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Abstract

In Chapter 1, I outline many of the basic properties of word-hyperbolic groups and give
an introduction to CAT(κ) spaces. In Chapter 2, I prove a number of important theorems
about Coxeter groups, including the Exchange Condition and Tits’s solution to the word
problem. I also discuss Moussong’s theorem on which Coxeter groups are word-hyperbolic.
Finally, in Chapter 3, I present some original research showing that certain subgroups of
certain word-hyperbolic Coxeter groups are quasiconvex.
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Introduction

Given a finite set of letters, consider the set of words — not English words, but simply finite
sequences of letters — that can be written with those letters. We define two operations:

• Whenever a letter appears twice consecutively, we may delete both occurrences. Like-
wise, we may insert two consecutive, identical letters into a word at any point.

• For each pair of letters (say, a and b), choose one of the following rules: ab = ba,
aba = bab, abab = baba, and so on. That is, if we see a sequence of the form aba · · · ,
we may replace it with bab · · · (where both sequences are of the specified length), and
vice versa. These rules need not be the same for different pairs of letters; we could
say, for instance, that ab = ba, aca = cac, and bcbc = cbcb. We may also choose not to
impose any such rule on particular pairs of letters.

Two words are said to be equivalent if it is possible to get from one to the other using these
two operations. The set of all classes of equivalent words is called a Coxeter group (named
for the geometer H.S.M. Coxeter, who studied this construction starting in the 1930s). For
instance, if the rules are ab = ba, aca = cac, and bcbc = cbcb as above, then the words
abac, aabc, baac, and bc are all equivalent, so they represent the same element of the Coxeter
group. They are not equivalent, however, to the word cb, which thus represents a different
element of the Coxeter group.1

As an example, let the set of letters (also called generators) consist of a and b, and
suppose that aba = bab. The elements of the Coxeter group can be written as a, b, ab, ba,
aba (which is the same as bab), and the so-called empty word, a word of zero letters, often
denoted by 1. Any longer word can be reduced to one of these six possibilities. As another
example, the group generated by a, b, and c, with the rules aba = bab, bcb = cbc, and
ac = ca, has 24 distinct elements. On the other hand, if the rules are aba = bab, bcb = cbc,
and aca = cac, then the group contains infinitely many distinct elements, for the words abc,
abcabc, abcabcabc, abcabcabcabc, etc. all represent different elements.

Many Coxeter groups occur naturally as so-called reflection groups, sets of transforma-
tions of a space that can be realized as the composition of a given set of reflections. For
instance, consider two lines in the plane, labelled La and Lb, that intersect at an angle of 60◦.

1Formally, in order to call this set a group, we need to define a law of composition. However, as this
Introduction is intended for a general audience, we shall use this colloquial description. A rigorous definition
of Coxeter groups will appear in Chapter 2.
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La

Lb

Figure 1: Reflections through lines meeting at 60◦.

Take any figure, such as the upper right letter R shown in Figure 1, and reflect it across the
line La to obtain the upside-down R in the lower-right corner. Next, reflect the new figure
across Lb to obtain the R in the upper-left corner, and then reflect that down across La to
the lower-left backward R. Next, starting with the original figure again, reflect first across
Lb, then across La, then across Lb again, and note that the final image is exactly the same.
In other words, if a and b represent reflections across La and Lb, respectively, then we obtain
the rule aba = bab. Also, performing the same reflection twice in a row leaves every point
fixed, so we may insert or delete pairs of consecutive, identical reflections into any sequence
without consequence. Thus, we can say that the set of transformations of the plane that
are compositions of the reflections a and b is a Coxeter group. More generally, if La and Lb
intersect instead at an angle of 180◦/n, where n is an integer greater than 1, we obtain a
Coxeter group with the rule

aba · · ·︸ ︷︷ ︸
n letters

= bab · · ·︸ ︷︷ ︸
n letters

.

One way to visualize a Coxeter group geometrically is the Cayley graph. This is a graph
(a network of vertices connected by edges) with one vertex for every distinct element of
the group and with edges labelled with the different letters, one of each type at each ver-
tex. Words written with the generating letters correspond to paths emanating from a fixed
starting point, and two words represent the same element of the group if and only if the
corresponding paths end at the same point.

For example, the Cayley graph for the Coxeter group generated by a and b with the rule
that ab = ba is a square with its sides alternately labelled a and b. If aba = bab, the graph
is a hexagon; if abab = baba, an octagon; and so on. Assume that the polygons are regular;
that is, all the sides and all the angles are equal.2 With more than two letters, the graph

2Formally, the angle measures are a property not of the graph itself but of the embedding of the graph
into a larger space, in this case Rn. To avoid having to introduce the concept of an abstractly defined graph,
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Figure 2: Cayley graph for Coxeter group generated by a, b, and c, subject to the rules
aba = bab, bcb = cbc, and ac = ca.

can be formed by gluing together polygons of the appropriate types in such a way that there
is one polygon of each type at every vertex. Two such graphs are shown in Figures 2 and 3.

The Cayley graph gives a useful criterion for determining whether a Coxeter group is
finite or infinite. Let us consider the Coxeter group generated by a, b, and c, subject to the
following rules:

aba · · ·︸ ︷︷ ︸
k letters

= bab · · ·︸ ︷︷ ︸
k letters

, bcb · · ·︸ ︷︷ ︸
l letters

= cbc · · ·︸ ︷︷ ︸
l letters

, aca · · ·︸ ︷︷ ︸
m letters

= cac · · ·︸ ︷︷ ︸
m letters

.

This group is called the (k, l,m) triangle group. The Cayley graph consists of polygons with
2k, 2l, and 2m sides, arranged with one polygon of each type coming together at every
vertex. Note that the Cayley graph for the (2, 3, 3) triangle group (Figure 2) is a bounded
polyhedron, so the group is finite. On the other hand, the graph for the (3, 3, 3) group
(Figure 3) is a tessellation, or tiling, of the plane that extends infinitely in all directions, so
the group is infinite, as seen above. For an arbitrary triangle group, the algebraic question
of whether or not the group is finite thus turns into a geometric question of whether we
can construct a polyhedron with the appropriate faces. This type of analysis is typical of
the field of mathematics known as geometric group theory, in which one studies groups by
looking at their Cayley graphs and other geometric objects.

One of the requirements for building a polyhedron with given faces is that the sum of the
angles that come together at any vertex must be strictly less than 360◦. (For example, in a
cube, the sum is 270◦; in a tetrahedron, it is 180◦.) The formula for the sum of the interior
angles of an n-sided polygon is (n − 2)180◦. If all the angle measures are equal, then each
angle measures

(
n−2
n

)
180◦. If we take n = 2k, n = 2l, and n = 2m respectively, the criterion

we assume that the graph is embedded in Rn. The condition that the polygons be regular will be used
formally in Section 2.6.
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Figure 3: Cayley graph for Coxeter group generated by a, b, and c, subject to the rules
aba = bab, bcb = cbc, and aca = cac.

for the group to be finite thus becomes the formula:

(
2k − 2

2k

)
180◦ +

(
2l − 2

2l

)
180◦ +

(
2m− 2

2m

)
180◦ < 360◦.

After dividing both sides by 180◦ and rearranging terms, we can simplify this inequality to:

1

k
+

1

l
+

1

m
> 1.

In the case where aba = bab, bcb = cbc, and ac = ca, discussed above, we have 1
3

+ 1
3

+ 1
2

=
7
6
> 1, so the group is finite. The Cayley graph is the 24-vertex polyhedron known as a

truncated octahedron (Figure 2). On the other hand, if aba = bab, bcb = cbc, and aca = cac,
then the formula gives 1

3
+ 1

3
+ 1

3
= 1, so the group must be infinite. In the latter example, the

angle sum at each vertex is exactly 360◦ (= 120◦+ 120◦+ 120◦), as seen in the “honeycomb”
Cayley graph (Figure 3).

Now consider the Coxeter group in which ab = ba, bcbc = cbcb, and acacac = cacaca,
i.e., the (2, 4, 6) triangle group. Since 1

2
+ 1

4
+ 1

6
= 11

12
< 1, the group must be infinite. In

the Cayley graph, a square, an octagon (8 sides, 135◦ angles), and a dodecagon (12 sides,
150◦ angles) should come together at every vertex. However, if we try to draw this in a flat
plane, we find that there is not enough room at each vertex for all three regular polygons.

Instead, we need to use the hyperbolic plane (denoted H2), one of the most fundamental
constructions in non-Euclidean geometry. One way to define H2 is as the graph of the
function z =

√
1 + x2 + y2, called a hyperboloid. (See Figure 4.) Given any two points in

H2, the hyperbolic line between them is defined as the intersection of H2 with the unique
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Figure 4: The hyperboloid (left) and Poincaré (right) models of the hyperbolic plane.

plane containing both points and the origin. Although these paths are not straight in the
conventional sense of the word, they still satisfy many of the fundamental properties of
ordinary lines in classical geometry, so we are justified in using the term “line.”

Another way to visualize the hyperbolic plane (which can be taken as the definition if
one prefers) is the so-called Poincaré disk. Let D be a circular disk. Given points p and
q in D, there is a unique circle that passes through both p and q and is perpendicular to
the boundary circle of D at both points of intersection. We declare that path to be the
hyperbolic line joining p and q. In order for this to work, we need to use a special metric,
or definition of distance, on D. The hyperbolic distance between two points is not the same
as the distance on the page between the points lie on the page but rather is given by a
complicated function. Using that function as the definition of distance, the hyperbolic line
just described is in fact the shortest path between two points p and q. One property of the
hyperbolic metric is that points that lie near the boundary may be very far apart, even if
they appear on paper to be close together. For example, in Figure 5, the line segments all
have the same length according to the hyperbolic metric, even though that certainly does not
appear on paper to be true. A helpful analogy is that the Poincaré disk is to the hyperboloid
as a flat map of the earth is to a globe. Because we are representing a curved surface using a
flat one, some distortion of distances is inevitable, but the advantage of being able to draw
complicated figures makes up for this difficulty.

In either model, the fact that the lines are “curved” yields a crucial result: the sum of the
interior angles of any triangle is less than 180◦. In small triangles, the sides are not severely
curved, so the angles are not far from what they would be if the sides were “straight.” In
sufficiently large triangles, though, the angles can be made arbitrarily small. Moreover, by
gluing together triangles, we find that the same is true for other polygons. For example,
we can find quadrilaterals in which the sides all have the same (hyperbolic) length and in
which the angles all have the same value, less than 90◦. We may do the same with octagons
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Figure 5: Cayley graph for the (2, 4, 6) triangle group, embedded in the Poincaré model of
the hyperbolic plane H2.
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and dodecagons. If we choose the sizes correctly, we can fit these polygons together to form
a tessellation of the hyperbolic plane with one of each type of polygon coming together at
every vertex, shown in Figure 5. Notice that the sides are all slightly curved and that the
angles of any polygon are all the same. According to the hyperbolic metric, the polygons
are all regular, since (to reiterate) all the edges have the same length. Thus, by allowing
for “curved lines,” we find that it is possible to put together a tessellation of H2 that would
be impossible in the ordinary (Euclidean) plane. The vertices and edges of this tessellation
make up the Cayley graph for the (2, 4, 6) triangle group.3

The (2, 4, 6) triangle group is an example of a word-hyperbolic group. Since its intro-
duction by Mikhael Gromov in the 1980s, this concept has had an enormous impact on
the field of geometric group theory. In Chapter 1, I will prove some of the fundamental
results concerning word-hyperbolic groups, such as the fact that they are always finitely
presentable. I will discuss so-called quasiconvex subgroups of word-hyperbolic groups and
show that these subgroups are themselves word-hyperbolic. Finally, I will discuss spaces
of non-positive curvature, which are extremely important for the study of word-hyperbolic
groups.

Chapter 2 deals with Coxeter groups. I will show how any Coxeter group can act on a
vector space by reflections, as in the example discussed above, and use this action to prove
some of the important algebraic properties of Coxeter groups. I will then prove a theorem
of Jacques Tits [19] that solves the Word Problem in Coxeter groups. One of the goals is to
provide a more rigorous understanding of the construction of the Cayley graph, which will
then allow us to discuss Gabor Moussong’s dissertation [16] about which Coxeter groups are
word-hyperbolic.

In Chapter 3, I will discuss some original research that I did at the University of Illinois
at Urbana-Champaign during the summer of 2004. I show that certain subgroups of certain
word-hyperbolic Coxeter groups are quasiconvex, making explicit use of many of the theorems
presented in the first two chapters.

I have tried to make this Introduction as readable as possible to a general audience.
The rest of the thesis presumes more mathematical background, but it should still be quite
accessible to anyone who has taken introductory courses in linear algebra, group theory,
and topology (topics including metric spaces, fundamental groups, and simplicial and CW
complexes). Additionally, some familiarity with the geometry of the hyperbolic plane is
useful for Chapter 1.

3M.C. Escher’s woodcut Circular Limit I (Figure 6) is based on the (2, 4, 6) triangle group; note the
similarity with Figure 5. Figuring out the precise connection is left to the reader as an exercise; see page
41 for the solution. Escher wrote, “I had an enthusiastic letter from Coxeter about my coloured fish, which
I sent him. Three pages of explanation of what I actually did... It’s a pity that I understand nothing,
absolutely nothing of it” [1, pp. 100–101].
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Figure 6: M.C. Escher’s woodcut Circular Limit I [1, p. 319].
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Chapter 1

The Theory of Word-Hyperbolic
Groups

In geometric group theory, one studies abstractly presented groups by giving them a geomet-
ric structure or, more generally, by considering their action on various metric spaces. While
many of the ideas involved (such as the Cayley graph) date back as far as the nineteenth
century, the field really took off with the development of word-hyperbolic groups by Gromov
and others in the 1980s. Roughly speaking, a group is word-hyperbolic if it acts nicely on
a metric space that possesses certain properties of the hyperbolic plane. In the first two
sections, we will prove some of the basic properties of word-hyperbolic groups and try to get
a feel for the kinds of proof that one sees in geometric group theory. In particular, we will see
in Section 1.3 that all word-hyperbolic groups are finitely presentable. Section 1.4 deals with
quasiconvex subgroups, which are important to the original research presented in Chapter 3.
Finally, in Section 1.5, we will look at CAT(κ) complexes, which are an extremely important
source of examples of metric spaces on which word-hyperbolic groups can act.

1.1 δ-Hyperbolic Metric Spaces and Quasi-Isometries

We begin with an observation about the hyperbolic plane H2. Let ∆ be a triangle with sides
E1, E2, and E3, and let p be a point of E1 other than a vertex. Let r be the distance between
p and E2 ∪ E3, and let C be the circle of radius r centered at p, to which either E2 or E3

is tangent. The intersection of the interiors of C and ∆ is then the interior of a semicircle.
Note two important facts about the hyperbolic plane:

• The area of any triangle is equal to π minus the sum of the measures of the angles (in
radians); in particular, it is strictly less than π.

• The area of a circle of radius r is at least πr2.

Therefore, we have 1
2
πr2 ≤ π, so r ≤

√
2. In other words, every point of E1 lies within

√
2

of some point in E2 ∪ E3. (It is actually possible to obtain a better bound on r, but the
existence of a bound is sufficient for our purposes.)

11



δ

Figure 7: A δ-slim triangle.

Let (X, d) be a metric space. A geodesic segment is an isometric embedding of an in-
terval of the real line into X, i.e., a continuous, injective map f : [a, b] ↪→ X such that
d(f(t), f(t′)) = |t− t′| for all t, t′ ∈ [a, b]. The space X is called a geodesic space if every
pair of points can be joined by a geodesic. Unless otherwise noted, we will assume that our
geodesic spaces are proper, i.e., that any closed ball is compact. A geodesic triangle is the
union of three geodesic segments, every pair of which share an endpoint.

The idea of a hyperbolic metric space can be formulated in several ways. We shall use
the following definition, known as the slim triangles condition:

Definition 1.1. Let (X, d) be a geodesic space, and let δ ≥ 0. A geodesic triangle in X is
called δ-slim if each edge is contained within the δ-neighborhood of the union of the other
two edges. The space X is called δ-hyperbolic if every geodesic triangle in X is δ-slim.

Thus, the hyperbolic plane H2 is δ-hyperbolic for δ =
√

2. When n ≥ 2, Euclidean
space En is not δ-hyperbolic for any δ since the midpoint of one edge of a sufficiently large
triangle will lie outside the δ-neighborhood of the other two edges. Finally, any tree (simply
connected graph) is 0-hyperbolic since each edge of a triangle is actually contained in the
union of the other two edges. Obviously, if a space is δ-hyperbolic, then it is δ ′-hyperbolic
for all δ′ ≥ δ.

A word on notation: a space is often simply called hyperbolic if it is δ-hyperbolic for some
δ ≥ 0. (The word hyperbolic can have other meanings, however, so in many contexts the
term δ-hyperbolic is preferable.) The same convention will apply for many other properties
that will be discussed below.

Many of the concepts in hyperbolic geometry are what Bridson and Haefliger [3] call
“quasifications” of previously existing geometric notions: quasi-isometry, quasiconvexity, and
so on. Essentially, the quasification generalizes the original term up to linear approximation
of distances. These concepts are highly compatible with the definition of hyperbolicity. Here
is the first one:

12



Definition 1.2. Let (X, dY ) and (Y, dY ) be metric spaces, and let λ ≥ 1, ε ≥ 0. A map
f : X → Y (not necessarily continuous) is called a (λ, ε)-quasi-isometric embedding if for
any x, x′ ∈ X, we have

1

λ
dX(x, x′)− ε ≤ dY (f(x), f(x′)) ≤ λdX(x, x′) + ε.

If, moreover, there exists a (λ′, ε′)-quasi-isometric embedding g : Y → X and a constant
ρ ≥ 0 such that for all x ∈ X and y ∈ Y , we have dX(x, gf(x)) ≤ ρ and dY (y, fg(y)) ≤ ρ,
the map f is called a quasi-isometry, and g is a quasi-inverse for f .

It is easy to check that the composition of two quasi-isometric embeddings is a quasi-
isometric embedding and that the composition of two quasi-isometries is a quasi-isometry.
Therefore, quasi-isometry is an equivalence relation between metric spaces. Colloquially,
two spaces that are quasi-isometric look the same when viewed from a great distance. For
instance, the canonical inclusion Z ↪→ R is a quasi-isometry whose quasi-inverse is “rounding
to the nearest integer.” On the other hand, an isometric embedding R ↪→ R2 does not have
a quasi-inverse.

Let C ≥ 0. Given a metric space Y , a subspace Z ⊂ Y is called C-quasi-dense in Y if
every point in Y lies within distance C of some point of Z.1 The following proposition gives
a good description of quasi-isometries:

Proposition 1.3. Let X and Y be metric spaces. A (λ, ε)-quasi-isometric embedding f :
X → Y is a quasi-isometry if and only if its image is C-quasi-dense in Y for some C ≥ 0.

Proof. Suppose the image of f is C-quasi-dense. For each y ∈ Y , if y ∈ imf , then let ay = y;
otherwise, choose ay ∈ im f such that d(y, ay) ≤ C. If ay = f(xy), define g : Y → X by
g(y) = xy. (Of course, this map is not uniquely defined.) Let y, y ′ ∈ Y . By the triangle
inequality,

d(y, y′)− 2C ≤ d(ay, ay′) ≤ d(y, y′) + 2C.

By the definition of a quasi-isometric embedding,

1

λ
dY (ay, ay′)− ε ≤ dX(xy, xy′) ≤ λdY (ay, ay′) + ε.

Combining these two facts, we obtain:

1

λ
dY (y, y′)− 2C

λ
− ε ≤ dX(g(y), g(y′)) ≤ λdY (y, y′) + 2Cλ+ ε,

so g is a (λ′, ε′)-quasi-isometric embedding, where λ′ = λ and ε′ = 2Cλ + ε. To check that
f and g are quasi-inverses, note that dY (y, fg(y)) = dY (y, ay) ≤ C and that dX(x, gf(x)) ≤
λdY (f(x), fgf(x)) + ε ≤ λC + ε, so let ρ = λC + ε.

The converse follows trivially from the requirement that d(y, fg(y)) ≤ ρ for all y ∈ Y .

1With many quasifications, taking the minimal value of the constant yields the original term. For instance,
a (1, 0)-quasi-isometric is an isometric embedding, and (as we will see in Section 1.4) 0-quasiconvex means
convex. However, this is not the case for quasi-density. If Z is 0-quasi-dense in Y , then Y = Z. The
statement “Z is dense in Y ” is properly quasified as “Z is C-quasi-dense in Y for all C > 0.”
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Figure 8: Schematic of the proof of Theorem 1.4.

The key fact is that hyperbolicity is an invariant of quasi-isometry. Specifically:

Theorem 1.4. Let λ ≥ 1, ε ≥ 0, and δ ≥ 0. There exists a constant δ ′ ≥ 0, determined
solely by λ, ε, and δ, such that the following holds:

Let X and Y be geodesic spaces, and let f : X → Y be a (λ, ε)-quasi-isometric embedding.
If Y is δ-hyperbolic, then X is δ′-hyperbolic.

To prove this theorem, we will need to consider the image of a geodesic triangle in X.
Analogous to the definition of a geodesic, a (λ, ε)-quasi-geodesic is defined as a (λ, ε)-quasi-
isometric embedding of an interval in R. The map f then sends each edge of the triangle
to a quasi-geodesic in Y . The following lemma then puts a control on the behavior of these
quasi-geodesics:

Lemma 1.5 (Stability of quasi-geodesics). Let λ ≥ 1, ε ≥ 0, and δ ≥ 0. There exists a
constant R ≥ 0, determined solely by λ, ε, and δ, such that the following holds:

Let Y be a δ-hyperbolic geodesic space, and let g : [a, b]→ Y be a (λ, ε)-quasi-geodesic. Say
that g(a) = p and g(b) = q, and let [p, q] be a geodesic segment joining p and q. Then [p, q]
lies in the R-neighborhood of the image of g, and the image of g lies in the R-neighborhood
of [p, q].

The proof of this lemma requires some very involved chasing of δ’s, λ’s, and ε’s, so we
omit it. Essentially, one first “tames” an arbitrary quasi-geodesic by showing that it lies
close to a continuous quasi-geodesic with the same endpoints and then shows that the latter
must satisfy the lemma using some general properties of continuous curves in hyperbolic
spaces. Complete proofs can be found in Bridson and Haefliger [3, pp. 403–405] or Ghys and
de la Harpe [8, pp. 82-87].
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Proof of Theorem 1.4. Let ∆ ⊂ X be a geodesic triangle with edges E1, E2 and E3, and let
p ∈ E1 (without loss of generality). The image of ∆ under f is the union of three (λ, ε)-quasi-
geodesics, g1, g2, and g3, which agree at their endpoints. (See Figure 8). Let ∆′ ⊂ Y be a
geodesic triangle with the same vertices as f(∆); denote the edges of ∆′ by E ′1, E ′2, and E ′3.
By Lemma 1.5, there exists a point q ∈ E1 such that dY (f(p), q) ≤ R. As ∆′ is δ-slim, there
exists a point q′ ∈ E ′2∪E ′3 such that dY (q, q′) ≤ δ. Lemma 1.5 then gives a point p′ ∈ E2∪E3

such that dY (f(p′), q′) ≤ R. By the triangle inequality, we have dY (f(p), f(p′)) ≤ δ + 2R.
As f is a (λ, ε)-quasi-isometric embedding, we have dX(p, p′) ≤ λdX(f(p), f(p′)) + λε. We
thus see that the triangle ∆ is δ′-slim, where δ′ = λ(δ+ 2R+ ε). This value does not depend
on our choice of ∆, so X is δ′-hyperbolic.

1.2 Word-Hyperbolic Groups

In this section, we will show how to turn a group into a metric space to which the results of
the previous section are applicable.

Let G be a group and A a finite generating set for G. We may assume if a ∈ A and its
inverse a−1 are distinct elements of G, then only one of them, say a, lies in A. Each element
g ∈ G can be written as a product of elements of A and their inverses: g = a1 · · · ar, where
ai ∈ A±1. Define the length function `A : G → Z as follows: For any word g ∈ G, let `A(g)
be the minimum value of r for which g can be written as a product of r elements of A±1.
If g = a1 · · · ar, then g−1 can be written as a−1

r · · · a−1
1 , so `A(g−1) ≤ `A(g); interchanging

the roles of g and g−1, we see that `A(g−1) = `A(g). Also, `A(g) = 0 if and only if g is the
identity element of A.

We may then define a function dA : G×G→ Z≥0 by dA(g, g′) = `A(g−1g′). The previous
paragraph shows that this function is symmetric and that dA(g, g′) = 0 if and only if g = g′.
Additionally, if d(g, g′) = k and d(g′, g′′) = l, note that g−1g′′ = g−1g′g′−1g′′, which has
a representation of k + l letters, so d(g, g′′) ≤ k + l. Thus, the triangle inequality holds,
so dA is a metric on G, the word metric with respect to A. This metric is invariant under
left multiplication: for any g, g′, h ∈ G, we have d(g, g′) = d(hg, hg′) since (hg)−1(hg′) =
g−1h−1hg′ = g−1g′.

Since the word metric only takes integer values, the metric space (G, dA) is discrete. As
the previous section’s results apply only to geodesic spaces, it is useful to consider a larger
space, the Cayley graph CA(G). This is a graph with vertex set {vg | g ∈ G} and an edge
joining vg and v′g if and only if dA(g, g′) = 1. Without loss of generality, we then have
g−1g′ = a for some a ∈ A; the edge joining vg and vg′ is then labelled a and is oriented from
vg to vg′ . Note that if a has order 2 in G, then g′−1g = a−1 = a, so the edge is simultaneously
given the reverse orientation. Every vertex then has exactly one oriented edge coming in
and one oriented edge going out for each element of A.2

2Many authors define the edge set of CA(G) slightly differently: there is an oriented edge from vg to
vga for every g ∈ G, a ∈ A. The practical difference between these two definitions occurs when a generator
a has order 2 in G. Using the other definition, the vertices vg and vga are then joined by two distinct
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Fix a vertex v of CA(G) as a base point. Edge-paths in CA(G) starting at the vertex
v correspond bijectively with words in the letters A±1. (Traversing an edge labelled a in
the direction opposite its orientation corresponds to the letter a−1.) Two words represent
the same element of G if and only if the corresponding paths end at the same vertex. We
metrize CA(G) by giving each edge length 1 and defining the distance between two points to
be the length of the shortest edge-path joining them. The restriction of this metric to the
vertices then agrees with the word metric dA on G; in other words, the inclusion G ↪→ CA(G)
is an isometric embedding. Every point of CA(G) lies within distance 1

2
of a vertex, so this

inclusion is a quasi-isometry between G and CA(G).
The Cayley graph is a geodesic metric space, motivating the following definition:

Definition 1.6. A group G is called word-hyperbolic (or simply hyperbolic) with respect to
a finite generating set A if the Cayley graph CA(G) is δ-hyperbolic for some δ ≥ 0.

The dependence on the choice of generating set disappears in light of Theorem 1.4 and
the following lemma:

Lemma 1.7. Let G be a group, and let A and B be two finite generating sets for G. Then
the Cayley graphs CA(G) and CB(G) are quasi-isometric.

Proof. It suffices to show that the metric spaces (G, dA) and (G, dB) are quasi-isometric.
Each generator a ∈ A can be written as a reduced word in the letters of B, and vice versa.
Let λ be the maximum length of all these words. Any element w ∈ G with a reduced
expression w = a1 · · · ak in the letters of A can then be written as a word of length at most
λk in the letters of B, so `B(w) ≤ λ`A(w), and likewise `A(w) ≤ λ`B(w). For any g, g′ ∈ G,
we then have

1

λ
dB(g, g′) ≤ dA(g, g′) ≤ λdB(g, g′),

meaning that the identity map is a (λ, 0)-quasi-isometry between (G, dA) and (G, dB).

In other words, the geometric structure of a finitely generated group is well defined up
to quasi-isometry. In particular, this allows us to state unambiguously whether or not a
group is word-hyperbolic, since the choice of generating set does not matter. The constant
of hyperbolicity, δ, could vary, but the existence or nonexistence of such a constant does not.

For example, any free group is hyperbolic, since its Cayley graph is a tree. Any finite
group is hyperbolic, since we can take δ to be equal to the diameter of the Cayley graph.
On the other hand, the free abelian group Zn is quasi-isometric to Rn and therefore is not
hyperbolic for n ≥ 2. Indeed, using a certain group action, one can show that no hyperbolic
group contains any subgroup isomorphic to Zn. See Ghys and de la Harpe [8, p. 157].

More generally, one may learn a great deal about the geometry of a group up to quasi-
isometry by considering the group’s action on a geodesic space. In general, suppose that a

edges, one with each orientation. In our definition, which follows Coornaert et al. [4], there is there is only
one (doubly-oriented) edge between these vertices. In any case, the two versions of the Cayley graph are
quasi-isometric and essentially function identically.
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group G acts on a topological space X. The action of G on X is called proper (or properly
discontinuous) if for every compact subspace K ⊂ X, the set of elements g ∈ G such that
K ∩ g.K 6= ∅ is finite. It is called cocompact if there exists a compact subspace K ⊂ X such
that G.K = X, i.e., if the translates of K cover X. (If the action is cocompact, then the
orbit space X/G is compact.) If X is a metric space and each element of G is an isometry of
X, then the action is by isometries. These three properties prove to be extremely powerful
when the space X is a geodesic space, in view of the following theorem [3, p. 140]:

Theorem 1.8 (Svarc-Milnor Lemma). Let G be a group and X a proper geodesic space.
If G acts properly and cocompactly by isometries on X, then G is finitely generated, and for
any x0 ∈ X, the map G→ X defined by g 7→ g.x0 is a quasi-isometry.

Proof. Fix x0 ∈ X. As the action of G on X is cocompact, there exists a compact set C ⊂ X
whose orbit covers X; by translation, we may assume that x0 ∈ C. Any compact subspace of
a metric space is bounded, so there exists R > 0 such that C is contained in the closed ball
B(x0, R/3); obviously, the orbit of this ball also covers X. Let A ⊂ G be the set of elements
g ∈ G for which the intersection g.B(x0, R) ∩ B(x0, R) is nonempty. As G acts properly on
X and B(x0, R) is compact, the set A is finite.

Let g ∈ G, and choose a geodesic c : [0, a] → X from x0 to g.x0. By division with
remainder, we have (n − 1)R/3 ≤ a < nR/3 for some n ≥ 1. Let ti = iR/3 for 0 ≤ i < n,
and let tn = a; then d(c(ti−1), c(ti)) ≤ R/3. For each i, there exists gi ∈ G such that
d(gi.x0, c(ti)) ≤ R/3. In particular, choose g0 = 1 and gn = g. By the triangle inequality,
d(gi−1.x0, gi.x0) ≤ R. As G acts by isometries, we have d(x0, g

−1
i−1gi.x0) ≤ R, so the element

ai = g−1
i−1gi is contained in A. Therefore,

g = g0(g−1
0 g1)(g−1

1 g2) · · · (g−1
n−1gn) = a1 · · · an,

so A generates G.
As g can be written as a product of n elements of A, we have dA(1, g) ≤ n. By the

construction of n, we have (n− 1)R/3 ≤ d(x0, g.x0), so

dA(1, g) ≤ 3d(x0, g.x0)

R
+ 1.

At the same time, since A is finite, let D = max{d(x0, a.x0) | a ∈ A}. By taking an A-reduced
expression for g and using the triangle inequality, we see that d(x0, g(x0)) ≤ DdA(1, g). This
proves that the map g 7→ g.x0 is a (λ, 1)-quasi-isometric embedding of G into X, where
λ = max{1, 3/R}. Moreover, since the orbit of x0 is R/3-quasi-dense in X, the map is a
quasi-isometry.

The action of a group G on itself by left multiplication extends naturally to an action on
CA(G) by isometries. It is easy to check that this action is proper and cocompact. Therefore:

Corollary 1.9. A group is word-hyperbolic if and only if it acts properly, cocompactly, and
by isometries on a proper geodesic space that is δ-hyperbolic for some δ ≥ 0.
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The three criteria of Theorem 1.8 — that a group action be proper, cocompact, and by
isometries — appear constantly in geometric group theory. Often, one seeks to show that a
word-hyperbolic group acts on a space that has properties more specific than merely being
δ-hyperbolic. We shall see an example of this approach in the next section.

1.3 The Rips Complex and Finite Presentations

Let G be a group. A group presentation for G consists of a generating set A and a subset
R of the free group F (A) such that G is isomorphic to the quotient of F (A) by the normal
closure of R (the smallest normal subgroup of F (A) containing R): G ≈ F (A)/N(R). If so,
we write G = 〈A | R〉. In other words, G is the quotient obtained from F (A) by imposing
the relations r = 1 for each r ∈ R. Every group has a presentation, since we can take
A to be the entire group and R to consist of elements of the form abc−1 for every pair
a, b ∈ G. Obviously, many different presentations are possible for a given group; the goal of
combinatorial group theory is to determine the properties of a group given a presentation.

A presentation is called finite if both A and R are finite sets; a group that admits
a finite presentation is called called finitely presentable. Determining whether a finitely
generated group is finitely presentable is an extremely important question in combinatorial
group theory. Not every finitely generated group is finitely presentable, as the following
example shows.

Example 1.10. Let F2 be a free group of rank 2 with basis {a1, a2}, and let G be the direct
product F2 × F2. Let h : G → Z be the homomorphism that sends each of the generators
(ai, 1) and (1, ai) to 1 ∈ Z. Denote the kernel of this map by SB2 (after John Stallings and
Robert Bieri, who investigated a family of groups including this one). It is not hard to show
that SB2 is generated by

{(a1a
−1
2 , 1), (1, a1a

−1
2 ), (a1, a

−1
1 ), (a2, a

−1
2 )}

and that the inclusion SB2 ↪→ G is an isometric embedding. However, using group homology,
one can show that SB2 is not finitely presentable. (See Bridson and Haefliger [3, p. 483].)

The elements (a1a
−1
2 , 1), (1, a1a

−1
2 ) ∈ SB2 commute and each have infinite order, so they

generate a subgroup that is isomorphic to Z2. Therefore, SB2 is not hyperbolic, by the
remark in the previous section.

Indeed, we have the following theorem:

Theorem 1.11. Every word-hyperbolic group is finitely presentable.

To prove this fact, we will make use of the following construction:

Definition 1.12. Let (X, d) be a metric space, and let r > 0. The Rips complex PR(X) is
the simplicial complex in which every (n+ 1)-element subset Y ⊂ X of diameter at most r
spans an n-simplex.
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A key fact about this complex is the following theorem of Rips, whose proof closely
follows the one in Bridson-Haefliger [3, pp. 468–470].

Lemma 1.13. Let Y be a δ-hyperbolic geodesic space, and let X be an r-quasi-dense subspace.
For R ≥ 4δ + 6r, the Rips complex PR(X) is contractible.

Proof. By Whitehead’s theorem (a fundamental result in homotopy theory), a CW complex
is contractible if and only if all its homotopy groups are trivial [10, p. 346]. As the sphere
Sn is compact, the image of any map Sn → PR(X) lies in a finite subcomplex of PR(X).
Therefore, it suffices to show that every finite subcomplex L can be contracted to a point in
PR(X). Let V ⊂ X be the set of points that are vertices of L, and fix a basepoint x0 ∈ X.

First, suppose that for every vertex v ∈ V , we have d(x0, v) ≤ R
2

. (Bear in mind that
the metric is on X, not L or PR(X).) Then the points in V span a simplex σ in PR(X), in
which L is contained, so we can contract L to a point.

Now, assume that v is a vertex of L such that d(x0, v) > R
2

. Choose v such that this
distance is maximal. We will deform L by a homotopy that fixes all the other vertices and
moves v to a vertex v′ that is closer to x0 by a definite distance. Performing a finite number
of these homotopies then yields the previous case.

Consider a geodesic [x0, v] in Y , and let y be a point on this geodesic such that d(v, y) = R
2

.
Choose a point v′ ∈ X such that d(y, v′) ≤ r. (The points y and v′ are not necessarily
distinct.) Let ρ = d(v, v′). By the triangle inequality, ρ ≤ R

2
+ r and ρ ≥ R

2
− r ≥ 2δ + 2r.

We then have:

d(x0, v
′) ≤ d(x0, y) + d(y′, y)

≤ d(x0, v)− R

2
+ r

≤ d(x0, v)− 2δ − 2r,

so v′ is closer to x0 than v is.
We shall now show that if another vertex u of L with d(u, v) ≤ R, then d(u, v ′) ≤ R as

well. Let ∆ be a geodesic triangle with vertices x0, u, and v, where the edge joining x0 and
v is the geodesic from the previous paragraph. This triangle is δ-slim, so y lies within the
δ-neighborhood of the union of the other two sides, [x0, u] ∪ [u, v]. We consider two cases,
illustrated in Figure 9:

1. There exists a point u′ ∈ [x0, u] such that d(y, u′) ≤ δ. Using the assumption that
d(x0, v) is maximal and the triangle inequality, we have:

d(x0, u
′) + d(u′, u) = d(x0, u)

≤ d(x0, v)

≤ d(x0, u
′) + d(u′, y) + d(y, v′) + d(v′, v)
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Figure 9: The two cases in the proof of Lemma 1.13.

Subtracting d(x0, u
′) from both sides, and noting that d(u′, y) ≤ δ and d(y, v′) ≤ r, we

obtain d(u, u′) ≤ ρ+ δ + r. Then:

d(u, v′) ≤ d(u, u′) + d(u′, y) + d(y, v′)

≤ µ+ 2δ + 2r

≤ R

2
+ 2δ + 3r

≤ R.

2. There exists a point w ∈ [u, v] such that d(y, w) ≤ δ. By the triangle inequality,

ρ = d(v, v′) ≤ d(v, w) + d(w, y) + d(y, v′) ≤ d(v, w) + δ + r.

Then d(u,w) = d(u, v)− d(v, w) ≤ R− ρ+ δ + r, so:

d(u, v′) ≤ d(u,w) + d(w, y) + d(y, v′)

≤ R− ρ+ 2δ + 2r

≤ R.

The star of a vertex in a simplicial complex is the union of all closed simplices that
contain that vertex. We have thus shown that every vertex in the star of v is also in the
star of v′. Let L′ ⊂ PR(X) be the subcomplex obtained from L by replacing each simplex of
the form [v, x1, . . . , xk] by [v′, x1, . . . , xk]. For each such pair, there is an natural homotopy
∆k×I → PR(X) between the characteristic maps of [v, x1, . . . , xk] and [v′, x1, . . . , xk]. These
homotopies, combined with the identity maps on the simplices not in the star of v (or
v′), give a homotopy between the inclusions L ↪→ PR(X) and L′ ↪→ PR(X). By applying
this procedure finitely many times, we obtain a complex whose vertices all lie within the
R
2

-neighborhood of x0, which can then be contracted as in the first case. Thus, PR(X) is
contractible for R ≥ 4δ + 6r.
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Now let G be a group with finite generating set A. Give G the word metric with respect
to A, and consider the Rips complex PR(G) = PR(G,A). Note that this complex is finite-
dimensional and locally finite, since G contains only finitely many elements of a given length.
If G is word-hyperbolic, say that the Cayley graph CA(G) is δ-hyperbolic. The image of G
in CA(G) is 1

2
-quasi-dense, since each edge of CA(G) has length 1, so PR(G) is contractible

for R ≥ 4δ + 3.
As the metric d = dS is invariant under left multiplication, the diameter of the subset

Y = {g0, . . . , gn} is equal to that of hY = {hg0, . . . , hgn}. Hence, left multiplication by
h ∈ G determines a simplicial automorphism of PR(G). This defines a action of G on PR(G)
by simplicial automorphisms: Φ : G→ Aut(PR(G)).

Lemma 1.14. The action of G on PR(G) by left multiplication is faithful, proper, and
cocompact, and the stabilizer of any point is finite.

Proof. First of all, note that G acts freely (i.e., without fixed points) and transitively on the
vertices of P = PR(G), since the vertices are simply the elements of G. A nontrivial element
g ∈ G does not fix any vertices, so Φ(g) is not the identity. This shows Φ is faithful.

Let σ, σ′ be simplices. If g.σ∩σ′ is nonempty, then Φ(g) sends some subset of the vertices
of σ to vertices of σ′. Since G acts freely on the vertices of P , there are only finitely many
such elements g. Any compact set C ⊂ P intersects finitely many simplices. Therefore, the
set

{g ∈ G | g.C ∩ C 6= ∅}
is finite, meaning that Φ is proper.

As PR(G) is locally finite, the star K of the vertex corresponding to the identity element
of G is a finite subcomplex of PR(G), hence compact. The translates g.K are simply the
stars of the other vertices. As G acts transitively on the vertices, every cell of PR(G) lies
within some translate of K, so the translates cover PR(G): G.K = PR(G). Thus, the action
is cocompact.

Let p ∈ P , and let σ be the simplex of lowest dimension containing p. As the action of
G on P is simplicial, any element g ∈ G that fixes p must permute the vertices of σ. Since
G acts freely on the vertices of P , there are only finitely many such elements g. Thus, the
stabilizer of p is finite.

Partial proof of Theorem 1.11. For an arbitrary hyperbolic group G, one can use the con-
tractibility of the Rips complex to find an explicit finite presentation for G; see Ghys and
de la Harpe [8, pp. 75–77]. Here we present a much more interesting topological proof that
holds when G is torsion-free.

Note that if the action g ∈ G has a fixed point p, then g is an element of the finite
stabilizer subgroup Stab(p), so g is a torsion element. Therefore, if G is torsion-free, it must
act freely on P : for any simplex σ of P and any nontrivial element g ∈ G, we must have
g.σ ∩ σ = ∅. Let P ′′ be the second barycentric subdivision of P . The action of G on P
extends naturally to a simplicial action of G on P ′′ that satisfies all the properties of Lemma
1.14. Additionally, the translates of the star of any point are all disjoint. Thus, the action is
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Figure 10: A k-quasiconvex subspace Y .

what Hatcher [10, p. 72] calls a covering space action, which implies that the quotient map
P ′′ → P ′′/G is a normal covering space. In particular, for R sufficiently large, P ′′ is the
universal cover of P ′′/G, so π1(P ′′/G) ≈ G.

The orbit space P ′′/G is a simplicial complex, and the map P ′′ → P ′′/G is simplicial.
(This is not the case for the non-subdivided complex P .) As the action of G is cocompact,
P ′′/G is a compact, finite-dimensional complex and therefore is finite. Note that for any CW
complex X, the fundamental group π1(X) is determined by the 2-skeleton X2. In particular,
π1(X) is isomorphic to the quotient of π1(X1) by the normal subgroup generated by the
images of the attaching maps of the 2-cells. In our case, the complex P ′′/G contains only
finitely many simplices, so its fundamental group G is finitely presentable.

When G is torsion-free, the quotient space P ′′/G is in fact an Eilenberg-Maclane space
K(G, 1), since its fundamental group is G and its universal cover is contractible. The
existence of a finite K(G, 1) implies a number of important facts about the group co-
homology of G. For instance, all but finitely many of the rational cohomology groups
Hk(G;Q) = Hk(K(G, 1);Q) are zero. This fact is actually true for all word-hyperbolic
groups, although proving it in the general case requires a more complicated argument using
spectral sequences. (See Ghys and de la Harpe [8, pp. 74–75].)

1.4 Quasiconvexity

We now introduce another one of the “quasifications” mentioned earlier. Recall that a
subspace Y of a geodesic space X is called convex if any geodesic joining two points of Y
lies entirely within Y . We generalize this notion as follows:

Definition 1.15. Let k ≥ 0. A subspace Y ⊂ X is called k-quasiconvex if any geodesic
joining two points of Y lies entirely within the k-neighborhood of Y .

A few examples in R2 should help illustrate this concept. Any bounded subspace Y
is quasiconvex, since for sufficiently large k, the k-neighborhood of Y contains a circular

22



Figure 11: The Cayley graphs CA(Z2) (left) and CB(Z2) (right) for Example 1.16.

disk that contains Y . For a non-bounded example, note that the graph of y = sinx is
2-quasiconvex, since any segment joining two points on that graph lies within the region
R × [−1, 1], and any point in that region lies within the 2-neighborhood of the curve. On
the other hand, the union of the two coordinate axes is not quasiconvex. For any k > 0,
a segment joining the points (2k, 0) and (0, 2k) contains the point (k

√
2, k
√

2), which lies
outside the k-neighborhood of the axes.

Now let G be a group with finite generating set A. Naturally, we define a subgroup H
to be quasiconvex with respect to A if the set of vertices of CA(G) corresponding to H is
quasiconvex in CA(G). Unfortunately, this definition, in general, depends on the choice of
generating set, as the following example shows:

Example 1.16. Let H be the subgroup of Z2 generated by (1, 1). Let A = {(1, 0), (0, 1)}
be the standard basis for Z2, and consider the Cayley graph CA(Z2). One of the geodesics
joining (0, 0) and (k, k) is a path that goes k units to the right and then k units up. The
point (k, 0), which lies on this geodesic, is then distance k from the subspace H. Since k can
be made arbitrarily large, H is not quasiconvex. On the other hand, if B = {(1, 0), (1, 1)},
then H is in fact convex in CB(Z2). (See Figure 11.)

Thus, for arbitrary groups, quasiconvexity does not at first glance seem to be a very
meaningful property. On the other hand, for hyperbolic groups, the situation is much better:

Lemma 1.17. Let f : X → Y be a (λ, ε)-quasi-isometric embedding between geodesic spaces,
and suppose Y is δ-hyperbolic. Let Z ⊂ X be a k-quasiconvex subspace. Then the image of
Z is quasiconvex in Y .

Proof. Let y1, y2 ∈ Y be points in the image of Z: yi = f(xi) for xi ∈ Z. Any geodesic [x1, x2]
in X lies within the k-neighborhood of Z, so f([x1, x2]) lies within the (λk+ε)-neighborhood
of f(Z). Note that f([x1, x2]) is a (λ, ε)-quasi-geodesic in Y , so by Lemma 1.5, any geodesic
[y1, y2] in Y lies within the R-neighborhood of f([x1, x2]), where R is a constant determined
solely by δ, λ, and ε. Therefore, the subspace f(Z) is (λk + ε+R)-quasiconvex in Y .
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Figure 12: Schematic of the proof of Theorem 1.18.

As an immediate consequence, we see that if G is a hyperbolic group and H a subgroup
that is quasiconvex with respect to a given generating set A, then H is quasiconvex with
respect to all finite generating sets, by Lemma 1.7. Thus, in the hyperbolic case, we can
say unambiguously whether or not a subgroup is quasiconvex. As a result, we may expect
that quasiconvexity is connected to intrinsic algebraic properties that do not depend on the
choice of generators. This is indeed the case.

Theorem 1.18. Let G be a hyperbolic group and H a quasiconvex subgroup. Then H is
finitely generated, the inclusion H ↪→ G is a quasi-isometric embedding, and H is word-
hyperbolic.

Proof. Fix a finite generating set A for G, and suppose that H is k-quasiconvex in CA(G).
Let w ∈ H, and let w = a1 · · · an be a reduced expression for w in the letters of A. This
word corresponds to a geodesic from 1 to w in CA(G). For j = 1, . . . , n, the truncation
wj = a1 · · · aj corresponds to a point on the geodesic. As H is k-quasiconvex, there exists
vj ∈ H such that dA(wj, vj) ≤ k, so uj = w−1

j vj is a word of length at most k. In particular,

take un = 1 and vn = wn = w. Also, let u0 = 1.) Let hj = v−1
j−1vj, so that vj = h1 · · ·hj. In

particular, w = h1 · · ·hn. (See Figure 12.)
The word uj−1aju

−1
j corresponds to a path joining vj−1 and vj, so the relation hj =

uj−1aju
−1
j holds in G. Note that `A(hj) ≤ 2k + 1. In other words, any element of H can be

written as a product of elements of H of length at most 2k + 1. Therefore, H is generated
by the set

B = {h ∈ H | `A(h) ≤ 2k + 1},
which is finite since A is finite.

Moreover, as w = h1 · · ·hn, we have `B(w) ≤ n = `A(w). At the same time, we have
`A(w) ≤ (2k + 1)`B(w). It follows that the inclusion H ↪→ G is a (2k + 1, 0)-quasi-isometric
embedding.
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A word-hyperbolic group is called locally quasiconvex if every finitely generated subgroup
is quasiconvex. Local quasiconvexity is an extremely strong condition. For example, applying
Theorems 1.11 and 1.18, we see that any quasiconvex subgroup of a hyperbolic group is
finitely presentable. Therefore, any locally quasiconvex group is coherent, meaning that every
finitely generated subgroup is finitely presentable. The property of coherence has long been
of interest to group theorists. Additionally, the intersection of two quasiconvex subgroups
is again quasiconvex. If G is locally quasiconvex, it therefore satisfies satisfies Howson’s
property : the intersection of any two finitely generated subgroups is finitely generated. For
more information on Howson’s property, see Kapovich [12].

Rips [17] gives an example of a finitely generated subgroup of a hyperbolic group that is
not finitely presented, hence not hyperbolic. Therefore, not every subgroup of a hyperbolic
group is quasiconvex. Non-quasiconvex subgroups of hyperbolic groups are quite difficult
to find, though; not many examples are known. At the same time, proving that a group
is locally quasiconvex is also quite difficult. Thus, the subject of local quasiconvexity is a
source of many open questions.

1.5 Spaces of Non-Positive Curvature

In this section, we will discuss an extremely important concept in non-Euclidean geometry
that is closely related to δ-hyperbolic spaces: spaces of non-positive curvature.

The three best-known types of planar geometry are Euclidean, hyperbolic, and spherical.
Accordingly, for κ ∈ {−1, 0, 1}, define the model spaces Mκ as follows: M0 is the Euclidean
plane E2, M−1 is the hyperbolic plane H2, and M1 is the unit 2-sphere S2. More generally,
for other values κ ∈ R, we may define Mκ by scaling the metric on Msign(κ) by a factor of

1/
√
|κ|. (For our purposes, though, we will only need to consider κ ∈ {−1, 0, 1}.) Denote

the metric on Mκ by dκ. In Riemannian geometry, each model space Mκ is known as the
2-manifold of constant sectional curvature κ. We wish to extend this notion of curvature to
more general geodesic spaces.

Let (X, dX) be a geodesic metric space, and let ∆ = ∆ ⊂ X be a geodesic triangle
with vertices x1, x2, x3. In each model space Mκ, there exists a comparison triangle ∆κ =
∆(x1, x2, x3) ⊂Mκ, unique up to congruence, such that dX(xi, xj) = dκ(xi, xj) for each pair
i 6= j ∈ {1, 2, 3}. (For κ > 0, we must assume that the distances are sufficiently small,
since Mκ has finite diameter.) Each point p ∈ ∆ corresponds to a unique point p ∈ ∆κ;
if p lies in the edge [xi, xj], then p lies in [xi, xj], and we have dX(p, xi) = dκ(p, xi) and
dX(p, xj) = dκ(p, xj).

Definition 1.19. A geodesic triangle ∆ ⊂ X satisfies the CAT(κ) inequality if for any
p, q ∈ ∆ and any comparison points p, q ∈ ∆κ, we have dX(p, q) ≤ dκ(p, q). If every geodesic
triangle in X satisfies the CAT(κ) inequality, we say that X is (globally) CAT(κ). If every
point in X has a neighborhood that is CAT(κ), we say that X has curvature ≤ κ.

In some sense, a space that is globally CAT(κ) is “more hyperbolic” or “more negatively
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curved” than the model space Mκ. Note that if κ′ > κ, then CAT(κ) implies CAT(κ′), since
Mκ is itself CAT(κ′).

The abbreviation CAT, coined by Gromov [9, p. 106], stands for the Comparison3 of
A.D. Aleksandrov and A. Toponogov, who formulated the above definition of having cur-
vature ≤ κ and other equivalent conditions. The idea of CAT(κ) spaces, particularly when
κ ≤ 0, is essential for the modern field of hyperbolic geometry, which in turn is connected
closely to topology and differential geometry.

For our purposes, the importance of CAT(κ) spaces is the following lemma:

Proposition 1.20. If a geodesic space X is CAT(κ) for some κ < 0, then X is δ-hyperbolic,
where δ =

√
−2/κ.

Proof. Let ∆ = ∆(x, y, z) be a geodesic triangle in X, and let ∆κ = ∆(x, y, z) be a com-
parison triangle for ∆ in Mκ. Let p ∈ ∆, suppose that p ∈ [x, y], and let p ∈ [x, y] be
a comparison point for p. Since the hyperbolic plane is

√
2-hyperbolic, the triangle ∆′ is

δ-slim, where δ =
√
−2/κ. Then there exists a point q ∈ [x, z]∪ [y, z] such that dκ(p, q) ≤ δ.

The point q corresponds to some point q ∈ [x, z] ∪ [y, z], so by the CAT(κ) inequality, we
obtain dX(p, q) ≤ δ. Thus, X is δ-hyperbolic.

Applying Corollary 1.9, we obtain:

Corollary 1.21. If a group G acts properly, cocompactly, and by isometries on a CAT(κ)
geodesic space X, where κ < 0, then G is hyperbolic.

Thus, one of the best ways to show that a group is hyperbolic is to show that it acts
properly and cocompactly by isometries on a CAT(−1) space. We shall use this technique
in Section 2.6. However, unlike in the case of Corollary 1.9, it is not known whether the
converse to Corollary 1.21 is true for κ = 0, let alone κ = −1.

As in topology, it is easiest to work with spaces that are constructed out of smaller pieces
— namely, cell complexes. Recall that a convex polyhedron in Sn, En, or Hn is a bounded
region B that is the intersection of a finite number of closed half-spaces. A face of B is
any intersection of B and some of the bounding hyperplanes; each face is itself a convex
polyhedron of dimension less than that of B. The codimension of a face is the dimension of
B minus the dimension of the face.

A CW complex X is called piecewise spherical (PS), piecewise Euclidean (PE), or piece-
wise hyperbolic (PH) if the following conditions hold:

• For every closed cell B of X, there is a homeomorphism fB of B onto a convex polyhe-
dron in Sn, En, or Hn, respectively. The inverse images of the faces of this polyhedron
are called faces of B.

• If B and C are closed cells, then B ∩ C is a face of both B and C, and the restriction
of fCf

−1
B to fB(B ∩ C) is an isometry between fB(B ∩ C) and fC(B ∩ C).

3Bridson and Haefliger [3, p. VII] claim that the C stands for E. Cartan, another pioneer of this area.
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Each cell B of X can then be turned into a geodesic metric space by declaring fB to be
an isometry. We may then identify B with the image of fB. In other words, the complex
X is formed by gluing together polyhedra along identical faces using gluing maps that are
isometries. To metrize the whole complex, define the distance dX between two points to be
the infimum of the lengths of the shortest path joining them (or infinity if there is no such
path). Assuming X is path-connected, this infimum is always realized by a path that is the
union of geodesic segments in the cells of X. Such a path is then a geodesic segment in X,
making X into a geodesic space. (See Moussong [16] for more details.)

Any PS, PE, or PH complex has curvature ≤ κ, where κ = 1, 0, or −1 respectively,
since each point has a neighborhood (namely, the interior of the highest-dimensional cell
containing that point) that satisfies CAT(κ). To determine whether the complex satisfies
CAT(κ) globally, we need to consider the way the cells come together. For any cell C of
X, we define a PS complex called the link of C in X, lk(C,X), as follows. Let k be the
dimension of C, and let x be a point in the interior of C. In each closed, n-dimensional cell
B containing C, let lkx(C,B) be the intersection of B with a small (n− k − 1)-sphere that
lies in the (n− k)-plane orthogonal to C. We scale lkx(C,B) up to be a convex polyhedron
in an (n−k−1)-sphere of unit radius. It is easy to see that lkx(C,B) does not depend on x,
so we may define lk(C,B) accordingly. The link lk(C,X) is then defined by gluing together
the cells lk(C,B) in the obvious manner to form a PS complex.

The link gives a measure of how much solid angle comes together at each cell. For
instance, if C is a codimension-2 face of B (such as an edge of a 3-dimensional polyhedron,
then lk(C,B) is an arc of angular length equal to the angle between the two codimension-1
faces that meet at B. If X consists of several such cells are glued together cyclically around
C, then lk(X,C) is a PS closed curve whose length equals the sum of the dihedral angles.

A closed geodesic in a space Y is an isometric embedding c : S` → Y of a circle of
circumference ` into Y . The girth of Y is defined as the infimum of the lengths of closed
geodesics in Y and denoted g(Y ). If Y admits no closed geodesics, we set g(Y ) =∞.

The criterion for X to be globally CAT(κ) is basically that when n-cells of X completely
encircle a k-cell C, at least as much (n− k− 1)-dimensional solid angle comes together at C
as in an ordinary (n− k − 1)-sphere. More formally, Gromov [9, p. 120] gives the following
lemma:

Lemma 1.22. Let X be a PS, PE, or PH complex, and let κ = −1, 0, or −1 respectively.
The following are equivalent:

1. The complex X is globally CAT(κ).

2. For every cell C of X, the link lk(C,X) is CAT(1).

3. For every cell C of X, the girth of lk(C,X) is at least 2π.

A complex satisfying (3) is sometimes said to satisfy the link axiom. We will make use
of this property in Section 2.6.
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Chapter 2

Coxeter Groups

In the Introduction, we gave a very colloquial definition of Coxeter groups that was meant
to be comprehensible to someone not familiar with group theory. Here is a more formal
definition:

Definition 2.1. Let W be a group with finite generating set S. A function m : S × S →
{1, 2, . . . ,∞} is called a Coxeter matrix if m(s, s) = 1 and m(s, t) = m(t, s) 6= 1 when s 6= t.
(We write ms,t = m(s, t).) The pair (W,S) is called a Coxeter system if W has a presentation

W = 〈S | (st)ms,t (s, t ∈ S, ms,t finite)〉

for some Coxeter matrix m. The group W is then called a Coxeter group.

In other words, the group is defined by the relations s2 = 1 and (st)ms,t = 1; the latter
can also be written as

sts · · ·︸ ︷︷ ︸
ms,t letters

= tst · · ·︸ ︷︷ ︸
ms,t letters

,

as in the colloquial description.
A Coxeter system is easily represented using a Coxeter graph, a labelled graph with

vertices corresponding to the elements of S and with an edge labelled ms,t joining the vertices
s and st if ms,t ≥ 3. When ms,t = 3, we typically omit the label for convenience.

If S can be partitioned into disjoint, nonempty subsets S1, · · · , Sk such that ms,t = 2
whenever s and t are in different pieces of the partition, then S is isomorphic to the direct
product W1 × · · · ×Wk, where (Wi, Si) is a Coxeter system generated by Si with exponents
inherited from (W,S). The connected components of the Coxeter graph for (W,S) are then
the graphs for the systems (Wi, Si). If W cannot be decomposed in this manner, it is called
irreducible; in this case, the Coxeter graph for (W,S) is connected.

A Coxeter system is called right-angled if ms,t is either 2 or ∞ whenever s 6= t.
In his seminal paper [5], H.S.M. Coxeter showed that any discrete reflection group — that

is, a group of isometries of Rn that is generated by reflections and under whose action the
orbit of any point is discrete — can be presented in the form above, and he gave a complete
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classification of such groups. È.B. Vinberg [20] extended Coxeter’s arguments to discrete
reflection groups of hyperbolic space. The abstract definition is due to Nicolas Bourbaki,
who proved many of the fundamental properties of Coxeter groups in his well-known work
[2] on Lie groups and Lie algebras.

In keeping with the previous chapter, we will be especially interested in the geometry of
Coxeter groups, as seen through the word metric and the Cayley graph. As described in the
Introduction, one can intuitively visualize the Cayley graph by piecing together 2ms,t-gons
whose sides are alternatively labelled s and t in an appropriate manner. (When ms,t = ∞,
we have infinite paths whose sides are labelled in this manner.) However, formally justifying
this intuitive picture requires a fair amount of work, and that is the goal of the next few
sections.

2.1 The Geometric Representation

Recall from Section 1.3 the definition of a group presentation. A group G can be given
a presentation G = 〈A | R〉 if G is isomorphic to the quotient of the free group on A by
the normal closure of R: G ≈ F (A)/N(R). Although it is a useful language for describing
the elements of a group, a presentation actually carries extremely little information about
the algebraic structure of the group. One problem that can often occur is that a group
is “smaller” than its presentation makes it seem. For instance, one of the elements of the
generating set A could in fact represent the identity in G, or two elements of A could represent
the same element of G. Additionally, one of the relations in the group could say that um = 1
for some word u, while the order of the element u is actually a proper divisor of m. In this
section, we will prove that these problems do not occur with Coxeter groups. Let (W,S) be
a Coxeter system with coefficients ms,t.

For clarity, we shall adopt a helpful notational convention used (in part) in Bourbaki
[2] and Tits [19]. Abstract words will be written in boldface type. In particular, we write
the generators themselves as S = {s, t, · · · }. Formally, words are the elements of the free
monoid on S, denoted L(S). Elements of the free group F (S) — reduced words — will also
be written with boldface. The set of defining relations (for any group) is a subset of F (S),
so it is written as R.

On the other hand, italic symbols represent elements of the group W = F (S)/N(R).
That is, if φ : F (S)→ F (S)/N(R) is the quotient map, let s = φ(s) for each s ∈ S, and let
S = φ(S). (We do not yet know, however, that the elements of S are all distinct, i.e., that
φ|S is injective.) Also, define ψ : L(S) → W to be the composition of φ with the canonical
map L(S)→ F (S); this map sends every formal word to the element of W that it represents.
The map ψ is surjective since each element of S is equal to its inverse in W .

First, we will check that none of the elements of S is the identity, i.e., that φ(s) 6= φ(1).
Let ε : F (S) → Z2 be the homomorphism sending each si to the nontrivial element of Z2.
Each element of R is a word of even length and hence is sent to the identity in Z2. Therefore,
the map ε induces a map ε : W → Z2 sending each si to the nontrivial element, so si 6= 1.
This resolves the first of the problems discussed above.
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To resolve the other ambiguities, we will now see how an arbitrary Coxeter group can
be said to act “by reflections” on a vector space. In the Introduction, we saw how the
Coxeter group 〈a, b | a2, b2, (ab)m〉 can be seen as the group of symmetries of R2 generated
by reflections through two lines that meet at an angle of π/m. The angle between two
unit vectors orthogonal to these lines is π − π/m, so the dot product of those vectors is
cos(π − π/m) = − cos(π/m). The vectors obviously form a basis for R2. We now try to
generalize this notion for arbitrary Coxeter groups.

Let V be an n-dimensional real vector space with basis (es)s∈S. Define a symmetric
bilinear form B on V by

B(es, et) =

{
− cos π

ms,t
ms,t <∞

−1 ms,t =∞.

Note that the es are unit vectors with respect to this form. The matrix of the form B with
respect to the basis (es) is called the cosine matrix of W .

For each s ∈ S, define a linear map σs : V → V by

σs(v) = v − 2B(v, es)es;

these maps are called reflections. Let Hs be the orthogonal complement of es with respect
to the form B: Hs = e⊥s = {v ∈ V | B(v, es) = 0}.

We may check that each reflection preserves the form B:

B(σs(v), σs(w)) = B(v − 2B(v, es)es, w − 2B(w, es)es)

= B(v, w)− 4B(w, es)B(v, es) + 4B(v, es)B(w, es)B(es, es)

= B(v, w)

Thus, σ(s) fixes the subspace Hs pointwise and negates es.

Lemma 2.2. The homomorphism F (S) → GL(V ) defined by s 7→ σs induces a homomor-
phism σ : W → GL(V ), known as the geometric or canonical representation.

Proof. We must show that each of the relations in W holds in GL(V ), i.e., that σ2
s =

(σsσt)
ms,t = 1V , the identity map in V . In fact, we will show more: the order of the product

σsσt is exactly ms,t.
It is clear from the definitions that each reflection σs has order exactly 2. Next, choose

s 6= t, and consider the subspace Vs,t spanned by es and et. The reflections σs and σt stabilize
Vs,t, and they fix the orthogonal complement V ⊥s,t pointwise.

Let T : Vs,t → Vs,t be the restriction of σs ◦ σt to Vs,t. By evaluating T (es) and T (et), we
can easily compute that the matrix of T with respect to the basis (es, et) is

T =

[
4 cos2 θ − 1 −2 cos θ

2 cos θ −1

]

where θ = π/ms,t. We consider two cases:
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• If ms,t is infinite, then this matrix becomes

T =

[
3 −2
2 −1

]
.

One can show by induction that

T n =

[
2n+ 1 −2n

2n −2n+ 1

]

so T has infinite order, as does σiσj.

• If ms,t is finite, note that the characteristic polynomial of the matrix for T is pT (x) =
x2 − 2 cos(2θ)x+ 1, and the eigenvalues are

x = cos 2θ ± i sin 2θ = e±2iθ,

which are mth
s,t roots of unity. Therefore, the order of the transformation T is ms,t.

Let v = aes + bet be a nonzero vector in Vs,t. We then have:

B(v, v) = a2B(es, es) + 2abB(es, et) + b2B(et, et)

= a2 + b2 − 2ab cos θ

= (a− b cos θ)2 + b2 sin2 θ

Since θ 6= 0 and (a, b) 6= (0, 0), at least one of the squared quantities is nonzero,
so the sum is positive. Thus, the restriction of B to Vs,t is positive definite, hence
nondegenerate, so V is isomorphic to the direct sum Vs,t ⊕ V ⊥s,t. It follows that σsσt =
T ⊕ 1V ⊥s,t , so σsσt has the same order as T , namely ms,t.

Thus, we have an action of the group W on the space V , defined by w.v = σ(w)(v) for
w ∈ W, v ∈ V . (Remember that (w1w2).v = σ(w1)(σ(w2)(v)); that is, we apply w2 first,
then w1.)

Corollary 2.3. The order of st in W is exactly ms,t.

Proof. Since (st)ms,t = 1 in W , the order of st is at most ms,t. On the other hand, we have
σ(st) = σsσt, which has order ms,t, so so the order of st is at least ms,t.

One geometric consequence of Corollary 2.3 is that in the Cayley graph CS(W ), each
path that is labelled (st)ms,t consists of exactly 2ms,t distinct edges. Moreover, the subgroup
of W generated by s and t is isomorphic to the dihedral group Dms,t . Since the order of st
is at least 2 for s 6= t, we see that st 6= 1, so s 6= t. We may therefore define the rank of
the Coxeter system (W,S) as the cardinality of S. We have thus resolved all the difficulties
posed at the beginning of this section.
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2.2 The Exchange and Deletion Conditions

In this section, we will discuss the connection between the length function `S and the geo-
metric representation, and we will use this to prove one of the most important properties of
Coxeter groups, the so-called Exchange Condition. Our treatment largely follows Humphreys
[11]; we will also briefly discuss another proof of the Exchange Condition given by Tits [19].

Let (W,S) be a Coxeter system. Recall that `(w) = `S(w) is defined as length of the
shortest word in L(S) that represents w: `(w) = min{`(w) | w ∈ ψ−1(w)}, where ψ :
L(S) → W is the canonical map and `(w) is the number of letters in w. Some general,
easy-to-prove facts about the length function (true for all groups) are that `(w) = `(w−1)
and that `(w) = 0 if and only if w is the identity in W . Also, there is a triangle inequality:

`(w)− `(w′) ≤ `(ww′) ≤ `(w) + `(w′).

Consider the geometric representation of W , defined in the previous section. We shall
analyze the behavior of a certain set of unit vectors in V under the action of W . Let Φ be
the set of vectors of the form w.es for some w ∈ W , s ∈ S; Φ is called the root system, and
the elements of Φ are called roots. The roots are all unit vectors with respect to the form
B, since B(w.es, w.es) = B(es, es) = 1. Also, the root system is closed under negation, since
s.es = −es.

Each pair of opposite roots ±w.es corresponds to a reflection in W that interchanges
them, namely wsw−1. To see this, note that for any v ∈ V , we have

wsw−1.v = w.(w−1.v − 2B(w−1.v, es)es)

= v − 2B(w−1.v, es)w.es

= v − 2B(v, w.es)w.es

which is the form for a reflection that negates the root w.es and fixes its orthogonal com-
plement pointwise. Thus, each root α = w.es ∈ Φ determines a reflection sα = wsw−1.
Obviously, sα and s−α are identical. Conversely, if two roots α and β determine the same
reflection, then sα(β) = β−2B(β, α)α = −β, so β = B(β, α)α, and then β = ±α since both
are unit vectors. Thus, there is a natural bijection between the pairs of opposite roots and
the reflections in W .1 This correspondence has the following property:

Lemma 2.4. If α, β ∈ Φ and β = w.α, then wsαw
−1 = sβ.

Proof. We have wsαw
−1.β = wsα.α = w.− α = −β, meaning that wsαw

−1 is the reflection
that negates β, namely sβ.

1Bourbaki [2] proves the results of this section by having W act on an abstractly defined set that is
identical to Φ: the product set {±1} × T , where T ⊂ W is the set of conjugates of the elements of S. He
defines the action of W in a similarly fashion. While Bourbaki’s proof is somewhat shorter than the one
here, the advantage of our approach is that it allows for more geometric intuition.
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Every root α ∈ Φ can be uniquely as a linear combination of the ei: α =
∑

s∈S cses.
If all the cs are nonnegative, we say that α is positive and write α > 0; if all the cs are
nonpositive, we say α is negative and write α < 0. Let Π denote the set of positive roots;
the set of negative roots is −Π.

The homomorphism ε : W → Z2 shows that any two expressions for a particular w ∈ W
have the same length modulo 2. Taking w′ = s in the triangle inequality, we see that
`(ws) equals either `(w) + 1 or `(w) − 1. (Another formulation of this distinction is that
`(ws) = `(w) − 1 if and only if w has a reduced expression whose last letter is s.) The
following lemma gives a geometric criterion in terms of the root system:

Lemma 2.5. Let w ∈ W , s ∈ S. If `(ws) = `(w) + 1, then w.es > 0. If `(ws) = `(w)− 1,
then w.es < 0.

Proof. First, note that the second statement follows from the first. If `(ws) = `(w)−1, then
`(wss) = `(ws) + 1, so ws.es > 0, and therefore w.es < 0.

For the first statement, induct on `(w). If `(w) = 0, then w is the identity, so obviously
w.es > 0. If `(w) = k > 0, then there exists a reduced expression for w whose last letter is
is t 6= s. That is, the set of reduced words

A = {w ∈ ψ−1(w) | w = s1 · · · sk, sk = s, and sh+1, · · · , sk ∈ {s, t} for some h < k}

is nonempty. Let w = s1 · · · sk be an element of A for which h is as small as possible. Write
w = uv, where u = s1 · · · sh and v = sh+1 · · · sk, and set u = ψ(u) and v = ψ(v).

By the minimality of h, the word u does not have a representation ending in s or t.
Therefore, by the induction hypothesis, u.es > 0 and u.et > 0. It thus suffices to show that
v.es is a nonnegative linear combination of es and et, for w.es is then a nonnegative linear
combination of positive roots, hence itself a positive root.

The word v is a (k−h)-factor alternating product of s and t whose last letter is t: either
v = (st)p (where p ≥ 1) or v = t(st)p (where p ≥ 0). We consider two cases, depending on
ms,t:

• If ms,t =∞, then since B(es, et) = −1,, we have s.et = et + 2es and t.es = es + 2et. By
induction, we see that (st)p.es = (2p+1)es+(2p)et and t(st)p.es = (2p+1)es+(2p+2)et,
so v.es is a positive linear combination of es and et.

• If m = ms,t is finite, then we must have `(v) < m, or else we could represent v with
either a shorter word or a word ending in s. Thus, p < m/2. As seen in the previous
section, the restriction of B to Vs,t is positive-definite, so we may identify Vs,t with
Euclidean space and the transformation st with a rotation through an angle of 2π/m
in the direction from es to et. Therefore, (st)p rotates es through an angle of at most
π − 2π/m. The angle between es and et is π − π/m, so the vector (st)p.es still lies
within the positive cone spanned by es and et. Also, the angle between es and the line
of reflection for t, Lt, is π/2 − π/m, so the angle between (st)p.es and Lt is at most
π/2, and therefore t(st)p.es is also contained within the same cone. (See Figure 13.)
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Figure 13: The positions of the roots v.es in the proof of Lemma 2.5 when ms,t = 5, along
with the fundamental domain K defined at the end of the section.

In either case, we see that v.es is equal to a nonnegative linear combination of es and et,
and therefore w.es is a positive root.

In particular, it follows that every root is either positive or negative. That is, Φ = Πt−Π.
Moreover, the lemma implies a crucial fact about the geometric representation:

Corollary 2.6. The action of W on V is faithful. That is, the map σ : W → GL(V ) is
injective.

Proof. If w is a nontrivial element of W , then let s be the last letter of a reduced expression
for w. Then `(ws) < `(w), so w.es < 0; in particular, w.es 6= es. Thus, σ(w) is not the
identity map on V .

The next lemma further clarifies the action of the generating reflections on the root
system.

Lemma 2.7. Each s ∈ S sends es to its negative and permutes the other positive roots.

Proof. By definition, s.es = −es. Let α be a positive root other than es; then

α =
∑

s∈S
cses,

where each cs ≥ 0. The root α cannot be a multiple of es, since all the roots are unit vectors,
so ct > 0 for some t 6= s. By definition, s.α = α−B(α, es)es, so the coefficient of ej in s.α is
still strictly positive. Thus, w.α cannot be negative, so it is positive, and it is clearly distinct
from ei. Therefore, s.(Πr {ei}) ⊂ Πr {ei}. Applying s to both sides, we obtain the reverse
inclusion, which shows that s permutes the elements of Πr {ei}.
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In other words, each element of W of length 1 sends exactly one positive root to a
negative root (and vice versa). By induction, one can prove a more general statement: the
length of any element of W is equal to the number of positive roots that it sends to negative
roots. Thus, the word-metric geometry on a Coxeter group is extremely closely connected
to the intrinsic properties of the group, a statement that is not true for most groups given
by presentations.

The preceding lemmas imply one of the most important properties of Coxeter groups:

Theorem 2.8 (Exchange Condition). Let w = s1 · · · sr and suppose that for some s ∈
S, we have `(ws) < `(w). Then there exists an index q ∈ {1, . . . , r} such that ws =
s1 · · · ŝq · · · sr, where the hat denotes omission.

Proof. Since es > 0 and w.es < 0 by Lemma 2.5, there exists an index q ≤ r such that
(sq+1 · · · sr).ej > 0 but (sq · · · sr).es < 0. That is, sq sends the positive root (sq+1 · · · sr).es to
a negative one. By Lemma 2.7, the only such root is esq , so (sq+1 · · · sr).es = esq . Therefore,
by Lemma 2.4, we have:

sq+1 · · · srssr · · · sq+1 = sq.

The desired result follows immediately.

By taking inverses, we easily obtain a version of the Exchange Condition in which ws is
replaced by sw, and so on.

An alternate form of the Exchange Condition that is sometimes more useful is the Deletion
Condition:

Corollary 2.9 (Deletion Condition). Let w = s1 · · · sr, and suppose that `(w) < r. Then
there exist indices 1 ≤ p < q ≤ r such that w = s1 · · · ŝp · · · ŝq · · · sr.

Proof. For each index j, let wq = s1 · · · sq. If for all q, we have `(wq) ≥ `(wq−1), then
by induction we must have `(wq) = q for each q, and in particular `(w) = r, which by
assumption is not the case. Hence, for some q, we must have `(wq) < `(wq−1). By the
Exchange Condition, there exists an index p ∈ {1, . . . , q−1} such that wq = s1 · · · ŝp · · · sq−1,
and therefore w = s1 · · · ŝp · · · ŝq · · · sr.

In other words, given a non-reduced word, a reduced word representing the same element
of W can be obtained by deleting pairs of letters. It turns out that this property truly
characterizes Coxeter groups, in view of the following theorem [11, pp. 16–18]:

Theorem 2.10. Let W be a group with finite generating set S. Suppose that every element
of S has order 2 and that the pair (W,S) satisfies the Deletion Condition. For s, t ∈ S, let
ms,t be the order of st in W . Then (W,S) is a Coxeter system with exponents ms,t.

Tits [19] provides another way to think about the proof of the Exchange Condition. Let
V ∗ be the dual vector space to V , with basis (e∗s). In this space, the angle between two basis
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vectors e∗s, e
∗
t is π/ms,t rather than π − π/ms,t. Define:

K∗ = {
∑

s∈S
cse
∗
s ∈ V ∗ | c∗s > 0 ∀s ∈ S}

K
∗

= {
∑

s∈S
cse
∗
s ∈ V ∗ | c∗s ≥ 0 ∀s ∈ S}.

Topologically, these can be seen as the interior and closure, respectively, of the same set. One
can show that K

∗
is a fundamental domain for the induced action of W on V ∗ (the so-called

contragredient representation of W ) in the sense that if w ∈ W fixes some v∗ ∈ K∗, then v∗

lies on one of the hyperplanes that bound K∗. That is, v∗ ∈ K∗ r K∗. (See Bourbaki [2]
for a proof.) Analagous to Lemma 2.5, Tits shows that if `(sw) < `(w), then K ∗ and w.K∗

lie on opposite sides of the hyperplane (cs = 0) and uses this fact to prove the Exchange
Condition.

Now return to the original vector space V . Each of the reflecting hyperplanes Hs separates
V into two disjoint, open half-spaces. Let Ks be the one that contains the basis vector es,
and let Ks be the closed half-space Ks∪Hs. The dual to K∗ (resp. K

∗
) is the intersection of

these open (resp. closed) half-spaces: K =
⋂
s∈SKs, K =

⋂
s∈SKs. (These are represented

by the shaded area in Figure 13.) The closed cone K is then a fundamental domain for the
action of W on V . We shall use this cone in Sections 2.3 and 2.4.

2.3 Discrete Reflection Groups

The geometric representation of Coxeter groups is easiest to visualize when the form B is
positive-definite. In that case, the vector space V can be identified with Rn with the standard
dot product (where n = Card(S)). That is, we have a basis of vectors es ∈ Rn for which each
product es ·et is equal to − cos(π/ms,t). Therefore, the angle between es and et is π−π/ms,t,
and the hyperplanes e⊥s and e⊥t meet at a dihedral angle of π/ms,t. (Note that all of the
ms,t are finite, for otherwise the cosine matrix would have the matrix

[
1 −1
−1 1

]
, which is not

positive definite, as a principal submatrix.)
Any reflection stabilizes the unit sphere Sn−1 ⊂ Rn, so the geometric representation

induces an action of W on Sn−1. The fundamental domain C for this action is the intersection
Sn−1 ∩ K, an (n − 1)-simplex in Sn−1. The generators of W are then reflections of Sn−1

through the codimension-1 faces of C. The translates of C all have the same area since
the reflections are isometries; these simplices form a tessellation of the sphere. As Sn−1 is
compact, it has finite volume, so the group W must be finite.

Coxeter [6] proved that the converse is also true: If W is a finite Coxeter group, then
the form B is positive-definite. One way to prove this fact is to start with any positive-
definite form β on V , for instance the standard dot product, and define a W -invariant,
positive-definite form

β′(v, v′) =
∑

w∈W
β(w.v, w.v′).
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Using representation theory, one can then show that this form β ′ is a positive scalar multiple
of B; therefore B is also positive-definite (For a full proof, see Humphreys [11, ch. 6].) It
follows that every finite Coxeter group is naturally isomorphic to a finite reflection group,
i.e., a finite subgroup of GLn(R) that is generated by reflections.

Conversely, every finite reflection group is a Coxeter group. One way to prove this is to
use a root system, as above, to show that the group satisfies the Deletion Condition; the
result then follows from Theorem 2.10. We shall take a different, more general approach
that is somewhat similar to that used by Coxeter in his original work [5], although in very
different language.

Let n ≥ 2, and let X be either the n-sphere Sn, Euclidean n-space En, or hyperbolic
n-space Hn. In each of these spaces, any (n− 1)-dimensional hyperplane P defines a unique
reflection σP : X → X, an isometry of X that fixes P pointwise and interchanges the two
components of X r P . Let Isom(X) be the group of isometries of X.

Definition 2.11. A group W ⊂ Isom(X) is called a discrete reflection group if it is generated
by a finite set of reflections and the orbit of any point in X under the action of G is
topologically discrete.

The fundamental domain C for the action of W on X is a convex region bounded by
hyperplanes Ps (indexed by a finite set S) such that the reflections σPs generate W . We
may identify σPs with s. If two planes Ps and Pt intersect, their intersection is spanned by
a codimension-2 face of C. The composition st rotates C through an angle of 2θ around
Ps ∩ Pt, where θ is the dihedral angle between Ps and Pt. As C is a fundamental domain,
we must then have θ = π/ms,t for some integer ms,t ≥ 2. If Ps and Pt do not intersect, set
ms,t =∞. Also, set ms,s = 1 for each s ∈ S.

Theorem 2.12. Let W be a discrete reflection group on X, as above. Then W is isomorphic
to the Coxeter group 〈S | R〉, where R = {(st)ms,t | s, t ∈ S, ms,t finite}.

Proof. Obviously, each reflection has order 2. The product st is a rotation of X through an
angle of 2π/ms,t around the (n− 2)-plane containing Ps ∩ Pt; this transformation has order
ms,t. Thus, the relations of a Coxeter group hold in W . We must now show that they are
defining relations for the group.

The orbit of C gives a cell decomposition T of X. Let C ′ be an n-cell of T . As C
is a fundamental domain, there is a unique element w ∈ W such that w.C = C ′. For
each s ∈ S, let P ′s = w.Ps. The reflection through P ′s is then equal to wsw−1. Note that
wsw−1.C ′ = ws.C.

Let T ∗ be the dual cell structure to T . The vertices of T ∗ correspond to the n-simplices
of T and therefore to the elements of W . The 1-cells of T ∗ correspond to the (n− 1)-cells of
T . In particular, for each w ∈ W and s ∈ S, the (n− 1)-cell w.C ∩ w.Ps corresponds to an
edge joining the vertices w and ws. Thus, the 1-skeleton of T ∗ is isomorphic to the Cayley
graph CS(W ).

By construction, the number of n-cells of T that come together at any codimension-2
face E of T is 2ms,t, where Ps and Pt are the hyperplanes that meet at the corresponding
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codimension-2 face of C. The 2-cell E∗ in T ∗ that corresponds to E is therefore a (2ms,t)-gon
whose sides are an edge-loop labelled (st)ms,t. Moreover, every such path in the 1-skeleton
of T ∗ is filled in with such a 2-cell.

The following useful theorem, proven in Bridson and Haefliger [3, p. 135], gives a geo-
metric interpretation for the notion of a group presentation:

Lemma 2.13. Let G be a group with generating set A, and let R be a subset of the kernel
of the canonical map φ : F (A) � G. Let CA,R(G) be the 2-complex formed from the Cayley
graph CA(G) by attaching a single 2-cell to each edge-loop labelled by a cyclic permutation of
a reduced word r ∈ R. Then the complex CA,R(G) is simply connected if and only if kerφ is
equal to the normal closure of R in F (A), i.e., if 〈A | R〉 is a presentation for G.

In particular, in the complex CS,R(W ), each disk labelled s2 has its two edges glued
together to form a 2-sphere, which is simply connected. The (st)ms,t-labelled disks are then
precisely the 2-cells of T ∗. Thus, CS,R(W ) is isomorphic the 2-skeleton of T ∗ with a 2-sphere
adjoined to each edge. Recall that the fundamental group of a CW complex is determined
by the complex’s 2-skeleton. In particular, as T ∗ is a cell decomposition for X, we see that
CS,R(W ) is simply connected. Therefore, by Lemma 2.13, we have W ≈ 〈S | R〉.

We may further obtain further results about discrete reflection groups depending on
whether X = Sn, En, or Hn.

• When X = Sn, the group W is finite. Coxeter [5] showed that every convex polyhedron
in Sn whose angles are all at most π/2 is a spherical n-simplex, so C has exactly n+ 1
faces. If we embed Sn as the unit sphere in Rn+1, the (n− 1)-dimensional hyperplanes
in Sn correspond bijectively with the n-dimensional hyperplanes through the origin in
Rn+1, and reflections of Sn and of Rn+1 correspond naturally. Thus, any finite reflection
group (a finite subgroup of GLn+1(V ) generated by reflections) can be realized as a
discrete reflection group on Sn and therefore is a Coxeter group. Combining this result
with the results above, we obtain the following:

Proposition 2.14. Let W be a group with finite generating set S of cardinality n. The
following are equivalent:

1. The pair (W,S) is a finite Coxeter system.

2. The pair (W,S) is a Coxeter system whose cosine matrix is positive-definite.

3. The group W embeds in GLn−1(R) as a finite reflection group.

• For X = En, the group is called an affine reflection group. If C is unbounded, it is the
product of Rk with a bounded, (n− k)-dimensional polyhedron whose dihedral angles
are the same as those between the hyperplanes Ps, so by projecting orthogonally we may
assume that C is bounded. Coxeter showed that every convex, Euclidean polyhedron
whose angles are all at most π/2 is equal to a product of simplices and infinite lines
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in perpendicular dimensions. Any affine reflection group then splits accordingly into a
direct product of affine reflection groups, since ms,t = 2 for perpendicular hyperplanes.

The fundamental domain for an irreducible, affine reflection group is a simplex. In
this case, any proper subset of the bounding hyperplanes meet at a single point and
therefore generate a finite reflection group. In other words, every principal submatrix
of the cosine matrix B of an irreducible affine reflection group is positive definite. It
follows that B itself is positive-semidefinite but not positive-definite. (That is, for all
v ∈ V , we have B(v, v) ≥ 0, but there exists a nonzero v ∈ V for which B(v, v) = 0.)

Accordingly, we define a Coxeter group to be affine if its cosine matrix is positive-
semidefinite but not positive-definite. One can show that every irreducible, affine
Coxeter group is an affine reflection group by considering a certain subspace of the
vector space V on which the group acts in its geometric representation; see Humphreys
[11, pp. 133–134] for details. In general, the only difference between the affine Coxeter
groups and the affine reflection groups is that the product of an affine Coxeter group
and a finite Coxeter group is affine because its cosine matrix is positive-semidefinite.
On the other hand, any affine reflection group factors as the product of strictly affine
groups.

It is quite easy to classify all the irreducible finite and affine Coxeter groups. One can
check that all the groups listed in Figure 14 are either affine or finite, as the case may
be, by looking at their cosine matrices. By process of elimination, one can then prove
that this list is complete. The original result is due to Coxeter [5]; Humphreys [11,
ch. 2] gives a very elegant proof.

• For X = Hn, it is very difficult to obtain general results when the fundamental region is
not a simplex, since the classification of hyperbolic polyhedra is extremely complicated.
The hyperbolic reflection groups whose fundamental domains are simplices (allowing for
noncompact simplices of finite volume with vertices at infinity) turn out to correspond
to the irreducible Coxeter groups for which B has signature (n− 1, 1) and B(v, v) < 0
for any element v ∈ K, where K is the open cone of Section 2.2 [11, pp. 138–141]. Such
groups are called (irreducible) hyperbolic Coxeter groups. (Do not confuse these with
word-hyperbolic groups, discussed in Chapter 1; the latter will be discussed in Section
2.6.) Vinberg [20] gives more information on general hyperbolic Coxeter groups.

Example 2.15. Consider the triangle groups discussed in the Introduction: namely, the
Coxeter groups of the form

W =
〈
a, b, c | a2, b2, c2, (ab)k, (bc)l, (ac)m

〉
.

The fundamental domain for this group is a 2-simplex whose angles are π/k, π/l, and π/m.
Whether this simplex is spherical, Euclidean, or hyperbolic depends on whether the sum

π

k
+
π

l
+
π

m

is greater than, equal to, or less than π, respectively.
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Figure 14: Coxeter diagrams for the irreducible finite and affine Coxeter groups.
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We can now answer the question posed in the Introduction. Escher’s work (Figure 6)
is based on a tessellation of the hyperbolic plane by 30◦-45◦-90◦ triangles. As we have just
seen, such a triangle is the fundamental domain for the (2, 4, 6) triangle group. Each fish in
the picture is composed of two triangles, with the fish’s spine lying opposite the 90◦ angle of
each. (In order to see the symmetries more easily, it is helpful to ignore the fish.) By taking
the dual of such a tessellation, we obtain the Cayley graph shown in Figure 5.

2.4 The Word Problem in Coxeter Groups

As mentioned before, one of the serious challenges presented by group presentations is the
word problem. Given a group presentation, the problem is to find an algorithm that deter-
mines in a predictable number of steps whether or not two given words in the generators
represent the same element of the group. Novikov showed in 1955 that in general the word
problem for groups is unsolvable. (See, for example, Lyndon and Schupp [14] or Stillwell [18]
more about the solvability of word problems.)

Of course, in many instances the word problem can be solved. In general, this entails
finding a canonical form in which every element of the group can be expressed uniquely and
a procedure for obtaining this form from an arbitrary word in the generators of the group.
For instance, in a free group, any word can be simplified to a unique reduced word in which
there no consecutive pairs of inverse letters. In the free abelian group 〈a, b | aba−1b−1〉, each
element can be expressed uniquely as ajbk by transposing letters as needed. Note that it
is sufficient to determine whether or not a given word represents the identity; given two
arbitrary words w and w′, we can consider the product w−1w′.

Jacques Tits [19] solved the word problem in Coxeter groups in 1968. His algorithm for
determining whether or not a word represents the identity is effective, in the sense that it
always yields a definite result in a finite number of steps, although it is not very efficient
in terms of computation time. In this section, we shall prove this theorem and discuss its
consequences, closely following Tits’s proof.

Let (W,S) be a Coxeter system. For each pair of distinct generators s, t ∈ S for which
ms,t is finite, let ws,t denote the product of ms,t alternating factors of s and t whose last
factor is s. Clearly, the words ws,t and wt,s represent the same element ws,t ∈ W .

Define an elementary simplification to be either of the following moves:

• Replacing a word of the form xssy with xy.

• Replacing a word of the form xws,ty with xwt,sy.

A simplification is a finite sequence of elementary simplifications. For any word x in
L = L(S), define the simplification set S(x) ⊂ L as the set, obviously finite, of words that
can be obtained from x by simplifications. Clearly, if v ∈ S(u), then S(v) ⊂ S(u). Also,
if v ∈ S(u) and `(u) = `(v), then all of the elementary simplifications that lead from u to
v are of the second type. As these are reversible, we must have u ∈ S(v), and therefore
S(u) = S(v).
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Tits’s key result says that one can always obtain a reduced word in W using these two
operations. Specifically:

Theorem 2.16. Let u,v ∈ L(S). The words u and v represent the same element of W if
and only if the intersection S(u) ∩ S(v) is nonempty. In particular, if v is a reduced word,
then this condition is equivalent to having v ∈ S(u).

This theorem provides an algorithm, albeit extremely inefficient, for obtaining a reduced
word from a given word. First, cancel any pairs of consecutive, identical letters. If there are
none, then consider all of the finitely many words that can be obtained with substitutions
of the form sts · · · = tst · · · . If any of these words contains a pair of consecutive, identical
letters, cancel them and repeat; if not, stop. No matter the choice of the order of cancellations
and substitutions, Theorem 2.16 implies that the end result is always a reduced word. The
fact that order doesn’t matter will be useful in Chapter 3.

Tits’s algorithm is much more efficient in a right-angled Coxeter group. Here, the second
type of elementary simplification consists of interchanging adjacent letters that commute. In
reducing a word, it then suffices to look for pairs of identical letters that commute with all of
the letters in between. This simplification of the search process provides a polynomial-time
solution to the word problem in right-angled Coxeter groups. In particular, let w be a word
of length r. The time to determine whether or not the ith letter of w can be cancelled with
the next occurrence of the same letter is a linear function of r − i, so the time to see if
w contains a cancelling pair is a quadratic function of r, and the total time to reduce w
completely is a cubic. We will explore this algorithm in more depth in Chapter 3.

The following lemma is in some sense a generalization of the Exchange Condition:

Lemma 2.17. Let w ∈ W , s, t ∈ S. Suppose that `S(ws) < `S(w) and `S(wt) < `S(w).
Then `S(wws,t) = `S(w)−ms,t.

Proof. Let r = `S(w). As in the proof of Lemma 2.5, we may find a reduced expression
w = uv, where u = ψ(u) satisfies u.es > 0 and u.et > 0, and v = ψ(v) is an alternating
product of s and t satisfying v.es < 0 and v.et < 0. The only element of the dihedral group
generated by s and t that has reduced expressions ending in both s and t is the word of
length ms,t, namely ws,t. Therefore, we have wws,t = u, which has length `S(w)−ms,t.

Proof of Theorem 2.16. The elementary simplifications correspond to the relations in W , so
any simplification of a word in L represents the same element of W as the original word. This
proves the “if” statement. For the final statement, if v is reduced, then every element of S(v)
is obtained by a sequence of elementary simplifications of the second type, so S(u) ∩ S(v)
being nonempty implies that v ∈ S(u).

For the “only if” statement, give the set L× L a lexicographic order: (x,y) < (x′,y′) if
`(x) < `(x′) or if `(x) = `(x′) and `(y) < `(y′). This ordering is obviously a well-ordering.
Let Σ ⊂ L× L be the set of all pairs of words (x,y) such that `(x) ≥ `(y).

Suppose that the theorem is false, i.e., that the set

Ω = {(x,y) ∈ L× L | S(x) ∩ S(y) = ∅ and ψ(x) = ψ(y)}
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is nonempty. Let (u,v) be a minimal element of Σ ∩ Ω with respect to the lexicographic
ordering. Let u = ψ(u) = ψ(v).

We claim that every element of S(u) has the same length. For suppose x is an element
of S(u) with `(x) < `(u). Clearly S(x) ∩ S(v) = ∅ and ψ(x) = ψ(u) = ψ(v). Also, either
(x,v) or (v,x) is in Σ, depending on whether or not `(x) ≥ `(v). But this contradicts the
minimality of (u,v) in Σ ∩ Ω.

Let s and t be the last letters of u and v respectively, and write u = u′s and v = v′t.
We claim that `(u) = `(v). For suppose that `(u) > `(v). We have seen that all the words
in L that represent a given element of W have the same length modulo 2. In particular
`S(u) ≥ `S(v) + 2, so `(vs) ≤ `S(u)− 1 = `(u′). Note that ψ(u′) = ψ(us) = ψ(vs). By the
minimality of (u,v), the intersection S(u′)∩S(vs) cannot be empty. Every element of S(u′)
has the same length; this fact follows from the corresponding result for S(u). Hence, there
exists y ∈ S(u′) ∩ S(vs) such that `(u′) = `(y) ≤ `(vs), which means that `(vs) = `(u′).
Then S(vs) = S(u′), so vs ∈ S(u′), so vss ∈ S(u), so v ∈ S(u), which contradicts our
initial assumption that S(u) ∩ S(v) = ∅. Thus, `(u) = `(v).

By the minimality of (u,v), the words u and v must be reduced. Since ψ(us) = ψ(u′)
and ψ(vt) = ψ(v′), we have `S(us) < `S(u) and `S(ut) < `S(u). Hence, by Lemma 2.17,
there exists a word x ∈ L of length `(u)−ms,t such that

ψ(xws,t) = ψ(xwt,s) = ψ(u) = ψ(v).

The words u′ and xws,ts
−1 (i.e., xws,t with its last letter deleted) have the same length,

specifically `(u)−1, and both represent us, so by minimality the sets S(u′) and S(xws,ts
−1)

must intersect and therefore be equal. Similarly, we have S(v′) = S(xwt,st
−1). It then

follows that
S(u) = S(xws,t) = S(xwt,s) = S(v),

contradicting our initial assumption.

2.5 Parabolic Subgroups

Let (W,S) be a Coxeter system. In Section 2.1, we saw that the subgroup generated by two
distinct elements s, t ∈ S is the dihedral group Dms,t . We will now extend this notion to the
subgroup of W generated by any subset of S.

For any word w ∈ L(S), define the composition set T (w) ⊂ S as the set of letters that
occur in w. The following lemma is an immediate consequence of Tits’s solution to the word
problem:

Lemma 2.18. Let w ∈ W , and let w1,w2 be two reduced expressions for w. Then T (w1) =
T (w2).

Proof. By the second part of Theorem 2.16, we have w2 ∈ S(w1), so there exists a sequence of
elementary simplifications transforming w1 into w2. Since both words have minimal length
in ψ−1(w), all these simplifications are of the second type. By construction, such moves
preserve composition sets, so T (w1) = T (w2).
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Thus, the composition set T (w) of an element of w ∈ W is well-defined as the composition
set of any reduced expression for w. Note that this is not the case for arbitrary groups. For
instance, in the group 〈a, b, c, d | abc−1d−1〉, the reduced words ab and dc both represent the
same element of the group.

For any subset T ⊂ S, define the parabolic subgroup WT ⊂ W to be the subgroup
generated by the elements of T . Clearly, the subgroup WT consists of those elements of w
such that T (w) ⊂ T . One of the most important facts about Coxeter groups is that parabolic
subgroups are extremely well-behaved.

Theorem 2.19. Let (W,S) be a Coxeter system, and let T ⊂ S.

1. The pair (WT , T ) is a Coxeter system with exponents inherited from (W,S).

2. The inclusion (WT , dT ) ↪→ (W,dS) is an isometric embedding, where dT and dS are the
word metrics on WT and W respectively.

3. The subgroup WT is convex in W with respect to the generating set S.

Proof. For (1), let T ′ be a set with the same cardinality as T , and choose a bijection φ :
T ′ → T . Let (W ′, T ′) be the Coxeter system generated abstractly by T ′, with relations
determined by the corresponding relations in (W,S). The map φ : T ′ → T then induces a
well-defined homomorphism φ : W ′ → W whose image is WT . We must now check that this
map is injective. Let w ∈ W ′, and suppose that φ(w) = 1. If t′1 · · · t′r is an expression for w,
where t′i ∈ T′, then φ(w) has an expression t1 · · · tr, where ti = φ(t′i). By Theorem 2.16, the
word t1 · · · tr can be reduced to the empty word using elementary simplifications involving
only the letters in T (t1 · · · tr) ⊂ T . We may then use the same simplifications, which are
also valid in W ′, to reduce t′1 · · · t′r to the empty word, showing that w = 1 in T . Thus, φ is
injective. Identifying W ′ with its image WT ⊂ W , we see that (WT , T ) is a Coxeter system.
Both (2) and (3) follow immediately from the fact that T (w) ⊂ T for any w ∈ WT .

Theorem 2.19 is a very important property of Coxeter groups. Part (1) says that we can
find a presentation for a parabolic subgroup simply by reading off the relations that involve
only the generators of that subgroup. That is by no means true for arbitrary groups. For
instance, in the group G = 〈a, b, c | ab−2, cb−3〉, the generators a and c are distinct, and
there is no relation involving only them, so we might guess that the “parabolic subgroup”
they generate is free of rank 2. However, since a = b2 and c = b3, the subgroup is in fact
infinite cyclic, generated by b. A well-defined notion of parabolic subgroups is thus special
to Coxeter groups.

One can easily construct the Cayley graph of a Coxeter system (W,S) piece by piece
using the Cayley graphs of the parabolic subgroups. In particular, for each subset T ⊂ S,
the graph CS(W ) contains one copy of CT (WT ) for each coset in the quotient W/WT . Since
WT ∩WT ′ = WT∩T ′ , we form CS(W ) by gluing the copy of CT (WT ) corresponding to wWT to
the copy of CT ′(WT ′) corresponding to wWT ′ along the copy of CT∩T ′(WT∩T ′) corresponding
to wWT∩T ′ . This makes formal the idea of “gluing together (2ms,t)-gons” mentioned in the
Introduction.
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2.6 Word-Hyperbolic Coxeter Groups

We are finally ready to bring together the results of Chapters 1 and 2 and ask: When
is a Coxeter group word-hyperbolic? G. Moussong answered this question in his doctoral
dissertation [16] in 1988. We will not give a full proof of his results here, but we give a
partial explanation of some of them. Moussong and M.W. Davis (his dissertation advisor)
give a more readable exposition in [7].

First, a brief note on terminology: Although in Chapter 1, we used the terms “word-
hyperbolic” and “hyperbolic” interchangeably, we saw in Section 2.3 that the term “hyper-
bolic Coxeter group” has a specific meaning different from Gromov’s definition of hyperbol-
icity. Indeed, the former meaning implies the latter, for if (W,S) is a hyperbolic Coxeter
system, then the Cayley graph embeds quasi-isometrically into Hn, so W is word-hyperbolic.
On the other hand, any finite Coxeter group is word-hyperbolic but not hyperbolic. To
eliminate any ambiguity, we will always use “word-hyperbolic” in this section.

Here is Moussong’s main theorem:

Theorem 2.20. Let (W,S) be a Coxeter system. The group W is word-hyperbolic if and
only if the following both hold:

1. There is no subset T ⊂ S such that (WT , T ) is an affine Coxeter system of rank at
least 3.

2. There is no pair of disjoint subsets T1, T2 ⊂ S such that WT1 and WT2 are both infinite
and commute with each other.

Using the list of finite and affine Coxeter groups given in Figure 14, it is very easy to
identify which Coxeter groups are word-hyperbolic.

The “only if” direction of this theorem is easy to prove. The Cayley graph of an affine
Coxeter group is the 1-skeleton of the dualization of a tessellation of Euclidean space. Hence,
such a group is quasi-isometric to En and thus not hyperbolic. Since the embedding WT ↪→
W is an isometry, every parabolic subgroup of a word-hyperbolic Coxeter group is itself
hyperbolic. Therefore, a Coxeter system that does not satisfy (1) is not hyperbolic. Likewise,
if (W,S) does not satisfy (2), then it contains two commuting elements of infinite order,
which generate a subgroup isomorphic to Z × Z. Recall that no hyperbolic group contains
any subgroup isomorphic to Z× Z. Thus, (2) must hold in a hyperbolic group W .

For the “if” direction, the idea is to construct a CAT(0), piecewise Euclidean complex Σ
(the Davis-Moussong complex ) on which the Coxeter group acts properly and cocompactly
by isometries. For groups satisfying the conditions of Theorem 2.20, the complex Σ can be
also given a piecewise hyperbolic structure that is CAT(−1), and therefore the group itself
is hyperbolic by Lemma 1.21.

The basic building block for the complex Σ is the following construction. First, let (W,S)
be a finite Coxeter group of rank n, and let ε > 0. As seen in Section 2.3, the vector space
V used in the geometric representation of W can be identified with Rn with the standard
Euclidean metric and dot product. Choose a point xε that lies at distance ε from each of
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the reflecting hyperplanes. Define the Coxeter cell Cε(W ) = Cε(W,S) as the convex hull of
the orbit W.xε of xε. This is an n-dimensional, convex, Euclidean polyhedron, and it can
be given a natural PE cell structure. It is easy to see that the 1-skeleton of Cε(W,S) is the
Cayley graph CS(W ), scaled so that each edge has length 2ε. More generally, for 0 ≤ k ≤ n,
the k-cells of Cε(W,S) correspond naturally to the cosets of the parabolic subgroups of rank
k, and a face corresponding to wWT is isometrically isomorphic to Cε(WT , T ).

Now let (W,S) be an arbitrary group. The complex Σε is a piecewise Euclidean complex
defined as follows: For every subset T ⊂ S for which WT is finite, Σ includes one cell isometric
to Cε for each coset in the quotient W/WT . The cells are glued together in the obvious way:
a nonempty intersection of two cosets of parabolic subgroups is itself a coset of a parabolic
subgroup, so we may glue the two Coxeter cells together along the corresponding face, which
is itself a Coxeter cell. The vertices of Σ correspond to the cosets of the trivial subgroup, i.e.,
the elements of W , and the 1-cells correspond to cosets of the rank-1 parabolic subgroups
generated by individual elements of S. Therefore, the 1-skeleton Σ1

ε is the Cayley graph
CS(W ), scaled so that every edge has length 2ε.

Next, we define a piecewise hyperbolic complex ΣHε that is isomorphic (as a cell complex)
to Σε.

First, consider the case where (W,S) is a finite Coxeter system. The intersection of
Cε(W ) ⊂ Rn with the convex cone K is called a block and denoted Bε(W ). Note that the
barycenter of every face of in the star of x lies in one or more of the hyperplanes that bound
K. Therefore, the block Bε(W ) is a subcomplex of the barycentric subdivision of Cε(W )
and is a combinatorial n-cube. The faces of Bε(W ) that are contained in faces of Cε(W )
are called outer faces ; those that are contained in the hyperplanes that bound K are called
inner faces. The outer faces clearly meet the inner faces perpendicularly. (See Figure 15.)

Let BHε (W ) ⊂ Hn (the hyperbolic block for W ) be a hyperbolic polyhedron whose edge
lengths are the same as those of Bε(W ) and whose angles between two inner faces and
between an inner face and an outer face are all the same as those in Bε(W ). The angles
between the outer faces, however, are necessarily different. By gluing together copies of
BHε (W ) in the obvious way, we obtain a hyperbolic Coxeter cell CHε (W ). In this case, since
Σε = Cε(W ), we set ΣHε = CHε (W ). If (W,S) is now an arbitrary Coxeter system, then we
form ΣHε from Σε by replacing each cell Cε(WT ) by CHε (WT ).

Given two polyhedral complexes X and X ′, a λ-map is a homeomorphism X → X ′ that
preserves cell structure and is a (λ, 0)-quasi-isometry (where λ ≥ 1). If such a map exists,
X ′ is called a λ-change of X.

For the affine Coxeter groups considered in Section 2.3, note that the complex Σε is T ∗,
the dual to the tiling of Rn by the fundamental domain of W . For the hyperbolic Coxeter
groups, the same is true for ΣHε . Thus, these complexes somewhat generalize the way in
which finite, affine, and hyperbolic Coxeter groups act on Sn, En, and Hn, respectively.

Lemma 2.21. Let λ > 1. For ε sufficiently small, the complex ΣHε is a λ-change of Σε.

Proof. When W is finite, define a homeomorphism f : Cε(W ) → CHε (W ) by proportional
radial scaling. That is, for each x ∈ Cε(W ), draw a line segment Lx from the center O
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Figure 15: The Coxeter cell Cε(W ) and block Bε(W ) for the (2, 2, 3) triangle group.
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of Cε(W ) through x to the boundary of Cε(W ), and draw a corresponding segment L′x in
CHε (W ). Define f(x) to be the point on L′x such that

d(O, x)

|Lx|
=
d(O′, f(x))

` |L′x|

where `(Lx) denotes the length of Lx. Obviously, f preserves the cell structure of Cε(X).
Note that

lim
ε→0

inf
x∈Cε(X)

`(L′x)

`(Lx)
= 1,

since small neighborhoods in hyperbolic space are approximately Euclidean. Therefore, for
sufficiently small ε, the map f is a λ-map.

Now let (W,S) be an arbitrary Coxeter system. As S is finite, there are only finitely
many isometric isomorphism classes of cells in Σε, so we may choose ε sufficiently small that
CHε (WT ) is a λ-change of Cε(WT ) for every finite parabolic subgroup WT . We then obtain a
λ-map Σε → ΣHε by gluing together the maps on the individual cells.

Lemma 2.22. The complexes Σε and ΣHε are simply connected, and the group W acts prop-
erly and cocompactly by isometries on both.

Proof. Let Σ be either Σε or ΣHε ; the proof is identical for both.
To see that Σ is simply connected, note that the 2-skeleton of Σ is homeomorphic to

the complex CS,R(W ) introduced in Lemma 2.13, where R = {(st)ms,t | s, t ∈ S, mst finite}.
Since 〈S | R〉 is a presentation, CS,R(W ) is simply connected, as is Σ.

The action of W on itself by left multiplication extends naturally to an action of W on
Σ by isometries. To see that this action is proper, note that any compact set K ⊂ Σ is
contained in a finite subcomplex Σ′ of Σ. For any w ∈ W for which w.K ∩ K 6= ∅, we
have w.Σ′ ∩ Σ′, so w permutes a subset of the vertices of Σ′. The set of such w is finite,
as required. Finally, note that the star of any vertex is compact, and the orbit of the star
covers all of Σ, so the action is cocompact.

Finally, we must consider the global curvature of Σε and ΣHε .

Lemma 2.23. Let (W,S) be a Coxeter system.

1. For any ε > 0, the complex Σε is globally CAT(0).

2. If (W,S) satisfies the conditions of Theorem 2.20 and ε is sufficiently small, then the
complex ΣHε is globally CAT(−1).

By Lemma 1.22, it suffices to show in each case that each complex satisfies the link axiom,
i.e., that the link of any cell has girth at least 2π.

We consider the hyperbolic case first. Note the following lemma of Moussong [16, p. 17]:

Lemma 2.24. Let X be a finite, piecewise spherical, simplicial complex. For any real number
α < g(X), there exists λ > 1 such that for any λ-change X ′ of X, we have g(X ′) ≥ α.
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In particular, to prove (2), it suffices to show that the link of every cell in Σε has girth
strictly greater than 2π. If so, we can find α ≥ 2π such that g(lk(C,Σε)) > α for every cell
C of Σε, since there are only finitely many isometric isomorphism classes of links. Let λ be
the least of the values supplied for the different links by Lemma 2.24. By Lemma 2.21, there
exists ε > 0 such that ΣHε is a λ-change of Σε. Each link lk(CHε (WT ),ΣH

ε ) is a λ-change of
the corresponding link lk(Cε(WT ),Σε) and therefore has girth at least α, which proves that
ΣHε is globally CAT(−1).

Thus, it suffices to consider the links of the cells in Σε. Since the links depend only on
angles, we may omit mention of ε. This proof is the main technical result of Moussong’s
thesis; it depends on and we shall not attempt to prove it here. However, we will prove an
extremely simple case of the theorem.

The link of a vertex, lk(v,Σ), is generally easy to describe. It contains one vertex for each
element of S. If ms,t is finite, then the vertices corresponding to s and t are connected by an
edge of length π−π/ms,t. For any subset T ⊂ S of cardinality k, the vertices corresponding
to T span a spherical (k − 1)-simplex (whose shape is determined by its edge lengths) if
and only if WT is finite. Links of higher-dimensional cells are harder to describe, since they
require knowing the various angles present in the Coxeter cells, but they can be determined
algebraically using the cosine matrix for W .

Note that every edge in lk(v,Σ) (and, more generally, in lk(C,Σ) for any cell C) has
length at least π/2. Let us restrict to the case of a closed geodesic c in that is an edge-loop
in lk(v,Σ).

First, suppose that c consists of three edges of lengths (π − π/k), (π − π/l), and (π −
π/m), for a total circumference of 3π −

(
1
k

+ 1
l

+ 1
m

)
π. If 1

k
+ 1

l
+ 1

m
> 1, then the letters

corresponding to the vertices of this triangle generate a finite parabolic subgroup, so c is the
boundary of a 2-simplex in lk(v,Σ), a contradiction. Thus, the length of c must be at least
2π. Moreover, this length is greater than 2π unless 1

k
+ 1

l
+ 1

m
= 1, in which case the letters

generate an affine parabolic subgroup.
Next, note that every edge-loop consisting of four or more edges has length at least 2π.

The only such loop whose length is exactly 2π is a square, each of whose sides has length
π/2. Let s1, · · · , s4 be the letters corresponding to the four vertices of this square; then
msi,si+1

= 2 (indices modulo 4). Also, we must have ms1,s3 = ms2,s4 = ∞, since otherwise
the square would be filled in by two 2-simplices. Therefore, the parabolic subgroup generated
by s1, · · · , s4 is the direct product of two infinite dihedral groups and is also an affine Coxeter
group of rank 4. This completes the (extremely simplified) proof.
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Chapter 3

Original Results

In this chapter, I will present the results of my research on quasiconvex subgroups of word-
hyperbolic Coxeter groups.

Recall from Section 1.4 that the property of quasiconvexity ordinarily depends on one’s
choice of generating set; a subgroup can be quasiconvex with respect to one set of gener-
ators but not another. Only in hyperbolic groups is the choice of generators guaranteed
to be irrelevant. However, a Coxeter group has a canonical presentation that is extremely
closely related to the properties of the group, as the previous chapter showed. The length
function with respect to the standard generators has a close geometric connection with the
all-important geometric representation on the group, and the Deletion and Exchange Con-
ditions and Tits’s solution to the word problem make computation quite easy when using
that presentation. Thus, even in the non-hyperbolic case, it is still meaningful to talk about
quasiconvexity in Coxeter groups. In any case, the results in this chapter only concern
hyperbolic Coxeter groups.

As mentioned above, one frequently considers quasiconvexity in showing that a hyperbolic
group is locally quasiconvex, i.e., that every finitely generated subgroup is quasiconvex. This
property implies the weaker but nevertheless important property of coherence: that every
finitely generated subgroup is finitely presentable. McCammond and Wise [15] proved that a
Coxeter group of rank r is coherent if every exponent mij is at least r and locally quasiconvex
if the inequalities are strict. Kapovich and Schupp [13] proved several results saying that
if the exponents mij in a Coxeter group (of arbitrary rank) are sufficiently large, then any
subgroup generated by a sufficiently small number of generators is quasiconvex.

These results mostly concern Coxeter groups of large type, those in which every exponent
ms,t is at least 3 when s 6= t. Such groups are examples of small cancellation groups, an
often-studied class of groups in which, roughly speaking, the relations are “long words.” (See
Lyndon and Schupp [14, Ch. V] for an introduction to small cancellation theory.)

I am interested in the opposite type of Coxeter group, right-angled groups, in which ms,t

is either 2 or ∞ when s 6= t. Since the results of small cancellation theory do not apply,
a different approach is needed. Patrick Bahls, with whom I worked at the University of
Illinois, has conjectured that every word-hyperbolic, right-angled Coxeter group is locally
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quasiconvex.
According to Theorem 2.19, the parabolic subgroups of Coxeter groups are always convex

(with respect to the standard generating set). Therefore, consider the following generaliza-
tion of the parabolic subgroups:

Definition 3.1. Let (W,S) be a Coxeter system. A finite subset U ⊂ W is called a peribolic
subset if no two elements of U share a letter of S in their reduced expressions, i.e., if
T (u) ∩ T (u′) = ∅ for distinct elements u, u′ ∈ U . A subgroup H ≤ W generated by a
peribolic subset is called a peribolic subgroup.1

Like parabolic subgroups, peribolic subgroups are made possible by Lemma 2.18, which
states that the composition set T (u) ⊂ S is well-defined. In most groups, such a concept is
not very meaningful, since the generators of H could be written in very different ways.

Bahls and I have proven the following result:

Theorem 3.2. Let (W,S) be a word-hyperbolic, right-angled Coxeter system. Then every
peribolic subgroup H ≤ W is quasiconvex.

Proof. We must find a constant k such that for any w ∈ H and any S-reduced word x
representing w, any truncation x′ of x represents an element x′ ∈ W such that dS(x′, H) ≤ k.

Let U ⊂ W be a peribolic subset that generates H. For each u ∈ U , choose an S-reduced
word u ∈ L(S) that represents u. Let mU be the maximum length of the words u; that is,
mU = max{`S(u) | u ∈ U}.

Any element w ∈ H can be written as w = u1 · · · ur, where ui ∈ U . We may assume that
r is the least integer for which such a decomposition exists; we say that u1 · · · ur is U-reduced.
Accordingly, let w = u1 · · ·ur. Say that w = s1 · · · sN , where sσ ∈ S. As in the previously
chapter, let sσ denote the image of sσ in W . (The use of σ as the index variable will be
explained shortly.)

As seen in Section 2.4, it is possible to reduce w to an S-reduced word w0 by cancelling
pairs of identical letters that commute with all the letters in between them. More precisely,
suppose that w is not S-reduced. Then there exist indices σ < σ ′ with sσ = sσ′ such that
for every index τ between σ and σ′, we have sσsτ = sτsσ. The word s1 · · · ŝσ · · · ŝσ′ · · · sN
then also represents w. Repeating this procedure a finite number of times, we obtain an
S-reduced expression for w.

There are obviously many different ways to reduce w to a S-reduced word. (In light
of the Cayley graph CS(W ), we may also refer to an S-reduced word as a geodesic.) Not
only are multiple geodesics possible, but there may be different sequences of cancellations
(involving different pairings of letters) that lead to the same geodesic. For any sequence of
cancellations that yields a geodesic, let Σ ⊂ S × N × N be the set of triples (s, σ, σ ′) such
that σ < σ′, sσ = sσ′ = s, and the pair (sσ, sσ′) is one of the pairs of letters that cancel.

1The term “peribolic” is a pun coined by Bahls. The prefix “peri-” means around or near, so a peribolic
subgroup is one that is nearly parabolic. For a detailed analysis of why one might find this name funny, see
Sigmund Freud’s Jokes and their Relation to the Unconscious.
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Each element of Σ is called a chord (for reasons that will be made evident later). Note that
no index σ ∈ {1, . . . , N} appears twice in the elements of Σ.

For any chord (s, σ, σ′), let L(s, σ, σ′) be the number of indices i such that σ < i < σ′

and si = s, i.e., the number of times that the letter s appears between sσ and sσ′ . Let L(Σ)
denote the sum

L(Σ) =
∑

(s,σ,σ′)∈Σ

L(s, σ, σ′),

a nonnegative integer. A sequence of cancellations is called minimal if L(Σ) is minimal; for
any word w, there exists a minimal sequence, by the well-ordering of the natural numbers.

Note that L(Σ) is not necessarily zero for a minimal sequence. For instance, if st 6= ts,
then the only way to reduce the word w = stssts to the empty word is to cancel the inner
pair of s’s first, then the t’s, and finally the outer pair of s’s; we then have L(Σ) = 2. On
the other hand, if st = ts, then this sequence is no longer minimal, since we could instead
cancel the first s with the second and the third with the fourth and obtain L(Σ) = 0.

For 1 ≤ j ≤ r, let wj = u1 · · ·uj, and let Nj be the length of wj: that is, wj = s1 · · · sNj .
Here is the key lemma:

Lemma 3.3. Let (W,S) be a right-angled, word-hyperbolic Coxeter system, and let H ≤ W
be a peribolic subgroup generated by U . There exists a constant B, determined solely by W ,
S, H, and U , such that the following is true:

Let w = u1 · · ·ur be a U-reduced word, and let Σ be the chord set for a minimal sequence
of cancellations for w. Then for each 1 ≤ j ≤ r, the number of chords (s, σ, σ ′) ∈ Σ such
that σ ≤ Nj < σ′ is less than B.

We defer the proof of Lemma 3.3 and first show how it implies that H is quasiconvex.
Let w̃ be the S-reduced expression for w obtained from a minimal sequence of can-

cellations on w, and let x be an arbitrary S-reduced expression for w. The paths in the
Cayley graph CS(W ) corresponding to x and w̃ begin and end at the same point, so they
can be viewed as a degenerate triangle in which one side is simply a point. Since CS(W ) is
δ-hyperbolic for some constant δ ≥ 0, each of these paths is contained in the δ-neighborhood
of the other. Therefore, if x′ is any truncation of x, there exists a truncation w̃′ of w̃ such
that dS(x′, w̃′) ≤ δ (where, as usual, x′ = ψ(x′) and w′ = ψ(w′).) (See Figure 16.)

We may write w̃ as a product ũ1 · · · ũr, where ũi is the word obtained from ui in the
reduction of w to w̃. For 1 ≤ j ≤ r, let w̃j = ũ1 · · · ũj and w̃j = ψ(wj). Choose j to be the
least value for which the word w̃′ is a truncation of w̃j. Since the length of each word ũi is
at most mU , we therefore have dS(w̃′, w̃j) ≤ mU .

Let Σ′ ⊂ Σ be the set of all chords (s, σ, σ′) ∈ Σ such that σ ≤ Nj < σ′. By Lemma 3.3,
the cardinality of Σ′ is at most B. Denote the elements of Σ′ by (s1, σ1, σ

′
1), . . . , (sk, σk, σ

′
k),

where σ1 < · · · < σk.
Let y = sσ′ksσ′k−1

· · · sσ′1 . Using Tits’s algorithm, we may reduce the word wjy to a

geodesic by successively cancelling each pair of letters (sσi , sσ′i) (as i ranges from k to 1),
as well as all pairs (sτ , sτ ′) that cancel in the reduction of w and for which τ < τ ′ ≤ Nj.
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Figure 16: Schematic of the proof of Theorem 3.2.

The resulting geodesic is simply w̃j. Therefore, w−1
j w̃j = y, so dS(w̃j, wj) ≤ `S(y) ≤ k ≤ B.

Note that wj ∈ H.
By the triangle inequality, we have d(x′, wj) ≤ K, where K = δ + mU + B. The entire

geodesic x thus lies within the (K + 1)-neighborhood of the elements of H in the Cayley
graph CS(W ). (The extra 1 is to account for points in the interiors of edges.) As K depends
only on the choice of W , S, H, and U , we thus see that H is (K + 1)-quasiconvex.

Note that the only part of this proof that depends on the construction of H — specifically,
the fact that H is peribolic — is Lemma 3.3. In an unpublished paper, Bahls first developed
the technique of bounding the cancellations of pairs in order to show that a different type of
subgroup is quasiconvex: namely, subgroups generated by reflections. (For those subgroups,
there is an easier proof.) Assuming that one can prove some analogue of Lemma 3.3, it may
be possible to extend this type of argument to other types of Coxeter groups.

The proof of Lemma 3.3 is extremely detailed and would take many pages to present in
its entirely. However, we will give a rough outline of the proof.

First of all, let us explain some of the nomenclature used above. We may represent the
word w as a subdivision of a line segment into N intervals, or cells, corresponding to the
letters si. Each cell is labelled with the ordered pair (sσ, σ) ∈ S × N. (Typically, we use a
Roman letter for the element of S and the corresponding Greek letter for the index: thus,
(s, σ), (t, τ), etc.) A cell (s, σ) is called an s-cell; by abuse of notation, we often refer to the
cell (s, σ) as simply σ.

We may keep track of a sequence of cancellations by drawing an arc, or chord, joining
each pair of cells that corresponds to a pair of cancelling letters. The resulting cancellation
diagram is extremely useful for figuring out what commutation relations must hold in the
group. For instance, if (t, τ) is a cell without a chord and lies between the endpoints of the
chord (s, σ, σ′), then st = ts. Similarly, if the diagram contains chords (s, σ, σ ′) and (t, τ, τ ′)
with σ < τ < σ′ < τ ′, then again we have st = ts, since one pair of letters must cancel before
the other one. (Such chords are said to cross; this terminology makes sense if we draw all
the chords below the base line segment.)

We may define a partial order on the chord set Σ by nesting: (s, σ, σ ′) ≺ (t, τ, τ ′) if and
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only if τ < σ < σ′ < τ ′. Many proofs involve induction on this partial ordering.
The cancellation diagram for a minimal sequence of cancellations is called a minimal

diagram. A minimal diagram D satisfies several important properties. First of all, if (s, σ, σ ′)
is a chord and (s, ψ) is an s-cell that lies between σ and σ ′, then ψ must contain an endpoint of
a chord whose other endpoint is also between σ and σ ′. Otherwise, we could replace the chord
(s, σ, σ′) with (s, σ, ψ) or (s, ψ, σ) and obtain a valid cancellation diagram, contradicting
minimality of D. Moreover, if (s, ψ, ψ′) ≺ (s, σ, σ′), then there exists a chord (t, τ, τ ′), with
st 6= ts, such that (s, ψ, ψ′) ≺ (t, τ, τ ′) ≺ (s, σ, σ′). Otherwise, we could s-chords with
(s, σ, ψ) and (s, ψ′, σ′) and obtain a valid diagram, again contradicting the minimality of D.

When a word is given as a product w = u1 · · ·ur, where the ui are generators of a given
subgroup (or their inverses), we may accordingly group the cells into intervals I1, . . . , Ir. An
interval that represents either u or u−1 is called a u-interval. When there exists a chord
(s, σ, σ′) such that that σ is in interval Ii and σ′ is in interval Ii′ , the pair (Ii, Ii′) is called a
matched pair. Since the ui are reduced words, the endpoints of any chord must be contained
in different intervals.

For peribolic subgroups, note that if (Ii, Ii′) is a matched pair joined by a chord (s, σ, σ ′),
then the intervals Ii and Ii′ both represent the same word u or its inverse, since no other
element of U includes the letter s. Using this fact, it is possible to get an extremely good
control on the behavior of the chords. For instance, one important lemma is that if σ is the
mth s-cell from the right end of Ii, then σ′ is the mth s-cell from the left end of Ii′ .

The main technical result is as follows:

Proposition 3.4. Let (W,S) be a right-angled, word-hyperbolic Coxeter system, and let H
be a peribolic subgroup generated by U . Say that w = u1 · · ·ur as above, and consider a
minimal cancellation diagram for w. Let s, t ∈ S, and suppose that there are chords

(s, σ1, σ
′
1) ≺ (t, τ1, τ

′
1) ≺ (s, σ2, σ

′
2) ≺ (t, τ2, τ

′
2)

satisfying either of the following conditions:

1. For some distinct u, v ∈ U , we have s ∈ T (u), t ∈ T (v), so no two of the eight cells are
contained in the same interval.

2. For some u ∈ U , we have s, t ∈ T (u), and the four pairs of cells {τ2, σ2}, {τ1, σ1},
{σ′1, τ ′1}, and {σ′2, τ ′2} are contained in separate u-intervals.

Then st = ts.

Sketch of proof. Suppose that st 6= ts. The idea is to find two non-commuting letters x, y ∈ S
such that sx = sx, tx = xt, sy = ys, and ty = yt. The parabolic subgroup WT generated by
T = {s, t, x, y} will then be the direct product of two copies of the infinite dihedral group.
However, this is an affine Coxeter group of rank 4, which contradicts Theorem 2.20.

Given any set of indices 1 ≤ i1 < · · · < ik ≤ r, note that there must be at least one cell
in the union Ii1 ∪ · · · ∪ Iik that either has no chord or has a chord whose other endpoint
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Figure 17: The two types of cancellation diagrams in Proposition 3.4.

is not in Ii1 ∪ · · · ∪ Iik . Otherwise, the word w′ = u1 · · · ûi1 · · · ûik · · ·ur would also be an
expression for w, contradicting the fact that w is U -reduced.

Roughly speaking, we may use this technique to obtain a non-cancelling cell (x, ξ) that
appears in the same interval as either σ1 or σ2 (varying in different cases). By a counting
argument, there is another non-cancelling x-cell (x, ξ ′) to the right of ξ. As a result, there
must be a cell (y, υ) between ξ and ξ ′, with xy 6= yx, preventing the formation of a chord
(x, ξ, ξ′). Figuring out the other commutation relations is an extremely tedious exercise in
diagram-chasing, so I will not show the details here.

Proof of Lemma 3.3. In terms of cancellation diagrams, the lemma says the number of chords
with one endpoint in I1 ∪ · · · ∪ Ij and the other in Ij+1 ∪ · · · ∪ Ir is universally bounded. We
may prove this fact using repeated applications of the Pigeonhole Principle. For any s ∈ S,
the s-chords of this type form a chain in the partial ordering on chords, since s-chords cannot
cross: (s, σ1, σ

′
1) ≺ · · · ≺ (s, σk, σ

′
k). By the minimality of the diagram, for 1 ≤ i ≤ k−1, there

must be a chord (ti, τi, τ
′
i) such that (s, σi, σ

′
i) ≺ (ti, τi, τ

′
i) ≺ (s, σi+1, σ

′
i+1). If k is sufficiently

large, then one of the letters ti will repeat in one of the ways forbidden by Proposition 3.4,
so k must be less than some constant k0. Therefore, by the Pigeonhole Principle, the total
number of chords joining I1 ∪ · · · ∪ Ij and Ij+1 ∪ · · · ∪ Ir is bounded by B = k0 |U |+ 1.
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Poetic Conclusion

We ask, “What good can possibly come of
Turning a group into a metric space?”
When this idea was put forth by Gromov,
Group theory took off at a rapid pace.

Word-hyperbolic groups have much in store.
They all can be presented finitely,
And they have useful properties galore
When they are quasiconvex locally.

In Cox’ter groups, we learn lots from how long
The words are for a given element.
To tie it all together, there’s Moussong
Whose proof is anything but evident.

My thesis is complete, and sad to tell
I soon must bid fair Harvard a farewell.
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sional Topology (K. Böröczky, W. Neumann, and A. Stipicz, eds.), Bolyai Society Math-
ematical Studies, vol. 8, János Bolyai Mathematical Society, 1999, pp. 11–94.
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