)≥T δ

1





1
2




∑

H(EA,B)≤T 6

1.7689rank(EA,B)





1
2

.

By Bhargava-Shankar,
∑

H(EA,B)≤T 6

1.7689rank(EA,B) ≪ T 5.

Moreover, the first factor is

∑

(A,B)≥T δ

1 ≪
O(T 2)
∑

g=T δ

(

T 2

g

)(

T 3

g

)

≪ T 5−δ.

Combining these two bounds gives an overall bound of
∑

(A,B)≥T δ

#|EA,B(Z)| ≪ǫ T
5− δ

2+ǫ.

This is negligible in the average once ǫ < δ
4 , say.

So we have reduced to the case of (A,B) ≤ T δ. Next let us reduce to the case
of ∆ having no large square factor. This will again proceed via Helfgott-Venkatesh.
To make our lives easy, we will quote the following theorem of Helfgott-Venkatesh,
which will allow us to reduce to the case of ∆ “mostly” squarefree, after which
point reducing to ∆ almost entirely squarefree will be easy. The theorem is as
follows.

THEOREM 4.1 (Helfgott-Venkatesh, [22]). The number of elliptic curves over Q
with conductor N is ≪ N0.22378.

Because our curves now have essentially no additive reduction, the conductor
is essentially the radical of ∆ ≪ T 6. Specifically, the powers of 2 and 3 appearing
in the conductor are uniformly bounded (by 28 and 35, respectively). Moreover,
for a bad prime p ≥ 5, p appears with multiplicity one unless EA,B has additive



4. PROOF OF THE MAIN THEOREM. 36

reduction at p, in which case it appears with multiplicity two. Finally, EA,B has
additive reduction at p if and only if p|A and p|B. Therefore

rad(∆) ≤ NA,B ≪ rad(∆) · T δ.

Let us next show that we may reduce to the case of curves having conductor at
least T 4.08. The sum over all the remaining curves is, again by Helfgott-Venkatesh,

∑

NA,B≤T 4.08

#|EA,B(Z)| ≪ T 0.001 ·
T 4.08
∑

N=1

#|{(A,B) : NA,B = N}|

≪ T 0.001 ·
T 4.08
∑

N=1

N0.22378

≪ T 4.08·1.22378+0.001

≪ T 4.995.

This is again negligible in the average.
So we may restrict to A,B for which both (A,B) ≤ T δ and NA,B ≥ T 4.08,

whence rad(∆) ≥ T 4.08−δ. Note in particular that if g2|∆ then g| ∆
rad(∆) , whence

g ≪ T 1.92+δ.

Now the sum over curves with ∆ divisible by some g2 with g ≥ T
δ
2 is

≪
O(T 1.92+δ)
∑

g=T
δ
2

∑

A,B:g2|∆
#|EA,B(Z)|.

As always, via Helfgott-Venkatesh and Hölder, this reduces to bounding

O(T 1.92+δ)
∑

g=T
δ
2

#|{A,B : −16(4A3 + 27B2) ≡ 0 (mod g2)}|

by something of shape ≪ǫ T
5−ǫ. But e.g. fixing A and g, if

−432B2 ≡ 64A3 (mod g2),

then, writing g0 for the prime-to-6 part of g, this implies that B is congruent to one

of at most two square roots of − 64A2

432 modulo p2 for each p|g0. Thus there are at

most 2ω(g0) many congruence classes into which B may fall modulo g20 .
Now in general, given a subset S ⊆ Z/nZ, the size of the preimage of S under

the reduction map {1, . . . , N} → Z/nZ is

≪ #|S|
(

N

n
+ 1

)

.6

Therefore the number of |A| ≪ T 2 and |B| ≪ T 3 for which g2|∆ is at most

≪ T 2 · 2ω(g0) ·
(

T 3

g20
+ 1

)

≪ T 5+ǫ

g20
+ T 2+ǫ,

since ω(g0) ≤ ω(g) ≤ log g
log log g ≤ ǫ logT +Oǫ(1).

6After all, the largest fibre of the map is over 1 ∈ Z/nZ, of size ⌊N−1
n

⌋ + 1.
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Thus, summing this over g, we get that the sum over curves with ∆ having a
square factor of size at least T δ is at most

≪ǫ






T 5+ǫ ·

O(T 1.92+δ)
∑

g=T
δ
2

1

g20






+
(

T 3.92+ǫ
)

.

But the function g 7→ g0 is multiplicative, and via the usual Dirichlet series calcu-

lation using Perron’s formula, one finds that the former sum is ≪ T−δ.7 Therefore
the sum over curves with discriminant having a nonnegligible square factor is at
most

≪ǫ T
5+ǫ−δ + T 3.92+ǫ.

This is negligible in the average once ǫ is chosen sufficiently small with respect to
δ.

Finally, by precisely the same method, we may reduce to the case of EA,B hav-
ing no rational torsion. Specifically, by Mazur’s theorem the torsion is uniformly
bounded. Moreover, Harron and Snowden [16] have determined the precise pro-
portions of curves with given rational torsion subgroup, and as a corollary one
sees that the proportion of curves having nontrivial rational torsion is at most
≪ T−2. Since this is certainly smaller than T−ǫ for some ǫ, the same argument
combining Helfgott-Venkatesh and Hölder’s inequality works in this case as well.

Therefore we have reduced to considering curves with no rational torsion,
with (A,B) ≤ T δ, and with ∆ having no square factor larger than T δ. In particular
NA,B ≥ rad(∆) ≥ ∆ ·T−δ, so that the conductor is quite large. The reason we have
done this is because the most troublesome part of the difference between the Néron
local height and the Weil local height at a point P and prime p of multiplicative

reduction is roughly of the form
a(vp(∆)−a)

vp(∆) , where 0 ≤ a < vp(∆) is the component

of the special fibre of the Néron local model of EA,B at p onto which P reduces. In
particular, if vp(∆) = 1, this expression is forced to be zero, since a is a nonnegative
integer smaller than 1.

In other words, we have reduced to the following situation. For us, most bad
primes are of multiplicative reduction. Moreover, most primes of multiplicative
reduction give no contribution to the difference between the canonical and Weil
heights. Therefore the difference between the canonical and Weil heights must be
quite small! (We will make this precise in a bit.) Hence any repulsion result be-
tween integral points in the Weil height translates to a corresponding result in the
canonical height. Since we have already seen a repulsion result between integral
points in the Weil height — we will restate this in due course — we therefore have
a repulsion result between integral points in the canonical height, which allows
us to apply sphere packing bounds. While this may seem like a slight technical
nuisance, the point is that to bound the count of all integral points we must in par-
ticular bound the count of integral points of intermediate height, and the known
uniform bounds on differences between Weil and canonical heights (due to Silver-
man) are simply too weak to allow for this.

7One may e.g. calculate the sum of the first X coefficients of ζ(s+2) · (1−2−s−2) · (1−3−s−2) =
∑

g≥1
g
−2
0
gs0

as
∑X

g=1 g
−2
0 = π2

9
+ O(X−1) because of the pole at s = −1. Of course one can extract

the second-order term as well, but we will not need this here.
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First let us precisely state the claimed improvement on Silverman’s bounds in
our situation.

LEMMA 4.2. Let A,B be integers such that |A|2, |B|3 ≪ T 6, (A,B) ≤ T δ, and
∆ = ∆A,B has no square factor larger than T δ. Let P ∈ EA,B(Q) be a rational point on
EA,B . Then

−O(1)−1

6
log+ |j(EA,B)|−

1

6
log |∆| ≤ h(P )−ĥ(P ) ≤ 1

4
log+ |j(EA,B)|+4δ log T+O(1),

where j(EA,B) = −1728 (4A)3

∆ is the j-invariant of EA,B and

ĥ(P ) := lim
k→∞

h(2kP )

4k

is the canonical height of E.

The upper bound is the claimed improvement. Note that the lower bound —
in other words, the upper bound on the canonical height — is often thought to be
the “easier” bound, so that the constants can likely be improved on this side as

well.8

PROOF OF LEMMA 4.2. The lower bound is copied verbatim from Theorem
1.1 in Silverman’s [30]. (Note that Silverman’s normalizations differ from ours
by a factor of 2.) The upper bound, while discovered in another manner (using
a result of Stange which we will state during the discussion of constants), also
follows from Silverman’s methods. Specifically, write the difference as a sum of
local differences:

h(P )− ĥ(P ) =
∑

v

log+ |x(P )|v − λv(P ).

At good primes p the local contribution is zero. At primes p of multiplicative
reduction dividing the discriminant to order 1, by the result of Tate in the same
paper (Theorem 4.1, part (b) of [30]), the local contribution is bounded above by

log+ |x(P )|p − λp(P ) ≤ −1

6
log+ |j(EA,B)|p.

At primes p of additive reduction or of multiplicative reduction dividing the dis-
criminant to order at least 2, by the result of Tate (Theorem 4.1, now part (a) of
[30]) the local contribution is bounded by

log+ |x(P )|p − λp(P ) ≤
1

12
log+ |j(EA,B)|p.

The remaining prime at ∞ has local contribution bounded by

log+ |x(P )| − λ∞(P ) ≤ 1

6
log |∆|+ 1

4
log+ |j(EA,B)|+O(1),

by Theorem 5.5 in the same paper [30].

8In fact we are able to derive an even better upper bound for integral points of large height via
the aforementioned result of Stange. This result replaces the given upper bound with ǫ log T + Oǫ(1)
for any ǫ > 0. The idea is to first scale the integral point and then observe that both the Weil and
canonical heights essentially scale correctly, up to a factor that is the greatest common divisor of certain
combinations of division polynomials evaluated on the integral point. Since these are simply certain
recurrences in the integers, it stands to reason that their prime factorizations can be controlled. Then
one applies Silverman and divides. We have not used this here simply because the result is still very

new and hence unpublished.
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It remains to observe two things. First, that
∑

p

log+ |j(EA,B)|p = log |∆| − log |(∆, A3)| −O(1) ≥ log |∆| − 3δ logT −O(1).

This is from the product formula and our bound on the greatest common divisor
of A and B. (Indeed, if g|(∆, A3), then g|432B2, so that g|(A3, 432B3), which, in
turn, divides 432(A,B)3.) Second, that

∑

vp(∆)>1

log+ |j(EA,B)|p ≤ 2δ logT.

This is because the left-hand side is at most the logarithm of
∏

vp(∆)>1 p
vp(∆),

which divides




∏

vp(∆)>1

p⌊
vp(∆)

2 ⌋





2

·





∏

vp(∆)>1

p





2

,

a product of two square divisors of ∆, whence both at most T δ.
Now we may sum the local contributions. We get:

h(P )− ĥ(P ) =
∑

v

log+ |x(P )|v − λv(P )

=
(

log+ |x(P )| − λ∞(P )
)

+





∑

vp(∆)=1

log+ |x(P )|p − λp(P )





+





∑

vp(∆)>1

log+ |x(P )|p − λp(P )





≤
(

1

6
log |∆|+ 1

4
log+ |j(EA,B)|+O(1)

)

+



−1

6

∑

vp(∆)=1

log+ |j(EA,B)|p





+





1

12

∑

vp(∆)>1

log+ |j(EA,B)|p





=

(

1

6
log |∆|+ 1

4
log+ |j(EA,B)|+O(1)

)

+



−1

6

∑

p|∆
log+ |j(EA,B)|p





+





1

4

∑

vp(∆)>1

log+ |j(EA,B)|p





≤
(

1

6
log |∆|+ 1

4
log+ |j(EA,B)|+O(1)

)

+

(

−1

6
log |∆|+ 3δ logT +O(1)

)

+

(

δ

2
log T

)

=
1

4
log+ |j(EA,B)|+ 4δ logT +O(1),

as desired. �
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We will in fact only use a very crude corollary of this lemma. Recall that the
conductor was seen to be at least T 4.08. Therefore the discriminant is of order at
least T 4.08. Since |A| ≤ T 2, we must therefore have |j(EA,B)| ≪ T 1.92. Thus we

derive the following.9

COROLLARY 4.3. Let A,B be integers such that |A|2, |B|3 ≪ T 6, (A,B) ≤ T δ,
and ∆ = ∆A,B has no square factor larger than T δ. Suppose the conductor of the curve
NA,B ≥ T 4.08. Let P ∈ EA,B(Q) be a rational point on EA,B . Then

−O(1)− 1.32 logT ≤ h(P )− ĥ(P ) ≤ 0.49 logT +O(1)

once δ is sufficiently small.

We have finished the preliminaries. Let us now move to the proof.
Let ǫ > 0. Break the sum into three parts:

⋆
∑

H(EA,B)≤T 6

#|EA,B(Z)| ≤ Iǫ +

⋆
∑

H(EA,B)≤T 6

IIA,B +

⋆
∑

H(EA,B)≤T 6

IIIA,B,

where

Iǫ := #|{(x, y, A,B) : 4|A|3, 27|B|2 ≤ T 6, |x| ≤ T 5−ǫ, y2 = x3 +Ax+B}|,
IIA,B := #|{(x, y) : T 5−ǫ ≤ |x| ≤ T 1010 , y2 = x3 +Ax+B}|,
IIIA,B := #|{(x, y) : T 1010 ≤ |x|, y2 = x3 +Ax+B}|,

and we have written
∑⋆

to remind the reader that we are now summing only over
A,B for which EA,B has no rational torsion, (A,B) ≤ T δ, ∆ = −16(4A3 + 27B2)
has largest square factor at most T δ, and the conductor NA,B ≥ T 4.08.

LEMMA 4.4. We have the following bound on the number of integral points of small
height:

Iǫ ≪ T 5−ǫ.

Therefore the small height points are negligible.

PROOF OF LEMMA 4.4. First, note thatB is determined by x, y, andA. Fix first
x,A such that |x| ≤ 1010T, |A| ≪ T 2. Then the number of ywith |y2−x3−Ax| ≪ T 3

is at most ≪ T
3
2 . Indeed, the given inequality implies that y2 ≪ T 3. Thus the

count of such (x, y, A,B) is at most

≪ T · T 2 · T 3
2 = T 5− 1

2 ,

whence negligible.
Hence we may assume |x| > 1010T . In this case the constraints imply that

|y| ≍ |x| 32 . Now fix x for which |x| > 1010T . Suppose y and y′ are both positive
and such that there exist A,B and A′, B′ such that (x, y, A,B) and (x, y′, A′, B′)
satisfy the constraints. Then

y2 − y′2 = (A−A′)x + (B −B′).

9The numbers 1.32 and 0.49 arise because 1.32 = 1 + 1.92
6

and 0.49 > 0.48 + 4δ = 1.92
4

+ 4δ for

δ sufficiently small.
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Taking absolute values, we find that

|y − y′| ≪ T 2

|x| 12
+

T 3

|x| 32
≪ T 2

|x| 12
.

Similarly if y and y′ were both negative.
Therefore the number of y for which there exist such A and B is

≪ T 2

|x| 12
+ 1,

since our bound cannot rule out the existence of e.g. one positive y — it can only
rule out the existence of two positive y’s that are far apart.

Now, for fixed x and y, the number of A for which |A| ≪ T 2 and |y2 − x3 −
Ax| ≪ T 3 is at most

≪ T 3

|x| + 1.

Indeed, we play the same game. IfA andA′ are two such solutions to this inequal-
ity, then by considering differences we see that

|A−A′| = |(y2 − x3 −Ax)− (y2 − x3 −A′x)|
|x| ≪ T 3

|x| .

Combining these bounds, we see that, for fixed |x| ≥ 1010T , there are at most

≪
(

T 2

|x| 12
+ 1

)

·
(

T 3

|x| + 1

)

choices of y,A,B such that (x, y, A,B) satisfies the constraints.
Therefore the number of points in range Iǫ is at most

Iǫ ≪ T 5− 1
2 +

T 5−ǫ

∑

x=1010T

(

T 2

|x| 12
+ 1

)

·
(

T 3

|x| + 1

)

≪ T 5−ǫ,

as desired. �

Before we bound the intermediate and large height points, let us establish the
repulsion between integral points that we have mentioned over and over again.

LEMMA 4.5 (Helfgott-Mumford gap principle [21].). Let P 6= Q ∈ EA,B(Z) be
integral points such that h(P ) ≥ h(Q) ≥ (1 + ǫ) logT . Then

h(P +Q) ≤ 2h(P ) + h(Q) +O(1).

If we replace h by ĥ and take 4 logT ≤ h(P ) ≤ h(Q) ≤ (1 + ǫ)h(P ), then this

says that cos θP,Q = ĥ(P+Q)−ĥ(P )−ĥ(Q)

2
√

ĥ(P )ĥ(Q)
≤

√
1+ǫ
2 + O(1)

log T . Thus the angle between P

and Q is at least ≈ 60◦! Thankfully passing to ĥ from h will not lose us too much,
and this result will still approximately be true.

PROOF OF LEMMA 4.5. Write P =: (x, y) and Q =: (X,Y ). Then

x(P +Q) =
(y + Y )2 − (x−X)2(x+X)

(x−X)3

=
x2X + xX2 + 2yY +A(x +X) + 2B

(x−X)2
.



4. PROOF OF THE MAIN THEOREM. 42

Therefore

h(P +Q) ≤ max
(

log |x2X + xX2 + 2yY +A(x +X) + 2B|, 2 log |x−X |
)

≤ max

(

2h(P ) + h(Q), h(P ) + 2h(Q),
3

2
h(P ) +

3

2
h(Q), 2 logT + h(P ), 3 logT, 2h(P )

)

+O(1)

= 2h(P ) + h(Q) +O(1),

as desired. (The second bound simply replaced a sum of terms by a constant mul-
tiple of the maximum of their absolute values.) �

COROLLARY 4.6. Let A,B be such thatEA,B has no rational torsion, (A,B) ≤ T δ,
the largest square factor of ∆ is at most T δ, and the conductor of EA,B is at least NA,B ≥
T 4.08. Let P 6= Q ∈ EA,B(Z) be integral points such that (5 − ǫ) logT ≤ h(P ) ≤
h(Q) ≤ (1 + δ)h(P ). Then, in EA,B(Q) ⊗Z R under the inner product induced by the
canonical height, P and Q have angle at least

θP,Q ≥ 0.628

once δ and ǫ are sufficiently small.

PROOF OF COROLLARY 4.6. If cos θP,Q = ĥ(P+Q)−ĥ(P )−ĥ(Q)

2
√

ĥ(P )ĥ(Q)
is negative, we

are done, since then the angle is at least π
2 . Otherwise, recall the inequalities re-

lating the Weil and canonical heights that we derived in Corollary 4.3. They im-

ply that ĥ(P + Q) ≤ h(P ) + 1.32 logT , ĥ(P ) ≥ h(P ) − 0.49 logT , and ĥ(Q) ≥
h(Q)− 0.49 logT . Therefore

cos θP,Q =
ĥ(P +Q)− ĥ(P )− ĥ(Q)

2

√

ĥ(P )ĥ(Q)

≤ ĥ(P +Q)− ĥ(P )− ĥ(Q)

2
√

h(P )h(Q)
·
(

1− 0.49 logT

h(P )

)−1

≤
(

h(P +Q)− h(P )− h(Q)

2
√

h(P )h(Q)
+

2.3 logT

2h(P )

)

·
(

1− 0.49 logT

h(P )

)−1

≤
(√

1 + ǫ

2
+

2.3 logT

2h(P )

)

·
(

1− 0.49 logT

h(P )

)−1

.

Thus, since h(P ) ≥ (5− ǫ) logT , for ǫ sufficiently small we obtain the inequality

cos θP,Q ≤ 0.8093.

Thus θP,Q ≥ 0.628, as desired. �

Now we may use sphere packing arguments to control points of interme-
diate and large height. For this we will need the following amazing bound of
Kabatiansky-Levenshtein.

THEOREM 4.7 (Kabatiansky-Levenshtein, [24]). Let X ⊆ Sn−1 be a collection of

unit vectors vi such that θi,j = arccos
(

〈vi,vj〉
2

)

≥ θ for every i 6= j. Then

#|X | ≤ exp

([

1 + sin θ

2 sin θ
log

(

1 + sin θ

2 sin θ

)

− 1− sin θ

2 sin θ
log

(

1− sin θ

2 sin θ

)

+ o(1)

]

n

)

,
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where o(1) → 0 as n→ ∞.

Let us now bound points of intermediate height.

LEMMA 4.8. Let A,B be such that EA,B has no rational torsion, (A,B) ≤ T δ,
∆ = ∆A,B has largest square factor at most T δ, and the conductor of EA,B is bounded
below by NA,B ≥ T 4.08. Suppose δ is sufficiently small so that Corollary 4.6 holds for
some ǫ. Then we have the following bound on the number of integral points of intermediate
height:

IIA,B ≪δ 2.2
rank(EA,B).

Thus the intermediate height points can be averaged.

PROOF OF LEMMA 4.8. Let ǫ > 0 be sufficiently small so that Corollary 4.6
holds for δ and ǫ. Break the interval [5− ǫ, 1010] into

K ≤ 1 +
log
(

1010

5−ǫ

)

log (1 + ǫ)
≤ Oǫ(1)

“dyadic” ranges [Ni, Ni+1], where Ni+1 = (1 + ǫ)Ni except for at the last interval.
Write

IIA,B =

K
∑

i=1

II
(i)
A,B,

with

II
(i)
A,B := #|{P ∈ EA,B(Z) : h(P ) ∈ [Ni logT,Ni+1 logT ]}|.

We will show that

II
(i)
A,B ≪ 2.2rank(EA,B),

from which the result will follow.
Note that if P 6= Q are both counted by II

(i)
A,B, then we have seen that θP,Q ≥

0.628 =: θ0. Similarly, θP,−Q ≥ 0.628 as well. Thus in particular P and Q are not

both parallel. Let Si be the set of projections of the P ∈ II
(i)
A,B to the unit sphere in

EA,B(Q)⊗ZR under the inner product induced by the canonical height. Note that
the map

P 7→ P ⊗ 1
√

ĥ(P )
∈ Si

is injective, whence we need only upper bound the size of Si.
10 This upper bound

is provided for us by Kabatiansky-Levenshtein. Indeed,

exp

(

1 + sin θ0
2 sin θ0

log

(

1 + sin θ0
2 sin θ0

)

− 1− sin θ0
2 sin θ0

log

(

1− sin θ0
2 sin θ0

))

≤ 2.17.

Therefore, since o(n) ≤ cn+Oc(1) for c sufficiently small (for us, so that exp(log 2.17+
c) ≤ 2.2), the result follows. �

Finally, let us turn to points of large height. For these we will need the follow-
ing result of Davenport-Roth, as improved by Bombieri-Gubler, on the number of
approximations whose finiteness Roth’s theorem guarantees.

10Here we use that the curve has no rational torsion.
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THEOREM 4.9 (Davenport-Roth, Bombieri-Gubler). Let κ ≥ 2.1. Let α ∈ Q̄ be
of degree r ≤ 9. Then the number of β ∈ Q such that both h(β) > 105h(α) and

|α− β| ≤ H(β)−κ

is ≪ 1.

PROOF OF THEOREM 4.9. See Bombieri-Gubler, section 6.5.7 (page 173). The
reason such a uniform bound exists is because of the strong gap principle for good
approximations that we have described. �

We will also need the following result of Mignotte bounding from below the
distance between two roots of a polynomial with integral coefficients in terms of
the height of the polynomial (i.e., its largest coefficient).

THEOREM 4.10 (Mignotte, [27]). Let P (x) ∈ Z[x] be a separable polynomial of
degree d. Let α1, . . . , αd be its roots. Then, for every i 6= j,

|αi − αj | ≫d ||P ||−d+1
∞ ,

where ||P ||∞ is the largest coefficient appearing in P (x).

Now we may handle points of large height.

LEMMA 4.11. Let A,B be such that EA,B has no rational torsion, (A,B) ≤ T δ,
∆ = ∆A,B has largest square factor at most T δ, and the conductor of EA,B is bounded
below by NA,B ≥ T 4.08. Suppose δ is sufficiently small so that Corollary 4.6 holds for
some ǫ. Then we have the following bound on the number of integral points of large height:

IIIA,B ≪δ 3.99rank(EA,B).

Thus points of large height may be averaged.

PROOF OF LEMMA 4.11. Let ǫ > 0 be sufficiently small so that Corollary 4.6
holds for δ and ǫ.

Write

IIIA,B =
∑

R∈EA,B(Q)/3EA,B(Q)

III
(R)
A,B,

where

III
(R)
A,B := #|{P ∈ EA,B(Z) : h(P ) > 1010 logT, P ≡ R mod 3}|,

the sum taken over R an integral point of minimal height larger than 1010 logT

in its coset (if one does not exist, then of course III
(R)
A,B = 0). There are at most

3rank(EA,B) such summands. We will show each

III
(R)
A,B ≪δ 1.33rank(EA,B).

Next, again, break the interval [1, 1010] into

K ≤ 1 +
log (1010)

log (1 + ǫ)
≤ Oǫ(1)

“dyadic” ranges [Ni, Ni+1], where Ni+1 = (1 + ǫ)Ni for all but the last interval.
Then write

III
(R)
A,B =

K
∑

i=1

III
(R,i)
A,B + III

(R,∞)
A,B ,
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where

III
(R,i)
A,B := #|{P ∈ EA,B(Z) : h(P ) ∈ [Ni logT,Ni+1 logT ], P ≡ R mod 3}|

and

III
(R,∞)
A,B := #|{P ∈ EA,B(Z) : h(P ) > 1010 logT, P ≡ R mod 3}|.

It will be enough to show that

III
(R,i)
A,B ≪ 1.33rank(EA,B)

and

III
(R,∞)
A,B ≪ 1.

The bound on the III
(R,i)
A,B is exactly the same as in Lemma 4.8, except that

in the bound on the angle one may now use h(P ), h(R) > 1010 logT instead of
h(P ), h(R) > (5 − ǫ) logT . This changes the angle lower bound θ0 to e.g. 0.50001,

which results in a Kabatiansky-Levenshtein bound of at most 1.33rank(EA,B). Thus

III
(R,i)
A,B ≪ 1.33rank(EA,B).

Therefore it remains only to bound III
(R,∞)
A,B . Let P ∈ EA,B(Z) be such that

h(P ) > 1010h(R). Write P =: 3Q+R with Q ∈ EA,B(Q). We proceed as in Siegel.
Namely, we begin with the simple equality

1

2
=

log |x(P )| 12
h(P )

.

Now

h(P ) ≥ ĥ(P )− 1.32 logT −O(1)

= ĥ(3Q+R)− 1.32 logT −O(1)

≥ 9ĥ(Q) + ĥ(R)−
√

ĥ(P −R)ĥ(R)− 1.32 logT −O(1)

≥ 9ĥ(Q) + h(R)−
√

ĥ(P −R) · (1 + 10−7)h(R)− 1.81 logT −O(1), (4.1)

where we have used Cauchy-Schwarz to bound the cross-term. But

ĥ(P −R) ≥ ĥ(P )− 2

√

ĥ(P )ĥ(R) + ĥ(R)

≥ h(P )− 0.98 logT − 2
√

(h(P ) + 1.32 logT )h(R) + h(R).

Since h(P ) > 1010h(R) > 1020 logT , this implies that ĥ(P−R) ≥ (1−2 ·10−5)h(P ).
Thus

h(P ) ≥ (9− 3 · 10−5)h(Q),

by (4.1) and the fact that h(P ) > 1010h(R) > 1020 logT , so that the other terms on
the right-hand side are bounded in terms of h(P ) (whence one can subtract and
then divide to get the result).

Similarly, via

h(P ) ≤ ĥ(P ) + 0.49 logT +O(1)

≤ 9ĥ(Q) + h(R) +

√

ĥ(P −R)ĥ(R) + 0.49 logT +O(1),

we find that h(Q) ≥ 108h(R) > 1018 logT .
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Therefore we find that

1

2
≤
(

1

9
+ 10−5

)

· log |x(P )|
1
2

h(Q)

=

(

1

9
+ 10−5

)

·
log

(

∏

3R̃=−R

∣

∣

∣x(Q)− x(R̃)
∣

∣

∣

−1
)

h(Q)
+

1

18
·
log

(

|x(3Q+R)| ·∏3R̃=−R

∣

∣

∣x(Q)− x(R̃)
∣

∣

∣

2
)

h(Q)
.

Let us first show that the second term in this expression is negligible. This is

plausible simply because x(3Q + R) has a pole of order two at each R̃, so that the
expression appearing in the logarithm is the absolute value of a rational function

with no zero or pole at any R̃, and Q is quite close to an R̃ since P is quite close to
∞.

To see that it is small, first recall that we have seen an expression for
∏

3R̃=−R

(

x(Q)− x(R̃)
)

.

Specifically, it is

∏

3R̃=−R

(

x(Q)− x(R̃)
)

= (x(Q)− x(R))ψ3(Q)2 − ψ2(Q)ψ4(Q),

where

ψ2(Q) = 2y(Q),

ψ3(Q) = 3x(Q)4 + 6Ax(Q)2 + 12Bx(Q)−A2, and

ψ4(Q) = 4y(Q)
(

x(Q)6 + 5Ax(Q)4 + 20Bx(Q)3 − 5A2x(Q)2 − 4ABx(Q)− 8B2 −A3
)

,

and we use the relation y(Q)2 = x(Q)3 + Ax(Q) + B to write the expression as a
polynomial in x(Q). In particular this is a polynomial whose largest coefficient is
x(R) ·A4 ≪ |x(R)| · T 8, so that ||P ||∞ ≪ H(R) · T 8.

Note that it is also equal to

ψ3(Q)2 · (x(3Q)− x(R)).

Therefore we see that

x(3Q +R) ·
∏

3R̃=−R

(

x(Q) − x(R̃)
)2

= ψ3(Q)2 ·
(

(y(3Q)− y(R))2 − (x(3Q)− x(R))2(x(3Q) + x(R))
)

.

But note that

x(3Q) = x(P −R)

=
x(P )2x(R) + x(P )x(R)2 + 2y(P )y(R) +A(x(P ) + x(R)) + 2B

(x(P ) − x(R))2

≪ |x(R)|,

since the dominant term in the numerator is 2x(P )2x(R) and the dominant term

in the denominator is x(P )2. (After all, |x(P )| > |x(R)|1010 .)
Therefore, since y(3Q)2 = x(3Q)3 + Ax(3Q) + B, we also have that y(3Q) ≪

|x(R)| 32 .
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Thus we have found that

x(3Q +R) ·
∏

3R̃=−R

(

x(Q)− x(R̃)
)2

≪ ψ3(Q)2 ·
(

(y(3Q)− y(R))2 − (x(3Q)− x(R))2(x(3Q) + x(R))
)

≪ |ψ3(Q)|2 · |x(R)|3.
But now

x(3Q) =
ψ3(Q)2x(Q)− ψ2(Q)ψ4(Q)

ψ3(Q)2
,

a ratio of a monic degree 9 polynomial in x(Q) to a degree 8 polynomial in x(Q).
If |x(Q)| > |x(R)|2, then the dominant terms in the numerator and denominator
would be the leading terms of these polynomials, since we have explicit descrip-

tions for them and their coefficients are negligible in comparison to |x(R)| > T 1010 .
But then |x(3Q)| ≫ |x(R)|2 as well, a contradiction. Therefore |x(Q)| ≤ |x(R)|2.
Thus the polynomial ψ3(Q) in x(Q) is bounded by

ψ3(Q) ≪ |x(R)|4.
Hence this implies that

x(3Q+R) ·
∏

3R̃=−R

(

x(Q)− x(R̃)
)2

≪ |x(R)|11.

Taking this upper bound into account, we get that

1

2
≤
(

1

9
+ 10−5

)

· log |x(P )|
1
2

h(Q)

=

(

1

9
+ 10−5

)

·
log

(

∏

3R̃=−R

∣

∣

∣
x(Q)− x(R̃)

∣

∣

∣

−1
)

h(Q)
+

11

18
· log |x(R)|

h(Q)
.

The second term is at most 10−6, for instance. So we are left with the first term.
If

|x(Q)− x(R̃)| ≥
minR̃ 6=R̃′ |x(R̃)− x(R̃′)|

2

[

≫ ||P ||−8
∞ ≫ H(R)−8 · T−64

]

(by Mignotte’s bound) for each of the nine R̃’s, then the first term is bounded
above by

(

1

9
+ 10−5

)

·
log

(

∏

3R̃=−R

∣

∣

∣x(Q)− x(R̃)
∣

∣

∣

−1
)

h(Q)
≤
(

1

9
+ 10−5

)

· 72h(R) + 576 logT +O(1)

h(Q)

≤ 10−7

once T is sufficiently large. Thus in this case we get 1
2 ≤ 2 · 10−6, which is a

contradiction.
Otherwise, there is an R̃ for which

|x(Q) − x(R̃)| <
minR̃ 6=R̃′ |x(R̃)− x(R̃′)|

2
.
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In this case, for each R̃′ 6= R̃, we then have that

|x(Q)− x(R̃′)| ≥
minR̃ 6=R̃′ |x(R̃)− x(R̃′)|

2
.

Therefore in this case the first term is at most

(

1

9
+ 10−5

)

·
log

(

∏

3R̃=−R

∣

∣

∣x(Q) − x(R̃)
∣

∣

∣

−1
)

h(Q)

≤
(

1

9
+ 10−5

)

· log |x(Q)− x(R̃)|−1

h(Q)
+

(

1

9
+ 10−5

)

· 64h(R) + 512 logT +O(1)

h(Q)

≤
(

1

9
+ 10−5

)

· log |x(Q)− x(R̃)|−1

h(Q)
+ 10−7.

In particular this implies that

|x(Q)− x(R̃)| ≤ H(Q)−4.4.

Note also that h(Q) >
(

1
9 − 3 · 10−5

)

h(P ) > 108h(R) and

h(R) ≥ ĥ(R)− 1.32 logT −O(1)

≥ 1

9
ĥ(R̃)− 1.32 logT −O(1)

≥ 1

9
h(R̃)− 2 logT −O(1),

so that h(R̃) < 10h(R). Therefore h(Q) > 107h(R̃). Thus Theorem 4.9 applies,
implying that there are at most ≪ 1 choices for x(Q). Since there are at most two
solutions y(Q) to y(Q)2 = x(Q)3 + Ax(Q) + B, we therefore have that there are
at most ≪ 1 choices for Q. Since 3Q + R = P , we therefore have that there are at
most ≪ 1 choices for P . That is to say, we have proven that

III
(R,∞)
A,B ≪ 1,

as desired. �

Therefore, combining Lemmas 4.4, 4.8, and 4.11, as well as our previous reduc-
tions, we see that, once T is sufficiently large (and δ and ǫ are chosen sufficiently
small to begin the argument), the full sum is at most

≪ǫ T
5−ǫ +

∑

H(EA,B)≤T 6

3.99rank(EA,B) ≪ǫ T
5,

thanks to Bhargava-Shankar. This completes the proof. �

Having proved that the lim sup of the average is finite and effectively bounded,
let us discuss the resulting upper bound.

5. The constant.

First let us show that our bound is quite good if the proportion of curves with
rank at least 2 is zero and the proportion of rank 0 and 1 curves is 1

2 each, the

“minimalist conjecture.”11 This will require a result of Stange.

11It seems difficult to improve this result, since (heuristically) the smallest generator of a rank one
curve will, on average, have logarithmic height polynomial in T , by the Gross-Zagier formula. We have
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THEOREM 5.1. Assume the minimalist conjecture. Then the average elliptic curve
has at most one integral point. That is,

lim sup
T→∞

∑

H(EA,B)≤T 6 #|EA,B(Z)|
∑

H(EA,B)≤T 6 1
≤ 1.

PROOF OF THEOREM 5.1. Combine the above bounds with Hölder to see that
the contribution of the rank at least 2 curves is zero. Rank zero curves have only
torsion points, and we showed that the average does not change upon restricting
to curves with no rational torsion. So it suffices to show that rank 1 curves have,
on average, at most two integral points. So let EA,B be of rank 1.

First, if P :=
(

x
D2 ,

y
D3

)

has |D| > 1, then observe that

x(nP ) =
ψn(P )

2x(P )− ψn−1(P )ψn+1(P )

ψn(P )2
.

The numerator is a monic polynomial in x(P ) of degree n2. The denominator is a
polynomial in x(P ) of degree n2 − 1. Therefore clearing denominators of D gives
a fraction of the form

x(nP ) =
xn

2

+ (∈ D2Z)

(∈ D2Z)
,

which cannot be integral.
Therefore if EA,B has an integral point, its generator must also be integral. So

let P be this generator. Note that −P is also an integral point. So it suffices to show
that no nontrivial multiple of P can be an integral point in our regime.

But we have already shown that it suffices to work with A,B for which there
is no integral point P of height smaller than (5 − ǫ) logT . Now we invoke a result
of Stange, which arises from the study of elliptic divisibility sequences (like ψn(P )
for an integral point P ).

THEOREM 5.2 (Stange, [32]). Let P ∈ EA,B(Z) be an integral point. Let D2 be the
denominator (in lowest terms) of x(nP ). Then

log |D|2 ≤ 2 log |ψn(P )| ≤ O(1)+log |D|2+n2
∑

p|∆
(− log |∆|p)

ap(P )(vp(∆)− ap(P ))

vp(∆)2
,

where 0 ≤ ap(P ) < vp(∆) is the component of the special fibre of the Néron local model
of EA,B onto which P reduces.

The upper bound on the denominator is immediate from the explicit formula,
since it provides x(nP ) as a ratio of two integers with denominator ψn(P )

2. But
the lower bound is quite powerful.

Recall that vp(∆) = 1 except for a small proportion of the primes dividing
∆. This forces the last expression in the lower bound for log |D| to be quite small.
Indeed, recall that we had reduced to the case of ∆ with no square factor larger
than T δ for δ a small parameter we were free to choose.

only been able to rule out points of logarithmic height logarithmic in T by counting. Thus we would

need to have control many orders of magnitude further than we have at the moment.
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Given this reduction, the term in the upper bound is at most (since x(1−x) ≤ 1
4

on [0, 1])

∑

p|∆
(− log |∆|p)

ap(P )(vp(∆) − ap(P ))

vp(∆)2
≤ 1

4

∑

vp(∆)>1

− log |∆|p

=
1

4
log

∣

∣

∣

∣

∣

∣

∏

vp(∆)>1

pvp(∆)

∣

∣

∣

∣

∣

∣

≤ δ

2
logT,

since, as we saw,
∏

vp(∆)>1 p
vp(∆) divides a product of two square factors of ∆.

Therefore as a result we find that the denominator of x(nP ), which we have
written D2, is bounded below by

log |D|2 ≥ 2 log |ψn(P )| −
δn2

2
logT.

Since |x(P )| ≥ T 5−ǫ and ψn(P )
2 is of degree n2 − 1 in x(P ) with negligible coef-

ficients (recall that it was homogeneous when A was given weight 2, B weight 3,

and xweight 1), we see that log |D|2 ≥
(

n2
(

1− δ
2

)

− 1
)

logT . Once |n| ≥ 2 and δ is
sufficiently small this is a positive multiple of logT , whence in particular nonzero.
Thus x(nP ) is not integral, so that nP is not integral.

This completes the proof. �

Having stated this result of Stange, let us demonstrate a better lower bound
on the canonical height in the situation of the “average” curve which improves the
constants we get in our bounds. (Cf. Lemmas 4.2 and 4.3.)

LEMMA 5.3. Let A,B be integers such that |A|2, |B|3 ≪ T 6, (A,B) ≤ T δ, and
∆ = ∆A,B has no square factor larger than T δ. Let P ∈ EA,B(Z) be an integral point
on EA,B with h(P ) ≥ (5− ǫ) logT . Then

−Oδ(1)− δ logT ≤ h(P )− ĥ(P ) ≤ δ logT +Oδ(1).

PROOF OF LEMMA 5.3. Consider h(nP ) − ĥ(nP ) = h(nP ) − n2ĥ(P ). As we
have seen, x(nP ) is a ratio of two polynomials in x(P ), and since x(P ) is so large
the numerator and denominator are dominated by the leading terms. Since the
numerator is degree n2 and the denominator is degree n2 − 1, h(nP ) ≥ n2h(P ) −
O(1)− log | gcd |, where “gcd” denotes the greatest common divisor of this numer-
ator and denominator. But Stange has proven that the reduced denominator is not
so far from ψn(P )

2. That is, by Theorem 5.2 the gcd is at most

log | gcd | ≤ O(1) + n2
∑

p|∆
(− log |∆|p)

ap(P )(vp(∆)− ap(P ))

vp(∆)2
.

As we have seen, the right-hand side reduces to

log | gcd | ≤ O(1) +
δn2

2
logT.

Thus h(nP ) ≥ n2h(P ) − δn2

2 logT − O(1). Of course we also have the upper

bound h(nP ) ≤ n2 logT + O(1), since the reduced numerator and denominator
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divide our two polynomials ψn(P )
2x(P ) − ψn−1(P )ψn+1(P ) and ψn(P )

2, respec-
tively.

Moreover, for general rational points on any elliptic curve we have bounds of

the form −O(1) − c logT ≤ h(nP ) − ĥ(nP ) ≤ C logT + O(1), where c and C are
absolute constants, due e.g. to Silverman or our previous work (in which case we
obtained 1.32 and 0.49, respectively).

Therefore we see that

h(P )− ĥ(P ) =
1

n2

(

n2h(P )− ĥ(nP )
)

≤ 1

n2

([

δn2

2
logT

]

+O(1) +
[

h(nP )− ĥ(nP )
]

)

≤ O(1) +
δ

2
logT +

C

n2
logT

Taking n≫C,δ 1, the desired bound follows. The reverse direction is precisely
the same, except there we need not invoke the result of Stange. �

Now let us discuss the constant in the general situation, without supposing
the minimalist conjecture.

Note that Lemma 5.3 improves the bound on the cosine of the angle between
two integral points P and R with h(R) < h(P ) to, roughly,

cos θP,R ≤ 1

2

√

h(P )

h(R)
+

1.32

2h(R)
+O(δ).

The second term arises from the upper bound ĥ(Q) ≤ h(Q)+1.32 logT +O(1) that
we found earlier, and surely can be improved in our situation (remember Q is a
general rational point, so that the result we have just proven cannot be applied).

In any case, let us suppose for heuristic reasons that the bound can be im-

proved to cos θP,R ≤ 1
2 .12 Then the relevant sphere packing problem is the well-

studied kissing number problem. In particular there are quite strong upper bounds
for the kissing numbers in dimensions up to 24.

Now, the range Iǫ does not contribute to the average. The range II contributes
to the average only via the Kabatiansky-Levenshtein bound, which we will re-
place by the best kissing number bounds in dimension up to 24. The range III

contributes to the average similarly, except here we need to average 3rank(EA,B)

times the best known kissing number constant in dimension rank(EA,B).
13 By

asking Mathematica to solve the relevant linear programming problem with con-
straints given by the Bhargava-Shankar bounds14, it seems that, even if we allow
ourselves the kissing number constant despite taking h(P ) < h(R) < 2h(P ), say
— i.e., so that the cosine of the angle between P andR is now only bounded above
by cos θP,R ≤ 1√

2
+ ǫ, we still find a constant of 96.4063 (and this is not allowing

ranks higher than 24 to have nontrivial proportions).

12The strongest we could possibly expect is 1
2
+ ǫ, but this is just a heuristic discussion.

13The Roth contribution is in fact at most 2, since we end up with exponent approximately 4.5 >√
2 · 9, whence the improvement to Thue-Siegel by Dyson and Gelfond applies, which needs only two

good approximations for a contradiction. (Alternatively, the Wronskian method we have presented

gives exponent
√

2 · deg(α) in two variables as well.)
14(— along with their lower bounds on the proportion of rank 0 and 1 curves.)
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If we break into dyadic ranges h(P ) < h(R) < (4 − ǫ)h(P ) and still allow
ourselves the kissing number constants, the bound drops below 50, but this is

rather unscientific.15 In the more reasonable regime of h(P ) < h(R) < 1.1h(R)
with kissing number constants, the resulting bound is below 670.

The author has not yet made the Kabatiansky-Levenshtein bound effective,
mainly because this seems quite difficult. Thus the bound gotten is in principle
effective, but we do not yet have a constant to show for it.

Finally, it seems allowing a small, but growing, number of quadratic twists
will be able to improve the bound to zero, but we will not present this here.

Email address: alpoge@college.harvard.edu.

QUINCY HOUSE, HARVARD COLLEGE, CAMBRIDGE, MA 02138.

15Interestingly, the maximum is always achieved with all nontrivial probability put into rank 13.

Note that the Kabatiansky-Levenshtein bound of 1.33dim grows much slower than the growth of the
kissing number upper bounds in “low” dimensions. They are as follows (starting in 2 dimensions,
from [13]):

6, 12, 24, 44, 78, 134, 240, 364, 554, 870, 1357, 2069, 3183, 4866,

7355, 11072, 16572, 24812, 36764, 54584, 82340, 124416, 196560.

For instance, the final bound, 196560, is optimal in 24 dimensions, achieved by the Leech lattice. In

comparison, 1.3324 = 938.5 . . . .



LIST OF NOTATION

Z = {. . . ,−1729, . . . ,−1, 0, 1, . . . , 691, . . .}, the integers.
Z+ = {1, 2, . . . , 65537, . . .}, the positive integers.
Q = { p

q : (p, q) = 1, p ∈ Z, q ∈ Z+}, the rational numbers.

R The real numbers.
C The complex numbers.
f ≪θ g, f ≤θ O(g) There is a constant C, depending only on θ, such that, for

all x, |f(x)| ≤ C|g(x)|.
f ≫θ g, f ≥ Ωθ(g) g ≪θ f .
f ≍θ g f ≪θ g and g ≪θ f .
f ≤ o(g) f

g → 0 as n → ∞, with an implicit parameter n → ∞ un-

derstood.
(a, b) The greatest common divisor of a and b.
| · |, | · |∞ The usual absolute value on C.
vp, vp The p- and p-adic valuations on Q and a number field K ,

respectively.
v A place (prime ideal or real or complex embedding) of a

number field. Thus, over Q, v = ∞ or v = p for some prime
p, by Ostrowski.

| · |p, | · |p The p- and p-adic absolute values on Q and a number field

K , respectively. Thus |x|p = p−vp(x) and |x|p = Np−vp(x).

∂i = ∂
∂xi

.

∂~µ =
∂
µ1
1

µ1!
· · · ∂µm

m

µm! .

ind(P, (ξ1, . . . , ξm)) = max{µ1

d1
+ · · ·+ µm

dm
: (∂~µP )(ξ1, . . . , ξm) = 0}. In particular,

weights di will always be understood.
EA,B The elliptic curve y2 = x3 +Ax+B.
∆,∆A,B = −16(4A3 + 27B2), the discriminant of EA,B .
ψn The n-th division polynomial of an elliptic curve EA,B :

y2 = x3 +Ax+B.
h(x) The absolute Weil height of x ∈ Q̄, normalized so that, on

rational x = p
q in lowest terms, h(x) = max(log |p|, log |q|).

H(x) = exp(h(x)).
h(P ) = h(x(P )).
H(P ) = H(x(P )).

ĥ(P ) = limk→∞
h(2kP )

4k
, the canonical height of P .
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