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Introduction.

Given a projective variety X ⊂ Pn and an integer k > 0, we ask a classical question:
does X contain a projective linear space of dimension k?

As it stands, this question invites the following explicit line of attack. Let {Fα} be a
set of homogeneous polynomials defining X. Parametrize a k-plane Λ via a linear map
Pk → Λ ⊂ Pn, and consider the expressions Fα(Λ)—these are homogeneous polynomials
in the parameters of Λ. Then Λ ⊂ X if and only if each Fα(Λ) vanishes identically with
respect to the parameters. But the coefficients of the polynomials Fα(Λ) are themselves
polynomials Cαβ on the space of linear maps Pk → Pn. Taking slightly greater care with
these parametrizations (Remark 1.2 below), we can use elimination theory (see [18] Ch.
14, 15) to determine computationally whether or not the equations Cαβ = 0 have a
simultaneous solution that corresponds to a k-plane Λ ⊂ X. Our initial question is thus
answered for the given variety X, provided we can successfully perform these computations
over our base field K.

Such computational methods are not, however, the subject of this paper. Rather, we
hope to determine general circumstances under which we can expect to find k-planes on
varieties. And the previous argument suggests the point of entry for the full techniques of
algebraic geometry: the set of k-planes contained in a given X form a projective variety,
embeddable in the Grassmannian G(k, n), which we shall call the Fano Variety Fk(X) ⊂
G(k, n). This observation allows us to rephrase the initial question quantitatively: what
is the dimension of the variety of k-planes Fk(X) lying on X? If we can establish that
dim(Fk(X)) ≥ 0, then we can answer the original question to the affirmative.

In this paper, we will restrict our attention to the natural first case, that of hypersurfaces
—this will allow us, crucially, to consider all hypersurfaces of degree d in Pn simultaneously
via their parameter space PN . With this advantage, we will be able to give several answers
that in fact depend on no more than this degree d as compared to the dimensions k and
n, to which we will eventually add the requirement of smoothness.

0.1. Dimension of Fano varieties. Our first and most general claim concerning k-planes
on hypersurfaces is as follows. Define

φ(n, d, k) = (k + 1)(n− k)−
(
k + d

d

)
.

Let X ⊂ Pn be a hypersurface of degree d ≥ 3. We claim that

(1) dim(Fk(X)) ≥ φ(n, d, k) if φ ≥ 0.

For a general X, we claim that (1) is an equality if φ ≥ 0, and that

Fk(X) = ∅ if φ < 0.

If this holds for a particular X, we will say that Fk(X) has “the expected dimension.”
Restated, our claim is that for a general hypersurface X,

codim (Fk(X) ⊂ G(k, n)) =
(
k + d

d

)
= #{degree d monomials on Pk}.

In the crude argument given above, this is the number of coefficients “Cβ” of “F (Λ),” the
restriction to Λ of a defining polynomial F of the hypersurface X. So, this would appear
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to be the number of conditions cutting out Fk(X). However Fk(X) is a subvariety of the
Grassmannian G(k, n), and therefore such an argument fails to show that Fk(X) is in fact
non-empty if φ ≥ 0. Indeed, the requirement d ≥ 3 is essential, as shown in Remark 1.8.
And, although the argument will be entirely classical—a dimension count via incidence
correspondences (two, in this case)—the claim was established only through the result of
Hochster and Laksov [1] in 1987.

Interestingly, in the case φ(n, d, k) ≥ 0, the proof that Fk(X) is non-empty for all
X ⊂ Pn of a given degree d will depend on proving the existence of a hypersurface X0

such that Fk(X0) has dimension exactly φ(n, d, k) (see Remark 1.9). We will give several
such examples, thereby proving particular cases of the claim. For arbitrary n, d, k, we will
prove that a general surface has Fano variety of dimension φ; even while we are left with no
way to exhibit such a hypersurface, nor with means to check that a particular hypersurface
is “general” in our sense. This is the power of using “incidence correspondences” (section
1.2.1) in conjunction with the Theorem on Fiber Dimension (Proposition 1.3), in contrast
to the naive computational argument suggested at the outset.

0.2. The low-degree limit. This last result establishes that all hypersurfaces have
“enough” k-planes corresponding to their degree and dimension, and that a general hyper-
surface has the expected-dimensional family of k-planes. But the next question remains
inscrutable: which hypersurfaces have “too many” k-planes, by which we mean a Fano
variety of dimension greater than φ? We propose two criteria for remedying this situa-
tion, i. e. specifying which hypersurfaces are “general” in the previous sense. The first,
smoothness, is natural especially when working over a field K of characteristic zero (as we
will in Ch. 2 and 3). However, it is not sufficient. In the case k = 1 of lines, the canonical
example of a smooth hypersurface fails: if char(K) = 0, the Fano variety of the Fermat
hypersurface of degree d = n + 1 in Pn has dimension n − 3 (see [5]), greater than the
estimated dimension φ(n, d, 1) = 2n− 3− d = n− 4.

Second, we work in the limit of low degree compared to dimension. This is a realm
of broad interest pertaining to several different fields: see for example Kollar’s article
[12]. By itself, however, low degree is clearly insufficient for Fk(X) to have the expected
dimension, as seen by considering any reducible hypersurface.

Working in the low-degree limit is a common approach for “specializing” a known fact
about general hypersurfaces to smooth ones.2 In the case of lines, k = 1, the well-known
Debarre-De Jong conjecture [3] asserts that if d ≤ n and X is smooth, then dim(Fk(X)) =
φ(n, d, 1) = 2n − 3 − d, i. e. X does not have “too many” lines. By the example just
given, the bound d ≤ n is sharp, if it holds. This conjecture is actively pursued (see [3],
[4]): the result has been established for d ≤ 6 [5], and for several months in 2007 a proof
of the general case was thought to have been found. There has also been progress in the
area of rational curves lying on hypersurfaces of low degree: Starr and Harris [10] show
that for d < (n+ 1)/2, a general degree d hypersurface contains the expected-dimensional
variety of rational curves of each degree.

Our assertion is that for a fixed k, if X ⊂ Pn is smooth of degree d � n, then X does
not have too many k-planes. This is the result of Harris, Mazur and Pandharipande [2]
in 1998, in which these same Fano varieties are also shown to be irreducible. The proof

2The term “specialization” can refer to a much more involved set of techniques having this function.
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will be by induction, using a more delicate incidence correspondence and the technique of
residual intersections.

0.3. Application to unirationality in low degree. Finally, we will turn to a question
not obviously related to the previous two, that of unirationality. A variety X is said to be
unirational if there exists a dominant rational map PN → X for some N—or, equivalently,
if the function field K(X) is embeddable in a purely transcendental extension of the base
field K. This property is a weakening of the important classical idea of rationality; but
the latter notion has turned out to behave quite irrationally, even if we take char(K) = 0.
All irreducible quadrics are rational ([13] 7.14). Elliptic curves are not, but smooth cubic
hypersurfaces in P3 are always rational. There are examples of smooth, cubic, rational
projective hypersurfaces in all even dimensions, and there are known to exist the same in
odd dimensions; but the general behavior in degree 3 is not known. Moreover, there are
no smooth projective hypersurfaces of any degree d ≥ 4 that are known to be rational,
nor has the possibility been ruled out (for much of this, see [13]).

It was also long unknown whether unirationality is really a weaker notion than that of
rationality for char(K) = 0: a curve is unirational if and only if rational, as is a surface,
as was shown by Castelnuovo and Enriques. (Whereas if char(K) = p, the Zariski surfaces
are unirational but not rational [8].) In 1972, however, Clemens and Griffiths showed
that most cubic threefolds in P4 are not rational—we will prove in Proposition 2.3 that
smooth ones are unirational, and thus that unirationality is a strictly weaker notion in
characteristic zero (see [13] Ch. 7).

In contrast to the state of affairs concerning rationality, we will be able to show that
a smooth hypersurface in Pn of degree d � n is unirational. This theorem has its roots
in the same assertion regarding a general hypersurface, dating back to Morin in 1940 [7].
In 1992, Paranjape and Srinivas [6] clarified Morin’s proof and showed further that the
general complete intersection of low multi-degree is unirational. Our result is again that
of [2]: just as in the above result about Fano varieties, the unirationality result specializes
to smooth hypersurfaces the earlier result for general ones. The construction of a rational
“comb” of nested Grassmann bundles parametrizing the variety unirationally is similar
to that of the earlier work, but in fact the crucial result above concerning Fano varieties
allows the proof to hinge around smoothness.

0.4. Further work. We have yet to specify how we shall define “low degree.” The fol-
lowing table shows us the meaning of n � d. (See sections 2.5 and 3.2.) These numbers
serve as follows: let X be a smooth hypersurface of degree d in Pn. If n ≥ N0(d, k) then
X does not have “too many” k-planes, and if n ≥ U(d) then X is unirational.

Judging by these high values,3 the results of this paper (from [2]) might be deemed a bit
quixotic. The bound U(d) goes roughly as a 2d-fold iterated exponential of d! Admittedly,
the greatest care has not been taken to find the minimum such bounds attainable by our
inductive methods. Still, these are the first and remain the best known bounds of their
kind for arbitrary d and k. However, following Harris et. al. [2], Jason Starr [10] has
recently reduced two very closely related bounds to a combinatorial expression in d and k.

3A typo in the original paper [2] was discovered subsequent to these computations—these values should
actually be slightly higher.
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Table 1. The meaning of n� d.

d
N0(d, k) U(d)

k = 1 k = 2 k = 3 · · ·
2 4 6 9 · · · 0
3 52 117 250 3
4 34276 366272 3391294 179124155
5 1017 1021 1025

· · · 10145

6 1082 10103 10122 108790

...
...

...
...

...

Set M(d, k) :=
(
k+d−1

d−1

)
+k−1. (This number will reappear in Lemma 2.11, for the reason

that if n ≥M(d, k) then X is swept out by k-planes.) In [9], it is shown using much more
sophisticated techniques that if n ≥M(d, k)+1 and X is smooth, then Fk(X) has at least
a component of the expected dimension. It is also shown there that if n ≥ M(d, k) then
the general k-plane section of X is a general hypersurface in Pk, whereas in [2] this same
fact was proved only for n > N0(d− 1, k). So [9] has managed to improve one of the main
results of our source [2] to a practical level, leaving one optimistic about such prospects
for the results which we demonstrate here.

Chen [11] has also shown as a corollary to [2] that the Fano variety is itself unirational
in the low-degree limit.

0.5. Incidence correspondences. Perhaps the main idea of this paper is to take an
“incidence correspondence” (see section 1.2.1) between two families in order to gain infor-
mation about one by means of the other (often using the Theorem on Fiber Dimension
(1.3)). An apology is even necessary for the repeated use of this idea in all three chapters—
even the unirationally parametrizing variety will be built using the “relative Fano variety,”
which is locally just a form of the incidence correspondence “I” of Chapter 1!

Moreover, an idea similar to that of the first chapter is applied in the inductive step
of our proof of unirationality: in Proposition 3.12 of Chapter 3, we will prove surjectivity
by showing that the generic fiber of a map has appropriately low dimension, based on
the fact from Ch. 2 that smooth hypersurfaces of low degree do not contain “too many”
k-planes. (Although in Ch. 1 this argument is made for the projection onto the opposite
factor.) The ubiquity of this construction becomes impressive.



1. Planes on Hypersurfaces in General.

We show that a general hypersurface X of degree d ≥ 3 has Fano variety of dimen-
sion dim(Fk(X)) = φ(n, d, k), the number defined above. Remarkably, however, we will
be left neither with a way to determine whether a given hypersurface has the expected-
dimensional Fano variety, nor with a sure-fire means of producing examples in any particu-
lar case—even through in the complex case we could randomly choose such a hypersurface
with probability 1 (if such a thing were possible).

1.1. Definition of the Fano variety. Let V be an (n+1)-dimensional vector space over
an algebraically closed field K, and let X ⊂ P(V ) ∼= Pn be a projective variety. Define the
k’th Fano Variety Fk(X) as the set of projective k-planes contained in X,

Fk(X) = {Λ ∈ G(k, n) | Λ ⊂ X}.
In this section we will show that Fk(X) is in fact a projective subvariety of the Grassman-
nian, once we have recalled some basic facts.

We will view G(k, n) as a closed subvariety of P(
∧k+1 V ) via the Plucker embedding

Λ = 〈v0, . . . , vk〉 7→ [v0 ∧ · · · ∧ vk] .

We will also occasionally refer to the Grassmannian G(k+1, n+1) of (k+1)-dimensional
linear subspaces of V , and of course G(k + 1, n + 1) = G(k, n). We will sometimes for
emphasis write G(k + 1, V ) specifically for the Grassmannian of (k + 1)-planes in V, and
likewise G(k,PV ) = G(k + 1, V ).

Proposition 1.1. The variety G(k, n) is covered by open sets isomorphic to A(k+1)(n−k).
Therefore,

dim(G(k, n)) = (k + 1)(n− k).

Proof. Decompose V as a direct sum V = V0⊕W0, with dim(V0) = k+ 1 and dim(W0) =
n− k. Choose a basis {v0, . . . , vk, wk+1, . . . , wn} for this direct sum, and take coordinates
on V dual to this basis. Let U ⊂ G(k + 1, n+ 1) be the set of (k + 1)-dimensional linear
subspaces of V complimentary to W0 (which includes V0). Then U is the intersection with
G(k + 1, n + 1) of the affine patch of the ambient projective space P(

∧k+1 V ) consisting
of points whose (v0 ∧ v1 ∧ · · · ∧ vk)-coordinate is nonzero. Hence U is open and affine.

For a (k + 1)-plane Λ ∈ U, define the vectors Λi = (vi +W0) ∩ Λ, for i = 0 . . . k. Then
{Λi} is a basis for Λ, and we can represent Λ by the (k + 1) × (n − k) matrix MΛ with
rows Λi:

(2) MΛ =


1 0 · · · 0 a11 · · · a1(n−k)

0 1 · · · 0 a21 · · · a2(n−k)
...

...
...

...
...

0 0 · · · 1 a(k+1)1 · · · a(k+1)(n−k)

 .

The Plucker coordinates on U are the (k + 1) × (k + 1) minors of this matrix. One can
see that each entry aij of the (k+ 1)× (n− k) submatrix (aij) is in fact the value of some
one of these minors. So, the aij are in fact affine coordinates on U ∼= A(k+1)(n−k). Each
affine coordinate patch (i. e. complement of a coordinate hyperplane) of the ambient space
meets G(k, n) in a set U of this form, which implies that dim(G(k, n)) = (k+1)(n−k). �

1
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Thus in order to show that Fk(X) is a closed subvariety of G(k, n), it is sufficient to
show that Fk(X)∩U is an affine variety, for any such affine patch U ⊂ G(k, n). Wlog, let
X be a hypersurface defined by a single homogeneous polynomial f(X0, . . . , Xn) of degree
d; the general case will follow just by taking intersections. For X a hypersurface, Λ ⊂ X
iff the restriction of f to Λ vanishes identically. Let Λ ∈ U, and parametrize the linear
space Λ by [u0, . . . , uk] 7→ [

∑
uiΛi] , with Λi the i’th row of the matrix MΛ from (2) (i. e.

basis vector for Λ).
We then simply plug in this parametrization to obtain a polynomial f(

∑
uiΛi) of the

same homogeneous degree d in the parameters {ui} of the space Λ. The coefficients are
then inhomogeneous polynomials in the aij ; their vanishing is necessary and sufficient for f
to vanish identically on Λ, i. e. for the space Λ to be contained in the locus {f = 0} = X.
Thus we have obtained polynomial equations in the aij defining {Λ ∈ U | Λ ⊂ X} =
Fk(X)∩U, for any such U. Hence Fk(X) is a closed subvariety of G(k, n), and a projective
variety itself.

Note that if X is quasi-projective, with projective closure X, then the Fano Variety
Fk(X) ⊂ Fk(X) is a locally closed subvariety. This is simply because for any two families
of subvarieties of a variety, the subset of disjoint pairs is open ([13], Ch. 4).
Remark 1.2. Elimination theory can be used on each element of a finite cover of patches
{Ui

∼= A(k+1)(n−k)}, using the explicit polynomial description of Fk(X) ∩ Ui just given,
to answer the opening question of whether or not a given variety X actually contains a
k-plane.

1.2. Estimating the dimension of Fk(X).

1.2.1. Incidence correspondence. In order to find an estimate of the dimension of Fk(X)
for a hypersurface, we set up an incidence correspondence between hypersurfaces and k-
planes. Let PN be the projective space of homogeneous polynomials of degree d in n+ 1
variables, so N =

(
n+d

d

)
− 1. Then let

I = {(f,Λ) ∈ PN ×G(k, n) | f(Λ) = 0}.
Given any two families of projective varieties in Pn, the set of pairs such that the first
subvariety is contained in the second is a constructible set (see [13]). Here, I is in fact
a closed subvariety of PN × G(k, n), which can be shown along much the same lines as
the above argument for Fk(X). Choose an affine coordinate patch U0 of PN × G(k, n).
Under the Segre embedding, U0 = U1×U2 for two affine coordinate patches U1 ⊂ PN and
U2 ⊂ G(k, n). Then U1 is of the form

U1 = {[f(T )] ∈ PN | f(T ) = T h0 +
∑
h 6=h0

ehT
h},

and we let U2 ⊂ G(k, n) have affine coordinates aij coming from the matrix MΛ of (2).
Then via the Segre embedding, one obtains inhomogeneous coordinates on U0 = U1 × U2

as pairs ({eh}, {aij}).
Meanwhile, the points f ∈ U1 are still homogeneous polynomials, and the points Λ ∈ U2

are still projective linear spaces. So we can parametrize Λ as before by [u0, . . . , un] 7→
[
∑
u`Λ`]. Then f(Λ) is a homogeneous polynomial in the parameters u`, whose coefficients

are doubly inhomogeneous polynomials in the coefficients eh of f and the entries aij of the
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matrix MΛ. These coefficients vanish exactly when f(Λ) ≡ 0, so they define I as a variety
on the affine coordinate patch U0. Hence I is a projective subvariety of PN × G(k, n), as
desired.

1.2.2. Dimension estimate. Now we can use I to estimate the dimension of Fk(X) for
a hypersurface X. Consider the restriction to I of the projections onto the factors of
PN ×G(k, n),

I
π2

## ##G
GGGGGGGG

π1

��~~
~~

~~
~~

PN G(k, n).

The fiber of π1 over a point X ∈ PN is the Fano variety Fk(X). So we hope to estimate
this dimension using the following fundamental result. Recall that a function f : X → R
is upper-semicontinuous if f−1([r,∞)) is closed for all r ∈ R. If furthermore f : X → Z
takes integer values, then f attains its minimum on an open set of X.

Proposition 1.3. (Theorem on fiber dimension) Let X be quasi-projective and ϕ : X →
Pn a regular map, and let Y = ϕ(X) be the closure of the image. For each p ∈ X, let
Xp = ϕ−1(ϕ(p)) be the fiber of ϕ through p. Then,
(a) For all p ∈ X,

dimp(Xp) ≥ dimp(X)− dimϕ(p)(Y ),
with equality on a nonempty open subset of X. The function dimp(Xp) is upper-semicontinu-
ous on X, i. e. for any integer k the set of p such that dimp(Xp) ≥ k is closed.

(b) If X is projective, then for all q ∈ Y,
dim(ϕ−1(q)) ≥ dim(X)− dim(Y ),

with equality on a nonempty open subset of Y. The function dim(ϕ−1(q)) is an upper-
semicontinuous function of q ∈ Y.

Proof. This is Theorem 11.12 and Cor. 11.13 of [13], and Section I.6.3, Theorem 7 of
[15]. �

Corollary 1.4. (a) Let X0 be an irreducible component of X, Y0 = ϕ(X0), and µ =
minp∈X0(dimp(Xp)). Then dim(X0) = dim(Y0) + µ.

(b) For X projective, let X0 be an irreducible component and let λ = minq∈Y (dim(ϕ−1(q))).
Then dim(X0) = dim(Y0) + λ.

Proof. These are attached to the theorem in [13] and [15]. �

Corollary 1.5. Let X be an irreducible quasi-projective variety, and ϕ : X → Y be a
dominant morphism. If any fiber of ϕ contains an isolated point, then dim(X) = dim(Y )
and the general fiber of ϕ has dimension zero.

Proof. Let p ∈ Xp be an isolated point. Then

dimp(Xp) = 0 = dim(X)− dim(ϕ(X)) = dim(X)− dim(Y ),

by Corollary 1.4(a). The second claim is immediate from 1.3(a). �
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The results of this chapter will come from applying these statements to the map π1

as well as in several similar instances. First, we apply Proposition 1.3 to the map π2 to
compute the dimension of I. Given Λ ∈ G(k, n) consider the surjective linear map

{polynomials of degree d on Pn} −→ {polynomials of degree d on Λ ∼= Pk}

given by restriction to Λ. The kernel of this map is a linear subspace of dimension
(
n+d

d

)
−(

k+d
d

)
, whose projectivization is the the fiber of π2 over Λ. Therefore the fibers of π2 are

all irreducible of the same dimension, so I is irreducible (by Theorem 11.14 of [13]). From
Proposition 1.3,

dim(I) = dim(G(k, n)) + dim(π−1
2 (Λ)) = (k + 1)(n− k) +

(
n+ d

d

)
−

(
k + d

d

)
− 1.

The map π1 cannot be dealt with so straightforwardly. However, it will be shown in
section 1.4 that its image has maximal dimension (unless d = 2). This means that π1 is
injective when dim(I) ≤ N, and π1 is surjective when dim(I) ≥ N. Once we establish this,
we will be able to count the dimension by applying Proposition 1.3. Until this last fact
was proven, by [1] in 1987, the following was merely a “dimension estimate:”

Theorem 1.6. For n ≥ k ≥ 0 and d ≥ 3, let

φ(n, d, k) = dim(I)− dim(PN ) = (k + 1)(n− k)−
(
k + d

d

)
.

(a) For φ(n, d, k) < 0, the subvariety of PN of hypersurfaces that contain a k-plane has
codimension −φ.
(b) For φ(n, d, k) = 0, every hypersurface of degree d in Pn contains a k-plane, and a
general hypersurface contains a positive number of k-planes.
(c) For φ(n, d, k) > 0, a hypersurface X has dim(Fk(X)) ≥ φ(n, d, k), with equality for
general X.

By the preceding discussion, this theorem will be proved if we can establish that the
image of π1 : I → PN has maximal dimension, i. e. is surjective for φ ≥ 0 and injective
for φ ≤ 0. At present, however, we can prove only small pieces of this theorem. It is clear
that for φ < 0, the variety of hypersurfaces that do contain a k-plane has codimension at
least −φ = dim(PN )− dim(I), so the following is already evident:

Corollary 1.7. For φ < 0, a general hypersurface contains no k-planes.

Also note that for φ > 0, if a hypersurface X contains a k-plane (i. e. lies in the image
π1(I)) then it contains infinitely many k-planes, since dim(Fk(X)) = dim(π−1

1 (X)) ≥
φ(n, d, k) > 0. The nontrivial task is to show that a hypersurface does in fact contain a
k-plane:
Example 1.8. The general quadric threefold in P4 contains no 2-planes—this is the case
n = 4, k = 2, d = 2 and φ(4, 2, 2) = 0. For, in the family of all quadric hypersurfaces, the
sub-family of cones over quadric surfaces has codimension 1; and each such cone contains
at least a 1-dimensional family of 2-planes. Therefore this sub-family must equal the image
π1(I). The stipulation d ≥ 3 is thus necessary in (b), and as such it is not obvious that
(b) holds at all.
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Meanwhile, in case (c) there is a trivial partial solution to this problem: for n ≥(
d+k−1

d−1

)
+ k − 1, any hypersurface X ⊂ Pn is swept out by k-planes (by Lemma 2.11 to

follow). This prevents such a failure as occurs for quadric threefolds in Example 1.8: the
map π1 : I → PN is surjective, therefore dim(Fk(X)) ≥ dim(I) − dim(PN ) = φ(n, d, k)
with equality for general X. This suggests the fruitfulness of the low-degree limit, to which
we will turn in subsequent chapters. But below this point, the existence of even a single
k-plane is nontrivial.

The method of proof will be as follows. In order to establish parts (a) and (b) of
Theorem 1.6, we will use Corollary 1.5: we must simply demonstrate the existence of a
hypersurface whose Fano scheme has an isolated point. The fact that such hypersurfaces
exist in general will be shown fully in Section 1.4. And similarly, Proposition 1.3 will imply
(c) if we can prove the existence of a hypersurface X containing a k-plane Λ such that
dimΛ(Fk(X)) = φ, i. e. that Fk(X) has the expected dimension locally at Λ. In section
1.4, we will show that the existence of such an X is implied by the full algebraic result of
[1]. In summary,

Remark 1.9. To establish Theorem 1.6 for φ ≤ 0 (parts (a) and (b)), it is sufficient to
show the existence of a hypersurface X0 whose Fano variety contains an isolated point. To
establish the theorem for φ ≥ 0 (part (c)), we need dim(Fk(X0)) = φ.

1.3. Proofs by example. Here we give some “proofs by example” of Theorem 1.3(b) for
particular choices of n, d, k for which φ(n, d, k) = 0, i. e. we exhibit hypersurfaces whose
Fano variety has an isolated point. By Corollary 1.5 to the Theorem on Fiber Dimension,
these are, in fact, proofs that all degree d hypersurfaces in Pn contain k-planes.

1.3.1. The case k = 1. We first attend to the case of lines.

Example 1.10. Let k = 1, and let n and d be integers such that

φ(n, d, 1) = 2n− 3− d = 0.

One can readily exhibit a degree d hypersurface in Pn with an isolated line. Note that (d−
1)/2 = n−2, and take coordinates [Z0, Z1,W0, . . .Wn−2] on Pn. Consider the hypersurface
X0 defined by the polynomial

F (Z,W ) =
∑(d−1)/2

k=0 WkZ
d−1−k
0 Zk

1

= W0Z
d−1
0 +W0Z

2
0Z

d−1−2
1 + · · ·+Wn−2Z

d−1
1 .

Then `0 = {Wi = 0} is an isolated line of Fk(X0). For, taking coordinates aij (i = 0, 1
and j = 1, . . . n − 1) on the affine space U of lines ` complementary to the (n − 2)-plane
{Z0 = Z1 = 0}, we get

F (`) = (a01Z0+a11Z1)Zd−1
0 +(a02Z0+a12Z1)Zd−1−2

0 Z2
1+· · ·+(a0(n−1)Z0+a1(n−1)Z1)Zd−1

1 .

Then clearly `0 = (aij = 0) is the only line in U such that F (`0) = 0, hence `0 is an
isolated point of the Fano variety. As one case, we have proved the following:

Corollary 1.11. A cubic hypersurface in P3 contains lines.

Moreover, it is possible to obtain parts (a) and (c) of Theorem 1.6 in the case k = 1 by
appropriately truncating or adding terms to the polynomial F (Z,W ).
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1.3.2. The case k = 2 and above. We give similar examples in the cases k = 2, d = 4, 5
and φ = 0. From these examples we can inductively describe polynomials as required for
all d ≡ 1, 2 mod 3, proving all cases k = 2 and φ = 0.

Example 1.12. 4 (a) (n = 7, d = 4, k = 2) The quartic hypersurface in

P7 = {[Z0, Z1, Z2,W0,W1,W2,W3,W4]}
defined by the equation

W0Z
3
0 +W1Z

3
1 +W2Z

3
2 +W3Z0Z1Z2 +W4(Z0Z

2
1 + Z1Z

2
2 + Z2Z

2
0 ) = 0,

contains the 2-plane {Wi = 0} as an isolated point of its Fano variety of 2-planes.

(b) (n = 9, d = 5, k = 2) The quintic hypersurface in P9 = {[Z0, Z1, Z2,W0, . . . ,W6]}
defined by the equation∑

i,j,k even
W`Z

i
0Z

j
1Z

k
2 +W6(Z2

0Z1Z2 + Z0Z
2
1Z2 + Z0Z1Z

2
2 ) = 0

contains the 2-plane {Wi = 0} as an isolated point of its Fano variety of 2-planes.

(c) (n = 8, d = 3, k = 3) The cubic hypersurface in P8 = {[Z0, . . . , Z3,W0, . . . ,W4]}
defined by the equation

3∑
i=0

WiZ
2
i +W4(Z0Z1 + Z1Z2 + Z2Z3 + Z3Z0) = 0

contains the 3-plane {Wi = 0} as an isolated point of its Fano variety of 3-planes.

To prove these assertions, one must show that upon substituting Wi =
∑
aijZj the

resulting forms span K [Z]d as aij varies. Then, since φ(n, d, k) = 0, they are also linearly
independent, meaning that Λ = (aij = 0 ∀ i, j) is the only k-plane contained in the affine
patch U ∩ Fk(X). This is seen in part (a) by choosing values of the coefficients aij as
follows: setting Wi = Zi for each i = 0, 1, 2 individually, we see that all of the monomials
Z4

i are included in the span. Setting W3 = Zi for each i individually, we get each monomial
involving all of the Zk. Now, setting W4 = Zi, the only monomial not divisible by any Z3

k

or involving all three Zi is Z2
i Z

2
i+1, and these are exactly the remaining monomials. So

we have shown that all the monomials of K [Z]4 are in the span. Parts (b) and (c) are
treated similarly.

For the case k = 2, one can describe inductively a set of polynomials defining hyper-
surfaces with the required property. We have treated the cases d = 4, 5 individually in
Example 1.12(a), (b), respectively. Then, given Fd(Z,W ) of degree d as required, define

Fd+3(Z,W,W ′) = Z0Z1Z2Fd(Z,W ) +W ′
aZ

d+2
0 +W ′

bZ
d+2
1 +W ′

cZ
d+2
2

+
d∑

k=1

W ′
k(Z

k+1
0 Zd+1−k

1 + Zk+1
1 Zd+1−k

2 + Zk+1
2 Zd+1−k

0 ).

4Part (a) here was found by writing out the the result of substituting Wi =
∑

aijZj into an arbitrary
polynomial, and choosing its coefficients so that the result spans K [Z]4 . Part (b) was found by writing
out the degree d monomials in a 2-simplex with the degree d − 1 monomials interlaced, and choosing a
polynomial that spans K [Z]5 under certain choices of coefficients aij . Part (c) was found similarly.
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This will again define a hypersurface having {Wi = W ′
i′ = 0} as an isolated 2-plane. This

proves Theorem 1.6(b) in the case of 2-planes.
In the case d = 3, k = 2, it is possible to find a polynomial whose Fano variety has local

dimension 2. Then the same formula can be used to extend to all d ≡ 0 mod 3. It is not
clear how to generalize either the base cases or the induction method to k > 2.

1.4. Fk(X) has the estimated dimension for general X. In this section we prove
Theorem 1.6 (a) and (b) in general, and show that (c) is implied by the main theorem of
[1].

1.4.1. An algebraic lemma. The following lemma, a partial version of the result of [1], will
show directly the existence of the polynomials we require. We adopt notation similar to
that of [1].

Let K [x] be the ring of polynomials in r variables x1, . . . , xr. Let

N(r, d) = dimK(K [x]d) =
(
d+ r − 1

d

)
be the dimension of the homogeneous part of degree d (unrelated to the number N(d, k)
defined later in Section 2.5).

In the proof of the lemma we will use several other spaces from [1]. Let P be the
projective space of m × r matrices with entries in K. Let B = (K [x]d−1)

m be the affine
space of m-tuples of degree d−1 forms in r variables. Let ~x = (x1, . . . , xr)t be the column
vector with the formal variables as entries. If [A] ∈ P is represented by the matrix A,
then bA~x is a 1× 1 matrix whose unique entry is a polynomial expression of homogeneous
degree d in the variables xi.

In the lemma, we will use a strategy surprisingly similar to the central proof of the
chapter. Let

V = {(b, [A]) ∈ B × P | bA~x = 0},
a closed subvariety of B×P. Then a form b = (F1, . . . Fm) is in the image of the projection
π1(V ) onto the first factor if and only if there exists a nontrivial linear dependence between
the mr forms {xjFi}, i. e. bA~x = 0 for some nonzero matrix A ∈ Km×r. We will use V
to bound the dimension of the subvariety of B consisting of m-tuples that result in such
a linear dependence.

Finally, let Pt ⊂ P be the irreducible quasi-projective subvariety of P consisting of
points representable by a matrix of rank exactly t (see [13]), and let Vt = V ∩ (B × Pt).

Lemma 1.13. Let d ≥ 3 and m ≥ r be positive integers such that N(r, d) = mr + ` for
some nonnegative integer `. Let Fi, i = 1, . . .m, be generic forms in K [x]d−1 . Then the
mr forms {xjFi}, for i = 1, . . . ,m and j = 1, . . . r, are linearly independent in K [x]d .

Proof. This claim comes from the main idea of [1] by a much shorter argument, due to
the restriction ` ≥ 0 (which amounts to φ ≤ 0).

Let π2 be the restriction of the projection onto the second factor V ↪→ B × P → P. It
certainly may be possible that V is reducible, which makes the situation here nontrivial.

Let 0 ≤ t ≤ r, so π2 restricts to a map Vt → Pt. We will apply the Theorem on Fiber
Dimension to these maps to eventually determine that

(3) dim(V ) = mN(r, d− 1)− 1,
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i. e. dim(V ) = dim(B)− 1, and a generic m-tuple (Fi) ⊂ B will satisfy the conclusion of
the lemma.

Let p = [(aij)] ∈ Pt be represented by the rank t matrix (aij), and let F = π−1
2 (p) be

the fiber of π2 over p. We will first show that this fiber is irreducible and has dimension

(4) dim(F ) = mN(r, d− 1)−N(r, d) +N(r − t, d).

Since its unique P -coordinate is p, the variety F may be identified with its projection
onto B, i. e. the set of vectors b = (F1, . . . , Fm) ∈ (K [x]d−1)

m such that b(aij)~x = 0. So
letting L be the column vector of linear forms (aij)~x = L = (L1, . . . , Lm)t, we think of F
as the affine cone {b ∈ B | b ·L = 0}. So F is simply a linear subspace of the vector space
B, hence irreducible.

Let J ⊂ k [x] be the ideal generated in L1, . . . , Lm. Then we have the short exact
sequence of graded rings

(K [x] (−1))m ·L→ K [x] → K [x] /J.

Since F = Ker(·L : (K [x] (−1))m → K [x]), this induces the short exact sequence of vector
spaces

0 → F → (K [x]d−1)
m L→ K [x]d → (K [x] /J)d → 0.

Since K [x] /J is isomorphic to a polynomial ring in r− t variables, this sequence directly
yields the desired dimension count for dim(F ) in (4).

Now, notice that the map π2 is surjective onto P , since (0, p) ∈ V ∀ p ∈ P. Furthermore,
dim(Pt) = mr − 1 − (m − t)(r − t) = N(r, d) − ` − 1 − (m − t)(r − t) by [13] Prop. 12.2
and the given. So, since the fiber F was arbitrary, from Corollary 1.4 to the Theorem on
Fiber Dimension we have

dim(Vt) = dim(F ) + dim(Pt)
= mN(r, d− 1)−N(r, d) +N(r − t, d)

+N(r, d)− `− 1− (m− t)(r − t)
= (mN(r, d− 1)− 1) +N(r − t, d)− (m− t)(r − t)− `.

To show 3, we now must prove that (m− t)(r − t) + ` ≥ N(r − t, d) for all t ≤ r, with
our choice of m and r. Proceed by induction on t: the base case t = 0 follows from the
assumption N(r, d) = mr+`. Now assume (m− (t−1))(r− (t−1))+` ≥ N(r− (t−1), d) :

(m− t)(r − t) =
r − t

r − t+ d
(m− t)(r − t+ d)

≥ r − t

r − t+ d
(m− t+ 1)(r − t+ 1) since m ≥ r ≥ t and d− 1 ≥ 2

≥ r − t

r − t+ d
(N(r − t+ 1, d)− `) by induction

≥ N(r − t, d)− `.

We have established that for all t ≤ r, dim(Vt) ≤ dim(Vr) = mN(r, d − 1) − 1. Since
V =

⋃
Vt, we get dim(V ) = maxt(dim(Vt)) = dim(Vr) = mN(r, d− 1)− 1, as desired.
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We have shown mN(r, d − 1)− 1 = dim(V ) < mN(r, d − 1) = dim(B), so π1(V ) must
be a proper subvariety of B = (K [x]d−1)

n. Thus an m-tuple (F1, . . . , Fn) ∈ B − π1(V ), i.
e. a generic n-tuple, yields a linearly independent set {xjFi} in K [x]d . �

1.4.2. Proof of Theorem 1.6. Recall that as per Remark 1.9, in order to prove Theorem
1.6 we must simply show the existence of certain hypersurfaces.

Let d and n > k positive integers, and take coordinates [Z0, . . . , Zk,W1, . . . ,Wn−k] on
Pn. We will restrict our attention to a hypersurface X0 defined by a polynomial of the
form

F (Z,W ) =
n−k∑
i=1

WiFi(Z0, . . . , Zk),

where each Fi is a homogeneous polynomial of degree d − 1. The hypersurface X0 then
contains the k-plane Λ0 = {W1 = W2 = · · · = Wn−k = 0}.

Consider the affine patch U of the Grassmannian consisting of k-planes complementary
to the (n− k− 1)-plane {Z0 = · · · = Zk = 0}. Here we have coordinates aij from (2), with
Λ0 corresponding to aij = 0. A plane Λ ∈ U is parametrized as

[Z0, . . . , Zk] 7→
[
Z0, . . . , Zk,

∑
a1jZj , . . . ,

∑
a(n−k)jZj

]
.

The restriction F |Λ is then given simply by

F |Λ(Z0, . . . , Zk) =
n−k∑
i=1

(
∑

j

aijZj)Fi(Z0, . . . , Zk),

and a hyperplane Λ lies on X0 if and only if this restriction vanishes identically.
Now, assume that the Fi are generic forms in K [Z]d−1 , and φ(n, d, k) = (k + 1)(n −

k) −
(
k+d

d

)
≤ 0. The conditions of Lemma 1.13 are met if we take m = n − k, r = k + 1,

for then

N(r, d) =
(
r + d− 1

d

)
=

(
k + d

d

)
≥ (k + 1)(n− k) = rm.

So from the lemma we may conclude that the (k+ 1)(n− k) forms {ZjFi(Z)} are linearly
independent in K [Z]. But this is exactly the statement

F |Λ(Z) =
n−k∑
i=1

(
∑

j

aijZj)Fi(Z0, . . . , Zk) ≡ 0 iff aij = 0 for all i, j.

Thus Λ0 = (aij = 0∀ i, j) is the unique point of Fk(X) ∩ U, hence an isolated point, as
desired. This establishes parts (a) and (b) of Theorem 1.6.

The full result of [1] adds to Lemma 1.13 the fact that for N(r, d) > rm, the linear map

Krm ∼= K [Z]1 ⊗K [Z]d−1 → K [Z]d ∼= KN(r,d)

Zj ⊗ Fi(Z) 7→ ZjFi(Z)
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is surjective, for d ≥ 3.5 Hence the kernel of this map has dimension rm − N(r, d) =
φ(n, d, k) in our set-up, which is exactly the statement that F |Λ(Z) ≡ 0 for aij in a linear
subspace of dimension φ(n, d, k). Thus Fk(X0) ∩ U ⊂ U ∼= Arm is a linear subspace of
dimension φ, which is therefore the local dimension of Fk(X0) on U. This establishes part
(c) of the theorem. �

Remark 1.14. It is somewhat surprising that our argument establishes surjectivity only
in the case φ(n, d, k) = 0, and not for the case that the dimension of I is strictly bigger
than that of the target PN . However, this is not the only failure of its kind, e. g. a
surjective map of sheaves is not in general surjective on global sections unless it is also
injective.

5The requirement d ≥ 3 is not included in [1]. The error is simply the unjustified claim that the
inequality at the bottom of p. 237 holds for “d = 1” (which is d − 1 = 1 in this paper). The subsequent
combinatorial proof of the inequality for d ≥ 2 is correct.



2. Fano Varieties in the Low-Degree Limit.

The goal of this chapter will be to specify when a hypersurfaces is “general” in the
sense of the previous chapter, meaning that its Fano variety of k-planes has the expected
dimension φ (the number defined in Theorem 1.6). Our answer will be that provided
d � n, this holds for all smooth hypersurfaces of degree d in Pn. Our main reference for
this chapter and the next is the 1998 paper [2] by Harris, Mazur, and Pandharipande.

2.1. Notation and terminology. Throughout the rest of the paper, we work over a
fixed algebraically-closed field K of characteristic 0. By a scheme, we will mean a quasi-
projective K-scheme, i. e. a locally closed subscheme of Pn. A reduced scheme will then
be called a variety (not necessarily irreducible), which is therefore just a classical quasi-
projective variety. So for our purposes, an integral K-scheme is an irreducible quasi-
projective variety. Furthermore, we will have occasion to consider only closed (i. e.
geometric) points of schemes: by a “point” x ∈ X we will mean a closed point.

If W and T are B-schemes, we will abbreviate WT = W ×B T for their fiber product.

Definition 2.1. A reduced B-scheme P → B will be called a projective bundle of rank
r, or a “Pr-bundle,” if for each b ∈ B there exists a Zariski-open neighborhood U 3 b
yielding a commutative diagram

PU

$$H
HHHHHHHH

∼ // U × Pr

��

U.

Remark 2.2. (a) In this paper, all projective bundles will be sub-bundles of some trivial
bundle B × Pn = B × PV. For our purposes, the operation“P” will send a vector sub-
bundle of B × V to the corresponding projective sub-bundle of B × PV (which is simply
Grass0(E) as defined below). Thus every projective bundle P will be equal to P(E) for a
vector sub-bundle E ⊂ B×V. Where convenient, we will thus be able to work equivalently
in the context of vector bundles.

(b) There frequently arise bundles X → B such that each fiber Xb is isomorphic to a
projective space Pr, while the bundle fails to be locally trivial in the Zariski topology: an
example is the family of smooth conics in the plane, which does not even admit a rational
section (see [13], ch. 4). In fact, this failure can be construed as the main difficulty
encountered in Chapter 3.

However, if the given projective bundle is a sub-bundle of a trivial bundle, i. e. X ⊂
B × Pn → B, and the scheme-theoretic fibers are reduced linear subspaces Pr ⊂ Pn, then
X → B is in fact locally trivial: this is Proposition 3.3, to follow.

2.2. A first result. To give a first demonstration of the techniques of the remainder of
the paper (residual varieties in particular) we will prove a well-known result. The following
is actually the simplest case of the main result of the next chapter, Theorem 3.6; but the
techniques are quite similar to those used in the proof of the main result of this chapter,
Theorem 2.13—which will in turn be necessary for the proof of Theorem 3.6. The proof
crucially involves the question of whether a bundle with projective fibers is actually a
“projective bundle” as per Definition 2.1.

11
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Proposition 2.3. For n ≥ 3, a smooth cubic hypersurface X ⊂ Pn
K is unirational, provided

K is algebraically closed and char(K) = 0.

Proof. Certain notions used here (such as Grassmann bundles) will be made rigorous in
Section 2.3 immediately following this proof, which will thus be somewhat casual.

From Theorem 1.6, we may choose a plane Γ of some dimension l > 0 lying on X (a line,
if one prefers). Then the variety of (l+ 1)-planes containing the l-plane Γ is parametrized
by Pn−l−1 = Pn/Γ. Since X is smooth, a general such (l + 1)-plane Θ ⊃ Γ meets X in a
the union of the plane Γ and a “residual” quadric hypersurface of dimension l, call it QΘ.
So, X is birational to the total space of a “quadric bundle”—i. e. a Pn−l−1-scheme whose
fibers are quadrics—over an open subset of Pn−l−1.

To be precise, the quadrics QΘ are the generic fibers of the blow-up

πΓ : X̃ = BlΓ(X) −→ Pn−l−1,

which we view as a quadric bundle over Pn−l−1 via the projection πΓ from Γ ∼= Pn−l−1.
The proper transform BlΓ(Θ) of an (l + 1)-plane Θ ⊃ Γ is again an (l + 1)-plane, and
QΘ = BlΓ(Θ) ∩ X̃. (In the rest of this argument we will sometimes fail to mention when
a property holds only over an open, dense subset.)

We will show that X̃ is unirational by viewing it as a quadric bundle. Each irreducible
quadric QΘ is rational individually: projecting from any point of QΘ to a hyperplane of
Θ is 1-1 and dominant, therefore birational since char(K) = 0. We hope to piece together
these rational parametrizations consistently, in order to parametrize an open subset of X̃.

The key to doing this is to find a rational section of the quadric bundle X̃ = {QΘ | Θ ∈
Pn−l−1}, i. e. a rational map σ : Pn−l−1 99K X̃ with σ(Θ) ∈ QΘ. If we could find such a
section σ, then we would have a rational map

(5) qΘ 7→ σ(Θ), qΘ ∈ G(1,Θ),

defined for each Θ. These maps are now clearly compatible over X̃ − E. Now, the spaces
G(1,Θ) form the “Grassmann bundle of lines” (which we will soon refer to as “Grass1”)
in the projective bundle of (l + 1)-planes Θ, parametrized by Pn−l−1. Any Grassmann
bundle over a rational base is rational (see Proposition 3.5, to follow). This rational map
from X̃ into the Grassmann bundle of G(1,Θ)’s is 1-1 and dominant over each Θ, hence
is birational overall. In short, this paragraph has shown:
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Lemma 2.4. The total space of a family of pointed quadrics over a rational base is ratio-
nal.

However, there is no guarantee of finding such a section σ, i. e. a choice of point
qΘ ∈ QΘ varying regularly with Θ ∈ Pn−l−1. Say we take l = 1 and look only for points of
QΘ that lie inside the line Γ : then in general ZΘ := QΘ∩Γ will consist of two points, and
we will have no way to pick one consistently. Thus we are forced to abandon hope of a
rational parametrization, which is 1-1, and instead hope for a unirational parametrization,
i. e. a dominant map PN 99K X—or, equivalently, a dominant map from a rational variety
to X. (Although in fact, smooth cubic surfaces in P3 are rational.)

Now, by analogy we hope to find a “unirational section” of the bundle of the quadric
bundle X̃ = {QΘ}, i. e. a map from a rational variety to X̃ that hits an open subset
of Θ ∈ Pn−l−1. Fortunately, we will find such a rational variety by directly fixing the
problem of the previous paragraph (using a familiar construction): consider the incidence
correspondence

Ψ = {(Θ, p) | p ∈ ZΘ = QΘ ∩ Γ} ⊂ Pn−l−1 × Γ.
This variety Ψ manifestly has a “unirational section” to X̃, given by (Θ, p) 7→ p ∈ QΘ.
And Ψ is itself a rational variety, which we will prove shortly in Lemma 2.5.

What good is a “unirational section?” It furnishes a rational section not of X̃ but of a
quadric bundle that dominates X̃, namely the pullback

H := X̃ ×Pn−l−1 Ψ.

This variety H is a quadric bundle over Ψ, whose fiber over (Θ, p) is by definition the
pointed quadric (p ∈ QΘ). Thus by Lemma 2.4, H is rational if Ψ is rational. We can
describe H more concretely as follows:

H = {(q,Θ, p) | q ∈ QΘ, p ∈ ZΘ} ⊂ X̃ × Pn−l−1 × Γ.

SoH clearly dominates X̃ and, pending the following result, we have obtained a unirational
parametrization of X̃ and hence of X.

Lemma 2.5. The incidence correspondence Ψ is rational.

Proof. The variety Ψ ⊂ Pn−l−1×Γ is (over an open subset) a bundle of (l−1)-dimensional
quadric hypersurfaces ZΘ = YΘ ∩ Γ ⊂ Γ over Pn−l−1, so it seems at first that we have
made no progress towards a proof. However, consider Ψ as as a bundle over its other
factor, Γ : observe that a point p ∈ Γ simply imposes a linear condition on Θ ∈ Pn−l−1,
which corresponds to the tangent hyperplane TpX to X at p. In fact, Ψ = {ZΘ}Θ∈Pn−l−1

is in fact a linear system of hypersurfaces in Γ ∼= Pl, parametrized by Θ ∈ Pn−l−1. (This
will be shown explicitly in Section 2.4.) Furthermore, this system has no basepoints, since
a basepoint would be a singular point of X (see also 2.4). Therefore each fiber of the
projection Ψ → Γ is a hyperplane in Pn−l−1, so Ψ is a Pn−l−2-bundle over Γ ∼= Pl (by
Proposition 3.3 to follow), hence rational. �

2.3. Constructions. We proceed to introduce several objects of which we will make
extended use in this chapter and the next. For the duration of Section 2.3, we let E → B
be a vector bundle of rank r + 1, with B and E irreducible varieties (i. e. integral
quasi-projective K-schemes, in our terminology).
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2.3.1. The relative Grassmannian. It is possible to define the relative Grassmannian vari-
ety Grassk(E) → B, whose fiber over each closed point b ∈ B is the ordinary Grassmannian
G(k + 1, Eb)—one can simply define Grassk(E)U = U × G(k + 1, r + 1) over each open
subset U ⊂ B such that π−1(U) ∼= U ×Kr+1, pending a compatibility check.

As mentioned already, we shall restrict our attention to the case that E is a sub-bundle
of a trivial bundle B × V, with V an (n + 1)-dimensional vector space. Then we may
simply define

Grassk(E) = {(b,Λb) | Λb ⊂ Eb} ⊂ B ×G(k + 1, V ).
On each open subset B × Uα, with Uα an affine patch as in Proposition 1.1, Grassk(E) is
defined as a subvariety by the requirement that each row of the matrix MΛ lie within the
linear space Eb.

Given a subbundle E0 ⊂ E of rank r′ ≤ r, we will also consider the subvariety
Grassk(E;E0) ⊂ Grassk(E) of (k + 1)-planes containing E0, which is isomorphic to
Grassk−r′(E/E0). If P = P(E) is the projective bundle corresponding to the vector bundle
E, then we will write Grassk(P ) for the variety of projective k-planes over B, which is
identical to Grassk(E). We will also let Grassk(P ;P0) = Grassk(E;E0) be the variety of
projective k-planes contained in P and containing P0 = P(E0).

Definition 2.6. In general, we will refer to any B-scheme of the form Grassk(E) → B,
for some vector bundle E → B, as a Grassmann bundle.

2.3.2. The relative Fano variety. Given a closed subscheme X ⊂ P = P(E), it is also
possible to define the relative Fano variety of X → B,

Fk(X/B) = {(b,Λb) ∈ Grassk(P ) | Λb ⊂ Xb = X ∩ Eb}.
We show that Fk(X/B) is a variety if E and B are varieties. Let b be a point of the
variety B (i. e. a closed point). Then we can find an affine neighborhood U of b such that
π−1(U) ∼= U × Pr is trivial, and XU is cut out by homogeneous polynomials on Pr whose
coefficients are regular functions on U (we can choose finitely many such polynomials,
and a neighborhood of b on which all of their coefficients are regular). Then for each of
these homogeneous polynomials, the relative Fano variety Fk(X/B)U is merely a form of
the incidence correspondence “I” of Section 1.2.1. The argument given there shows that
Fk(X/B)U is a closed subvariety of Grassk(E)U = U × G(k, r). (The case there was the
universal family of hypersurfaces in a fixed projective space). Notice that we ignore the
extra scheme-theoretic data from this definition: we consider the Fano variety as opposed
to the Fano scheme.

Alternatively, if P ⊂ B × Pn is a projective sub-bundle over B and X ⊂ P a closed
subvariety, then we may define the relative Fano variety simply as the subvariety of the
absolute Fano variety Fk(X) consisting of planes of the form {b}×Λ ⊂ B×Pn, i. e. those
contained in the first ruling of the Segre embedding (as per [13] Theorem 9.22). In fact,
the original “I” could also have been defined as such.

2.3.3. Some line bundles and Cartier divisors. We will interpret some basic objects and
describe how they carry over to the context of projective bundles.

The sheaves OP (d). We will briefly describe how to extend the definition of the familiar
sheaf OPn(d) to a general projective bundle P = P(E). The sections of the resulting sheaf
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OP (d) (d > 0) over an open subset B1 ⊂ B such that E|B1
∼= B1 × V are homogeneous

forms of degree d on V with coefficients regular over B1. Thus we may conclude that
OP (d)(PB1) = SymdE∗(B1), and therefore π∗(OP (d)) = SymdE∗. A global section of
OP (d) defines a closed subscheme of P → B. 6

Let S ⊂ PV × V be the universal line bundle over PV = G(1, V )—for each ` ∈ PV, S
has fiber S` = ` ⊂ V. Define O(−1) = OPr(−1) as the sheaf of sections of S, and define
the “tautological sheaf” O(1) as the sheaf of sections of S∗ (see [15] vol. 2, ch. VI for a
complete description). We may also define O(d) = O(1)⊗d.

Similarly, define SP → P to be the universal line bundle over P = Grass0(E), i. e.
the sub-bundle of P ×B E which has fibers (SP )(b,`b) = `b ⊂ Eb. We can now define
OP (−1) to be the sheaf of sections of SP , OP (1) to be the sheaf of sections of S∗P , and
OP (d) = OP (1)⊗d.

Now, let B0 ⊂ B be an affine open subset such that E|B0
∼= B0×V and P |B0

∼= B0×PV.
We emulate the argument of [15] vol. 2, VI.1.4, Example 2, to find the sections of OP (1)
over B0 × PV. One can see from the definitions that SP |PB0

= B0 × PV ×PV S, which
implies S∗P |PB0

= B0×PV ×PV S
∗. Choose coordinates {Xα} on PV, and consider the affine

coordinate patches Uα = {Xα 6= 0} ⊂ PV. Exactly as in [15], the line bundle S∗P → PV is
trivial over each open set B0×Uα, with transition functions cαβ = Xα/Xβ between them.
Sections over B0×Uα are regular functions: these are of the form ϕα = Pα/X

d
α with Pα a

homogeneous form of degree d in the Xα with regular functions on B0 as coefficients. For
such a section to be regular on B0 × Uβ for all β, we must have cαβϕα = XαPα/(XβX

d
α)

regular on Uβ , which implies d = 1. Thus the sections of S∗P over PB0 = B0 × PV, i. e.
the elements of OP (1)(B0 × PV ), are homogeneous linear forms with regular functions
on B0 as coefficients. This description then clearly extends to non-affine open subsets
B1 ⊂ B over which P is trivial. Likewise, the sections of OP (d) over B1 are forms of
degree d. These homogeneous linear forms take values on E, so we may conclude that
π∗(OP (d)) = SymdE∗ for d > 0.

Cartier divisors. We will think of a Cartier divisor D on a scheme X as a global
section of the sheaf M ∗

X/O
∗
X (defined in [17] II.6), which agrees exactly with the notion

of a “locally principal divisor” on an irreducible variety in the classical setting. With this
definition, a Cartier divisor D is effective iff it can be represented on an open cover {Uα}
by elements of OX(Uα) ⊂ MX(Uα), called “local equations” for D. An effective Cartier
divisor D thus defines a locally principal ideal sheaf ID and hence a closed subscheme
of X, referred to by the same letter D. In [15] vol. 2, VI.1.4, classes of Cartier divisors
are shown to be equivalent to invertible sheaves and line bundles, which allows us the
pushforward and pullback operations, respectively (though one may lose local triviality in
applying the pushforward). The Cartier divisors manifestly form a group.

In the case of the projective bundle P = P(E), one can see from the previous description
that the nonzero global sections of OP (d), for all d ≥ 0, form a graded submonoid of the
effective Cartier divisors. Furthermore, if α ∈ H0(P,OP (d)) and β ∈ H0(P,OP (d′)) define
subschemes Pα ⊂ Pβ ⊂ P, respectively, then β/α will be a global section of OP (d′ − d).

6Note that the vector bundles OP (d), d > 0, are not necessarily sub-bundles of trivial bundles, or even
projectively embeddable; but this will remain true of all projective bundles we will consider, thereby not
violating Remark 2.2.
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To see this quickly, consider the subschemes of E defined by α and β, meaning the cones
P̂α ⊂ P̂β over Pα ⊂ Pβ respectively. Over any affine open set B0 ⊂ B as above, the
homogeneous polynomials representing α and β are regular functions on E|B0—so the
scheme-theoretic inclusion P̂α ⊂ P̂β implies that α|β as homogeneous polynomials on
each B0×PV. We will not, however, need the full facts of the case, i. e. that the group of
line bundles OP (d) represents a subgroup of the class group, etc.

2.3.4. Residual varieties. The goal of this section is to formalize and generalize the “resid-
ual” intersections involved in the proof of the unirationality of cubic hypersurfaces, Propo-
sition 2.3.

Definition 2.7. A family of hypersurfaces over B is a closed subscheme X ⊂ P = P(E)
defined by the vanishing of a global section sX of OP (d) that does not vanish identically
over any point of B. By a family of l-planed hypersurfaces, we mean a triple of B-schemes
(Γ, X, P ) such that Γ = P(E0) for a sub-bundle E0 ⊂ E, and Γ ⊂ X ⊂ P.

By the previous discussion, 2.3.3, a family of hypersurfaces is an effective Cartier divisor
on P. We define several projective bundles associated to the bundle P. Write

Π = Grassl+1(P ; Γ)

for the family of projective (l + 1)-planes containing Γ (such a plane was referred to as
Θ in the proof of Proposition 2.3). Π is then a Pn−l−1-bundle over B; it is in fact locally
trivial, by Lemma 3.3 to follow. Let Π̃ ⊂ P ×B Π be the universal bundle over Π, whose
fiber over a closed point of Π is the corresponding projective (l + 1)-plane in P. Consider
the pullback bundles ΓΠ = Γ×B Π, and PΠ = P ×B Π. Then we have the inclusions

ΓΠ ⊂ Π̃ ⊂ PΠ.

Note that these are projective bundles over the base Π, itself a Pn−l−1-bundle over the
original base B.

Now, let X ⊂ P be a family of hypersurfaces over B, defined by a global section sX of
OP (d). The pullback XΠ is again an effective Cartier divisor, in PΠ, defined again by sX

(viewed as a section of OΠ(d)). Consider the scheme-theoretic intersection

XΠ ∩ Π̃ ⊂ Π̃.

This is yet again a Cartier divisor, defined by the restriction to Π̃ of sX which is in turn a
section of OΠ̃(d). This restriction does not vanish identically: for, Π̃ is irreducible (being
a vector bundle over a projective bundle over the irreducible variety B), and XΠ does not
contain any fiber Π̃b over b ∈ B (the latter projects surjectively onto Pb

∼= Pr, while the
former does not).

Finally, note that the family of l-planes ΓΠ ⊂ Π̃ is an effective Cartier divisor, for which
a defining section of OΠ̃(1) can readily be described locally on Π̃.

Definition 2.8. Corresponding to our given family of l-planed hypersurfaces (Γ, X, P )
over B, we have several constructions:

(a) The main residual Π-scheme will refer to the effective Cartier divisor

Y := XΠ ∩ Π̃− ΓΠ ⊂ Π̃.
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By the preceding discussion, Y is defined by a section of OΠ̃(d− 1).
(a’) Define the locus of definition of Y, DEF(Y ) ⊂ Π, to be the maximal open subset
of (l + 1)-planes Θ ∈ Π for which YΘ ⊂ Π̃Θ has dimension l, i. e. is a hypersurface. If
DEF(Y ) is non-empty, then

YDEF(Y ) → Π,

will be called the residual family of hypersurfaces attached to (Γ, X, P ).

(b) The secondary residual Π-scheme Z will refer to the scheme-theoretic intersection

Z := Y ∩ ΓΠ.

(b’) Write DEF(Z) ⊂ Π for the maximal open subset over which ZDEF(Z) → Π has fiber
dimension l − 1, i. e. is a hypersurface.

To give a very rough summary: the first of these, Y, is the family of intersections of
X with the family Π of (l + 1)-planes containing the family of l-planes Γ ⊂ X, residual
to Γ. The second, DEF(Y ) ⊂ Π, is the open subset having nontrivial fibers in Y. The
third, Z, is the family of intersections of Y with the base family of l-planes. Notice that
DEF(Z) ⊂ DEF(Y ).

2.4. Explicit description of the fibers of the residual varieties. Over an individual
closed point b ∈ B, the fibers of the residual varieties are readily describable as subvarieties
of Pb

∼= Pr. To do this, we work temporarily over the base B = Spec(K). Choose homo-
geneous coordinates {V0, . . . , Vl,Wl+1, . . . ,Wr} on P = Pr so that Γ = Pl = {Wi = 0}.
Then {Wi} are homogeneous coordinates on Π = Pn−l−1. Write the defining equation of
X(= Xb) as

F (V,W ) =
∑

0≤|I|≤d−1

V IFI(W ).

Here each I is a multi-index of degree |I|, and each FI(W ) is a homogeneous polynomial
of degree d − |I| ≥ 1. Now, given a point [wl+1, . . . , wr] ∈ Π, we may parametrize the
corresponding plane as

Θ = {[V0, . . . , Vl, wl+1U, . . . , wrU ]}.
We thus have homogeneous coordinates [V0, . . . , Vl, U ] on Θ such that Γ ⊂ Θ is the plane
defined by U = 0. The restriction of F to the (l + 1)-plane Θ is given by

F (V,W )|Θ =
∑

V IUd−|I|FI(wl+1, . . . , wr).

Since 0 ≤ |I| < d, we may divide through by U to obtain the defining equation for the
primary residual Π-scheme Y,

FY = F (V,W )|Θ/U =
∑

FI(wl+1, . . . , wr)Ud−|I|−1ZI .

The scheme-theoretic intersection of Y with Γ is given simply by setting U = 0, by which
we obtain the defining equation for the secondary residual scheme Z,

FZ(V,Θ) =
∑

|I′|=d−1

FI′(wl+1, . . . , wr)ZI′ .

Here, the FI′ are homogeneous linear forms. From these equations, we see that the locus
Pn−l−1 − DEF(Y ), i. e. the set of Θ which are equal to YΘ, is the common zero locus
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of the homogeneous forms FI . Likewise, the locus Pn−l−1 − DEF(Z) is the common zero
locus of the linear forms FI′ and thus a subset of the former; hence DEF(Z) ⊂ DEF(Y ).

From this discussion, we conclude the following:

Proposition 2.9. Let (Γ, X, P ) be an l-planed family of hypersurfaces over an integral
base B, and let b ∈ B be a closed point. Then,

(a) If Γb meets the smooth locus of the morphism π : X → B (i. e. the smooth locus of
Xb), then DEF(Z) ∩Πb 6= ∅.
(b) Let Pp ⊂ Πb be the common zero locus of the linear forms FI′ coming from the terms
of FZ . Then the secondary residual schemes

{ZΘb
}

form a linear system of hypersurfaces in Γb
∼= Pl parametrized by the quotient of Πb by the

subspace Pp, i. e. Pr−p−1. The basepoint locus of this system is contained in the singular
locus of the morphism π : X → B.

Remark 2.10. For our purposes, the “smooth locus” of the map π is the dense open
subset of X on which dim(ker(dπ)) attains a Zariski-local minimum (see [13], ch. 14). So,
by Proposition 3.2 (to follow), a closed point x ∈ X lies in the smooth locus of π if and
only if the scheme-theoretic fiber Xπ(x) through x is smooth at x. Thus the requirement
of Proposition 2.9 is simply that for each point b ∈ B, Γb not be contained in the singular
locus of the hypersurface Xb ⊂ Pb.

Proof. Assume that the constructions of this section have been made for the given closed
point b ∈ B, i. e. F (V,W ) defines Xb ⊂ Pb, the Vi are coordinates on Γb, and so-on.

(a) By the remark, we know that Γb 6⊂ (Xb)sing. The V -partials of F (V,W ) are all zero
on Γb = {Wi = 0}. A W -partial along Γb is

∂F (V,W )
∂Wi

∣∣∣∣
Γb

=
∑

|I′|=d−1

V I′FI′(0, . . . , 1, . . . , 0) = FZ(V, 0, . . . , 1, . . . , 0),

with a 1 in the i’th argument of each. So, ∂F
∂Wj

(V, 0) 6= 0 ⇒ FZ(V, 0, . . . , 1, . . . , 0) 6= 0 ⇒
[0, . . . , 1, . . . , 0] ∈ DEF(Z)b. Hence (Xb)sm 6= ∅ ⇒ DEF(Z)b 6= ∅

(b) By the definition of FZ , the hypersurfaces ZΘb
manifestly form a linear system of

degree d− 1 in Γb parametrized by the quotient Πb/Pp. A basepoint (V ′, 0) of this system
would yield a solution, for all W, to the equation

0 = FZ(V ′,W ) =
∑

|I′|=d−1

V I′FI′(W ) =
∑

Wi
∂F

∂Wi
(V ′, 0).

This would imply ∂F
∂Wi

(V ′, 0) = 0 for all i, meaning that V ′ is a singular point of Xb. Thus
the basepoint locus of {Zθb

} is contained in the singular locus of Xb. �



FANO VARIETIES AND UNIRATIONALITY 19

2.5. Numbers. Finally, we introduce the relevant numerical bounds of which we will
make use in the following section. Define

M(d, l) =
(
l + d− 1
d− 1

)
+ l − 1.

This number has the following use:

Lemma 2.11. Let d, l ≥ k ≥ 0, and n ≥ M(d, l) be non-negative integers, and let
Λ ⊂ X ⊂ Pn be a k-plane contained in a hypersurface X of degree d. Then there exists an
l-plane Γ such that Λ ⊂ Γ ⊂ X.

Proof. Since M(d, l′) ≤ M(d, l) for all l′ ≤ l, it is sufficient to assume k = l − 1. Choose
homogeneous coordinates V0, . . . , Vk,Wk+1, . . . ,Wn on Pn such that the k-plane Λ = {Wi =
0}. In these coordinates, the defining polynomial of X is of the form

F (V,W ) =
∑

0≤|I|<d

V IFI(Wk+1, . . . ,Wn).

This sum ranges over the
(
k+1+d−1

d−1

)
=

(
k+d
k+1

)
monomials V I of degree less than d− 1, and

each FI are homogeneous of degree d− |I| ≥ 1 in the Wi.

Now, given that n− k ≥M − k ≥
(
k+d
k+1

)
, the polynomials FI have a nontrivial common

root [Wk+1, . . . ,Wn] . Thus the span, Γ, of Λ and the point [0, . . . , 0,Wk+1, . . . ,Wn] is an
l-plane such that Λ ⊂ Γ ⊂ X, as desired. �

Next we fix an integer k ≥ 0 and define two functions recursively, N0(d, k) and N(d, k).
Begin by setting

N(2, k) = N0(2, k) =
(
k + 1

2

)
+ 3.

Then for d ≥ 3, define recursively

N0(d, k) = M(d,N(d− 1, k) + 1)

and then

N(d, k) = N0(d, k) +
(
k + d

d

)
+ 2,

or in other words,

N0(d, k) = M(d,N0(d− 1, k) +
(
k + d− 1
d− 1

)
+ 3).

Note that both of these functions are strictly increasing with k.

Proposition 2.12. (a) In the case d = 2, note that N0(2, k) ≥ M(2, k). So for n ≥
N0(2, k). So a quadric hypersurface Q ⊂ Pn is swept out by k-planes. This in turn implies
that if Q is smooth, then

dim(Fk(Q)) = φ(n, 2, k).

(b) For all d ≥ 3 and k ≥ 0,

N0(d, k) ≥
(
k + d

d

)
+ 3k + 1 ≥M(d, k),
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and therefore a hypersurface X ⊂ Pn with n ≥ N0(d, k) is swept out by k-planes.

Proof. (a) For d = 2, note that M(2, k) = k + 1 + k − 1 = 2k ≤ k+1
2 k + 3, which

is the first claim. So by Lemma 2.11, any quadric in Pn, n ≥ N0(d, k), is swept out
by k-planes. In particular, this implies that the map π1 : I → PN from Chapter 1 is
surjective: so for a general quadric hypersurface Q, the arguments of Chapter 1 imply
that dim(Fk(Q)) = dim(I)− dim(PN ) = φ(n, 2, k). However, a general quadric is smooth,
and all smooth quadrics are projectively equivalent, so this applies to all smooth quadrics.

(b) Fix k. We first do the base case d = 3 :

N0(3, k) =
((

k+1
2

)
+ 3 +

(
k+2
2

)
+ 2 + 3

2

)
≥

(
(k + 1)2 + 8

2

)
≥

(
k + 3

3

)
+ 3k + 1

by comparing coefficients.
Now, for a given d ≥ 3 and k > 1, assume the result for all (d′, k′) such that d′ < d or

k′ < k. Then,

N0(d, k) ≥M(d, 2
(
k + d− 1
d− 1

)
+ 3k + 4) ≥ 2(k + d− 1)

d− 1
(2

(
k + d− 1
d− 1

)
+ 3k + 4− 1)

≥ 2
(
k + d

d

)
+ 3k + 3. �

2.6. Low-degree smooth hypersurfaces do not have too many k-planes.

Theorem 2.13. Let n, d, k be positive integers, and let N0 = N0(d, k) as defined above.
If n ≥ N0(d, k) and X ⊂ Pn is a smooth hypersurface, then

dim(Fk(X)) = φ(n, d, k).

We will need two corollaries during the induction step of the proof. (In the next chapter,
we will in fact need two further corollaries to this theorem; but these will be deferred until
section 3.4.2.)

Corollary 2.14. (a) If the codimension of Xsing in the hypersurface X is at least N0,

then we may likewise conclude

dim(Fk(X)) = φ(n, d, k).

(b) Let N(d, k) as defined earlier, and let X ⊂ Pn be any hypersurface of degree d. If
n ≥ N(d, k), then

dim(Fk(X)) ≤ max{φ(n, d, k), φ(n, d, k) + dim(Xsing)− 1}.

Proof of Corollary 2.14. (a) Assume the theorem for a given d and k. For n < N0 the
desired corollary is vacuous, and for n = N0 it is just the theorem. We will prove the
cases n > N0 by induction on n—so let n > N0 and X ⊂ Pn be a hypersurface of degree
d whose singular locus has codimension at least N0. Let H ∼= Pn−1 ⊂ Pn be a general
hyperplane, and consider G(k,H) ∼= G(k, n − 1) ⊂ G(k, n), the sub-Grassmannian of k-
planes contained in H. Set Y = X ∩H. Then by Bertini’s Theorem, the singular locus of
Y again has codimension at least N0, so by induction codim(Fk(Y ) ⊂ G(k, n)) =

(
k+d

d

)
.

But Fk(Y ) = Fk(X) ∩ G(k,H) ⊂ G(k, n); so, by the subadditivity of codimension of
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intersections in the smooth variety G(k, n) ([13] 17.24), if a component F of Fk(X) meets
G(k,H) then
(6)

codim(F ⊂ G(k, n)) ≥ codim(Fk(X) ⊂ G(k, n)) ≥ codim(Fk(Y ) ⊂ G(k,H)) =
(
k + d

d

)
.

It remains to show that every component of Fk(X) meets G(k,H). This will follow from
a standard result in the intersection theory of Grassmannians, which we state without
proof:

Lemma 2.15. If X1 and X2 are subvarieties of G(k, n) of codimension c1 and c2 such
that c1 + c2 < n+ 1− 2k, then the intersection X1 ∩X2 is nonempty.

Note that in the case k = 0, this gives the standard intersection criterion on Pn.
Now, recall that Fk(X) is cut out by

(
k+d

d

)
conditions, hence any component F0 has

codimension at most that number. So the codimensions of F0 and G(k,H) ⊂ G(k, n) are
at most

(
k+d

d

)
and k + 1, respectively. We have

n+ 1− 2k ≥ N0 + 1− 2k ≥
(
k + d

d

)
+ 3k + 2− 2k =

(
k + d

d

)
+ k + 2

by Proposition 2.12(b), and so by the lemma F meets G(k,H), which establishes 6 and
the claim.

(b) Assume the result of part (a) for the given pair d, k, and let X be a hypersurface of
degree d in Pn, with n ≥ N(d, k).

If codim(Xsing ⊂ X) ≥ N0 then part (a) applies; otherwise dim(Xsing) ≥ n − N0 ≥
N(d, k)−N0 =

(
k+d

d

)
+ 2, by definition of N(d, k). So,

dim(Fk(X)) ≤ G(k, n)

= φ(n, d, k) +
(
k + d

d

)
≤ φ(n, d, k) + dim(Xsing)− 1.

�
Remark 2.16. For any given n, d, k, these corollaries can be deduced from the theorem
as applied only to these n, d, k. Thus we will be able to use the corollaries in conjunction
with our induction hypothesis.

2.6.1. A Bertini Lemma. We will need the following lemma to control the singularities of
our hypersurfaces.

Lemma 2.17. (Bertini’s Theorem for a projective space) Let D = {Dα}α∈Pm be a linear
system of hypersurfaces in Pn, with base locus B ⊂ Pn of dimension b. Define the subsets

Sk = {Dα ∈ D | dim((Dα)sing) ≥ b+ k}.

Then Sk is a projective variety and

codim(Sk ⊂ Pm) ≥ k.
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Proof. Define the incidence correspondence

Σ = {(α, p) ∈ Pm × Pn | p ∈ (Dα)sing}.

Then Sk = {α ∈ Pm | dim(π−1
1 (α)) ≥ k + b}, which is a projective variety in Pm since

fiber dimension is an upper-semicontinuous function of α ∈ Pm (Proposition 1.3(b)).
We may restrict π1 to be surjective onto Sk, to obtain the relation

dim(Sk) + k + b = dim(π−1
1 (Sk))

≤ dim(Σ),

so we will be done upon establishing

(7) dim(Σ) ≤ m+ b.

We will examine the projection π2 to obtain the bound in (7) on dim(Σ). Consider the
map f : Pn − B → (Pm)∗ associated to the linear system D. Explicitly, let the vector
space of meromorphic functions underlying Pm have basis {f0, . . . , fm}, so we may write
f(p) = [f0(p), . . . , fm(p)] . Since p is outside the base locus B, we may assume f0(p) 6= 0
so we can take affine coordinates z1, . . . , zm with which to write

(dfp)ij =
∂(fi/f0)
∂zj

∣∣∣∣
p

.

Conveniently, the rank l of this matrix is by definition the number of linear conditions
for a hypersurface Dα 3 p corresponding to α = [a0f0 + . . .+ amfm] to be singular at the
point p. Thus if rk(dfp) = l then the space of hypersurfaces singular at p, which is the
inverse image of p under π2, is a linear subspace π−1

2 (p) ∼= Pm−l−1 ⊂ Pm.
Define the locally closed subset Wl = {p ∈ Pn − B | rk(dfp) = l}. We have just

determined that the fiber of π2 over a point of Wl has dimension m− l − 1, so

dim(Wl) + (m− l − 1) ≥ dim(π−1(Wl)).

Since Σ is a union of the finitely many inverse images π−1
2 (Wl) along with π−1

2 (B), we
must show that

m+ b ≥ dim(Wl) +m− l − 1(8)
b+ l + 1 ≥ dim(Wl).(9)

We will in fact be done once we show this inequality, because (trivially) the inverse image
π−1

2 (B) has dimension at most m+ b.
We have translated a question concerning the singular loci (Dα)sing into a question of

the rank of dfp in order to apply Sard’s theorem. This result ([13] Proposition 14.4) states
that over a field of characteristic 0, dfp is surjective for points landing in a nonempty open
subset of f(Wl); so clearly

dim(f(Wl)) ≤ l.

This now implies
dim(Wl) ≤ dim(f−1(f(p))) + l,

for any fiber through a point p ∈Wl. But the fibers of f all have dimension less than b+1.
In fact, any non-constant map on the complement of a b-dimensional variety of projective
space has fiber dimension at most b+ 1, by the following argument:
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Write f = [F0, . . . , Fm] so that the Fi are homogeneous polynomials with no common
factor which are simultaneously zero nowhere outside of B (See [15] vol. I ch. 3). The
projective variety defined by the Fi has dimension at most b. The fiber over (say) p =
[1, 0, . . . , 0] then is defined by F1 = · · · = Fm = 0. The section of this fiber by the
hypersurface {F0 = 0} has dimension one less (since the Fi have no common factor), and
is contained in B. So the fiber over p, defined by F1 = · · · = Fm = 0, has dimension at
most b+ 1.

This establishes (9), which implies (7) and hence the main inequality of the lemma. �

2.6.2. Proof of Theorem 2.13. Theorem 1.6(c) of Chapter 1 asserts that in case φ(n, d, k) >
0 and d ≥ 3, every hypersurface contains a family of k-planes of dimension at least φ (the
proof invoked the result of [1]). So it remains to show that a smooth hypersurface of
sufficiently high dimension has a family of k-planes of dimension at most φ.

To this end, we will construct a convenient family of pairs of planes, ∆. We will then
find a lower bound L (step 1) and an upper bound U (step 2) on dim(∆). The resulting
inequality L ≤ U will simplify to the desired upper bound on dim(Fk(X)) (step 3).

The bounds L and U will be established by induction on d. Proposition 2.12(a) exactly
establishes the base case d = 2 of the theorem, for all k. For the induction (the remainder
of the proof), fix d and k, and assume that Theorem 2.13 and its corollaries hold for all
triples (n′, d′, k′) with n′ ≤ n, d′ ≤ d, k′ ≤ k but not all equal. Note that the theorem is
vacuous for n′ < N0(d′, k′). Let X ⊂ Pn, with n ≥ N0(d, k), be a smooth hypersurface of
degree d.

Set l = N(d− 1, k), and define the locally closed subvariety ∆ ⊂ Fk(X)× Fl(X) given
by

∆ = {(Λ,Γ) ∈ Fk(X)× Fl(X) | dim(Λ ∩ Γ) = k − 1}.
Equivalently, ∆ can be defined by the condition that Λ and Γ together span an (l+1)-plane
in Pn (not necessarily contained in X).

Remark 2.18. The idea is roughly as follows: our numbers are sufficiently high that not
only will X be swept out by k-planes, but each of these k-planes in X is contained in
an l = N(d − 1, k)-plane in X. This will allow us to apply our induction hypothesis on
d first to show that ∆ is dense in a fiber product of flag-Fano varieties (step 1), then to
inject ∆ into the relative Fano variety of the main residual scheme Y coming from the
intersection of X with the variety of (N(d − 1, k) + 1)-planes containing its Fano variety
of l = N(d− 1, k)-planes (step 2).

Step 1. Let Fk−1,k(X) and Fk−1,l(X) be the flag-Fano varieties

Fk−1,k(X) = {(Ω,Λ) | Ω ⊂ Λ ⊂ X} ⊂ G(k − 1, n)×G(k, n)

and
Fk−1,k(X) = {(Ω,Γ) | Ω ⊂ Γ ⊂ X} ⊂ G(k − 1, n)×G(l, n).

We will realize ∆ as an open, dense subset of the fiber product

Φ := Fk−1,k(X)×Fk−1(X) Fk−1,l(X)

From the definition, there is a regular map

∆ → Fk−1(X)
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given by
(Λ,Γ) → Ω := Λ ∩ Γ.

Via this map, embed ∆ ⊂ Φ via the identification (Λ,Γ) 7→ ((Ω,Λ), (Ω,Γ)) ∈ Φ. This
embedding is open, since ∆ ⊂ Φ is defined by the open condition Λ 6⊂ Γ.

We claim that ∆ is dense in the fiber product Φ. A point of Φ−∆ can be represented
by a triple (Ω ⊂ Λ ⊂ Γ). Since n ≥ N0(d, k) = M(d,N(d − 1, k) + 1) = M(d, l + 1), we
can choose an (l + 1)-plane Σ ⊂ X such that Γ ⊂ Σ. Then the k-plane Λ ⊂ Γ can be
realized as a limit of k-planes Λx 6⊂ Γ—simply choose a line ` that meets Γ in a single
point x0 ∈ Λ− Ω, and set Λx = Λ, x, for points x ∈ `. Thus dim(∆) = dim(Φ).

We get a standard lower bound on dim(Φ). Note that the fibers of the second projection
Fk−1,k → G(k, n) are isomorphic to Pk∗, so

dim(Fk−1,k(X)) = k + dim(Fk(X)).

Similarly, the fibers of Fk−1,l → G(l, n) are equal to G(k − 1, l), so we have

dim(Fk−1,l(X)) = k(l − k + 1) + dim(Fl(X)).

We have assumed that n ≥ N0(d, k) ≥M(d, l) ≥M(d, k), so we know that both Fk−1,k(X)
and Fk−1,l(X) map surjectively onto Fk−1(X). So by [13] 11.15,

dim(∆) = dim(Φ) ≥ dim(Fk−1,k(X)) + dim(Fk−1,l(X))− dim(Fk−1(X)).
= k + dim(Fk(X)) + k(l − k + 1) + dim(Fl(X))− dim(Fk−1(X)).

(Note: From the proof of this last fact, we have equality if ∆ is irreducible.)
Since N0(d, k) ≥ N0(d, k − 1), we have from the induction hypothesis

dim(Fk−1(X)) = φ(n, d, k − 1) = k(n− k + 1)−
(
k + d− 1
k − 1

)
,

and the last inequality reduces to

dim(∆) = dim(Fk−1(X)) ≥ k(l− n+ 1) +
(
k + d− 1
k − 1

)
+ dim(Fk(X)) + dim(Fl(X)) =: L

Step 2. The idea here is to get an upper bound U on dim(∆) in terms of just dim(Fl(X)),
so that the expression L ≤ U will involve only dim(Fk(X)) as an unknown quantity.

We will regard the ambient space P = Pn as a projective bundle over SpecK. Let
F = Fl(X), and let F̃ → F be the universal projective bundle, whose fiber over a point
Γ ∈ F is the corresponding projective l-plane.

Consider the (rather trivial) family of l-planed hypersurfaces (F̃ ,XF , PF ). Form the
Pn−l−1-bundle Π → F corresponding to this family—recall from section 2.8 that the fiber
of Π over a point Γ ∈ F is the set of (l+1)-planes Θ containing Γ. Also form the main and
secondary residual Π-schemes, respectively Y ⊃ Z. Recall that the relative Fano variety
Fk(Y/Π) ⊂ Grassk(Π̃) is the variety of pairs (Λ,ΘΓ) such that Λ ⊂ YΘΓ

), where Λ is a
k-plane and ΘΓ ⊃ Γ an (l + 1)-plane.

Define the map of varieties

∆ → Fk(Y/Π)

(Λ,Γ) 7→ (Λ,ΘΓ),
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where ΘΓ = Λ,Γ is the (l+ 1)-plane they span. Note that Λ ⊂ YΘΓ
as required: the open

dense set Λ−Γ ⊂ Λ is certainly contained in the residual variety YΘΓ
, which is closed and

hence contains Λ.
This map is clearly injective. So in what follows, we will simply compute an upper bound

on the dimension of Fk(Y/Π). This will furnish our upper bound U on the dimension of ∆.
To do this, fix an l-plane Γ0 ⊂ X, and we will compute the dimension of the fiber of

Fk(Y/Π) over Γ0. For this purpose, we need only consider the residual family over the
single l-plane Γ0, i. e.

Y0 := {YΘ | Θ ∈ ΠΓ0 = Pn−l−1}.
So we would like to compute the dimension of

Fk(Y/Π)Γ0 = Fk(Y/ΠΓ0
) = Fk(Y0/Pn−l−1).

The YΘ have degree d − 1, so we hope to apply the induction hypothesis once we know
something about their singularities.

Happily, since X is smooth, by Proposition 2.9 the hypersurfaces {ZΘ = YΘ ∩Γ0} form
a base-point-free linear series in Γ0—and so by Proposition 2.17, the locus

Sρ = {Θ ∈ DEF(Z)Γ0 ⊂ Pn−l−1 | dim((ZΘ)sing ≥ ρ− 1}

has codimension at least ρ in Pn−l−1. Hence, the variety

Wρ = {Θ ∈ DEF(Z)Γ0 ⊂ DEF(Y )Γ0 | dim((YΘ)sing ≥ ρ} ⊂ Sρ

must also have codimension at least ρ in Pn−l−1.
Thus we can choose Θ ∈ DEF(Z)Γ0−W1, and the hypersurface YΘ has at most isolated

singularities. So, since l = N(d − 1, k), the induction hypothesis yields from Corollary
2.14 that

dim(Fk(YΘ)) = φ(l + 1, d− 1, k).

We may thus conclude that the inverse image of DEF(Z) in the fiber Fk(Y0/Pn−l−1) =
Fk(Y/Π)Γ0 has dimension φ(l + 1, d− 1, k) + n− l − 1.

It remains to check that the inverse image of the p-dimensional projective linear space
(DEF(Z)Γ0)

c = Pn−l−1 − DEF(Z)Γ0 (as per Proposition 2.9) does not introduce compo-
nents of larger dimension in Fk(Y/Π)Γ0 . Since the series {ZΘ} is base-point free, we must
have l + 1 ≤ codim((DEF(Z)Γ0)

c ⊂ Pn−l−1), since this is the dimension of the linear sys-
tem {ZΘ}. Meanwhile we have the trivial upper bound dim(Fk(YΘ)) ≤ dim(G(k, l + 1)),
so the fiber dimension can jump from the generic dimension by at most dim(G(k, l+1))−
φ(l + 1, d − 1, k) =

(
k+d−1

d−1

)
. But since the locus (DEF(Z)Γ0)

c having possibly higher-
dimensional fibers has codimension at least l+1 ≥

(
k+d−1

d−1

)
, these fibers cannot contribute

a higher-dimensional component of Fk(Y/Π)Γ0 . We can conclude that

dim(Fk(Y/Π)Γ0) = φ(l + 1, d− 1, k) + n− l − 1.

Since Γ0 ∈ Fl(X) was arbitrary, we may conclude finally that

dim(∆) ≤ dim(Fk(Y/Π)) = dim(Fl(X)) + φ(l + 1, d− 1, k) + n− l − 1

= dim(Fl(X)) + (k + 1)(l − k − 1)−
(
k+d−1

d−1

)
+ n− l − 1 =: U
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Step 3. We now simplify the inequality L ≤ dim(∆) ≤ U from steps 1 and 2:

k(l − n+ 1) +
(
k + d− 1
k − 1

)
+ dim(Fk(X)) + dim(Fl(X))

≤ dim(Fl(X)) + (k + 1)(l − k − 1)−
(
k + d− 1

k

)
+ n− l − 1.

Cancelling Fl(X) and rearranging, we get

dim(Fk(X)) ≤ (k + 1)(l − k + 1)− k(l − n+ 1) + n− l − 1

−
(
k+d−1

k−1

)
−

(
k+d−1

k

)
= (k + 1)(l − k − 1− (l − n+ 1))−

(
k+d

d

)
= (k + 1)(n− k)−

(
k+d

d

)
.

This establishes the desired upper bound dim(Fk(X)) ≤ φ, which is equal to the lower
bound from Chapter 1, yielding the desired equality. �

Remark 2.19. Since this last upper bound on dim(Fk(X)) is sharp, the equivalent in-
equality L ≤ U of the bounds on dim(∆) must also be an equality, i. e. L = dim(∆) = U.
So the sharpness of our upper bound on dim(Fk(X) reflects the fact that the arguments
of steps 1 and 2 were each an accurate computation of the dimension of ∆.

Also note that since X in the proof is swept out by k-planes, Theorem 1.6(c) is trivial,
as argued prior to Remark 1.9. So the full result of [1] is not required for Theorem 2.13.



3. Unirationality of Smooth Hypersurfaces of Low Degree.

In this chapter we will demonstrate an important consequence of Theorem 2.13: the
unirationality of smooth, low-degree hypersurfaces. Our main reference will again be [2].
In Section 3.3, however, we arrive at similar constructions to those of [2] much more
straightforwardly. The methods of this chapter were originally developed for the case of a
general hypersurfaces. The conclusion of the last chapter will be used to prove Corollary
3.12: we are able to bound the dimension of the variety of planes contained in the smooth
fibers in order to “inflate” the image, showing surjectivity.

Note: All fibers of morphisms will now be “scheme-theoretic,” as will all inclusions. A
“point,” however, will still refer always to a closed point.

Example 3.1. Our method of proof in this chapter generalizes that of Proposition 2.3 (a
review of this example is recommended). We begin with a heuristic attempt to prove the
case of quartic hypersurfaces, identifying the main obstructions to its success.

Let X ⊂ Pn be a smooth quartic hypersurface. Hoping to extend the proof of Propo-
sition 2.3, we take n sufficiently large that we can choose an l-plane Γ ⊂ X and consider
the (l + 1)-planes Θ that contain it. A general such plane Θ intersects X in the union of
a residual cubic hypersurface YΘ ⊂ Θ and the plane Γ. As before, the blow-up

πΓ : X̃ = BlΓ(X) −→ Pn−l−1 = Π

has general fiber a cubic hypersurface YΘ ⊂ Pl+1.
Now, we expect that a general fiber YΘ of X̃ → Π will be smooth.7 In this case, YΘ

will be unirational, by Proposition 2.3. However, if we hope to use this fact, we must be
able to choose a k-plane ΩΘ on each cubic YΘ. As before, we can narrow down the choice
by looking only within the l-plane Γ, which meets YΘ in the secondary residual scheme
ZΘ = Γ∩YΘ. As in the case of cubics, we do not expect to choose a unique such plane for
each ZΘ, i. e. a rational section. Instead we set up the incidence correspondence

Ψ := {(Θ,Ω) | Ω ⊂ ZΘ = YΘ ∩ Γ} ⊂ Pn−l−1 ×G(k,Γ).

(For cubics, we had k = 0 so that G(0,Γ) = Γ.) As before, we form the pullback of
X̃ → Π = Pn−l−1 to this variety Ψ → Π,

H := X̃ ×Π Ψ.

The family H1 → Ψ is then a k-planed family of cubic hypersurfaces. This gives us a
unirational parametrization of each cubic YΘ. And we should be able to further pull back
H1 to obtain a “pointed, k-planed family of hypersurfaces” H0, dominated by a variety
which will be rational—provided that Ψ itself is rational. (See Section 3.4.1 for a better
description.)

The question of whether Ψ is rational can be approached as before, by considering the
projection map to the second factor G(k,Γ). As in Proposition 2.9, the secondary residual
hypersurfaces {ZΘ} form a linear system, and each point Ω ⊂ Γ imposes a certain number
of linear conditions on Θ ∈ Π. Thus we may hope that Ψ is a projective bundle over the
rational base G(k,Γ), and will hence be rational.

7In fact it will be sufficient that the general fiber have at worst isolated singularieties when n � d, as
in the proof of Theorem 2.13.

27
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There are two main obstructions to these last statements: first, the variety Ψ may not
dominate G(k,Γ)—then its image might not be rational, and neither might Ψ. However,
we should be able to fix this by choosing n � l, so that a k-plane Ω imposes fewer than
n− l− 1 conditions on the parameters Θ ∈ Π of the linear system {ZΘ}—then, each Ω is
contained in some hypersurface ZΘ. Also note that although each fiber of Ψ → G(k,Γ) is
a linear space, they may not all have the same dimension—nor do all k-planes necessarily
impose the same number of conditions on the series {ZΘ}. Thus the variety Ψ may be
reducible, which is likewise true of H. However, Corollary 3.12(a) will assert that for n
appropriately large, a general k-plane imposes independent conditions on a linear series
in Pn.

The second difficulty is that even if a component of Ψ0 ⊂ Ψ dominates G(k, n), and is
therefore rational, we cannot be sure that Ψ0 also dominates the other factor Π (and vice
versa). If Ψ0 does not dominate Π, then H0 = X̃ ×Π Ψ0 cannot dominate X̃ as required.
However, this will be remedied in what follows by Corollary 3.12(b) to Theorem 2.13,
which asserts that for n� d, every component of Ψ dominates Π.

Both of these failures in surjectivity, as well as the reducibility of Ψ, do in fact occur
for incidence correspondences Ψ attached to certain linear series: examples are described
in [2].

For the case of quartics, we will show that for

n ≥ U(4) = 179124155
8 (as defined in Corollary 3.8), these problems do not occur and a smooth quartic in Pn

will be unirational.

3.1. Preparatory results, and combs. For the sake of completeness, we will prove two
necessary basic facts.

Lemma 3.2. Let Φ : X → Y be a map of Noetherian K-schemes, and y ∈ Y a closed
point. Let x ∈ Xy = X ×Y Spec(κ(y)) = X ×Y K be a closed point of the fiber over y
(coming from a closed point of x), and let dΦx : TxX → TyY be the differential. Then the
sequence of K-vector spaces

0 −→ TxXy −→ TxX
dΦx−→ TyY

associated to the morphisms Xy → X → Y is exact.

Proof. Since the statement is local, we may set X = Spec(S) and Y = Spec(T ). Let
φ : T → S be the ring homomorphism corresponding to Φ. Let m ⊂ S be the maximal
ideal corresponding to the point x, and let n ⊂ T be the maximal ideal corresponding to
y. The given Φ(x) = y means just that φ−1(m) = n, so (also by definition) there is an
induced homomorphism φx : Tn → Sm of the local rings such that φx(nn) ⊂ mm.

The fiber product X ×Y Spec(κ(y)) is the spectrum of the ring

S ⊗T K = S ⊗T Tn/nn = S ⊗T T/n.

8As mentioned in the introduction, this number is slighly lower than it should be due to a typo in the
original paper.
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(The fact T/n = Tn/nn is [19] Prop. 5.1.5.) The inverse image “x” of x in the fiber Xy

corresponds to the ideal (m ⊗ 1)(S ⊗T K) = m ⊗T K. Furthermore, the local ring (S ⊗T

K)m⊗T K is naturally isomorphic to Sm⊗T K, under which the maximal ideal corresponds
to mm⊗T K—this is readily seen from examining the surjective ring homomorphism S →
S⊗T 1, which expresses S⊗T K ≈ S/(φ(n)m), and from the exactness of localization ([16]
Ch. 3).

We prove the exactness of the dual sequence to the one stated,

T ∗y Y −→ T ∗xX −→ T ∗xXb −→ 0(10)

nn/n
2
n

φx−→ mm/m
2
m −→ (mm/m

2
m)⊗T K −→ 0.(11)

We may write out

(mm/m
2
m)⊗T K = (mm ⊗T T )/(m2

m ⊗T T + mm ⊗T n) ≈ mm/(m2
m + φ(n)mm).

But φ(n)mm = φx(nn)mm in the local ring OX,x = Sm since any element s 6∈ n is sent to
φ(s) 6∈ m. Thus the right side of the last equation is equal simply to (mm/m

2
m)/(φx(nn)),

which is just the desired statement that (10) is exact. �

Proposition 3.3. Let X ⊂ B × Pn be a family, with X and B varieties. If the scheme-
theoretic fibers Xb over closed points b ∈ B are k-dimensional linear subspaces of Pn, then
X is a projective bundle of rank k over B, i. e. is locally trivial.

Note. The requirement that X be a sub-bundle of a trivial bundle, i. e. X ⊂ B × Pn, is
essential, as per Remark 2.2.

Proof. Given b0 ∈ B a closed point and Xb0
∼= Pk a fiber, choose an (n − k − 1)-plane

Λ ∼= Pn−k−1 ⊂ Pn such that Xb0 ∩Λ = ∅. Let U be the open subset {b ∈ B | Xb ∩Λ = ∅}.
Let πΛ : Pn − Λ → Pk be the projection from Λ. Then Id × πΛ is bijective between the
closed points of XU = π−1

1 (U) and U × Pk (linear algebra).
From [13] Corollary 14.10, it remains to show that Id× πΛ has injective differential at

all closed points (b, p) ∈ XU . Form the diagram

0 // T(b,p)Xb //

��

T(b,p)XU //

(Id×πΛ)(b,p)

��

TbU //

��

0

0 // T(b,πΛ(p))({b} × Pk) // T(b,πΛ(p))(U × Pk) // TbU //// 0

,

where (if this is not obvious) the left vertical map is derived from the sequence

Pk ∼= Xb → XU → U × Pk → Pk → {b} × Pk,

which is an isomorphism since nonconstant. The left and right vertical maps in the diagram
are thus isomorphisms, therefore the central map is an isomorphism.

Alternatively, notice that [14], III-56 directly implies that X → B is a flat family. So
X is a fiber product with the Grassmannian bundle, hence a bundle itself. �



30 AUTHOR: ALEX WALDRON ADVISOR: JOE HARRIS

3.1.1. Combs. The following is a key object in our constructions:

Definition 3.4. A comb over B is a B-scheme C for which there exists a sequence

G1⋃
##H

HHHHHHHH G2⋃
  A

AA
AA

AA
A

· · · Gn−1

##H
HH

HH
HH

HH
Gn

%%J
JJJJJJJJJ⋃

C = C0
// C1

// C2 · · · Cn−1
// Cn = B,

where each Gi is a Grassmann bundle over Ci, and Ci ⊂ Gi+1 is a dense open subset. By
standard arguments, each of these maps is dominant. We will say that a map C → B
for which there exists such a diagram is a comb morphism. Clearly, comb morphisms are
closed under composition.

Proposition 3.5. If C → B is a comb and B is rational, then C is rational.

Proof. A Grassmann bundle over B is birational to B×G for some ordinary Grassmannian
G. Grassmannians are rational by Proposition 1.1. Hence Cn−1 is rational, and so-on. �

3.2. Statement of results concerning unirationality. We first must define another
lower bound. Define, inductively, L(2) = 0, and

L(d) = N(d, L(d− 1))

for d ≥ 3.

Theorem 3.6. Let (Γ, X, P ) be an l-planed family of hypersurfaces over an integral base
B, with l ≥ L(d). Assume Γ is contained in the smooth locus of the morphism π : X → B.
Then there exists a comb D → B, and a morphism D → X such that for each closed point
b ∈ B, the map fb : Db → Xb is dominant.

The proof of this theorem occupies the remainder of the paper. Note that in this case,
the map f will be referred to as “fiber-by-fiber” dominant. Recall that as in Remark 2.10,
the smoothness requirement here is simply that fiber Xb be smooth at all points of the
plane Γb ⊂ Xb.

Corollary 3.7. If B is rational in Theorem 3.6, then X is unirational.

Proof. From Corollary 3.5, the comb D is rational. In the theorem, D → X is dominant
therefore X is unirational. �

Corollary 3.8. For

n ≥ 1
L(d) + 1

(
L(d) + d

d

)
+ L(d) =: U(d),

a smooth hypersurface X ⊂ Pn of degree d is unirational.

Proof. The requirement here is that φ(n, d, L(d)) ≥ 0, so that X contains an L(d)-plane
(Ch. 1 Theorem 1.6). �

Remark 3.9. The arguments and results of this chapter, particularly Theorem 3.6, also
apply to the case of a non-algebraically-closed field k of characteristic zero. However this is
not true of the results of Chapter 2, and therefore Corollary 3.8 fails as stated for arbitrary
k. Still, the connection between Fano varieties and unirationality persists:
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Corollary 3.10. If a smooth hypersurface X ⊂ Pn
k of degree d contains an L(d)-plane

that is rational over k, then X is unirational over k.

As an example of how this might work, consider the results of Section 3.1 above. Note
that the L(d)-plane Λ ⊂ X is rational over k if and only if the residue field at each closed
point x ∈ L(d) is equal to k—and in this case, the tangent spaces at x and Φ(x) are
finite-dimensional k-vector-spaces, and the statement (and proof) of Lemma 3.2 makes
sense.

3.3. Constructions. In this section we make further constructions corresponding to a
given l-planed family of hypersurfaces (Γ, X, P ) over B. These will formalize the techniques
of Proposition 2.3 and Example 3.1. We assume that the schemes Π, Y, Z, etc., of Section
2.3.4 correspond to our given l-planed family.

Let G := Grassk(Γ) be the family of k-planes contained in the projective bundle Γ.
There is a map Grassk(ΓΠ) → G coming from the map of B-schemes

(12) Grassk(ΓΠ) ∼−→ Grassk(Γ)×B Π −→ Grassk(Γ) = G,

from which we get another map

ψ : Fk(Z/Π) ↪→ Grassk(ΓΠ) −→ G.

Now, each fiber of Fk(Z/Π) → G over a k-plane Λb ∈ Gb is in fact a linear subspace of
Πb

∼= Pn−l−1. This follows form Proposition 2.9 of Section 2.4: each point of Γb simply
imposes a linear condition on the linear series {ZΘb

}Θb∈Πb
, so the points of Λb merely

impose so many linear conditions on the parameters Θb ∈ Πb. (By applying the definition
of the relative Fano variety to the discussion of Section 2.4, one is readily convinced that
these linear conditions cut out the fiber in Fk(Z/Π) over Λb scheme-theoretically, so that
the fiber is a reduced linear space.)

However, we cannot be assured that all of the fibers have the same dimension; although
generically, they do, by the Theorem on Fiber Dimension (1.3). Let C be the open subset of
the irreducible projective variety G over which the fibers of this map ψ have the minimum
possible dimension l −

(
k+d−1

k

)
, i. e. the set of k-planes imposing independent conditions

on the linear series. At present we do not know that this is nonempty; this will follow
from Corollary 3.12, if the dimension l is appropriately high. Thus, from Lemma 3.3, the
restriction to C of Fk(Z/Π) → G is in fact a projective bundle over C, which we will denote
by Q :

Fk(Z/Π)C =: Q −→ C ⊂ G.

We also have a morphism Q −→ Π, since Q is a sub-bundle of the restriction to C of the
Pn−l−1-bundle G×B Π −→ G.

A point of the variety Q over a closed point b ∈ B can be thought of as a pair (Ωb,Θb) ∈
Grassk(Γb)×Πb, such that such that Ωb ⊂ ZΘb

—in other words,

Ωb ⊂ ZΘb
⊂ Γb ⊂ Θb ⊂ Pb,

which also implies that
Ωb ⊂ YΘb

⊂ Θb
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for a point (Ωb,Θb) ∈ Q. If G̃→ G is the universal family, then this last inclusion becomes

(13) G̃C ⊂ Q.

On the other hand, we let Π0 ⊂ DEF(Z) ⊂ Π be the maximal open subset over
which the fibers of Z → Π have the dimension l − 1 and are smooth. In other words,
Π0 ⊂ DEF(Z) ⊂ Π is the set of Θb such that YΘb

does not contain the entire l-plane Γb,
and meets Γb in a smooth hypersurface ZΘb

.
Finally, let D ⊂ Q be the inverse image of Π0 in Q. Thus, the fiber over a closed point

d = (Ωb,Θb) ∈ D of the family ZD → D is the smooth hypersurface ZΘb
= Zd of dimension

l − 1 in Γb, and Ωb ⊂ Zd.
In the following diagram of B-schemes, we summarize the constructions we have made

from the given family (Γ, X, P ). Here, the symbol “⊂” indicates an open embedding, and
“↪→” indicates a closed embedding.

(14) D

vvmmmmmmmmmmmmmmmmm ⋂
%%K

KKKKKKKKKK ZD

~~||
||

||
||

��

� � // YD

��

G̃D

��

// C⋂ Qoo

⋂
$$J

JJJJJJJJJJJ Π0⋂ Z

~~~~
~~

~~
~~

~ _�

��

� � // YN n

~~}}
}}

}}
}}

}

G̃ // G = Grassk(Γ) Fk(Z/Π)
_�

��

oo // Π Π̃oo

Grassk(ΓΠ)

hhQQQQQQQQQQQQ

::ttttttttttt

The following is the purpose of these constructions:

Proposition 3.11. The triple (G̃D, YD, Π̃D) is a k-planed family of hypersurfaces of degree
d− 1 over D. The bundle G̃D is contained in the smooth locus of YD → D. Furthermore,
if D and C are non-empty then

D −→ C −→ B

is a comb over B.

Note. For this to be nontrivial, the open sets C ⊂ G and D ⊂ Q must be nonempty: this
will be shown in Section 3.4.2 under the appropriate circumstances.

Proof. The inclusion G̃D ⊂ YD is the pullback of equation (13). The family YD was
originally defined as a subscheme of Π̃D in Section 2.3.4.

For the second statement, let d = (Ωb,Θb) ∈ D be a closed point. Recall that Zd = ZΘb

is by definition smooth, and Ωb ⊂ ZΘb
= Yb∩Γb. Therefore Ωb ⊂ (Yd)sm, which by Remark

2.10 is equivalent to the desired statement. For the third statement,

D ⊂ Q −→ C ⊂ G −→ B

is by definition a comb morphism, provided D and C are non-empty. �
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3.4. Proof of unirationality of smooth low-degree hypersurfaces. In Section 3.4.2,
we will show that for a family of hypersurfaces X → B of appropriately high dimension
relative to its degree d (see section 3.2), the natural map YD → X is dominant. The
degree of the family of hypersurfaces YD is equal to d− 1, which we will use to induct on
degree in Section 3.4.3.

3.4.1. Rough description of the proof. In the induction argument to follow, the location of
the parametrizing variety itself is obscured. It is therefore instructive to give the following
rough description of the proof of Theorem 3.6:

Apply Proposition 3.11 to obtain successive families of hypersurfaces Y d−i
Dd−i

of degree
d− 1, d− 2, d− 3..., with each family dominating the previous ones; their bases Dd−i will
form a comb over the original base B, provided the Di can be chosen nonempty (we will
establish this using the dimension, degree, and smoothness requirements of the theorem).
This can be drawn out as follows:

X

��

Y d−1
Dd−1

��

oo Y d−2
Dd−2

��

oo . . .oo Y 1
D1

= D0

��

oo

B Dd−1
oo Dd−2

oo . . .oo D1.oo

We will arrive at a family of hypersurfaces Y 1
D1

of degree d = 1 dominating all prior
families Y d−i

Dd−i
. By Proposition 3.3, this last family Y 1

D1
is then itself a projective bundle

over D1, which we may call D0. Hence D0 → D1 → . . . → B will be a comb over B (if
non-empty), with a dominant map D0 → X given by the composition of dominant maps
D0 → Y 2

D2
→ · · · → X.

To obtain Corollary 3.7, simply observe that if the original base B is rational, then the
bases Di at each step are rational (see Proposition 3.5). This includes the last family D0,
which is rational and will dominate all the previous varieties Y i

Di
and X. Hence X will be

unirational.
In case B = Spec(K) and X is a single hypersurface, the parametrizing variety is

a certain subvariety of a cross-product of flag manifolds in Pr (see [2] for an explicit
description).

3.4.2. Dominance of YD → X. We proceed to establish the remaining facts which are
necessary to show that YD → X is dominant. These are obtained directly from Theorem
2.13 of the previous chapter.

Corollary 3.12. Let d and k be positive integers, and let N = N(d, k) as defined in
Section 2.5. Let l ≥ N(d, k) be an integer, and let

D = {Dα ⊂ Pl}α∈Pm

be a base-point-free linear series of hypersurfaces of degree d in Pl parametrized by Pm

(necessarily, m ≥ l). Let

Ψ = {(α,Λ) ∈ Pm ×G(k, l) | Λ ⊂ Dα}

be the incidence correspondence. Then,
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(a) A general k-plane Ω ⊂ Pl imposes independent conditions on the linear series D , that
is,

dim({α ∈ Pm | Ω ⊂ Dα}) = m−
(
k + d

d

)
≥ 0.

(b) The variety Ψ has dimension

dim(Ψ) = m+ φ(n, d, k),

and every irreducible component of Ψ projects surjectively onto the first factor Pm. There
is a unique irreducible component of Ψ dominating G(k, l), and this in particular projects
surjectively onto Pm.

Proof. This is derived by combining Lemma 2.17 and Theorem 2.13.

(a) Note that m ≥ l ≥ N(d, k) ≥
(
k+d

d

)
, which is the maximum possible number of

conditions imposed by a k-plane. So π2 : Ψ → G(k, l) is surjective, with general fiber of
dimension

dim(Ψ)− dim(G(k, l)) = m+ φ(l, d, k)− (k + 1)(l − k) = m−
(
k + d

d

)
.

(b) Consider the projection map π1 : Ψ → Pm. From Lemma 2.17, we know that a general
member Dα of the linear series is smooth; so from Theorem 2.13, the general fiber of π1

has dimension dim(Fk(Dα)) = φ(l, d, k) ≥ 0, and in particular π1 is surjective (i. e. all
hypersurfaces Dα contain k-planes. As in the proof of Theorem 2.17, set

So
h = {α ∈ Pm | dim((Dα)sing)) = h}.

Then for each h = 0, . . . , l − 1, we have

dim(So
h) ≤ m− h− 1.

So by Corollary 2.14(b), for any α ∈ So
h,

dim(π−1
1 (α)) < φ(l, d, k) + h+ 1

≤ φ(l, d, k) + codim(So
h ⊂ Pm),

from which we may write

dim(π−1
1 (So

h)) ≤ dim(So
h) + dim(π−1(Λ))

< m+ φ(l, d, k).

On the other hand, Ψ is cut out by
(
d+k

k

)
conditions, so for each component Ψ0 of Ψ,

dim(Ψ0) ≥ m+ dim(G(k, l))−
(
d+ k

k

)
= m+ φ(l, d, k).

Thus π1(Ψ0) 6⊂ So
h for any h, and the minimum fiber dimension over π1(Ψ0) is φ. Corollary

1.4(b) therefore implies that dim(Ψ0) = m+φ−φ = m and ψ0 surjects onto Pm, as desired.
(Here we have “inflated” the image of Ψ0 by bounding the dimension of the fibers, which
is the contribution of Theorem 2.13.)

We have from (a) that Ψ surjects onto G(k, l). If two components Ψ1,Ψ2 both domi-
nated, then the open sets Ψ1 −Ψ2 and Ψ2 −Ψ1 also dominate; so the generic fiber would
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be reducible. But each set-theoretic fiber over G(k, l) is a projective space, so a unique
component of Ψ dominates. �

Now, assume given an l-planed family of hypersurfaces (Γ, X, P ) over an integral base
B, and assume that the constructions of section 3.3 have been made for this family.

Proposition 3.13. If X → B is smooth along Γ and l ≥ N(d−1, k), then D is nonempty,
hence a comb over B, and the natural B-morphism YD → X is fiber-by-fiber dominant over
B (and therefore dominant).

Proof. (It may be helpful here to refer to the diagram (14).) As before, it will suffice to
work over a single closed point b ∈ B, so we assume temporarily that B = Spec(K). Thus
X = Xb is smooth along Γ = Γb

∼= Pl, and by Proposition 2.9(b), the secondary residual
schemes {ZΘ} form a base-point free linear series of degree d− 1 in Γ (a basepoint would
be singular).

There is a trivial technicality coming from Proposition 2.9: the linear series {ZΘ} is
parametrized not by Π = Pr−l−1 but by a quotient of Π, which we will call Pm. There is thus
a surjective map Π ⊃ DEF(Z) � Pm whose fibers are projective subspaces Pp ⊂ DEF(Z)
of rank p = r − l −m − 1. This map induces a surjective rational map α from the Fano
variety (over b),

Fk(Z/Π) ⊂ (Grassk(Γ)×B Π)b = G(k, l)× Pn−l−1,

onto the the incidence correspondence “Ψ”⊂ G(k, l)× Pm of Corollary 3.12:

Fk(Z/Π) α // //____

��
$$I

IIIIIIIII
Ψ

zzuuuuuuuuuuu

  
@@

@@
@@

@@
@

G = G(k, l) Π // //___ Pm.

Each fiber of this map α is of course also a projective space Pp.
Now, by Corollary 3.12(a), since l ≥ N(d−1, k) ≥

(
k+d−1

k

)
, the general k-plane imposes

independent conditions on the linear series {ZΘ}, and each fiber is non-empty. Thus
Ψ → G is surjective, as is Fk(Z/Π) → G, and the open subset C ⊂ G is non-empty. So,
the projective bundle Q ⊂ Fk(Z/Π) is a non-empty open subset. On the other hand, the
open subset Π0 ⊂ Π is also non-empty (over b): for, DEF(Z)b is non-empty by Corollary
3.12(b), and the general ZΘ is smooth by Lemma 2.17. So D ⊂ Q, the inverse image of
Π0. Therefore, following Proposition 3.11, D → C → B is in fact a comb.

We now show that YD → X dominates over b. By Corollary 3.12(b), “Ψ” dominates
Pm, hence Fk(Z/Π) dominates Π = Pr−l−1 as do the open subsets Q and D. Let Π1 ⊂ Π0

be an open subset contained in the image of D. Let X0 ⊂ X be the open subset lying
outside of both Γ and the inverse image of Π−Π1 under the projection πΓ : X − Γ → Π;
this set X0 is non-empty since Π1 ⊂ Π0 ⊂ DEF(Z) ⊂ DEF(Y ). Furthermore, X0 is dense,
since X = Xb must be integral in order not to meet Γ in a singular point.

Let Θx = x,Γ.Choose a k-plane Ωx ⊂ ZΘx , so (Ωx,Θx) is a closed point of D (possible
since l ≥ N(d− 1, k)). Then because x 6∈ Γ, we have x ∈ Y(Ωx,Θx). Thus x is in the image
of Y(Ωx,Θx), and we are done since x ∈ X0 was general. �
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3.4.3. Proof of Theorem 3.6. We argue by induction on the degree d. In case d = 1, the
family of hypersurfaces is itself a comb. Now, let d > 1 and assume that the conclusions
of the theorem hold for all degrees less than d. We must show that the theorem holds for a
family (Γ, X, P ) of l-planed hypersurfaces of degree d, with Γ a projective bundle of rank
l ≥ L(d) contained in the smooth locus of X → B.

Set k = L(d − 1), and let (Ω̃D, YD, Π̃D) be the k-planed family of hypersurfaces of
degree d − 1 corresponding to (Γ, X, P ), from Section 3.3. By Proposition 3.11, and
since l ≥ L(d) = N(d − 1, L(d − 1)) = N(d − 1, k), the family (Ω̃D, YD, Π̃D) satisfies the
hypotheses of Proposition 3.13. Therefore D → B is a comb, and YD → X is fiber-by-fiber
dominant over B.

Also by Proposition 3.11 and the definition k = L(d − 1), the family (Ω̃D, YD, Π̃D)
satisfies the induction hypothesis. Therefore we get a comb F → D and a morphism
F → YD which is dominant fiber-by-fiber over D and hence also over B. The composition
of comb morphisms

F → D → B

is again a comb morphism, and the composition

F → YD → X

is again a fiber-by-fiber dominant B-morphism. So F is the required comb over B domi-
nating X fiber-by-fiber. This completes the proof of Theorem 3.6. �
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