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Abstract

The Fukaya category associated to a Lefschetz fibration is a central object of
study in mirror symmetry. This paper is primarily an exposition of Fukaya-Seidel
category via the example of the Landau-Ginzburg mirror to CP 2, given explicitly by
W = x + y + 1

xy : (C∗)2 → C. Two different models depending on the position of

the reference fiber, introduced in [AKO08] and [Sei12] respectively, are discussed. We
focus on the complex geometry of a regular fiber and the way it varies in family. In
the second half of the paper, we use these geometric results to explore the existence
of special Lagrangian submanifolds fibered over an embedded path in the fibration
W : (C∗)2 → C.
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1 Introduction

In his seminal paper [Kon94], Maxim Kontsevich proposed the Homological Mirror Sym-
metry (HMS) conjecture, which states a categorical duality for certain Calabi-Yau mani-
folds. More precisely, for a Calabi-Yau manifold X, we can associate its derived category
of coherent sheaves, DbCoh(X), called the B-model, as well as (some suitably derived ver-
sion of) its Fukaya category, DFuk(X), called the A-model. The HMS conjecture states
that for a Calabi-Yau manifold X, there should exist a mirror Calabi-Yau X∨, such that
there are equivalences of categories

DbCoh(X) ∼= DFuk(X∨) and DbCoh(X∨) ∼= DFuk(X).

In subsequent works, the HMS conjecture had been extended to more general settings.
For a toric Fano variety X, the mirror of X is a Landau-Ginzburg model consisting of
a Calabi-Yau manifold Y equipped with a holomorphic function W , called the superpo-
tential. In this paper, we discuss the Fukaya-Seidel category associated to a Lefschetz
fibration, introduced by Paul Seidel in [Sei01a],[Sei01b], [Sei08], [Sei12], which has the
nice property that it is generated by a finite exceptional collection consisting of vanishing
cycles (or Lefschetz thimbles). In particular, this will be our version of Fukaya category
associated to a Landau Ginzburg model W : Y → C. In particular, we discuss the HMS
conjecture for the specific case of CP 2, originally proved in [Sei01b] and extended to the
case of weighted projective planes and their noncommutative deformations in [AKO08].

Special Lagrangian (sLag) submanifolds are central objects in the study of mirror
symmetry. In [Joy14], Dominic Joyce conjectured that a holomorphic volume form Ω on
a Calabi-Yau manifold X should give rise to a stability condition on DFuk(X), where the
semistable objects are sLags with respect to Ω. In the second half of the paper, we compute
explicit examples of sLag thimbles in the Landau-Ginzburg model W : (C∗)2 → C, where
W = x+y+x−1y−1, mirror to CP 2. We show that a generic fiberW−1(λ) is biholomorphic
to a complex torus with three punctures, and we choose a holomorphic volume form Ω
whose residue along W−1(λ) is identified with the standard flat structure. The sLag
condition for a thimble can then be reduced to studying the fiberwise tangent direction
of its vanishing cycles and its base tangent direction. For a thimble in general position,
we will need to modify the symplectic form in order to obtain a genuine sLag.

The organization of this paper is as follows. In Section 2, we introduce the notion
of a Lefschetz fibration and its Fukaya-Seidel category following [Sei01a], [Sei08]. In
Section 3, we continue the exposition and study the mirror Landau-Ginzburg model of
CP 2 and prove the HMS conjecture in this case. Then, we move on to the original part
of this paper, starting with showing that the standard Lefschetz thimbles are sLags (after
modifying the symplectic form) when the reference fiber is at the origin. In Section 4,
we explore a more ‘general’ situation where the reference fiber is at +∞, and prove the
main result regarding the existence of sLag thimbles fibered over an embedded curve.
Nonetheless, the correctness of our approach relies on certain smoothness property in the
construction that the author has yet to prove, and is stated as a conjecture (Conjecture
4.2.2). Finally, in Remark 4.5.2, we briefly discuss the interpretation of our results in
the context of mirror symmetry and Bridgeland stability conditions. In the appendix, we
review some basic facts about derived categories and A∞-categories.
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2 Lefschetz fibrations and Fukaya-Seidel categories

In this section, we follow the general framework of [Sei01a],[Sei08] and define the notion of
an exact Lefschetz fibration. Roughly speaking, these are smooth fibrations π : E → B of
exact symplectic manifolds with possible nondegenerate singularities. The key property
of a Lefschetz fibration is that each fiber π−1(b) is symplectic and that TxE at each
x ∈ E splits into the horizontal direction and the fiber direction. This allows us to define
parallel transport along a path in the base. Next, we define vanishing cycles and Lefschetz
thimbles, which are objects of the Fukaya-Seidel category.

2.1 Lefschetz fibrations

For the purpose of this paper, we won’t introduce the full generality of Lefschetz fibration
as covered in [Sei01a],[Sei08]. In particular, we restrict our attention to those of type
π : E → C, where E is an open exact symplectic manifold with a compatible almost
complex structure JE .

Definition 2.1.1. A Lefschetz fibration is a smooth map π : E → C such that
1) each fiber of π is a symplectic submanifold of E;
2) π has finitely many critical points p1, · · · , pk that are integrable and nondegenerate, i.e.
in a neighborhood of each pi, JE is integrable and π can be written as π(x1, · · · , xn) =
π(pi) + x2

1 + · · ·+ x2
n in local coordinates;

3) there is a unique critical point lying over each critical value.

Note that aside from the critical points, the symplectic orthogonal to each fiber defines
a horizontal distribution which allows us to do parallel transport.

2.2 Vanishing cycles and Lefschetz thimbles

Let π : E → C be a Lefschetz fibration where dim(E) = 2n + 2. A vanishing path
is an embedded path γ : [0, 1] → C with γ(1) a critical value and γ([0, 1)) disjoint
from Crit(π). For each such path, we can associate its Lefschetz thimble ∆γ , which
is the unique embedded Lagrangian (n + 1)-ball in E satisfying π(∆γ) = γ([0, 1]) and
π(∂∆γ) = γ(0). The boundary VC(γ) := ∂∆γ is called the vanishing cycle of γ. As an
abuse of terminology, the Lagrangian spheres Eγ(t) ∩∆γ for 0 ≤ t < 1 are sometimes also
called vanishing cycles.

The following lemma ensures that ∆γ is in fact well defined.

Lemma 2.2.1. Let β be an embedded path in C\Crit(π), and F ⊂ E a submanifold fibered
over β such that each Fβ(t) ⊂ Eβ(t) is Lagrangian. The F ⊂ E is Lagrangian if and only
if parallel transport maps Fβ(t) into each other.
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Proof. First assume that parallel transport maps Fβ(t) into each other. Let t be arbitrary

within the interval of definition of β, and β̇(t) the corresponding tangent vector. For
p ∈ F such that π(p) = β(t), let β̃(p) be the unique lift of β̇(t) to the horizontal part
TpE

h. By assumption, we have β̃(p) ∈ TpF . In particular, TpF is spanned by β̃(p) and
TpFβ(t) and ω(β̃(p), TpFβ(t)) = 0. Since Fβ(t) ⊂ Eβ(t) is Lagrangian, we conclude that
ω|TpF = 0, and hence F ⊂ E is Lagrangian.

Conversely, assume F is Lagrangian. For p ∈ F , choose a lift v(p) ∈ TpF of β̇(t).
Since F is Lagrangian, v(p) ∈ (TpF )⊥ω ⊂ (TpFβ(t))

⊥ω = TpE
h + TpFβ(t). By adding an

element of TpFβ(t), we may as well assume that the lift v(p) is in TpE
h. This shows that

F is invariant under parallel transport.

This implies that the Lefschetz thimble ∆γ is given uniquely by the formula

∆γ = {p ∈ Eγ(t0), 0 ≤ t0 < 1 : lim
t1→1

hγ|[t0,t1]
(p) = p1} ∪ {p1},

where h denotes parallel transport and p1 is the unique critical point in Eγ(1).
This description may face several technical difficulties, e.g. if the fibers are noncom-

pact, then parallel transport might not be well defined. However, we will only work with
the case such that no such difficulties are present, for instance, by choosing a Kähler
form whose induced metric is complete and such that |∇π| is bounded below outside of a
compact set (see [AKO08, Section 4.1]). Such technical difficulties can also be resolved by
considering a suitable Hamiltonian functional and its flow, see [Sei08, Section III.16(b)].

2.3 Dehn twist and the symplectic Picard-Lefschetz theorem

Fix a Lefschetz fibration π : E → C where dim(E) = 2n+ 2 and a vanishing path γ. Let
VC(γ) be the vanishing cycle, which is a Lagrangian n-sphere in Eγ(0). Let λ be a loop
based at γ(0) that winds around γ(1) once counterclockwise.

Parallel transport along λ defines a monodromy action hλ on Eγ(0). The purpose of
this subsection is to relate this monodromy action to another action on Eγ(0), called the
Dehn twist along VC(γ).

Figure 1: Dehn twist about the zero section
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We first define Dehn twist in the standard model T ∗Sn with the standard symplectic
form and metric. Let p be the fiber coordinate and q be the base coordinate, we can define
a Hamiltonian functional H(p, q) = h(‖p‖), where h : [0,∞) → R is a smooth function
such that h′(0) = π, h′′ ≤ 0 and h is constant outside of a compact neighborhood of zero.
The Hamiltonian flow of h defines a diffeomorphism of T ∗Sn\Sn, which can be extended
to the zero section by defining it to be the antipodal map on the zero section. When
n = 1, we get the familiar picture shown in Figure 1.

In the more general setting where we have a Lagrangian sphere S inside a symplectic
manifold (M,ω), Weinstein’s neighborhood theorem allows us to identify a neighborhood
of S in M with (S, T ∗S). Performing the above construction inside this neighborhood,
we get a symplectomorphism τS of M supported inside the neighborhood and restricts
to the antipodal map on S, called the Dehn twist about S. The isotopy class of τS is
independent of the choice of h and the choice of neighborhood.

Now, we are ready to state the symplectic Picard-Lefschetz theorem.

Theorem 2.3.1. Let π : E → C, γ and λ be as in the first paragraph of this subsection.
Then, there is an isotopy

hλ ' τVC(γ).

We sketch a proof of the theorem when dimE = 4, which is the case of interest. For
a detailed proof in the general case, see [Sei03].

Since deforming the Lefschetz fibration will not change the isotopy class of the mon-
odromy, we may without loss of generality work in the standard Morse chart π : C2 → C
where π(z1, z2) = z2

1 + z2
2 , with critical value 0. After parallel transporting, we may

assume our basepoint to be 1, and consider the monodromy along the loop γ(t) = e2πit.
In each fiber Eλ, there is a distinguished symplectic vanishing cycle

√
λS1 = {z =

(z1, z2)|z2
1 + z2

2 = λ, z1, z2 ∈
√
λR}. Under the standard symplectic form on C2, the

horizontal tangent space at z = (z1, z2) is given by TzE
h = Cz, and the horizontal lift

of a vector v ∈ C is given by v
2|z|2 z. Thus, parallel transport along any curve maps the

vanishing cycles
√
λS1 to each other. Moreover, parallel transport along the unit circle

preserves complex norm. To see this, fix λ a point on the unit circle, v ∈ C a tangent
vector at λ and z ∈ Eλ. For small t, parallel transport along tv can be approximated by

z 7→ z +
tv

2|z|2
z +O(t2).

Then, ∣∣z +
tv

2|z|2
z
∣∣∣2 = |z|2 +

t

|z|2
Re(vλ) +O(t2).

But since λ is on the unit circle, v is perpendicular to λ and hence Re(vλ) = 0, which
proves the claim. Let Φt : E1 → Ee2πit be the parallel transport map.

For each t, consider the double cover π1 : Ee2πit → C given by (z1, z2) 7→ z1, with
branch points ±(eπit, 0). Since the horizontal distribution is Cz (in particular, points with
the same z1 coordinate will be sent to points with the same z1 coordinate), Φt descends to
a well defined diffeomorphism φt of C. Note that for each t, φt is not compactly supported,
yet it is close to the identity for |z1| large. Up to composing Φt with an isotopy, we can
assume that φt is the identity outside some large disk D for each t and that Φ1 is the
identity outside the tubular neighborhood S1 × [0, 1] ∼= π−1

1 (D). Since φt pushes the
branch points counterclockwise, φ1 is the positive half Dehn twist on D with two marked
points. Thus, Φ1 is the unique lift of the half Dehn twist, and by classical results from
mapping class groups, it is the positive Dehn twist on π−1

1 (D) ∼= S1 × [0, 1].
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Remark 2.3.2. In fact, in the case of exact Lefschetz fibrations we are considering,
the monodromy is Hamiltonian isotopic to the symplectic Dehn twist in Symp(Eγ(0)).
Similarly, vanishing cycles with respect to homotopic paths rel endpoints (where the
homotopy does not cross a critical value) are Hamiltonian isotopic to each other in the
fiber. We will assume these facts for the rest of the paper (see [Sei01a], [Sei03]).

2.4 The Fukaya-Seidel category

In this subsection, we define the (derived)Fukaya-Seidel category associated to a Lefschetz
fibration, following [Sei01a],[Sei08] and [AKO08]. Let π : E → C be a Lefschetz fibration
of dimension 2n+ 2 as above. Fix a base point x0 ∈ C\Crit(π). A distinguished basis of
vanishing paths is an ordered family γ = (γ1, · · · , γm),m = |Crit(π)| of vanishing paths
such that
1) for each i, γi(0) = x0 and for i 6= j, γi and γj only intersect at x0;
2) The tangent directions of γi at x0 are ordered clockwise.

Definition 2.4.1. Given a Lefschetz fibration π : (E,ω)→ C and a distinguished basis of
vanishing paths γ, the directed category of vanishing cycles Lagvc(π,γ) is the A∞-category
with m objects {Li = VC(γi)}mi=1, and morphisms given by

Hom(Li, Lj) =

{ CF ∗(Li, Lj) ∼= C|Li∩Lj |, for i < j
C · idLi , for i = j
0, for i > j

where CF ∗ is the Floer cochain complex with coefficients in C (after perturbing such
that the Li intersect transversely in Ex0). When i0 < i1 < · · · < ik, k ≥ 1, we define the
operations

µk : Hom(Li0 , Li1)⊗ · · · ⊗Hom(Lik−1
, Lik)→ Hom(Li0 , Lik)[2− k]

in terms of Lagrangian Floer theory inside the fiber Ex0 . Specifically, given pj ∈ Lij−1 ∩
Lij , 1 ≤ j ≤ k and q ∈ Li0 ∩ Lik , we consider the following. Let D be the closed unit
disc minus ζ0, ζ1, · · · , ζk, where {ζi} is a cyclically ordered tuple of marked points on
the boundary circle (whose positions are allowed to vary). Fixing a compatible almost
complex structure J on Ex0 , we consider the space of all J-holomorphic maps u : D → Ex0
which extends continuously to the punctures and maps [ζj , ζj+1] to Lij and ζ1, · · · , ζk, ζ0 to
p1, · · · , pk, q, respectively. The moduli spaceM(p1, · · · , pk, q; J) is defined as the quotient
of the above space by the complex automorphism group of the disk Aut(D). If deg(q) =∑k

j=1 deg(pj) + 2 − k, the expected dimension of M(p1, · · · , pk, q; J) is zero. Thus, we
define

µk(p1, · · · , pk) =
∑

q∈Li0∩Lik
deg(q)=

∑
deg pj

( ∑
u∈M(p1,··· ,pk,q;J)

±e−2πω([u])
)
q.

On the other hand, if i0 < · · · < ik fails to hold, we set µk = 0. The elements idLj are

defined such that µ1(id) = 0, µ2(id, a) = µ2(a, id) = a and all µk, k ≥ 3 involving id are
zero.

Finally, the Fukaya-Seidel category is defined by FS(π,γ) = DLagvc(π,γ), where the
derived category is defined as the cohomological category of Tw(Lagvc) (see Appendix).
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Showing that these µk satisfy the A∞-relations is a standard (but very technically
challenging) argument in Lagrangian Floer theory (see [Aur14] for a friendly explanation).
Despite the tremendous difficulty in studying Lagrangian Floer theory in general, the
setting of a Lefschetz fibration saves us most of the trouble. In particular, the fact that
E is an exact symplectic manifold (ω = d θ) and Li are exact Lagrangian submanifolds
(θ|Li = d fi) ensure that no sphere or disk bubbling occur and thus the moduli space
above is well defined and orientable.

Remark 2.4.2. It is widely understood that the generators of the Fukaya-Seidel cate-
gory should be the Lefschetz thimbles ∆γi instead of the vanishing cycles. Since Lefschetz
thimbles are topological disks, they are easier to work with. For instance, they automat-
ically have Maslov index zero, and hence gradable (although in the case we’ll consider
the vanishing cycles also have this property). It will also be clear later that Lefschetz
thimbles are the ‘correct’ objects when studying special Lagrangian properties.

Nonetheless, this distinction should not bother us. By definition of the vanishing
paths γi, it is clear that VC(γi) ∩ VC(γj) = ∆γi ∩∆γj . Moreover, by the open mapping
theorem, a pseudo-holomorphic map u : D → E with boundary on the thimbles must in
fact be contained in Ex0 . Therefore, up to grading, the Floer cohomology of the Lefschetz
thimbles is the same as the Floer cohomology of the vanishing cycles.

It is immediate from the definition that FS(π,γ) is generated by the exceptional col-
lection (VC(γ1), · · · ,VC(γm)). However, a priori FS(π,γ) depends on the choice of a
distinguished basis of vanishing paths. We now sketch the idea of proof that FS(π,γ) is
independent of γ.

Theorem 2.4.3. ([Sei01a],[Sei08]) Given a Lagrangian sphere S ⊂ (M,ω) and an object
L ∈ Fuk(M), there exists an exact triangle (in Tw(Fuk(M)))

HF ∗(S,L)⊗ S L

τS(L)

ev

[1]

There is an action of the Braid group Brm of m − 1-generators on the set of isotopy
classes of distinguished bases, where the standard generator σk (1 ≤ k ≤ m− 1) acts by
a ‘braid’ shown in Figure 2.

The symplectic Picard-Lefschetz theorem implies that

VC(σk(γ)j) =

{ τVC(γk)(VC(γk+1)), for j = k

VC(γk), for j = k + 1
VC(γj), otherwise

and Theorem 2.4.3. implies that the new exceptional collection of vanishing cycles associ-
ated to σk(γ) is related to the original collection by a mutation (which induces a mutation
on the category). Using these insights, Seidel showed that

Theorem 2.4.4. For any two distinguished bases γ and γ ′, Lagvc(π,γ) and Lagvc(π,γ
′)

are related by a sequence of mutations, and there is an exact equivalence between FS(π,γ)
and FS(π,γ) as ordinary triangulated categories.
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Hence from now on, we may write FS(π) instead of FS(π,γ).

Figure 2: Braid group action on a basis of vanishing paths

Remark 2.4.5. In [Sei12], Seidel presented an alternative geometric description that
gives rise to the same Fukaya category. Here we briefly discuss a simplified version of that
picture. We take our basepoint to be +∞, i.e. take a basis of disjoint vanishing paths γi
such that for each i, limt→0 γi(t) = +∞ and outside of a compact neighborhood of γi(1),
γi have constant imaginary part ci. Moreover, assume ci > cj if i > j (i.e. in ‘clockwise’
order at +∞). Then, Hom(∆γi ,∆γj ), i < j is a perturbed Floer cochain complex. More
specifically, for each i < j, we fix a Hamiltonian functional hij : C→ R, depending only on
Re(z), such that hij = 0 in a compact neighborhood of γi(1) and h′ij = constant > cj − ci
close to infinity. Hence, Xhij pushes γi in the positive imaginary direction and produces
a transverse intersection with γj .

Let Hij be the pullback of hij to the total space. Then, we define Hom(∆i,∆j) =
CF ∗(∆i,∆j , Hij) (see [Sei08] for perturbed Floer theory) assuming hij is chosen such
that φ1

Hij
(∆i) intersects transversely with ∆j . In this version of the Fukaya category, the

directedness of the Lagrangians ∆i is naturally explained by the choice of our Hamiltonian
functionals.

3 The Landau-Ginzburg model, version 1

In this section, we study a specific example of Fukaya-Seidel category associated to a
complex dimension 2 Lefschetz fibration, and prove homological mirror symmetry for
CP 2.

3.1 Geometry of the Landau-Ginzburg model

The mirror to CP 2 is a Landau-Ginzburg modelW : (C∗)2 → C, whereW = x+y+x−1y−1

is the superpotential coming from counting holomorphic discs bounded by the product
tori in CP 2 that has intersection number 1 with the anticanonical divisor (see [Aur07]).
Following [AKO08], we embed the total space into (C∗)3, i.e. as the subspace X = {xyz =
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1} ⊂ (C∗)3 equipped with the superpotential W = x+ y + z. This equivalent description
gives us additional symmetries that will be useful later.

Let the symplectic form ω on X be the restriction of the standard symplectic form on
(C∗)3

i

2

(d x
x
∧ d x

x
+
d y

y
∧ d y

y
+
d z

z
∧ d z

z

)
.

Then, ω is exact, invariant under the diagonal Z3 action by the cubic root of unity and
anti-invariant under complex conjugation. Together with the complex structure induced
from the standard one on (C∗)3, ω defines a Kähler structure on X whose Kähler metric is
complete and |∇W | is bounded below outside of a compact set. Thus, parallel transport
is well defined.

The Lefschetz fibration W : X → C has three critical values 3, 3ζ, 3ζ2, where ζ =
e2iπ/3, corresponding to three critical points (1, 1, 1), (ζ, ζ, ζ), (ζ2, ζ2, ζ2). Away from the
critical values, the fiber Σλ = W−1(λ) ⊂ X is a smooth curve defined by xy(λ−x−y) = 1,
which degenerates to a singular curve as λ approaches a critical value. Our first goal is
to understand the geometry of the fiber, particularly as a complex manifold, as well as
its (nodal)degeneration at the critical values. Although this is not completely necessary
for just proving HMS, it will be crucial to the study of special Lagrangians in X.

Recall that the Weierstrass’s elliptic function with periods ω1, ω2 is defined as

℘(z;ω1, ω2) =
1

z2
+

∑
(n,m) 6=(0,0)

( 1

(z + nω1 +mω2)2
− 1

(nω1 +mω2)2

)
.

It is a meromorphic function that establishes the elliptic curve C/〈ω1, ω2〉 as a double
cover of the Riemann sphere with four branch points corresponding to 0, ω1/2, ω2/2, (ω1 +
ω2)/2. Moreover, (℘(z), ℘′(z)) gives a parametrization of the elliptic curve via the famous
functional equation

[℘′(z)]2 = 4[℘(z)]3 − g2℘− g3,

where

g2 = 60
∑

(n,m) 6=(0,0)

(nω1 +mω2)−4, g3 = 140
∑

(n,m)6=(0,0)

(nω1 +mω2)−6.

With this understanding, we sometimes write ℘(z; g2, g3) instead of ℘(z;ω1, ω2). The
inverse of the Weierstrass elliptic function is given by

u =

∫ ∞
y

ds√
4s3 − g2s− g3

,

i.e. y = ℘(u). We don’t specify a path of integration, since u modulo the lattice does not
depend on the choice of path (but as a complex number it does because of the branching
behavior of the integrand). Finally, at the branch points of ℘, we have ℘′ = 0. Hence,

e1 = ℘(
ω1

2
) e2 = ℘(

ω2

2
) e3 = ℘(

ω3

2
),

where ω3 = ω1 + ω2, are the three complex roots of 4s3 − g2s − g3. In particular, for
suitable paths of integration

ωi
2

=

∫ ∞
ei

ds√
4s2 − g2s− g3

.

Now we are ready to prove the following proposition.
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Proposition 3.1.1. For a regular value λ, the fiber Σλ is biholomorphic to a complex
elliptic curve with three punctures. Moreover, there exists a holomoprhic volume form
Ω on X whose residue along each regular fiber Σλ is identified with the standard flat
structure under the above biholomorphism. When λ is a critical value, Σλ has a unique
nodal singularity.

Proof. The fiber Σλ can be identified with the curve {xy(λ − x − y) = 1} ⊂ (C∗)2, with
a projection πx : Σλ → C∗ onto the x-coordinate. Since the polynomial is quadratic in
y, πx is a double cover with three branch points given by the roots of x(x− λ)2 − 4 = 0,
corresponding to the vanishing of the discriminant of the quadratic polynomial. Under
the change of coordinates {

t = 1
3√4

(
1
x −

λ2

12

)
s = i

x

(
y + x−λ

2

)
the equation becomes s2 = 4t3 − g2(λ)t− g3(λ), where

g2(λ) =
3
√

4
(λ4

48
− λ

2

)
g3(λ) =

λ6

864
− λ3

24
+

1

4
.

The discriminant is given by

∆ = g3
2 − 27g2

3 =
λ3 − 27

16
.

Hence, away from the critical values, ∆ 6= 0 and we get an smooth elliptic curve. Let
℘(z;λ) = ℘(z; g2(λ), g3(λ)), and let Λ(λ) be the associated lattice. Then, there exist

biholomorphisms ψλ : C\{− λ2

12 3√4
} → C∗ given by

ψλ(t) =
1

3
√

4t+ λ2

12

and Ψλ : C/Λ(λ)− {0} − {℘−1(− λ2

12 3√4
;λ)} → Σλ given by the composition of

z 7→ (℘(z;λ), ℘′(z;λ))

and

(t, s) 7→ (
1

3
√

4t+ λ2

12

,
−is− 1

2
3
√

4t+ λ2

12

+
λ

2
),

fitting into a commutative diagram

C/Λ(λ)− {0} − {℘−1(− λ2

12 3√4
;λ)} Σλ

C\{− λ2

12 3√4
} C∗

Ψλ

℘(−;λ) πx

ψλ

On the other hand, ∆ = 0 if and only if λ ∈ Crit(π), and in that case it can be easily
checked that g2 6= 0. By standard results regarding elliptic curves, Σλ has a nodal
singularity when λ ∈ Crit(π).
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Finally, let Ω0 = d log x ∧ d log y ∧ d log z be the standard holomorphic volume form
on (C∗)3, let Ω′ be the holomorphic 2-form on X obtained by taking residue of Ω0 along
X, and let Θ′ be the holomorphic one form obtained by further taking residue of Ω′ along
a level set W = λ, i.e.

Θ′ ∧ d(x+ y + z) ∧ d(xyz) = Ω0.

Note that Θ′ is not well defined as a one form on X, but Θ′|Σλ is well defined. By an
abuse of notation, we denote Θ′Σλ as Θ′. When λ /∈ Crit(π) and away from the branch

points of πx, Θ′ has an explicit expression dx
x(y−z) (but keep in mind that Θ′ is defined

on all of Σλ). Let ζ denote the flat coordinate on the complex torus with punctures

C/Λ(λ)− {0} − {℘−1(− λ2

12 3√4
;λ)}. Then, via the map Ψλ, we have

d
(1

x

)
= d(

3
√

4t+
λ2

12
) =

3
√

4℘′(ζ;λ)dζ.

Hence,

dζ =
d
(

1
x

)
3
√

4℘′(ζ;λ)

=
− 1
x2
dx

3
√

4 ix(y + x−λ
2 )

=
2i
3
√

4

dx

x(y − z)
.

Thus, the one form Θ = 2i
3√4

Θ′, which is the residue of Ω = 2i
3√4

Ω′ along Σλ, is identified

with dζ.

3.2 Vanishing cycles, Floer complex and mirror symmetry for CP 2

In this subsection, we fix the basepoint λ0 = 0, and consider the distinguished basis of
vanishing paths (γ0, γ1, γ2), where γi is the straight line path connecting 0 to the critical
value 3ζ−i, where ζ = e2iπ/3. For simplicity of notation, let Li = VC(γi) be the vanishing
cycles in Σ0. There is a Z3 action on X by diagonal multiplication by third roots of unity.
Since this action preserves Σ0 and both ω and W are equivariant with respect to it, the
three Lefschetz thimbles (or vanishing cycles) are related to each other by this action.
Hence, it suffices to describe L0.

Figure 3: The arcs δi ⊂ C∗
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At λ = 0, the three branch points of πx are 3
√

4ζi, i = 0, 1, 2. The two branch points
3
√

4ζ, 3
√

4ζ2 become closer and eventually merge as λ approaches the critical value 3 from
the positive real axis. Hence the projection of L0 under πx is an arc δ0 connecting the
two branch points 3

√
4ζ, 3
√

4ζ2 and intersecting the positive real axis once. Z3-equivariance
implies that the the other two arcs are obtained by multiplying δ0 with an appropriate
cubic root of unity, which gives us the configuration as in Figure 3.

This gives us a topological description of the vanishing cycle L0 as the union of the
two lifts of δ0 under πx. However, since ω is exact and complex conjugate anti-invariant,
the topological vanishing cycle is not only homotopic, but in fact Hamiltonian isotopic to
the symplectic vanishing cycle([AKO08]), and hence is not distinguished in the Fukaya
category.

In fact, we can give a more precise description of the vanishing cycles. By Proposition
3.1.1 the fiber Σ0 is a smooth complex elliptic curve with g2 = 0, g3 = 1/4. Hence, Σ0 is
equianharmonic, i.e. there exists a positive real number a such that the two periods are
given by ω1 = a, ω2 = ae2iπ/3. From here, it is not hard to see that up to Hamiltonian
isotopy, the three vanishing cycles have the following configuration.

Figure 4: The vanishing cycles in Σ0

Hence, the category Lagvc(π) has three objects L0, L1, L2, with three pairwise intersec-
tion points. From the above figure, we observe that µ1 = 0 since there are no holomorphic
strips and the only nontrivial products are

µ2(x0, y1) = ±e−2παx0y1zz µ2(x0, z1) = ±e−2παx0z1yy

µ2(y0, x1) = ±e−2παy0x1zz µ2(y0, z1) = ±e−2παy0z1xx

µ2(z0, x1) = ±e−2παz0x1yy µ2(z0, y1) = ±e−2παz0y1xx,

where αabc denotes the sympletic area of the triangle Tabc. By symmetry, all these triangles
have identical area, and thus we get the relations

µ2(x0, y1) = ±µ2(y0, x1) µ2(x0, z1) = ±µ2(z0, x1) µ2(y0, z1) = ±µ2(z0, y1).

Since there are only three objects, from the definition of Lagvc(W ) it is automatic that
µk, k ≥ 3 all vanishes.

Finally, we want to give appropriate grading to the Li such that the morphisms are of
the correct degree. Recall from Proposition 3.1.1 that there exists a holomorphic one form
Θ on Σ0 which is identified with dζ via uniformization. Let φi = arg(Θ) : Li → R/2πZ
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be the its functions. Since each Li has vanishing Maslov class, we can choose a real lift
φ̃i for each φi, and the degree of p ∈ CF ∗(Li, Lj) can be defined as the ceiling function
of 1

π (φ̃j(p) − φ̃i(p)). In our case, the Li are in fact sLag with respect to Θ, and we can
easily deduce from Figure 4 that

deg(xi) = deg(yi) = deg(zi) = 1 deg(x) = deg(y) = deg(z) = 2.

Hence, as an exceptional collection in FS(W ), {L0, L1, L2} has exactly the same relations,
up to shifts, as the exceptional collection {O(−1),Ω1(1),O} in DbCoh(P2). Since both
collections generate, this proves a version of HMS for CP 2.

Remark 3.2.1. Note that there is an S3 action on X generated by (x 7→ x, y 7→ z, z 7→ y)
and (x 7→ y, y 7→ z, z 7→ x). Both the superpotential W = x + y + z and the symplectic
form ω are invariant under this action. This implies that the fibers Σλ and the parallel
transport vector field (associated to any curve in the base) are both invariant as well.
Hence, for any vanishing path γ, its associated vanishing cycle Lγ has an induced S3

symmetry. Moreover, if γ is a line segment on the real axis, there is an additional Z2

symmetry of Lλ induced by complex conjugation.
Using Proposition 3.1.1 to identify Σλ with a complex torus with three punctures,

the S3 action can be extended to its compactification. Hence, for instance, the action
(x 7→ x, y 7→ z, z 7→ y) corresponds to rotation by π around the puncture x = 0, and
(x 7→ y, y 7→ z, z 7→ x) corresponds to a Z3 translation cyclically permuting the punctures.
When λ ∈ R, the action (x 7→ x, y 7→ y, z 7→ z) corresponds to reflection along {Re(ζ) = 0}
(where ζ is the flat coordinate on the torus).

3.3 ∆γi are (not quite) special Lagrangians

First we recall the definition of a special Lagrangian submanifold. Let (X,ω, J) be a
Kähler manifold and Ω a nowhere vanishing holomorphic top form. For a Lagrangian
submanifold L ⊂ X, let θL : L → R/2πZ be the smooth function defined by θL =
arg(Ω|L).

Definition 3.3.1. In the above situation, we call L a special Lagrangian with phase φ if
θL is constant with value φ.

In this subsection, we take Ω to be the holomorphic 2-form from Proposition 3.1.1
and consider the following construction.

For 0 ≤ λ < 3, let a1(λ), a2(λ) be the two branch points of πx that merge at λ ap-
proaches 3 from the positive real axis. Let Lλ denote the vanishing cycle VC(γ0|[λ,1]) ⊂
Σλ, 0 ≤ λ < 3. By the S3 symmetry of Lλ (see Remark 3.2.1), there exists a sLag L̃λ ⊂ Σλ

with respect to Θ in the Hamiltonian isotopy class of Lλ ⊂ Σλ, i.e. by ‘straightening it
out’ inside Σλ, viewed as a complex torus with 3-punctures. The idea is to define ∆̃γ0

as the submanifold fibered over γ0 whose fiber over λ is L̃λ (the same construction can
be done for the other γi’s). However, there are several caveats towards this construction.
First of all, we haven’t showed that ∆̃γ0 defined this way is smooth. Secondly, since par-
allel transport induced by ω doesn’t necessarily map L̃λ into each other, even if ∆̃γ0 is a
smooth submanifold, it need not be Lagrangian with respect to ω. We will postpone the
discussion of these technical details to Section 4 in a more general context. With these
issues aside, I claim that arg Ω is constant over ∆̃γ0 .

13



To see this, let F ⊂ X be any submanifold fibered over some embedded path γ. For
each p ∈ F , we can write the volume element of F at p as (v1, v2), where v1 ∈ TpFp ⊂
TpΣW (p) and v2 is a lift of γ̇|W (p). Since

Ω(v1, v2) = det

(
Θ(v1) 0
Θ(v2) dW (v2)

)
= Θ(v1) · γ̇|W (p)

(up to a real scalar), F has constant argument with respect to Ω if and only if each fiber
Fλ is sLag under Θ|λ and arg(Θ(Fλ)) + arg(γ̇|λ) is constant along λ ∈ γ (here we view γ
as a submanifold of C).

In our case, ∆̃γ0 is fibered over the straight line segment γ0 and its fibers L̃λ ⊂ Σλ

are constructed to be special Lagrangians. Hence, it suffices to show that arg(Θ(L̃λ))
is constant for 0 ≤ λ < 3. By the description of Σ0 from the previous subsection,
arg(Θ(L̃0)) = π

2 , so we need to show that all straight line vanishing cycles L̃λ, 0 ≤ λ <

3 are ‘vertical’ with respect to the fiberwise flat structure. Since L̃λ is the vanishing
cycle connecting ω1+ω2

2 and 3
2ω1 + ω2, for an appropriate choice of periods ω1, ω2, this is

equivalent to showing that arg(ω1 + 1
2ω2) = π

2 .
Recall that

g2(λ) =
3
√

4
(λ4

48
− λ

2

)
g3(λ) =

λ6

864
− λ3

24
+

1

4

and

∆ = g3
2 − 27g2

3 =
λ3 − 27

16
.

Hence, g2, g3 are real and ∆ < 0 for 0 ≤ λ < 3. Let e2 be the unique real root of
4t3 − g2t− g3 = 0 when 0 ≤ λ < 3, then we have

ω2(λ)

2
=

∫ ∞
e2

dt√
4t3 − g2t− g3

,modulo the lattice Λ. If we take the path of integration to be from e2 to +∞ along the
real axis, then the integral is real since 4t3 − g2t − g3 ≥ 0 for t ∈ [e2,∞). On the other
hand, if the take the path of integration to be from e2 to −∞ along the real axis, then the
integral is purely imaginary since 4t3− g2t− g3 ≤ 0 for t ∈ (−∞, e2]. Hence, we conclude

that ω2(λ)
2 is congruent to both a real number and a purely imaginary number modulo

Λ(λ). However, at λ = 0, we have ω2
2 ∈ R+ and ω2

2 +ω1 ∈ iR+. Thus by continuity, these
relations must be true for all λ ∈ [0, 3) (after a consistent choice of ω1, ω2, of course).

4 The Landau-Ginzburg model, version 2

4.1 A full exceptional collection in FS(W ) mirror to {O(−1),O,O(1)}

In this subsection, we consider the Landau-Ginzburg model mirror to CP 2, but with
reference fiber Σ+∞ (see Remark 2.4.5). Here we only sketch the idea of most arguments,
since their proofs are the same as in Section 3.

Let {β−1, β0, β1} be the basis of vanishing paths in the figure below and Lβi ⊂ Σ+∞
be the vanishing cycles(to be inserted). Without changing the Floer cohomology, we may
assume that βi intersect at some large c ∈ R>0 (see the dashed curves in Figure 5) and
the vanishing cycles lie in Σc.
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Figure 5: The new vanishing paths

The new basis of vanishing paths can be obtained from the original one by moving the
basepoint from 0 to c, via a path that goes above the critical value 3, and then performing
a braid (see Figure 6).

Figure 6: Three stages of vanishing paths

Therefore, the new configuration of vanishing cycles in Σc can be obtained from Figure
4. by first shearing the parallelogram (corresponding to stage 0→stage 1) and then
performing a (left)Dehn twist about a vanishing cycle (corresponding to stage 1→stage
2) by the symplectic Picard-Lefschetz theorem. This process can be visualized as in Figure
7 and 8.

Remark 4.1.1. Since we’ve chosen c � 3, in particular ∆(c) > 0 and thus the cubic
equation 4t3−g2t−g3 = 0 defining Σc has three real roots. Therefore, the inverse formula
for ℘ implies that there is an appropriate choice of half periods such that ω1

2 ∈ R+,
ω3
2 ∈

iR+. Therefore, the flat structure on Σc is indeed a rectangle.
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Figure 7: The corresponding vanishing cycles from stage 0 to stage 1

Figure 8: The corresponding vanishing cycles from stage 1 to stage 2

Now it is not hard to observe from Figure 8 that

dim Hom(Lβ−1 , Lβ0) = 3 dim Hom(Lβ0 , Lβ1) = 3 dim Hom(Lβ−1 , Lβ1) = 6

and they have the same relations as the exceptional collection {O(−1),O,O(1)} inDbCoh(P2).

4.2 Manifolds fibered over paths

In contrast to the situation in Section 3.3, one can show that the Lefschetz thimble ∆β0 is
already special Lagrangian with respect to Ω by itself. The important observation is that
∆β0 lies in the real locus of X. To see this, let λ ∈ β0 be a regular value and consider the
projection πx : Σλ → C∗. The image of the vanishing cycle Lλ passes through two branch
points, both of which lie on the positive real axis. However, since Lλ is symmetric under
complex conjugation, we must have πx(Lλ) ⊂ R∗ ⊂ C∗, i.e., it is in fact pointwise fixed
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by complex conjugation. Similarly, πy(Lλ) and πz(Lλ) are also contained in the real part
of C∗. As a result, ∆β0 has constant argument, either π

2 or −π
2 , with respect to Ω. This

argument obviously does not apply to the other two thimbles ∆β1 ,∆β−1 .
Finding sLag representatives of a given Lagrangian submanifold in its Hamiltonian

isotopy class is a very hard problem in general. A relatively successful approach is La-
grangian mean curvature flow (see [Joy14]), which has the nice property that it preserves
the Hamiltonian isotopy class of a Lagrangian. Even then, finite time singularities are
often unavoidable and one has to perform surgeries in order to continue the flow; only a
few special cases are known that the above procedure will indeed eventually converge to
a sLag.

We approach this problem by constructing a submanifold ∆̃β ⊂ X,dim(∆̃β) = 2 with
the following heuristics:
1) ∆̃β is fibered over a vanishing path β that is asymptotically horizontal.
2) For some large a ∈ R, arg e−aWΩ|∆̃β

is constant.

3) ∆̃β is ‘close’ to the thimble ∆β1 .
Roughly speaking, preserving the fiberedness over an embedded path reduces the

problem of finding sLag in the total space to calculations regarding certain vector fields
in the base C, but the tradeoff is that ∆̃β will not be Lagrangian under the original
symplectic form ω, but only after deforming ω to a new symplectic form ω̃, we can en-
sure that ω̃|∆̃β

= 0. Unfortunately, the author has yet to rigorously prove the smoothness

of ∆̃β and the existence of ω̃, and those issues will be addressed in the form of a conjecture.

First let’s fix some notations. Recall that we have a Lefschetz fibration W : X →
C, X = {xyz = 1} ⊂ (C∗)3 where W = x + y + z. Let ω be the standard symplectic
form from Section 3.1 and Ω be defined as in Proposition 3.1.1. Since the Lagrangians
L we consider are noncompact in the +∞ direction in the base, we will use the twisted
holomorphic volume form Ωa = e−aWΩ for some positive real number a so that the integral∫
L e
−aWΩ converges. Integrals of this kind, sometimes called oscillatory integrals, also

arise in the context of the Gamma conjecture (see [Iri19]).
Let p0 = 3e2πi/3 be one of the critical values. Let U0 ⊂ C be an open subset containing

p0 whose boundary is the graph of a strictly decreasing convex function lying above the
other two critical values. We also assume that U0 is not contained in {λ ∈ C|Im(λ) > c}
for any c > −∞ (see Figure 9).

Figure 9: The region U0

17



For λ ∈ U0\{p0}, let lλp0 be the straightline vanishing path joining λ to p0, and
consider the associated vanishing cycle L(λ). Let α : S1 → U0 be any loop enclosing p0

such that α(0) = α(1) = λ. By the symplectic Picard-Lefschetz theorem,

hα(L(λ)) ' τL(λ)(L(λ)) ' L(λ).

In fact, the Dehn twist restricted to the zero section is just the antipodal map, which is
an orientation preserving automorphism in dimension 1. Hence, it is possible to choose
consistent orientation of L(λ) as λ ranges over U0\{p0}. After picking such a family of
orientation, we obtain a well defined smooth function P : U0\{p0} → C given by

P (λ) =

∫
[L(λ)]

Θ,

where [−] denotes the homology class. Finally, by the S3 symmetry it is an easy obser-
vation that the Hamiltonian isotopy class of L(λ) has a unique sLag (with respect to Θ)
representative L̃(λ) ⊂ Σλ, with an induced orientation. For a smoothly embedded path β
in U0, let ∆̃β denote the topological submanifold of X fibered over β such that the fiber
over β(t) is L̃β(t).

Lemma 4.2.1. If β is contained in the regular part of W , then ∆̃β is smooth.

Proof. This is an immediate consequence of Proposition 3.1.1. More explicitly, for each
λ ∈ β, a point on L̃λ can be identified with ζ1(λ) + s(ζ2(λ)− ζ1(λ)), s ∈ [0, 2) under Ψλ,
where ζ1, ζ2 are suitable half periods on the punctured complex torus C/Λ(λ) − {0} −
{℘−1(− λ2

12 3√4
;λ)}. Since, ζ1, ζ2,Ψλ all depend complex analytically on λ, the coordinate

chart on ∆̃β given by

(t, s) 7→ Ψβ(t)(ζ1(λ) + s(ζ2(λ)− ζ1(λ)))

is smooth.

Despite not being able to give a rigorous proof, we conjecture that if β ⊂ U0 is a vanishing
path with β(1) = p0, then ∆̃β is smooth at the critical point (1, 1, 1).

Conjecture 4.2.2. Let β : (−∞, 1]→ U0 be a smoothly embedded path with β(1) = p0 and
β′−(1) 6= 0. Then ∆̃β is a smooth submanifold of X. Moreover, there exists a neighborhood

Ũ ⊃ ∆̃β in X, a smooth function f : Ũ → R with f(1, 1, 1) = 0 and a smooth vector field ξ
on Ũ tangent to the fibers of W (besides the critical point) and with ξ(1,1,1) = 0 satisfying
the following conditions:
For λ ∈ β\{p0}, let fλ = f |Σλ∩Ũ and ξλ = ξ|Σλ∩Ũ , then
i) ξλ is the Hamiltonian vector field associated to fλ, i.e.

ω|Σλ(ξλ,−) = dfλ,

ii) for all σ ∈ S3 (see Remark 3.2.1), fλ ◦ σ = fλ. Consequently, σ∗ξλ = ξλ,
iii) let φtλ be the time t flow of ξλ, then φ1

λ(L̃λ) = Lλ.

In particular, if Φt is the time t flow of ξ, then Φ1(∆̃β) = ∆β. But note that ξ is not
necessarily the Hamiltonian vector field associated to f . Now, choose a smooth bump
function g : X → R satisfying g|V = 1, g|X\Ũ = 0, where V is an open set such that
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∆̃β ⊂ V ⊂ V ⊂ Ũ . This gives us a smooth vector field gξ on X, and let Φt
g be its time t

flow. Then, ω̃ = (Φ1
g)
∗ω is a symplectic form on X satisfying

ω̃|∆̃β
= 0 and ω̃|X\Ũ = ω|X\Ũ .

From now on, we will assume Conjecture 4.2.2. and view ∆̃β as a Lagrangian with respect
to the new symplectic form ω̃.

4.3 Some preliminary calculations

The rest of this paper will be concerned with finding vanishing paths β with certain
constraints such that arg Ωa|∆̃β

is constant. We start with studying some properties of

the period function P (λ).

Proposition 4.3.1. P defines a complex analytic function on U0.

Proof. Let’s first show that P is complex analytic in a neighborhood of p0. Recall that
when λ is a regular value, the projection πx : Σλ → C∗ defines a double cover with
three branch points. As λ → p0, two of the branch points a1(λ), a2(λ) → e2πi/3 and
a3(λ) → 4e2πi/3. Let U ⊂ U0 be a small neighborhood of p0 so that for λ ∈ U\{p0}, the
lift of the line segment la1a2 to Σλ is homologous to L̃(λ). Then

P (λ) =

∫
L̃(λ)

Θ

= ±2

∫
la1a2

2i
3
√

4

dx

x(y − z)

= ± 4i
3
√

4

∫
la1a2

dx√
x(x− a1)(x− a2)(x− a3)

= ± 4i
3
√

4

∫ 1

0

dx√
x(x− 1)((a2 − a1)x+ a1)((a2 − a1)x+ a1 − a3)

,

where the sign depends on the chosen orientation (from now on we fix it to be +). Since
a1, a2, a3 are the three roots of x(x − λ)2 = 4, it is immediate that P (λ) is a complex
analytic in U\{p0}. Note that although the expression we obtained above might a priori
have branching behaviour near p0, the monodromy has to be trivial: recall that P (λ)
is well defined as a smooth function in a punctured disk near p0, which is a result of
Picard-Lefschetz.

Hence, by Riemann’s removable singularity theorem, it suffices to show that P has a
limit as λ→ p0. However, note that as λ→ p0, |a1− a2| → 0 while |a1− a3|, |a2− a3| are
bounded below. Thus,

lim
λ→p0

∫
la1a2

dx√
x(x− a1)(x− a2)(x− a3)

= lim
λ→p0

1√
a1(a1 − a3)

∫
la1a2

dx√
(x− a1)(x− a2)

= lim
λ→p0

1√
a1(a1 − a3)

∫ 1

0

dx√
x(x− 1)

.

This limit exists and is in fact nonzero, which implies that P |U is complex analytic.
Finally, it is clear from the definition that P is the analytic continuation of P |U to U0.

Corollary 4.3.2. ∂ argP (λ)
∂Im(λ) , ∂ argP (λ)

∂Re(λ) are bounded in any bounded region p0 ∈ U ⊂ U0.
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Proof. This is an immediate consequence of Proposition 4.3.1 and the fact that P (p0) 6=
0.

It turns out that bounding ∂ argP (λ)
∂Re(λ) and ∂ argP (λ)

∂Im(λ) is crucial for certain constructions in
later sections. The next lemma describes the behavior of these quantities as λ approaches
infinity along a horizontal line.

Lemma 4.3.3. Fix y ∈ R, then

lim
t→+∞

P (t+ iy) = 0 , lim
t→+∞

Re(P(t + iy))

Im(P (t+ iy))
= 0.

Moreover, ∂ argP (λ)
∂Im(λ) , ∂ argP (λ)

∂Re(λ) are bounded over each {λ ∈ U0|Im(λ) = y}.

Proof. Let a1, a2, a3 be the branch points of πx : Σλ → C∗; equivalently, they are the
roots of the equation x(x− λ)2 = 4. Fix y ∈ R, as Re(λ)� 0 with Im(λ) = y, the three
roots of the above equation can be approximated by

a1 ∼
4

λ2
, a2 ∼ λ−

2√
λ
, a3 ∼ λ+

2√
λ
.

Moreover, L̃(λ) is homologous to the lift γ̃a1a3 of the matching path γa1a3 shown in Figure
10.

Figure 10: The matching path γa1a3

In the compactification Σλ of Σλ, one easily see that γ̃a1a3 is homologous to l̃a1a2 +
3l̃a2a3 , where la1a2 (resp. la2a3) is the line segment joining a1, a2 (resp. a2, a3). Since Θ|Σλ
extends to a holomorphic volume form on Σλ (i.e. dz),

P (λ) =

∫
l̃a1a2

Θ + 3

∫
l̃a2a3

Θ

=
4i
3
√

4

(∫ a2

a1

dx√
x(x− a1)(x− a2)(x− a3)

+ 3

∫ a3

a2

dx√
x(x− a1)(x− a2)(x− a3)

)
.

When λ → +∞ with fixed Im(λ), the argument of the first integral goes to 0 (mod 2π)
and the argument of the second integral goes to π

2 (mod 2π). Hence, to prove the first
half of the lemma, it suffices to show that both integrals tend to 0 as λ→ +∞ with fixed
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Im(λ), while the (absolute value of the) ratio of the first over the second tends to ∞. Fix
y ∈ R and a horizontal strip Hy = {λ ∈ U0|y − 1.1 ≤ Im(λ) ≤ y + 1.1}. Denote f ∼ g
if there exist 0 < c1 < c2 and N > 0 such that c1|f(λ)| < |g(λ)| < c2|f(λ)| whenever
λ ∈ Hy,Re(λ) > N (similarly f = O(g) should be interpreted within the strip). Then,∫ a2

a1

dx√
x(x− a1)(x− a2)(x− a3)

=
(∫ a3−a2

a1

+

∫ a3−a1
2

a3−a2
+

∫ a2−a1

a3−a1
2

+

∫ a2

a2−a1

) dx√
x(x− a1)(x− a2)(x− a3)

.

We’ll evaluate the four parts separately.∫ a3−a2

a1

dx√
x(x− a1)(x− a2)(x− a3)

∼ 1

a2

∫ a3−a2

a1

dx√
x(x− a1)

=
1

a2

∫ 2a3−2a2−a1
a1

1

dx√
x2 − 1

∼ 1

λ
arccosh(2λ

3
2 − 1),

∫ a3−a1
2

a3−a2

dx√
x(x− a1)(x− a2)(x− a3)

∼ 1

a2

∫ a3−a1
2

a3−a2

dx√
x(x− a1)

=
1

a2

∫ a3−2a1
a1

2a3−2a2−a1
a1

dx√
x2 − 1

∼ 1

λ

(
arccosh(

1

4
λ3)− arccosh(2λ

3
2 )
)
,

∫ a2−a1

a3−a1
2

dx√
x(x− a1)(x− a2)(x− a3)

∼ 1

a2

∫ a2−a1

a3−a1
2

dx√
(x− a2)(x− a3)

=
1

a2

∫ a2+a1
a3−a2

1+
2a1

a3−a2

dx√
x2 − 1

∼ 1

λ

(
arccosh(

1

4
λ

3
2 )− arccosh(2λ−

3
2 + 1)

)
,

and similarly∫ a2

a2−a1

dx√
x(x− a1)(x− a2)(x− a3)

∼ 1

a2

∫ a2

a2−a1

dx√
(x− a2)(x− a3)

=
1

a2

∫ 1+
2a1

a3−a2

1

dx√
x2 − 1

∼ 1

λ
arccosh(2λ−

3
2 + 1).

We thus conclude that the original integral is ∼ 1
λ arccosh(λ3). On the other hand,∫ a3

a2

dx√
x(x− a1)(x− a2)(x− a3)

=

∫ 1

0

dx√
x(x− 1)((a3 − a2)x+ a2)((a3 − a2)x+ a2 − a1)

= O(
∣∣ 1√

a2(a2 − a1)

∣∣)
= O(|λ|−1).
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Fixing Im(λ) = y, we have

lim
λ→+∞

1

arccosh(λ3)
= 0

and

lim
λ→+∞

1

λ
arccosh(λ3) = lim

λ→+∞
3λ2 1√

λ6 − 1
= 0.

This proves the first half of the lemma. To prove the second half, we first note that

∂ argP (λ)

∂Im(λ)
,
∂ argP (λ)

∂Re(λ)
= O(

∣∣P ′(λ)

P (λ)

∣∣).
Let g(λ) = 1

λ arccosh(λ3), C(λ) the unit circle centered at λ and define ‖f‖C(λ) =
sup{|f(z)|z ∈ C(λ)}. Then for λ ∈ U0, Im(λ) = y,∣∣P ′(λ)

P (λ)

∣∣ ≤ ‖P‖C(λ)

|P (λ)|
≤ c
‖g‖C(λ)

|g(λ)|
for some constant c, where the first inequality follows from Cauchy integral formula.
However, it is clear that

lim
λ→+∞,Im(λ)=y

‖g‖C(λ)

|g(λ)|
= 1.

This completes the proof of the lemma.

For real numbers c1 < c2, let H[c1,c2] = {λ ∈ U0|c1 ≤ Im(λ) ≤ c2}. The following is
an immediate consequence of Corollary 4.3.2 and Lemma 4.3.3:

Corollary 4.3.4. For fixed real numbers c1 < c2, ∂ argP (λ)
∂Im(λ) , ∂ argP (λ)

∂Re(λ) are bounded in
H[c1,c2].

4.4 The vector field V a,y(λ)

Let γ be a smoothly embedded path in U0, ∆̃γ the submanifold fibered over γ defined in
Subsection 4.2, and consider the twisted holomorphic volume form Ωa = e−aWΩ(a > 0).
Then, arg Ωa|∆̃γ

is constant if and only if

argP (γ(t)) + arg γ̇(t)− aIm(γ(t))

is constant as t ranges over the domain of γ. If we think of γ as a submanifold of C
(i.e. forgetting about the parametrization), the above condition is equivalent to γ being
contained in a leaf (i.e. a maximally connected integral submanifold) of (the distribution
generated by) the nowhere vanishing vector field

V a,y(λ) = e−
πi
2 e−a(λ+iy)P (λ) ∈ Vect(U0)

for some y ∈ R. By Lemma 4.3.3,

lim
λ→+∞,Im(λ)=y

arg V a,y(λ) = π mod 2π.

Since the standard generators of the Fukaya-Seidel categories are (Lagrangian) thimbles
fibered over vanishing paths which are asymptotically horizontal at ∞, a natural inquiry
would be whether there exists a > 0, y ∈ R and some arc γ contained in a leaf of V a,y

such that
i) ∂γ = {p0}∪{iy′+∞} for some y′ ∈ R and ii) γ is asymptotically horizontal with height
y′.

This subsection will be devoted to studying part ii) of the above question.

22



Proposition 4.4.1. Let c1 < y < c2, a > 0 be real numbers such that |∂ argP (λ)
∂Im(λ) | < a

for all λ ∈ H[c1,c2]. Then, there exists a unique leaf γ̂a,y of V a,y such that an arc of
γ̂a,y ∩H[c1,c2] is asymptotically horizontal at +∞ with height y.

Note that by Corollary 4.3.4, for any fixed c1 < c2, we can always choose a > 0 such that
the above assumption holds.

Proof. We first prove the existence of γ. Since |∂ argP (λ)
∂Im(λ) | < a in H[c1,c2] and

∀r ∈ R, lim
λ→+∞,Im(λ)=r

argP (λ) =
π

2
mod 2π,

we can find some small ε < π
2a and large N1 such that

1) tan(arg V a,y) is uniformly bounded inside Hy,ε = {λ ∈ U0| |Im(λ)− y| ≤ ε};
2) for all λ ∈ Hy,ε,N1 = {λ ∈ U0|Re(λ) ≥ N1, |Im(λ)− y| ≤ ε} ⊂ Hy,ε, | argP (λ)− π

2 | <
aε
2

(mod 2π).
For λ ∈ Hy,ε,N1 , let γ̂λ,a,y be the leaf of V a,y containing λ, and γλ,a,y the path component
of γ̂λ,a,y ∩ Hy,ε,N1 ∩ {z|Re(z) ≤ Re(λ)} containing λ. Since tan(arg V a,y) is uniformly
bounded inside Hy,ε,N1 , γλ,a,y can be viewed as the graph of a function fλ (suppressing
a, y in the notation) supported on the interval [N1,Re(λ)].

Note that if λ ∈ Hy,ε,N1 and Im(λ) = y ± ε, then

arg V a,y(λ) = −π
2

+ aε− argP (λ) ∈ (π ± aε

2
, π ± 3aε

2
).

Since aε < π
2 , we conclude on the boundary of Hy,ε,N1 , the vector field V a,y points

inward of Hy,ε,N1 . As a result, if λ ∈ Hy,ε,N1 , then γλ,a,y does not intersect {z|Im(z) =
y ± ε} ∩Hy,ε,N1 .

By the above argument, we construct a sequence of functions fn = fiy+N1+n, n ≥ 0,
where fn is defined over [N1, N1 + n]. After passing to a subsequence, we may assume
that the sequence is monotonic. Without loss of generality, say fn > fn+1, and since
|fn − y| < ε for all n, there exists a pointwise limit f of fn defined over [N1,+∞).

Figure 11: f as a pointwise limit of fn
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This f is clearly asymptotically horizontal with height y. It remains to show that f
is a differentiable function such that f ′(t) = tan(arg V a,y(f(t))).

Consider any compact interval [N1, N1 + k], k > 0. Since tan(arg V a,y) is uniformly
bounded inside Hy,ε,N1 , (in particular, the derivatives of fn are uniformly bounded), the
convergence fn → f is uniform on [N1, N1 + k]. Hence, f is continuous on [N1, N1 + k].
Next, we show that the derivatives f ′n converges uniformly. Pointwise convergence is a
direct consequence of V a,y being a smooth vector field. Moreover, since f is continuous,
the pointwise limit of f ′n is a continuous function given by tan(arg V a,y(f(t))). Finally,
since fn(t) > fn+1(t) for all t ∈ [N1, N1 + k],∣∣∣∂ argP (λ)

∂Im(λ)

∣∣∣ < a⇒ arg V a,y(fn(t)) > arg V a,y(fn+1(t)).

Equivalently, f ′n > f ′n+1 on [N1, N1 + k]. This implies that f ′n converges uniformly on
[N1, N1 + k]. As a result, f is a differentiable function with

f ′(t) = lim
n→∞

f ′n(t) = lim
n→∞

tan(arg V a,y(fn(t))) = tan(arg V a,y(f(t)))

for all t ∈ [N1, N1 +k]. Since k is arbitrary, this completes the proof of the existence part.
To prove uniqueness, suppose γ1, γ2 are two distinct (hence disjoint) leaves of V a,y

that are asymptotically horizontal at +∞ with height y. Then, restricting to a small
neighborhood of {λ|Im(λ) = y,Re(λ) > N ′} for some large N ′, we may assume that
γ1, γ2 are graphs of differentiable functions f1, f2 with f1 > f2. Since

lim
t→∞

f1(t) = lim
t→∞

f2(t) = y,

we can find arbitrarily large t with f ′1(t) < f ′2(t). This is a contradiction since∣∣∣∂ argP (λ)

∂Im(λ)

∣∣∣ < a⇒ arg V a,y(f1(t)) > arg V a,y(f2(t))

for all t such that f1(t), f2(t) ∈ H[c1,c2].

Corollary 4.4.2. With notations and assumptions as above, there exists a unique path
component γa,y of γ̂a,y ∩ H[c1,c2] such that γa,y is the graph of a smooth function fa,y :
[t0,+∞) for some t0 ∈ R satisfying

lim
t→+∞

fa,y(t) = y.

Proof. Take γa,y to be the unique path component of γ̂a,y ∩H[c1,c2] that is asymptotically
horizontal at +∞ with height y. To see that γa,y is a graph, note that∣∣∣∂ argP (λ)

∂Im(λ)

∣∣∣ < a⇒ ∂ arg V a,y(λ)

∂Im(λ)
> 0

for all λ ∈ H[c1,c2]. This prevents γa,y from ‘backtracking’ in the positive real direction
and hence is a graph.

4.5 Main result

In this subsection, we prove the main result of this paper regarding the existence of
a submanifold of X fibered over an asymptotically horizontal vanishing path that has
constant argument with respect to Ωa = e−aWΩ.
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Theorem 4.5.1. With notations as in previous subsections, there exists a constant A > 0
that satisfies the following. For all a > A, there exists a unique real number y0 and
vanishing path γa,y0 such that
i) (the image of) γa,y0 is the graph of a smooth function fa,y0 : [Re(p0),+∞)→ R with

fa,y(Re(p0)) = Im(p0) , lim
t→+∞

fa,y0(t) = y0;

ii) the submanifold ∆̃γa,y0
has constant argument with respect to Ωa.

Proof. Fix c1 <
3
√

3
2 < c2, or equivalently p0 ∈ H[c1,c2], and 0 < ε < min{

√
3

2 −
c1
3 ,

c2
3 −√

3
2 , 4π}. Find N1 > 0 such that

λ ∈ H[c1,c2],Re(λ) ≥ N1 ⇒ | argP (λ)− π

2
| < ε

4
mod 2π.

Finally, by Corollary 4.3.4, we can choose A (without loss of generality let A ≥ 1) such
that

A > sup
λ∈H[c1,c2]

∣∣∣∂ argP (λ)

∂Im(λ)

∣∣∣ (∗)

and

A >
2

ε

(
(N1−c′2) sup

H[c1,c2]
,Re(z)≤N1

∣∣∣∂ argP (λ)

∂Re(λ)

∣∣∣+(c2−c1) sup
H[c1,c2]

,Re(z)≤N1

∣∣∣∂ argP (λ)

∂Im(λ)

∣∣∣+π), (∗∗)

where c′2 is the real coordinate of the intersection of ∂U0 with {z|Im(z) = c2}.
Take any a > A. For y ∈ [c1 + ε, c2 − ε], condition (∗) enables us to obtain γa,y, fa,y

as defined in Corollary 4.4.2. Then, since Ωa|∆̃γa,y
has constant argument −π

2 − ay mod

2π, we obtain

{Im(z)|z ∈ γa,y and Re(z) ≥ N1} ⊂ [y − ε

4a
, y +

ε

4a
]

using an argument that appeared in the proof of Proposition 4.4.1. On the other hand,
after choosing a lift of the argument function

arg V a,y|γa,y∩{z|Re(z)≤N1} : γa,y ∩ {z|Re(z) ≤ N1} → S1

to R, (∗∗) implies that
{Im(z)|z ∈ γa,y and Re(z) ≤ N1}

has diameter at most ε
2 . Thus, we conclude that

γa,y ⊂ H[y−ε,y+ε].

Finally, we observe that if c1 + ε ≤ y < y′ ≤ c2 − ε, then fa,y < fa,y′ . As y ranges over
[c1 + ε, c2 − ε], the intermediate value theorem guarantees the existence of a unique y0

such that γa,y0 passes through p0. Replace γa,y0 with γa,y0 ∩ {z|Re(z) ≥ Re(p0)} and we
are done.

In fact, for a given a, y0 is explicitly given as follows. arg Ωa|∆̃γa,y0
has constant

argument −π
2 − ay0 mod 2π, which must also equal to the argument of the intergal∫

∆̃γa,y0

Ωa =

∫
∆̃β1

Ωa,

(recall that β1 is the horizontal vanishing path from +∞ to p0) since ∆̃β1 is obviously
homologous to ∆̃γa,y0

.
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Remark 4.5.2. To sum up, we have shown that for a � 0, there exists three vanishing
paths β′−1, β

′
0, β
′
1 asymptotically horizontal at +∞ such that ∆̃β′i

are special Lagrangians

with respect to the holomorphic volume Ωa = e−aWΩ and some symplectic form ω̃ (note
that the construction following Conjecture 4.4.2 can be done in disjoint neighborhoods of
∆̃β′i

, respectively). Moreover, the larger a is, the closer each β′i is to the original horizontal

vanishing path βi, and the farther apart the phases of ∆̃β′i
are from each other.

Having evaded the notion of stability condition so far, we will finally point out some of
its connection with our previous result. However, the nature of this remark is speculative
and should not be taken very seriously. To any full strong exceptional collection E =
{E0, E1, E2} inside DbCoh(CP 2), we can associate a space of algebraic stability conditions
ΘE . ΘE is parametrized by six-tuples of real numbers (r0, r1, r2, φ0, φ1, φ2) such that ri > 0
for all i,

φ0 < φ1 < φ2 and φ0 + 1 < φ2.

For each such tuple, there exists a unique stability condition σ = (Z,P) such that i) each
Ei is stable with phase φi and ii) Z(Ei) = rie

iπφi . There is a subspace ΘPure
E (see [Li17])

corresponding to those σ satisfying

φ1 − φ0 ≥ 1 and φ2 − φ1 ≥ 1.

For any stability condition σ ∈ ΘPure
E , the only stable objects are Ei[n], i = 0, 1, 2, n ∈ Z.

In our situation, if we choose a� 0, the three phases φi = −π
2 − ayi, i = −1, 0, 1 (where

yi is the height at +∞ of the corresponding vanishing path) are very far apart and thus
the (conjectural) stability condition corresponding to Ωa is pure. Hence, among arbitrary
Lagrangian connected sums out of ∆̃β′i

’s, we should expect ∆̃β′i
to be the only special

Lagrangians (or stable objects). This should agree with our intuition, at least for those
connected sums that are fibered over vanishing paths: after all, the vertical distance a
flow line of the vector field V a,y can traverse is O( 1

a), for a large.
On the other hand, we should expect wall crossing phenomenon to occur as we let

a→ 0. In particular, we should see more stable objects as φ−1, φ0, φ1 get closer while still

having φ−1 + 1 < φ1. This corresponds to the fact that as we decrease a, ∂ argP (λ)
∂Im(λ) would

appear more significant compared to a, and thus the vector field V a,y would allow flow
lines that traverse greater vertical distance. Thus, we should expect the study of special
Lagrangians with respect to Ωa to be intrinsically more interesting when a is small, but
also more challenging, as many of the analytic results we have obtained earlier cease to
hold.

5 Appendix

5.1 Some homological algebra

We first briefly review some basics of derived functors and derived categories. For a more
detailed introduction, we refer the readers to Chapter 2 and 10 of [Wei94].

Let A be an abelian category with enough injectives, i.e. for every object A ∈ A, there
exists an injective object I and a monomorphism A ↪→ I. In particular, this implies that
every object A has an injective resolution A ↪→ I•. As an example, the abelian category
CohX on a projective variety X has enough injectives.

Definition 5.1.1. Let F : A → B be a left exact functor between two abelian categories
with A having enough injectives. We can define the right derived functors RiF (i ≥ 0) as
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follows. For each A ∈ A, choose an injective resolution A ↪→ I• and define

RiF (A) = H i(F (I•)).

Note that since 0 → F (A) → F (I0) → F (I1) is exact, we always have R0F ∼= F . It
is an important fact that the definition of a right derived functor does not depend on the
choice of the injective resolution. The proof of this is essentially the following: for any
two injective resolutions of an object A, there exists a ‘lift’ from one to the other that is
unique up to chain homotopy.

Let (X,OX) be a ringed space and let F ,G be OX -modules. We denote by Hom(F ,G)
the homomorphism group of OX -modules, and H om(F ,G) the sheaf Hom construction.
For fixed F , Hom(F , ·) is a left exact functor from ModOX to Ab, and H om(F , ·) is a left
exact functor from ModOX to ModOX . Therefore, we may define their respective right de-
rived functors as Exti(F , ·) and Exti(F , ·). As another example, the global section functor
Γ(X, ·) is left exact from ModOX to Ab, and its right derived functors are just the sheaf
cohomologies H i. It is a famous theorem that when X is a quasicompact and separated
scheme and when F ∈ CohX, the derived functor definition of sheaf cohomology agrees
with Čech cohmology.

Now we describe the construction of (bounded)derived category of an abelian category
A, which consists of three stages:

1) We first consider the category of bounded cochain complexes Cb(A), whose objects
are cochain complexes E• such that H i(E) = 0 for all but finitely many i, and morphisms
are cochain maps.

2) The homotopy category Kb(A) is defined to have the same objects as Cb(A), but
two morphisms f•, g• : E• → F • are identified if they are homotopic, i.e. if there exists
maps hi : Ei → F i−1 such that fi − gi = d ◦ hi − hi+1 ◦ d.

3) Finally, the bounded derived category Db(A) is defined by ‘inverting’ all quasi-
isomorphisms, i.e. chain maps that induce isomorphisms on each cohomology group.
Formally, this process is called localization of a category, see [Wei94, Section 10.3].

In fact, Db(A) can be shown to be a triangulated category, equipped with the standard
shift functor and whose distinguished triangles are given by the mapping cone construc-
tion.

Derived categories and derived functors, as their names suggest, are closely related.
One way to motivate the derived functor construction from a derived category perspective
is the following. If F : A → B is a functor between two abelian categoies, then F naturally
extends to functors Cb(F ) : Cb(A) → Cb(B) and Kb(F ) : Kb(A) → Kb(B). The reason
is that the relations defining chain complexes and homotopies are both functorial. In
contrast, however, F does not itself define a functor from Db(A) to Db(B) unless F is
exact. But is there a natural way to extend F to derived categories? The answer to this
question is exactly(no pun intended) derived functors.

Before we give the construction, we need the following proposition about injective
objects in an abelian category.

Proposition 5.1.2. Let A be an abelian category. Then the following hold:
1) If A• ∈ Db(A) and I• a bounded complex consists of injectives, then

HomDb(A)(A
•, I•) = HomKb(A)(A

•, I•).

2) Suppose A has enough injectives, then

Db(A) ∼= Kb(I),
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where Kb(I) is the full subcategory of Kb(A) whose objects are bounded complexes con-
sisting of injectives.

For a proof of this proposition, see [Wei94, Section 10.4]. In 2), the equivalence of
categories is given by sending a complex to the total complex of its Cartan-Eilenberg
resolution. Given this proposition, we can define the derived functor of F : A → B as the
composition

Db(A) ∼= Kb(I)→ Kb(B)→ Db(B),

where the middle map is Kb(F ), and the last map is simply passing to the localization.
It can be easily verified that for A• ∈ Db(A) concentrated in degree 0, then the definition
of derived functor we just gave is the same as the ‘naive’ definition given at the beginning
of this section.

Another useful application of Proposition 5.1.2 is the following lemma.

Lemma 5.1.3. For A ∈ A, A[i] denote the complex whose (−i)-th entry is A and zero
everywhere else. Then, for any E,F ∈ A, we have

HomDb(A)(E,F [i]) =

{
0 for i < 0

Exti(E,F ) for i ≥ 0

5.2 Some A∞ homological algebra

In this subsection, we give the definition of an A∞-category and a very informal discussion
of mapping cones and twisted complexes. This will serve as an algebraic model for the
Fukaya-Seidel category defined in Section 2. For a detailed introduction to A∞-categories,
we refer the readers to Chapter 1 of [Sei08].

Definition 5.2.1. Fix a coefficient field k (in this paper we always assume k = C). A
non-unital A∞-category is a k-linear category A consisting of a set of objects ObA, a
graded vector space homA(X0, X1) for any pair of objects, and compositions for each
d ≥ 1,

µd : homA(Xd−1, Xd)⊗ · · · ⊗ homA(X0, X1)→ homA(X0, Xd)[2− d]

satisfying the A∞-relations

d∑
m=1

d−m∑
n=0

(−1)∗µd−m+1(ad, · · · , an+m+1, µ
m(an+m, · · · , an+1), an, · · · , a1) = 0,

where ∗ = n+ deg(a1) + · · ·+ deg(an).

In particular, (µ1)2 = 0 and we may define the cohomological category H(A) to have
the same objects asA, but with morphism spacesH(homA(X0, X1), µ1), and compositions

[a2] · [a1] = (−1)deg(a1)[µ2(a2, a1)].

In particular, H(A) is a linear graded category, but possibly non-unital. The definitions
of A∞-functors and natural transformations, which we omit here, can be found in [Sei08,
(1b),(1d)].

In order for the HMS conjecture to make sense, we need to suitably derive the Fukaya
category so that the induced triangulated structure can be identified with that on the
derived category of coherent sheaves. Roughly speaking, an exact triangle in an A∞-
category A is a diagram
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X0 X1

X2

f

gh

[1]

where f ∈ hom0
A(X0, X1), g ∈ hom0

A(X1, X2), h ∈ hom1
A(X2, X0) and that X2 is quasi-

isomorphic to a mapping cone of f : X0 → X1. We won’t give the precise definition of an
abstract mapping cone here, which requires introducing the A∞-modules and the Yoneda
embedding. An important thing to note is that while exact triangles in an ordinary
triangulated category are additional structures, exact triangles in the A∞-setting are
already determined by the A∞-operations (see [Sei08, Lemma 3.7]).

Nonetheless, a priori mapping cones only exist as A∞-modules. We want to enlarge
A to some A∞-category Tw(A) (called its twisted complexes) such that Tw(A) is both
closed under mapping cones and not too unreasonable to work with.

Definition 5.2.2. A twisted complex (E, δE) consists of
1) a formal direct sum E =

⊕N
i=1E[ki] of shifted objects of A and 2) a strictly lower

triangular differential δE ∈ End(E), i.e. a collection of maps δEij ∈ hom
kj−ki+1
A (Ei, Ej), i <

j, satisfying ∑
d≥1

∑
i=i0<i1<···<id=j

µd(δEik−1ik
, · · · , δEi0i1) = 0

for all 1 ≤ i < j ≤ N . If E =
⊕
Ei[ki] and E′ =

⊕
E′j [k

′
j ], then an element of homd(E,E′)

is given by a collection of aij ∈ homk′j−ki+d(Ei, E
′
j).

Given d ≥ 1, twisted complexes (E0, δ
0), · · · , (Ed, δd) and morphisms ai ∈ hom(Ei−1, Ei),

we set

µdTw(A)(ad, · · · , a1) =
∑

j0,··· ,jd≥0

µd+j0+···+jd(δd, · · · , δd, ad, · · · , δ1, · · · , δ1, a1, δ
0, · · · , δ0),

where each δi appears ji times. This sum is finite since the δi’s are strictly lower triangular.

The set of all twisted complexes together with the µdTw(A)’s turns out to be a triangulated
A∞-category such that
1) there is an embedding A ↪→ Tw(A);
2) Tw(A) is generated by the full subcategory A;
3) Tw(A) contains all mapping cones.

In fact, the mapping cone is given by an explicit formula analogous to that in the usual
derived category of an abelian category. Given (E, δ), (E′, δ′) ∈ Tw(A), and a morphism
f ∈ hom(E,E′) such that µ1

Tw(A)(f) = 0, the mapping cone of f is the twisted complex

Cone(f) =
(
E[1]⊕ E′,

(
δ 0
f δ′

))
.

For proofs of the above claims, see [Sei08, Section 1.3].

References

[Dou02] Michael R.Douglas, Dirichlet branes, homological mirror symmetry, and stability.
Proceedings of the International Congress of Mathematicians, Vol. III(Beijing 2002),
395-408, Higher Ed. Press(2002).

29



[Bri07] Tom Bridgeland, Stability conditions on triangulated categories. Ann. Math.
166(2007), 317-345.

[Joy14] Dominic Joyce, Conjectures on Bridgeland stability for Fukaya categories of
Calabi-Yau manifolds, special Lagrangians, and Lagrangian mean curvature flow. EMS
Surveys in Mathematical Sciences 2 (2015), 1-62.

[Aur14] Denis Auroux, A beginner’s guide to Fukaya categories. Contact and symplectic
topology, Bolyai Soc. Math. Stud., vol. 26, János Bolyai Math. Soc.,Budapest, 2014,
pp. 85–136.

[Aur07] Denis Auroux, Mirror symmetry and T-duality in the complement of an anti-
canonical divisor. J. Gökova Geom. Topol. 1 (2007), 51-91.

[AKO08] Denis Auroux, Ludmil Katzarkov, Dmitri Orlov, Mirror symmetry for weighted
projective planes and their noncommutative deformations. Annals of Mathematics,
167(2008), 867-943.

[Jef18] Maxim Jeffs, Global Monodromy for Fukaya-Seidel Categories. Master’s Thesis,
2018.

[Kon94] Maxim Kontsevich, Homological Algebra of Mirror Symmetry. Proc. of ICM
(Zürich, 1994), 120-139.

[Sei01a] Paul Seidel, Vanishing cycles and mutations. European Congress of Mathematics.
European Congress of Mathematics, Vol. II (Barcelona, 2000), Progr. Math., vol. 202,
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