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Introduction

1. Motivating Ideas

At its core, this thesis is a study of knots, objects which human beings encounter with
extraordinary frequency. We may find them on our person (in our shoelaces and neckties),
or around our homes (as entangled telephone cords or Christmas tree lights). History, if not
personal experience, teaches us that undoing knots can be a challenging and frustrating task:
when Alexander the Great was unable to loose the famous Gordian knot by hand (a feat
whose accomplisher, according to an oracle, would come to rule all of Asia), he cheated and
cut it open with his sword. Still, a knot’s same potential for intricacy serves the needs of
scouts, sailors, and mountain climbers very well. Knots even appear in nature: molecular
biologists have shown that our DNA strands — the blueprints of our physical being — can
be knotted, and some astrophysicists conjecture that the shape of the universe is intimately
connected to the geometry of knots. Indeed, the real-world existence of knots lends a certain
appeal to their formal study, since many of the problems encountered in knot theory can be
formulated in a tangible manner; after all, we can always take out a piece of string and tie a
knot. The problems taken up in this thesis are no different ...

Suppose that we take a very long and pliable piece of string and tie a knot in it. Of
course, it might be possible that the string is not really knotted; for example, if we pull tightly
on the ends of a slip knot, the tangle we have made will simply pop out. This situation is not
a problem, however, and we shall still refer to the entangled string as a knot. Nonetheless,
when constructing these knots, we will refrain from pulling the string taut, thereby leaving
the knot relatively loose. Next, we glue the two ends of the string together, creating a
knotted, closed loop of string. In fact, this entire process can be done with two, or three, or
any number of strings: first, we tie a series of knots involving various combinations of the
strings, and then we glue the two ends of each individual string together, forming a collection
of knotted, closed loops which are linked (though perhaps not inextricably) together. To
avoid being cumbersome, we shall henceforth refer to these knotted, closed loops of strings as
links, regardless of the number of strings comprising them;1 furthermore, each piece of string
in the link shall be referred to as a component.

We can then take our link and lay it out on a sufficiently large table. Because the string
we are using is long, pliable, and slack, we can spread the link out until it lies almost flat, apart
from those isolated places where one strand, and at most one strand, crosses over another.
This type of arrangement is called a link projection. Three examples of link projections are
given in Figure ??.

1A link with only one component is referred to as a knot.
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2 INTRODUCTION

Figure 1. Three examples of links projections. The breaks in the diagram indicate
where one strand passes under another.

We can now ask the following question: can any of the three links be repositioned on the
table so that its new projection possess fewer crossings? As it stands now, the first has four
crossings, the second has five, and the third has six. And, as it turns out, the answer is no.

There is, in fact, a very special attribute of the first two projections which we can use
to conclude that they cannot be simplified: if we imagine traveling along each component
in a constant direction (as, say, a monorail would travel along its track), then we would
find ourselves, in passing through each crossing, alternately traveling on the over-strand and
the under-strand; a projection having this property is said to be alternating. The third
projection is not alternating: there are two consecutive crossings where a very tiny monorail,
riding atop the string, would be on the same level (either over or under) through each. As a
result, another method would be needed to verify that this link does not admit a projection
with fewer than 6 crossings.

In actuality, alternation is not enough to guarantee that a projection will exhibit the
smallest possible number of crossings for that link; one needs two other minor constraints,
which we detail in Chapter 2. This result was first formally stated as a conjecture in the
late nineteenth century by Peter Guthrie Tait (1831 — 1901), and is now called the First
Tait Conjecture. Intuitively, its truth seems plausible: after all, requiring this over-under
alternation of the strands adds quite a bit of rigidity to the structure of the link. Surprisingly,
it took almost a century to prove.

It is useful to pursue this notion of traveling along each piece of string a bit further —
particularly when the crossings in a given projection exhibit the alternating pattern described
above. For each component in the link, we choose a direction to travel around it; this is known
as orienting the link. Clearly, there are only two possible directions in which one can travel
around each component, but the choice does not matter. Moreover, we can illustrate the
orientation by placing arrowheads on our link along the chosen directions of travel. This is
done in Figure ?? for the first two links depicted in Figure ??.

Figure 2. Orienting the links.
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As a consequence of orienting the link, we can classify every crossing in the various
arrangements as safe or unsafe, according to the following convention.2 Suppose that the
under-strand is a service road along which we are driving (in the direction of the arrowheads),
and suppose that the over-strand is a highway. If we wish to turn right so as to merge onto the
highway, then the flow of traffic along the highway (given by the direction of the arrowheads)
should also be moving to the right (from our viewpoint on the service road), so as to avoid
a crash. If this is the case, the crossing is deemed safe; if not, the crossing is deemed unsafe.
The two possible scenarios are illustrated in Figure ??.

Figure 3. A safe crossing (left) and an unsafe crossing (right).

For the first projection in Figure ??, there are two safe crossings and two unsafe crossings,
and for the second, there are two safe crossings and three unsafe crossings. Now, assuming
that the arrowheads are securely attached to the string, we can freely rearrange each of the
links on the table. Suppose that after such a repositioning is performed, the new projections
are also alternating. If the projections satisfy the same two additional constraints that are
required by the First Tait Conjecture, then the following very subtle observation can be made:
the difference between the number of safe and unsafe crossings will not change. For example,
this difference is 0 for the projection on the left of Figure ??, and -1 for the projection on the
right. This fact was also posited by Tait in the late nineteenth century, and is referred to as
the Second Tait Conjecture. Like its sister, the Second Tait Conjecture successfully resisted
proof until the 1980s.

To summarize, Tait set down two very elementary conjectures about links possessing
alternating projections (provided that the projections satisfy two other very simple require-
ments). They are as follows:

(1) No other projections can be found with a smaller number of crossings.
(2) If the link is also oriented, then for any two such projections of that link, the differ-

ence between the number of safe and unsafe crossings will be the same.

Note that these two facts, taken together, give the following corollary: under the same
hypotheses, two projections of an oriented link will have the same number of safe crossings,
and the same number of unsafe crossings. Indeed, by the first conjecture, any two such
projections will have minimal crossing number; call it m. Thus S + U = m, where S denotes
the number of safe crossings and U denotes the number of unsafe crossings. Moreover, by
the second conjecture, S − U is a constant; call it w. The system of equations S + U = m

and S − U = w has a unique solution, which gives the corollary.

We will prove both the First and Second Tait Conjectures in this thesis. Before we
can begin, however, we must formalize some of the ideas presented in these heuristics, and
introduce new ones as well.

2I was first introduced to this terminology by Curt McMullen; however, it is not standard, and we will,
in later chapters, opt for the more standard convention of labeling crossings: safe crossings will be called +1
crossings, and unsafe crossings will be called −1 crossings.
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2. Basic Notions in Link Theory

2.1. Reidemeister Moves and Planar Isotopies. Much of the experimentation
described in the previous section revolved around link projections. Indeed, it should be
intuitively clear that any given link can have a multitude of different projections. At first
glance, this may seem worrisome, since any conclusions drawn about the link from one of its
projections might not hold for any of its other projections. Nonetheless, any two projections
of a given link are related in the following elegant manner: they can be transformed into each
other through a finite sequence of Reidemeister moves and planar isotopies. This important
theorem was first proven in 1932 by Kurt Reidemeister.

A planar isotopy is simply a contortion of a link projection; it might twist and bend
the projection in severe ways, but it does not effect the crossings at all. The Reidemeister
moves, on the other hand, alter the number or arrangement of crossings in projections.
There are three general types, and they are depicted in Figure ??. A Reidemeister I move
will either add or remove a kink. A Reidemeister II move will either add or remove two
crossings. Finally, a Reidemeister III move will simply rearrange the relative locations of
three crossings, without changing the total number. Note that all of these are local changes:
one can imagine performing planar isotopies or Reidemeister moves in an isolated region of
the projection, thereby leaving the projection outside of this region unchanged.

Reidemeister II Moves 

Reidemeister I Moves 

 

Reidemeister III Moves

 

Figure 4. The various types of Reidemeister moves.

2.2. Link Equivalence and Invariants. Perhaps the central problem of link the-
ory, though certainly not our focus in this thesis, is to decide whether or not two links are the
same; in mathematical parlance, we speak of links being equivalent. Specifically, much work
has been done to detect whether or not a given link is really the unlink (i.e., whether or not
the link can be completely pulled apart into a collection of disjoint, unknotted loops). At the
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very least, Reidemeister’s theorem gives us a method for approaching the general problem of
equivalence: after all, two links are equivalent if and only if a projection of the first can be
transformed into a projection of the second (or vice-versa) using a finite sequence of Reide-
meister moves and planar isotopies. However, we are really no better off, as the search for
such a sequence can be long and tedious; indeed, if the underlying links are not equivalent,
the search is predestined for failure.

Mathematicians have developed the following, more strategic, approach: they find some
characteristic of a link projection which is unchanged by the three Reidemeister moves and
planar isotopies; such characteristics are called invariants of the link. Consequently, if two
links are equivalent, then the value of the invariant for each must be the same. Most invariants
are numeric (e.g., the number of components in a link). However, some of the most powerful
link invariants are actually polynomials, as this thesis will hopefully show.
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CHAPTER 1

States and Link Polynomials

This chapter introduces the link-theoretic concept of a state and uses it to construct three
very closely-related link polynomials: the bracket polynomial, the Kauffman polynomial, and
the Jones polynomial (in fact, the latter two are identical, up to a change of variables). These
three polynomials, in conjunction with states, are key ingredients in the proofs of the Tait
Conjectures, as we will see in the next chapter.

1. States

States are fundamentally important to the mathematics of this thesis. Their precise def-
inition, however, can be somewhat difficult to motivate, at least from our current standpoint.
Nevertheless, they form the cornerstone of much of our work, and their utility will become
more apparent as we go on.

States are constructed from link projections using two processes: labeling and cutting;
the mechanisms for each are straightforward. Indeed, suppose that LΠ is a projection of a
link L. Then, every crossing in LΠ divides a sufficiently small area around that crossing into
four regions, which we label either A or B, according to the following rule: if the over-strand
is rotated slightly counter-clockwise about the crossing point, it should pass over the two A

regions; likewise, if the over-strand is rotated slightly clockwise about the crossing point, it
should pass over the two B regions. This rule is depicted below in Figure ??.

AA
B

B

Figure 5. The A and B regions around a generic crossing in a link projection.

Informally, we say that a link projection labeled in this manner has been given the A-B
labeling.

7



8 1. STATES AND LINK POLYNOMIALS

Example 1.1. The diagram on the left of Figure ?? is a projection of the trefoil knot, the
simplest non-trivial knot (i.e., link with 1 component). The diagram on the right is the A-B
labeling of that projection.

A

A
B

B

A B
A B

A

A
B B

Figure 6. A projection of the trefoil knot (left), and its corresponding A-B
labeling scheme (right).

Example 1.2. The diagram on the left of Figure ?? is a projection of the Hopf link, the
simplest non-trivial link with more than 1 component. The diagram on the right is the A-B
labeling of that projection.

A

A

A

B B

B B
A

Figure 7. A projection of the Hopf link (left), and its corresponding A-B labeling
scheme (right).

Once a link projection has been given an A-B labeling, we can cut open each crossing
and splice the strands back together in parallel — thereby eliminating the crossing — in one
of two ways: an A split removes the barrier between the A regions, while a B split removes
the barrier between the B regions (see Figure ??).

B

A A

B

B

B

AA

Figure 8. An A split (left) and a B split (right). The dashed lines represent the
original crossing.

After performing either an A split or a B split at every crossing, we arrive at a projection
of the unlink with n components, where n is a positive integer that will, of course, depend
on the types of splits that are chosen for each crossing. The projections of the unlink that
arise from these processes are what we call states.

Definition 1.3. Suppose that LΠ is a projection of a link L that has been given the A-B
labeling. Then a state of LΠ is a projection of the unlink on some number of components that
is obtained from performing an A split or a B split at each crossing of LΠ. The collection of
all possible states of LΠ is denoted SLΠ

.
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Example 1.4. Figure ?? shows all of the states of the projection of the trefoil knot depicted
in Figure ??.

BA A

A

A A

B

B B

A

A B

A B

AB B A

A

A B

B

B

B

Figure 9. The states of the trefoil knot projection depicted in Figure ??. The
type of split performed at each crossing is indicated.

Example 1.5. Figure ?? shows all of the states of the projection of the Hopf link depicted
in Figure ??.

A

A

A

B

B

A

B

B

Figure 10. The states of the Hopf link projection depicted in Figure ??. The
type of split performed at each crossing is indicated.

At first glance, removing all of the crossings in a link projection might not seem like
an effective tool for studying it; after all, the crossings determine, to some extent, a link’s
intrinsic knottedness. However, as we will see in the next section, states do succeed in
capturing a good deal of information about links.

Before moving on, we digress briefly to give an alternate, set-theoretic formulation of
the concept of a state that will be useful during the upcoming proofs of Propositions 1.7 and
1.8. Note that if LΠ has n crossings, then there are 2n possible states that can arise from the
splitting process. Note further that if we index the n crossings as {ci}

n
i=1, then each state

can be described as a mapping {c1, . . . , cn} → {A,B} in the obvious way: namely, ci 7→ A

if the ith crossing is split in the A manner, and ci 7→ B if the ith crossing is split in the B

manner.

2. The Bracket Polynomial

Now that we know what states are, what, exactly, do we do with them? As it turns out,
the right answer to this question is to build a link polynomial. The method for doing so is
set down in the next definition.

Definition 1.6. Suppose that LΠ is a projection of a link L. Let SLΠ
denote the collection of

all states of LΠ. For s ∈ SLΠ
, let a(s) denote the number of A splits, b(s) denote the number

of B splits, and |s| denote the number of components of s (i.e., the number of components in
the unlink). Then the bracket polynomial of LΠ, denoted 〈LΠ〉[x], is a Laurent polynomial
in x, given by

〈LΠ〉[x] :=
∑

s∈SLΠ

xa(s)−b(s)(−x2 − x−2)|s|−1.
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It is important to note that the bracket polynomial is defined for link projections, and
not for the links themselves. Therefore, the obvious question to ask is whether or not, for
a given link, the bracket polynomial is independent of the projection used to compute it;
in other words, is the bracket polynomial, as defined, a link invariant? Unfortunately, it
is not the case that all of the various projections of a given link will give rise to the same
bracket polynomial. To illustrate, consider the two projections U 1

Π1
and U1

Π2
of the unknot

depicted in Figure ??. It is clear that 〈U 1
Π1
〉[x] = 1; indeed, SU1

Π1

= {U1
Π1
} (as there are

no crossings to split), and |U 1
Π1
| = 1 (as there is only 1 component). However, we see that

〈U1
Π2
〉[x] = x + x−1(−x2 − x−2) = −x3.

2

A A
B

B

A                             B

U
1

U
1

Π Π1

Figure 11. Two projections of the unknot, and their respective states (note that
the first projection is its own state). The type of split performed at each crossing is

indicated.

States have not failed us, however, for there are several conditions under which two
different projections of a link will have the same bracket polynomial. First, it is an immediate
consequence of Definition 1.6 that if LΠ1

and LΠ2
are two projections of a link L that differ by

planar isotopy, then 〈LΠ1
〉[x] = 〈LΠ2

〉[x]. Furthermore, the bracket polynomial is invariant
under Reidemeister moves II and III, as the following two propositions verify.

Proposition 1.7. Suppose that LΠ1
and LΠ2

are two projections of a link L that differ by a
Reidemeister II move. Then 〈LΠ1

〉[x] = 〈LΠ2
〉[x].

Proof. Assume, without loss of generality, that LΠ2
has 2 more crossings than LΠ1

.
Our goal is to understand how the states of LΠ1

and LΠ2
relate to one another. First, focus

attention on SLΠ2
. Assume that LΠ2

has n crossings. Then, there are 2n possible states of

LΠ2
. Index them as {sj}

2n

j=1, and index the n crossings of LΠ2
as {ci}

n
i=1, so that c1 and

c2 are the two crossings involved in the Reidemeister move (see Figure ??). With the same
slight abuse of notation, let sj also denote the mapping sj : {c1, . . . , cn} → {A,B} which
describes the state sj.

Pick any state sj ∈ LΠ2
, and consider only the region where the Reidemeister move

occurred. In that region, the state will resemble one of the four diagrams (labeled I, II, III,
and IV) depicted in Figure ??, (which diagram it resembles depends, of course, on the values
of sj(c1) and sj(c2)). Consequently, there are three other states in SLΠ2

(denoted sk, sl, and

sm) which correspond to the three other diagrams, and whose function-theoretic descriptions
satisfy the following property: sj(ci) = sk(ci) = sl(ci) = sm(ci) for all i 6= 1, 2. Indeed, we
can actually partition SLΠ2

into groups of four, so that any four states sj1, sj2 , sj3 , and sj4

in the same group satisfy the property that sj1(ci) = sj2(ci) = sj3(ci) = sj4(ci) for all i 6= 1, 2
(i.e., they differ only in the region where the Reidemeister move occurred).
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Consider such a group of four states, and let sj1 be the state within the group that
corresponds to diagram I, sj2 be the state that corresponds to diagram II, etc.. Note that sj1

and sj2 are planar isotopic, and so |sj1 | = |sj2 |. Moreover, |sj3 | = |sj2 | + 1 = |sj1 | + 1. Let
s = |sj1 | = |sj2 |. Then, of the four states in the group, the contribution to 〈LΠ2

〉[x] made by
sj1 , sj2 , and sj3 is:

x2(−x2 − x−2)s−1 + x−2(−x2 − x−2)s−1 + (−x2 − x−2)s =

(−x2 − x−2)s
(

x2

−x2 − x−2
+

x−2

−x2 − x−2
+
−x2 − x−2

−x2 − x−2

)

= 0

We conclude from this that the only state in the group which contributes to 〈LΠ2
〉[x] is

sj4 . But the states sj ∈ SLΠ2
with sj(c1) = A and sj(c2) = B (i.e., the states which

resemble diagram IV in the region where the Reidemeister move occurred) are in one-to-one
correspondence with the states in SLΠ1

— indeed, it is obvious from Figure ?? that every

diagram IV state in SLΠ2
is planar isotopic to a state s′ ∈ SLΠ1

, and vice-versa. Therefore,
these corresponding pairs of states will have the same number of components. Moreover,
the quantity a(s) − b(s) for a diagram IV state s ∈ SLΠ2

will equal a(s′) − b(s′) for the

corresponding state s′ ∈ SLΠ1
, as the single A and single B splitting in diagram IV cancel

each other out. From these observations, it immediately follows that 〈LΠ1
〉[x] = 〈LΠ2

〉[x].

The case of the other type of Reidemeister II move is similar. �

B

2
Π1

c1

Π2
III III IV

A

BA
B A

B

B

B

A

A

B

A

A

BA

c

Figure 12. Analyzing the effects of a Reidemeister II move on state models. The
type of split performed at each crossing is indicated.

Proposition 1.8. Suppose that LΠ1
and LΠ2

are two projections of a link L that differ by a
Reidemeister III move. Then 〈LΠ1

〉[x] = 〈LΠ2
〉[x].

Proof. As in the proof of Proposition 1.7, our goal is to understand how the states of
LΠ1

and LΠ2
relate to one another, and we will follow a similar method of justification. First,

focus attention on LΠ1
. Assume that LΠ1

has n crossings. Then, there are 2n possible states
of LΠ1

. Index them as {sj}
2n

j=1, and index the n crossings of LΠ1
as {ci}

n
i=1, so that c1, c2, and

c3 are the three crossings involved in the Reidemeister move (see the top of Figure ??). With
the same slight abuse of notation as in the previous proof, let sj also denote the mapping
sj : {c1, . . . , cn} → {A,B} which describes the state sj.

Pick any state sj ∈ LΠ1
, and consider the region where the Reidemeister move occurred.

In that region, the state will resemble one of the eight diagrams (labeled I, II, III, . . ., VIII)
depicted in the top half of Figure ??, (which diagram it resembles depends, of course, on
the values of sj(c1), sj(c2), and sj(c3)). Consequently, there are seven other states in SLΠ1

(denoted sk, sl, sm, sn, so, sp, sq) which correspond to the seven other diagrams, and whose
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function-theoretic descriptions satisfy the following property: sj(ci) = sk(ci) = sl(ci) =
sm(ci) = sn(ci) = so(ci) = sp(ci) = sq(ci) for all i 6= 1, 2, 3. Indeed, we can actually partition
SLΠ2

into groups of eight, so that any eight states sj1 , sj2 , . . . , sj8 in the same group satisfy

the property that sj1(ci) = sj2(ci) = · · · = sj8(ci) for all i 6= 1, 2, 3 (i.e., they differ only in
the region where the Reidemeister move occurred).

Consider such a group of eight states, and let sj1 be the state within the group that
corresponds to diagram I, sj2 be the state that corresponds to diagram II, etc.. Note that sj6

and sj7 are planar isotopic, and so |sj6 | = |sj7 |. Moreover, |sj8 | = |sj7 | + 1 = |sj6 | + 1. Let
s = |sj6 | = |sj7 |. Then, of the eight states in the group, the contribution to 〈LΠ1

〉[x] made
by sj6 , sj7 , and sj8 is:

x(−x2 − x−2)s−1 + x−3(−x2 − x−2)s−1 + x−1(−x2 − x−2)s =

(−x2 − x−2)s
(

x

−x2 − x−2
+

x−3

−x2 − x−2
+

x−1(−x2 − x−2)

−x2 − x−2

)

= 0

Now we turn our attention to LΠ2
, which must also have n crossings. Index them as

{rj}
2n

j=1, and index the n crossings of LΠ2
as {di}

n
i=1, so that d1, d2, and d3 are the three

crossings involved in the Reidemeister move (see the middle of Figure ??), and also so that
ci and di correspond to the same crossing when i 6= 1, 2, 3. Let rj also denote the mapping
rj : {d1, . . . , dn} → {A,B} which corresponds to the state rj. As before, SLΠ2

can be
partitioned into groups of eight, so that any eight states rj1 , rj2 , . . . , rj8 in the same group
satisfy the property that rj1(di) = rj2(di) = · · · = rj8(di) for all i 6= 1, 2, 3. Moreover, a
calculation similar to that done for LΠ1

shows that, of the eight states in any group, those
which correspond to diagrams VI’, VII’, and VIII’ together contribute nothing to the bracket
polynomial.

To conclude, we return again to SLΠ1
and pick any of the groups of eight states; denote

its members by sj1 , sj2 , . . . , sj8 , where sjk
corresponds to the kth diagram in the top half

of Figure ??. There is a corresponding group of eight states in SLΠ2
, whose members are

denoted by rj1 , rj2 , . . . , rj8 (where rjk
corresponds to the kth diagram in the bottom half of

Figure ??), such that sj1(ci) = sj2(ci) = · · · = sj8(ci) = rj1(di) = rj2(di) = · · · = rj8(di) for
all i 6= 1, 2, 3. As was already noted, sj6 , sj7 , and sj8 together do not contribute anything
to the bracket polynomial, and neither do rj6 , rj7 , and rj8 . Moreover, it is clear from Figure
?? that state sjk

is planar isotopic to rjk
for all 1 ≤ k ≤ 5, and therefore |sjk

| = |rjk
|. In

addition, a(sjk
) − b(sjk

) = a(rjk
) − b(rjk

) for all 1 ≤ k ≤ 5. From these observations, it
immediately follows that 〈LΠ1

〉[x] = 〈LΠ2
〉[x].

The cases of the other types of Reidemeister III moves are similar. �
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Figure 13. Analyzing the effects of a Reidemeister III move on state models. The
type of split performed at each crossing is indicated.
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The work we have done so far shows that the bracket polynomial is invariant under planar
isotopy, as well as Reidemeister moves II and III. However, we noted earlier that the bracket
polynomial is not a link invariant, and exhibited a situation in which different projections of
the same link give rise to different bracket polynomials. Indeed, referring back to Figure ??,
we see that the two given projections of the unknot differ only by a Reidemeister I move. In
fact, Reidemeister I moves will always change the bracket polynomial, but in a manner that
is easy to quantify algebraically, as the following proposition demonstrates.

Proposition 1.9. Suppose that LΠ1
and LΠ2

are two projections of a link L. If LΠ1
and LΠ2

differ by the Reidemeister I move that is depicted on the top of Figure ??, then 〈LΠ2
〉[x] =

−x−3〈LΠ1
〉[x]. If LΠ1

and LΠ2
differ by the Reidemeister I move that is depicted on the

bottom of Figure ??, then 〈LΠ2
〉[x] = −x3〈LΠ1

〉[x].

Proof. Consider the Reidemeister I move that is illustrated on the top of Figure ??. Note
that, given any state of LΠ1

, we can create a state of LΠ2
by either introducing an artificial

A split, or introducing an artificial B split and an additional component (these splits are
artificial because there is no crossing in that position in LΠ1

); moreover, all states of LΠ2
can

be regarded as arising in this way. Therefore, if 〈LΠ1
〉[x] =

∑

s∈SLΠ1

xa(s)−b(s)(−x2−x−2)|s|−1,

we find that

〈LΠ2
〉[x] =

∑

s∈SLΠ1

xa(s)+1−b(s)(−x2 − x−2)|s|−1 +
∑

s∈SLΠ1

xa(s)−b(s)−1(−x2 − x−2)|s|

= x







∑

s∈SLΠ1

xa(s)−b(s)(−x2 − x−2)|s|−1






+

x−1(−x2 − x−2)







∑

s∈SLΠ1

xa(s)−b(s)(−x2 − x−2)|s|−1







= −x−3







∑

s∈SLΠ1

xa(s)−b(s)(−x2 − x−2)|s|−1







= −x−3〈LΠ1
〉[x],

as desired.

The case of the Reidemeister I move that is illustrated on the bottom of Figure ?? is
similar. �
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Figure 14. Analyzing the effects of the two types of Reidemeister I move on state
models. The type of split performed at each crossing is indicated.

Having established the bracket polynomial’s elementary properties, let us now compute
it for specific links.

Example 1.10. For a positive integer n, let U n denote the unlink with n components, and
let Un

Π denote the projection of Un that is depicted in Figure ??. As there are no crossings in
Un

Π to split, SUn
Π

= {Un
Π}. There are n components, and therefore 〈U n

Π〉[x] = (−x2 −x−2)n−1.

n

. . .

Figure 15. A projection of the unlink with n components.

Example 1.11. For the trefoil knot T , let TΠ denote the projection of T that is depicted in
Figure ??, and let STΠ

denote the collection of states of TΠ that is depicted in Figure ??.
Then

〈TΠ〉[x] = x3(−x2 − x−2)2 + x−3(−x2 − x−2) + x(−x2 − x−2) + x−1 +

x(−x2 − x−2) + x−1 + x(−x2 − x−2) + x−1

= x7 − x3 − x−5.

Example 1.12. For the Hopf link H, let HΠ denote the projection of H that is depicted in
Figure ??, and let SHΠ

denote the collection of states of HΠ that is depicted in Figure ??.
Then

〈HΠ〉[x] = x2(−x2 − x−2) + x−2(−x2 − x−2) + 1 + 1

= −x4 − x−4.

Taken together, Propositions 1.7, 1.8, and 1.9 give us a complete understanding of how
the bracket polynomial behaves when the projection used to compute it is altered. And al-
though the polynomial is not an invariant, the extra factors of −x±3 induced by Reidemeister
I moves are readily dealt with. Still, it would be useful to have a link polynomial which is
invariant under the full assemblage of Reidemeister moves. It turns out that we can modify
the bracket polynomial slightly, so as to create a true link invariant; as might be expected, the
modification needs only to account for the −x±3 terms. Before we can state the modification,
however, we need to develop a new tool: the writhe.
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3. The Writhe

Recall from the introduction that the crossings in a projection of an oriented link fall
into one of two categories: safe or unsafe. This terminology, though useful in heuristics, is
not standard; instead, link theorists prefer to talk about +1 crossings and −1 crossings, and
from now on, we follow their convention. To that end, safe crossings will now be called +1
crossings, and unsafe crossings will be called −1 crossings.

We also described in the introduction a method whereby one can classify a crossing as
safe or unsafe (or, using our new terminology, as +1 or −1). A slightly less stylized method is
given here: suppose we place our right hand, palm exposed, on top of the projection so that
the thumb points in the direction of the over-strand. If our other four fingers point in the
direction of the under-strand, then the crossing is assigned the value +1; if not, the crossing
is assigned the value −1. The two possible cases are illustrated in Figure ??.

+1                                        −1

Figure 16. A +1 crossing (left) and a −1 crossing (right).

Now we can define the writhe of an oriented link.

Definition 1.13. Suppose that ~LΠ is a projection of an oriented link. Then the writhe of
~LΠ, denoted w(~LΠ), is a sum, taken over all of the crossings, where each term in the sum is
either 1 or −1, depending on whether the crossing is of +1 type or −1 type, respectively. If
there are no crossings in the projection, then the writhe is defined to be 0.

This formulation might sound familiar — indeed, we encountered it in the introduction as
the difference between the number of safe and unsafe crossings.

Example 1.14. For the oriented unlink with n components ~Un, let ~Un
Π denote the projection

of ~Un that is depicted on the left of Figure ??. As there are no crossings, w( ~Un
Π) = 0.

Example 1.15. For the oriented trefoil knot ~T , let ~TΠ denote the projection of ~T that is

depicted in the middle of Figure ??. Then w( ~TΠ) = (−1) + (−1) + (−1) = −3.

Example 1.16. For the oriented Hopf link ~H, let ~HΠ denote the projection of ~H that is

depicted on the right of Figure ??. Then w( ~HΠ) = 1 + 1 = 2.
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+1

. . .

n

−1

−1 −1

+1

Figure 17. A projection of an oriented unlink with n components (left), an ori-
ented trefoil knot (middle), and an oriented Hopf link (right), where the signs of the
crossings (±1) are indicated.

Because the writhe is computed from a given link projection, we must ask how it will
change (if at all) when the projection used to compute it is altered by Reidemeister moves or
planar isotopies. Well, the writhe is obviously invariant under planar isotopy. Moreover, like
the bracket polynomial, it is invariant under Reidemeister moves II and III, as the following
proposition verifies.

Proposition 1.17. Suppose that ~LΠ1
and ~LΠ2

are two projections of an oriented link ~L that

differ by a Reidemeister II or III move. Then w(~LΠ1
) = w(~LΠ2

).

Proof. Consider the Reidemeister II move that is depicted on the left in Figure ??. In
LΠ1

, there are no crossings to contribute to the writhe. In LΠ2
, there are two crossings, each

with opposite signs, and so the contribution is also 0. In fact, this will always be the case
for a Reidemeister II move, regardless of the positioning of the strands and their individual
orientations.

Next, consider the Reidemeister III move that is depicted on the right in Figure ??. Note
that the effect of the Reidemeister move is simply to relocate two of the three crossings, which
does not change the number of +1’s and −1’s that are present. Hence, the net contribution
to the writhe from these three crossings does not change. Again, this will always be the case
for Reidemeister III moves, regardless of strand position or orientation. �

−1

2 Π1
Π2Π1

+1

−1

−1

+1

+1

−1

−1

Π

Figure 18. A Reidemeister II move (left) and a Reidemeister III move (right). The
signs of the crossings (±1) are indicated.
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The writhe is not a link invariant, however, for it is slightly altered when a Reidemeister
I move is applied: the effect is simply to increase or decrease it by 1. This is readily seen
from Figure ??, and summarized for convenience in the following proposition.

Proposition 1.18. Suppose that ~LΠ1
and ~LΠ2

are two projections of an oriented link ~L. If
~LΠ1

and ~LΠ2
differ by the Reidemeister I move that is depicted on the left in Figure ??, then

w(~LΠ1
) = w(~LΠ2

)− 1. If ~LΠ1
and ~LΠ2

differ by the Reidemeister I move that is depicted on

the right in Figure ??, then w(~LΠ1
) = w(~LΠ2

) + 1. �

−1

1
 
 

Π Π1 Π2 2

+1

Π

Figure 19. Two types of Reidemeister I moves. The signs of the crossings (±1) are indicated.

Let us quickly recall the preliminary results we have established in these last two sections.
We have proven that both the writhe and the bracket polynomial are invariant under planar
isotopies, Reidemeister II moves, and Reidemeister III moves; nevertheless, neither is a true
link invariant, as both undergo small, though predictable, changes under Reidemeister I
moves. As we hinted at the end of §1.2, it is possible to combine these two objects so
that the Reidemeister I effects on the writhe offset the Reidemeister I effects on the bracket
polynomial; the Kauffman polynomial — a synthesis of the bracket polynomial and the
writhe — achieves just such a cancellation. Moreover, having the Kauffman polynomial at
our disposal gives us immediate access to another link invariant — one of the most powerful
ever discovered: the famous Jones polynomial. It can be derived directly from the Kauffman
polynomial by a simple change of variables.

4. The Kauffman and Jones Polynomials

We go right to the definitions.

Definition 1.19. Suppose that ~LΠ is a projection of an oriented link ~L, with writhe w(~LΠ)

and bracket polynomial 〈LΠ〉[x]. Then the Kauffman polynomial of ~LΠ, denoted K~LΠ
[x], is

a Laurent polynomial in x, given by

K~LΠ
[x] := (−x3)−w(~LΠ)〈LΠ〉[x].

Moreover, the Jones polynomial of ~LΠ, denoted V~LΠ
[t], is a Laurent polynomial in t, given

by

V~LΠ
[t] := K~LΠ

[t−
1

4 ].

We pause briefly to clarify that the bracket polynomial used in the definition of the Kauff-
man polynomial is simply the bracket polynomial of the unoriented link L. Our first major
theorem, proven below, establishes that the Kauffman polynomial (and, hence, the Jones
polynomial) is a true link invariant.
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Theorem 1.20. Suppose that ~LΠ1
and ~LΠ2

are two projections of an oriented link ~L. Then
K~LΠ1

[x] = K~LΠ2

[x].

Proof. Because ~LΠ1
and ~LΠ2

are two projections of the same oriented link, there is a

finite sequence of Reidemeister moves and planar isotopies that transforms ~LΠ1
into ~LΠ2

. In

other words, there is a finite sequence of projections of ~L:

~LΠ1
= ~LΠ1,1

→ ~LΠ1,2
→ ~LΠ1,3

→ · · · → ~LΠ1,n−1
→ ~LΠ1,n

= ~LΠ2

where ~LΠ1,i+1
is obtained from ~LΠ1,i

by a Reidemeister move or planar isotopy.

If ~LΠ1,i+1
is obtained from ~LΠ1,i

by planar isotopy, then it is an immediate consequence of

Definitions 1.6 and 1.13 that 〈LΠ1,i
〉[x] = 〈LΠ1,i+1

〉[x] and w(~LΠ1,i
) = w(~LΠ1,i+1

). Therefore,
K~LΠ1,i

[x] = K~LΠ1,i+1

[x].

If ~LΠ1,i+1
is obtained from ~LΠ1,i

by a Reidemeister II or III move, then by Propositions

1.7 and 1.8, 〈LΠ1,i
〉[x] = 〈LΠ1,i+1

〉[x]. Moreover, by Proposition 1.17, w(~LΠ1,i
) = w(~LΠ1,i+1

).
Again, K~LΠ1,i

[x] = K~LΠ1,i+1

[x].

Lastly, suppose that ~LΠ1,i+1
is obtained from ~LΠ1,i

by the Reidemeister I move de-
picted on the left of Figure ??; in particular, assume that the twist is being removed. Then

〈LΠ1,i
〉[x] = −x−3〈LΠ1,i+1

〉[x] and w(~LΠ1,i
) = w(~LΠ1,i+1

) − 1 (by Propositions 1.9 and 1.18,
respectively). Therefore:

K~LΠ1,i

[x] = (−x3)
−w(~LΠ1,i

)
〈LΠ1,i

〉[x]

= (−x3)
−(w(~LΠ1,i+1

)−1)
(−x−3)〈LΠ1,i+1

〉[x]

= (−x3)
−w(~LΠ1,i+1

)
(−x3)(−x−3)〈LΠ1,i+1

〉[x]

= (−x3)
−w(~LΠ1,i+1

)
〈LΠ1,i+1

〉[x]

= K~LΠ1,i+1

[x]

The case in which the twist is being added, and the two cases resulting from the Reide-
meister I move depicted on the right of Figure ??, are similar. �

Corollary 1.21. Suppose that ~LΠ1
and ~LΠ2

are two projections of an oriented link ~L. Then
V~LΠ1

[t] = V~LΠ2

[t]. �

Theorem 1.20 and Corollary 1.21 tell us that all of the projections of an oriented link
~L give rise to the same Kauffman and Jones polynomials. This fact allows us to make the
following definitions.

Definition 1.22. Suppose that ~L is an oriented link. Let ~LΠ be any projection of ~L, with

Kauffman polynomial K~LΠ
[x]. Then the Kauffman polynomial of ~L, denoted K~L

[x], is a
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Laurent polynomial in x, given by

K~L
[x] := K~LΠ

[x].

Similarly, the Jones polynomial of ~L, denoted V~L
[t], is a Laurent polynomial in t, given by

V~L
[t] := K~L

[t−
1

4 ].

Example 1.23. For the oriented unlink with n components ~Un (Figure ??), we find, using our

work in Examples 1.10 and 1.14, that K ~Un [x] = (−x2−x−2)n−1, and so V ~Un [t] = K ~Un [t−
1

4 ] =

(−t−
1

2 − t
1

2 )n−1.

Example 1.24. For the oriented trefoil knot ~T (Figure ??), we find, using our work in

Examples 1.11 and 1.15, that K ~T
[x] = (−x3)−(−3)(x7 − x3 − x−5) = −x16 + x12 + x4, and so

V~T
[t] = K~T

[t−
1

4 ] = −t−4 + t−3 + t−1.

Example 1.25. For the oriented Hopf link ~H (Figure ??), we find, using our work in Examples

1.12 and 1.16, that K ~H
[x] = (−x3)−2(−x4 − x−4) = −x−2 − x−10, and so V~T

[t] = K~T
[t−

1

4 ] =

−t
1

2 − t
5

2 .

It might appear from the organization of our exposition that the Jones polynomial was a
theoretical afterthought of the Kauffman (and, therefore, bracket) polynomial. In actuality,
it was the Jones polynomial that was discovered first. Surprisingly, Vaughan Jones was
working with operator algebras, a branch of mathematics that is very far afield from modern
link theory, when he unearthed the polynomial that now bears his name and related it to
the study of knots and links. Fortunately, more elementary methods for computing the
Jones polynomial, and proving its invariance, were discovered subsequent to Jones’ initial
breakthrough. Kauffman’s scheme (using state diagrams) is one such approach. Indeed, the
benefits of using states to analyze links will become even more apparent in the next chapter,
when we put these polynomials to work.



CHAPTER 2

The Tait Conjectures

In this last chapter, we bring our small arsenal of link polynomials, along with the concept
of states, to bear on the Tait Conjectures. Recall that these two very famous statements,
made by P. G. Tait at the end of the nineteenth century, concern the distinguished class of
link projections which exhibit an alternating pattern among their crossings. There is still
much to say about such projections; however, we will postpone that discussion for the time
being. Indeed, we noted in the introduction that a link projection must satisfy two additional
conditions, over and above the alternation of crossings, before the Tait Conjectures can be
applied to it; these very mild conditions are called connectedness and reduction. Our task
in the next two sections, then, is to come to an understanding of these two very intuitive
concepts.

1. Connected Projections

To build up to connectedness, we first imagine taking the projections of the trefoil knot
and the Hopf link that are given in Figures ?? and ??, and then filling in all of the breaks
that are used to indicate where one strand passes under another. The resulting image is akin
to the link casting its shadow down onto the plane (see Figure ??). Therefore, in all that
follows, we will refer to such filled-in projections as shadows.

Figure 20. The shadows of the trefoil knot projection (left) and Hopf link projec-
tion (right) depicted in Figures ?? and ??.

A projection is said to be connected, then, if we can travel between any two points in the
shadow without leaving the shadow. We formalize this below.

Definition 2.1. A projection LΠ of a link L is said to be connected if, given any two points
in the shadow, there exists a path (not necessarily unique) in the shadow that connects the
two points.

21
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Example 2.2. The projection of the unlink with 2 components that is depicted on the left
of Figure ?? is not connected, as we cannot join the points R and S by a path that lies
entirely within its shadow. However, the projection of the same link that is depicted on the
right of Figure ?? is connected, as such a path (depicted as a heavy line) between R and S

now exists; moreover, it is intuitively clear that any two points in the shadow can now be
connected by paths in the shadow.

S

shadow

R

S

R

S

R

Figure 21. Two projections of the unlink with 2 components; the one on the right
is connected, while the one on the left is not.

As Figure ?? indicates, it is exceedingly easy to take an unconnected link projection and
turn it into a projected one: we simply choose one piece of the link as our base, and then
slide each disconnected piece underneath it. Formally, this amounts to performing planar
isotopies and Reidemeister II moves.

The usefulness of working with connected projections will become apparent when we
begin our proof of the First Tait Conjecture; in the meantime, we proceed directly to the
concept of reduction.

2. Reduced Projections

Sometimes, a link projection can be unnecessarily complicated. For instance, we can
easily imagine taking any link projection and adding several small twists to it using Reide-
meister I moves. By assumption, this does nothing to change the underlying link; it just
makes the projection messier. The concept of projection reduction uses shadows to identify
some of these needless complications.1

Definition 2.3. Suppose that LΠ is a projection of a link L. Then, the shadow of LΠ

divides the plane into separate regions. If exactly four distinct regions of the plane meet at
every crossing in the shadow, then the projection is said to be reduced.

Example 2.4. The projections of the trefoil knot and Hopf link that are given in Figures ??

and ??, respectively, are reduced (consult the shadows of these projections in Figure ??).

The image on the left-hand side of Figure ?? is an unreduced projection of the granny
knot (built from two trefoils); it has an obvious unnecessary crossing in the middle. Indeed,
we see that the region exterior to the shadow meets itself at this crossing. Note that we
can draw a path (represented in Figure ?? by a heavy dashed line) from one side of the
crossing to another without passing through the shadow; we would not be able to do that if
the projection were reduced.

1Some complications, however, are useful (e.g., adding unnecessary crossings to make a link projection
connected).
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shadow

Figure 22. A projection of the granny knot which is not reduced. The dotted
line represents the plane, and the heavy dashed line represents a path from one side
of a crossing to another.

Turning unreduced projections into reduced ones is usually very easy, and the way to do
it is often obvious from the projection. For example, the unreduced projection of the granny
knot shown in Figure ?? can easily be made into a reduced projection by simply flipping over
one of the two trefoils which comprise it.

Since any unreduced projection can easily be made into a reduced projection, insisting
that all projections are reduced is not an especially harsh requirement. But why insist at all?
One reason is that, without the hypothesis of reduction, the First Tait Conjecture would be
false! Figure ?? shows an alternating projection of a link. It is clearly not reduced: taking its
shadow, we see that only three regions of the plane meet at the single crossing. Furthermore,
this projection does not realize the link’s minimal crossing number: 0. Mandating reduction
in our link projections, then, serves to exclude such annoying pathologies from our analysis.

Figure 23. An alternating projection which does not realize the minimal crossing number.

Equipped with an understanding of projection connectedness and reduction, we will
now quickly review the concept of alternation, and then, at last, state and prove the Tait
Conjectures.

3. Alternating Links

Recall from the introduction that a link projection is said to be alternating if, as we
travel around each of its components in a constant direction, we find ourselves, in passing
through each crossing, alternately traveling on the over-strand and the under-strand. Note
that this definition makes no qualifications about whether or not the link is oriented, despite
the fact that it talks about traveling around a link. Indeed, a link’s orientation has no bearing
whatsoever on whether or not it has a projection which is alternating.

Links which possess an alternating projection are called alternating links. We should
make clear that alternating links can have non-alternating projections. For instance, the
projection of the trefoil knot shown in Figure ?? is clearly not alternating.
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Figure 24. A non-alternating projection of the trefoil knot.

We gave two examples of alternating links in the introduction. In addition, the trefoil
knot and Hopf link projections that we have been working with (Figures ?? and ??, respec-
tively) are readily seen to be alternating, whence the trefoil knot and Hopf link are alternating
links.

Interestingly enough, if a non-trivial knot can be drawn with 7 or fewer crossings, it
must be alternating. Indeed, the simplest non-alternating knots require projections that
have at least 8 crossings.2 However, it is conjectured that the proportion of knots which are
alternating tends to 0 as the minimal crossing number tends to infinity; the data presented
in the following table [?], which gives the number of alternating and non-alternating knots
for a given number of crossings, indicates the plausibility of this claim.3

Number of Number of Number of
Crossings Alternating Knots Non-Alternating Knots

8 18 3
9 41 8
10 123 42
11 367 185
12 1,288 888
13 4,878 5,110
14 19,536 27,436
15 85,263 168,030
16 379,799 1,008,906

4. The Tait Conjectures

Given the ubiquity of alternating knots, it is not surprising that Tait would have given
them special attention in his research.4 In 1898, he published a series of papers containing
his now-famous conjectures regarding alternating knots; in this thesis, we concern ourselves
only with the first two.5 In fact, all three remained unproven until the 1980s, subsequent to
the discovery of the Jones polynomial, some of whose properties are used in their proofs. As
it turns out, the conjectures are true for alternating links (i.e., we need not restrict ourselves
to one component), and so we will state and prove them with that generality.

2The first proof that a non-alternating knot actually existed was not found until 1930 [?].
3It is known, however, that the proportion of alternating links tends to 0 very fast as the minimal crossing

number increases.
4Tait’s work in knot theory was motivated in large part by the belief, prevalent in the nineteenth century,

that atoms were actually knotted rings [?]. Therefore, a complete classification of the natural elements
mandated a complete classification of knots.

5We will, however, describe the third conjecture in §2.8.
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Theorem 2.5 (First Tait Conjecture). Suppose that LΠ1
and LΠ2

are two connected projec-
tions of a link L. Suppose further that LΠ1

is an alternating and reduced projection. If LΠ1

has n1 crossings and LΠ2
has n2 crossings, then n1 ≤ n2.

(Note that if L is a knot, then there is no need to require that the projection be connected.)

Theorem 2.6 (Second Tait Conjecture). Suppose that ~LΠ1
and ~LΠ2

are two alternating,

connected, reduced projections of an oriented link ~L. Let w(~LΠ1
) and w(~LΠ2

) denote the

writhes of ~LΠ1
and ~LΠ2

, respectively. Then w(~LΠ1
) = w(~LΠ2

).

The task at hand, then, is to give complete proofs of these theorems.

5. Proof of the First Tait Conjecture

The proof will be broken down into several steps, and we will (for the most part) set
our compass by Lickorish’s excellent text [?]. First, we will take a closer look at how link
projections partition the planes in which they lie; this exercise lays the groundwork for much
that follows. Then, we will use states to analyze the geometry of alternating links — a
geometry that can be articulated quite nicely through link polynomials; indeed, this is the
fundamental insight which enables us to prove Theorem 2.5.

5.1. Step 1: Partitioning the Plane. Reconsider the shadows of the trefoil knot
and Hopf link projections that are depicted in Figure ??. Place each shadow in its own copy
of the plane. In so doing, it is transparent that these shadows will partition the plane into
disjoint regions: 5 in the case of the trefoil knot, and 4 in the case of the Hopf link (we
must include the unbounded, infinite region which is exterior to the shadow when we count).
Likewise, the shadow of the granny knot (depicted in Figure ??) divides the plane into 9
regions. Notice, though, that if we subtract 2 from each of 5, 3, and 9, we recover the number
of crossings in the projections of the trefoil knot, Hopf link, and granny knot, respectively.

At first glance, we might guess that the shadow of a link projection with m crossings will
divide the ambient plane into m + 2 regions; however, this is incorrect. To see why, consider
the standard projection Un

Π of the unlink with n components (depicted in Figure ??). This
projection (which, of course, is its own shadow) has 0 crossings. However, it divides the plane
into only n+1 regions. A moment’s thought reveals what the problem is: the projection U n

Π is
not connected! Indeed, if we transform the standard projection of the unlink into a connected
projection (as is done in Figure ?? when n = 2), then the formula will hold. This result will
come in handy later on, and so we record (and prove) it below.

Proposition 2.7. Let LΠ be a connected projection of a link L that has n crossings. Then
the shadow of LΠ partitions the plane into n + 2 distinct regions.

Proof. Imagine taking a piece of tracing paper and placing it on top of LΠ. Starting
over a point which is not a crossing in the original projection, we begin tracing out the link,
always taking care to stay on the shadow of the same component (i.e., we never make any
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sharp turns at a crossing). If this component never crosses itself, we will eventually return
to where we started, and the curve we have traced out will have an inside and an outside.6

Suppose, instead, that the component we are currently on crosses itself m times in the
original projection; then, as we trace it out on our paper, we will necessarily have to cross
our path. Every time we do so, we enclose 1 region. At some point, we will have reproduced
all m crossings on our tracing paper, having enclosed m regions in the process. As we close
up the component, however, by arriving back at our starting point, we enclose 1 more, giving
a total of m + 1 enclosed regions. However, we must not forget about the infinite region!
Including it in our tally brings the total number of planar regions to m + 2. Indeed, notice
that if m = 0, then the formula agrees with the conclusion of the previous paragraph —
namely, that a curve with no crossings divides the plane into two regions.

If the link has only one component, we are done. If not, we find another component whose
shadow crosses the shadow of the component we have just drawn; we can do this because
the projection is connected. Next, we choose a starting point, and a direction in which to
trace, so that the first new crossing we make on our tracing paper will occur when we cross
the shadow that has already been traced out. Thus, we have added 1 crossing, bringing the
total number of crossings on our tracing paper to m + 1, but we have not enclosed any new
regions. However, when we add a second new crossing,7 we must also enclose a new region.
The general pattern is as follows: as we continue tracing out the second component’s shadow,
adding an nth crossing will enclose an n − 1th new region. The lagging effect, however, is
compensated for when we come back to our starting point on the second component’s shadow:
that will not add a new crossing, but it will enclose a new region. Among the traced-out
shadows of two of the components, then, we see m+n crossings, and m+n+2 regions. Note
that we do not double-count the infinite region; although the shape of its boundary might
have changed, we already accounted for it in the previous paragraph.

It is now easy to see how the result follows: we simply induct on the number of compo-
nents in the link, using the algorithm described in the previous paragraph. Each new tracing
will add k crossings and k enclosed regions. �

We can make another important observation about these partitioned regions. To see
what that is, we superimpose the A-B labels from the original projections on top of their
shadows (see the two left-most diagrams in Figure ??). Notice that every region contains
only labels of the same type. This consistency, in turn, enables us to label each region A or
B, according to the following (predictable) rule: namely, the region is labeled A if there are
A labels inside of it, and labeled B if there are B labels inside of it (see the two right-most
diagrams in Figure ??). Of course, we must not forget to also label the region exterior to the
shadow.

Although we have exhibited the A-B labeling consistency only in these two particular
cases, the fact does generalize to all connected, alternating link projections. Indeed, it is easy
to construct examples of alternating link projections which fail to have labeling consistency
because they are disconnected. For instance, the left-hand side of Figure ?? depicts an alter-
nating link with four components. However, if we take the projection’s shadow, superimpose

6A thoroughly rigorous proof of this statement would require a weaker version of a famous topological
result known as the Jordan Curve Theorem.

7There must be another crossing, by the Jordan Curve Theorem.
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Figure 25. Labeling the regions created by shadows. The dotted lines represent
separate copies of the plane.

the A-B labeling, and use it, in turn, to label each of the regions, we will be unable to choose
a label for the region exterior to the shadow.
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Figure 26. A link with 4 components which does not have a consistent A-B
labeling. The dotted line represents the plane.

Nonetheless, if a link projection is alternating and connected, then the corresponding
labeling of the plane will be consistent, as the following lemma verifies.

Lemma 2.8. Suppose that LΠ is an alternating and connected projection of a link L. The
the shadow of LΠ partitions the plane into regions that inherit a consistent labeling from the
A-B labeling of LΠ.

Proof. Consider first the regions that have finite area. Before the breaks in the projec-
tion were filled in, the boundary of such a region contained a certain number of crossings (see
the top of Figure ??). We now pretend that we are standing atop one of the crossings — and,
without loss of generality, that we are on the over-strand. We then walk along this strand in
the direction which keeps us on the boundary (anti-clockwise, in the case of Figure ??). We
will eventually come to another crossing; moreover, since we were on the over-strand at the
previous crossing, we must, by hypothesis, be on the under-strand at the present crossing.
To continue, we hop up to the over-strand (which might put us on a new component — but
no matter), and walk in the same general direction along the boundary of the region until we
come to the next crossing. When we arrive there, we will again be on the under-strand. We
hop up to the over-strand, and move on.

This heuristic tells us that the strands comprising the boundary are layered. More
precisely, if we ignore the rest of the projection, focusing only on the immediate vicinity of
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our enclosed region (as in Figure ??), we will see m crossings and m strands. Moreover, there
will be a consistent direction of travel (anti-clockwise, in the case of Figure ??) around the
region so that the strand we are currently on will always dive under the next strand (i.e., the
strands are layered). Once we have this layered structure, we establish labeling consistency
by inducting on the number of crossings, using the template on the bottom of Figure ??

(which captures the layering) to attach each additional crossing.8

To conclude, we simply note that the same exact argument works for the unbounded
region of the plane that lies exterior to the shadow. �
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Figure 27. Proving the consistency of the A-B labeling in a given region of the plane.

5.2. Step 2: The Adequacy of Alternating Projections. The proof of Theo-
rem 2.5 continues with an investigation of the additional geometric structure that alternation
imparts on states — a structure we will soon exploit through our link polynomials. To these
ends, the concept of adequacy proves very useful.

Definition 2.9. Suppose that LΠ is a projection of a link L, and let SLΠ
denote the collection

of all possible states of LΠ. Let sA ∈ SLΠ
denote the state of LΠ in which all crossings are A

split, and let sB ∈ SLΠ
denote the state of LΠ in which all crossings are B split. If, for all

states s ∈ SLΠ
that have exactly one B split, we have that |sA| > |s|, then LΠ is said to be

plus-adequate. If, for all states s ∈ SLΠ
that have exactly one A split, we have that |sB | > |s|,

then LΠ is said to be minus-adequate. If LΠ is both plus-adequate and minus-adequate, LΠ

is said to be adequate.

Example 2.10. It is easy to see by inspecting the states depicted in Figures ?? and ?? that
the projections of the trefoil knot and Hopf link given in Figures ?? and ?? are both adequate.

In order to check whether or not a link projection is plus-adequate, we first draw the
state in which all crossings undergo A splits. The result, as in any state, is an unlink with
some number of components. In order for the projection to be plus-adequate, a switch from
an A split to a B split at any one crossing should decrease the total number of components
in the unlink. What if the switch increased the number? The only conceivable way in which
that could happen is if a component met itself at the site of a former crossing (see the left-
hand side of Figure ??). Indeed, if this were the case, then a switch from an A to a B split
at that site would transform one component into two, with one component nested inside the
other. Thus, if no component in sA meets itself at the site of a former crossing, then the
projection will be plus-adequate. A similar line of reasoning shows that a projection will fail

8Note that in Figure ?? we ignored any possible curvature in the link projection. This is a standard and
valid method in topology to aid in both visualization and proof.
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to be minus-adequate if and only if some component of sB meets itself at the site of a former
crossing (see the right-hand side of Figure ??).

A

A

B

A

B A

B B

Figure 28. A state which fails to be plus-adequate (left) and a state which fails
to be minus-adequate (right). The dashed lines represent the original crossings.

As it turns out, every reduced, alternating projection of an alternating link is adequate,
as we will now prove.

Lemma 2.11. Suppose that LΠ is an alternating, connected, and reduced projection of a link
L. Then LΠ is adequate.

Proof. Clearly, the shadow of LΠ partitions the plane into several bounded (and one
unbounded) regions. Because the projection is alternating and connected, Lemma 2.8 says
that we can use the A-B labeling of the projection to give an A or B label to each of those
regions.

We want to understand what happens when we perform an A split at each crossing. To
facilitate this, imagine that the A regions are filled with water. Note that some of these bodies
of water might have infinite area (refer to Figure ??); this is not a problem. Further imagine
that each of the crossings in the shadow are dams. Performing an A split is analogous to
allowing the water to break through the dams, thereby transforming the B regions into little
islands.9 Likewise, if we imagine that the B regions are filled with water, then performing B

splits will transform the A regions into islands.

It is important to note that the number of connected components in sA corresponds
exactly to the number of shorelines created when the water in the A regions bursts through
the dams. Similarly, the number of connected components in sB corresponds exactly to the
number of shorelines created when the water in the B regions bursts through the dams.

Suppose that we wish to switch one of the splits in sA from A to B. From an aerial
point-of-view, this procedure is analogous to constructing a very wide land bridge over one of
the dams which connects two of the islands. We should think of this land bridge as extending
the shoreline.

What could cause the number of shorelines to increase when we add this bridge? Well,
if it turned out that we were building a bridge from an island to itself (as would be the case,
for instance, if one of the islands resembled the diagram on the left-hand side of Figure ??),
then we would create another shoreline (in Figure ??, there would be a shoreline on the inner
part of the island, and another on the outer part). Indeed, a moment’s thought reveals that
building a bridge from an island to itself is the only way to increase the number of shorelines
(i.e., the number of connected components in the state) — the only other cases to consider

9This analogy is borrowed from Adams’ book [?].
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(connecting two islands of finite area, and connecting an island of finite area with an island
of infinite area) clearly cannot work.

It is, however, impossible to connect an island to itself; this is where we use the assump-
tion of reduction. Notice that in sA, every island corresponds to a B region of the plane (and
this region may or may not be unbounded — it does not matter). Building a bridge from
an island to itself would require that the island meet itself at one of the dams. However, the
assumption of having a reduced diagram precludes this from happening. We have therefore
verified plus-adequacy.

A similar argument works to check minus-adequacy, and the result then follows. �

5.3. Step 3: The Bracket Polynomial – A Reprise. The adequacy of an al-
ternating, connected, reduced projection is a very strong condition. As we will now show,
it gives bounds on the minimum and maximum degrees of the projection’s bracket polyno-
mial. These bounds are useful precisely because they involve the number of crossings in the
projection.

Lemma 2.12. Suppose that LΠ is a projection of a link L with n crossings. Let 〈LΠ〉 denote the
bracket polynomial of LΠ. Let max〈LΠ〉[x] and min〈LΠ〉[x] denote, respectively, the maximum
and minimum degrees of 〈LΠ〉. Let sA ∈ SLΠ

denote the state of LΠ in which all crossings
are A split, and let sB ∈ SLΠ

denote the state of LΠ in which all crossings are B split.
Then max〈LΠ〉[x] ≤ 2(|sA| − 1) + n, with equality if LΠ is plus-adequate, and min〈LΠ〉[x] ≥
−2(|sB | − 1) − n, with equality if LΠ is minus-adequate.

Proof. We will prove the statement regarding the maximum degree of 〈LΠ〉; the proof for
the minimum degree of 〈LΠ〉 is completely analogous. Begin by noting that the contribution

of sA to 〈LΠ〉 is xn(−x2 − x−2)|sA|−1. Clearly, the maximum power of x in this expression is
2(|sA| − 1) + n. We claim that no other s ∈ SLΠ

contributes a term to 〈LΠ〉 in which x is
raised to a power greater than 2(|sA| − 1) + n.

Note that any state s ∈ SLΠ
can be constructed from sA by switching certain A splits to

B splits, one at a time; put differently, there is a sequence sA = s0, s1, s2, . . . , sj = s, where
si+1 is obtained from si by a single switch of an A split to a B split (the index i counts the
number of B splits). Because the states differ in only one choice of splitting, it must be the
case that |si+1| = |si| ± 1. Thus, if si contributes xa(si)−b(si)(−x2 − x−2)|si|−1 to 〈LΠ〉, then
si+1 contributes:

xa(si)−1−(b(si)+1)(−x2 − x−2)(|si|±1)−1 = xa(si)−b(si)−2(−x2 − x−2)(|si|±1)−1

The highest power of x in the si contribution is a(si)−b(si)+2|si|−2. If |si+1| = |si|+1, then
the highest power of x in the si+1 contribution is a(si)− b(s) + 2|si| − 2. If |si+1| = |si| − 1,
then the highest power of x in the si+1 contribution is a(si) − b(si) + 2|si| − 6. We observe

from these calculations that the highest power of x in xa(si+1)−b(si+1)(−x2 − x−2)|si+1|−1 is
either the same, or 4 less than, the highest power of x in xa(si)−b(si)(−x2 − x−2)|si|−1.

It follows immediately that the highest power of x in xa(s)−b(s)(−x2−x−2)|s|−1 will be the
same, or strictly less than, 2(|sA|−1)+n. As s can be any state, it follows that max〈LΠ〉[x] ≤
2(|sA| − 1) + n. Indeed, if sA is plus-adequate, then when we go from sA = s0 to s1, it must

be that |s1| = |sA| − 1, in which case the highest power of x in xa(s1)−b(s1)(−x2 − x−2)|s1|−1
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must be strictly less than 2(|sA|−1)+n for all i ≥ 1. Thus, for all s 6= sA ∈ SLΠ
, the highest

power of x in xa(s)−b(s)(−x2 − x−2)|s|−1 will be strictly less than 2(|sA| − 1) + n, and so it
follows directly that max〈LΠ〉[x] = 2(|sA| − 1) + n �

Note that the connectedness of the projection LΠ was not required in the above proof.
However, this assumption is required again in the following lemma, which establishes an even
stronger relationship between the quantities |sA|, |sB |, and the number of crossings in LΠ.
Here, however, we can drop the requirement of reduction.

Lemma 2.13. Suppose that LΠ is a connected projection of a link L with n crossings. Let
sA ∈ SLΠ

denote the state of LΠ in which all crossings are A split, and let sB ∈ SLΠ
denote

the state of LΠ in which all crossings are B split. Then |sA| + |sB| ≤ n + 2, with equality if
LΠ is alternating.

Proof. We prove the inequality by induction on n. Suppose that LΠ projection has 0
crossings. Clearly any such (connected) projection is planar isotopic to the standard projec-
tion of the unknot (i.e., L = U 1

Π in Figure ??). Here, sA = sB , and |sA| = |sB | = 1, and thus
1 + 1 ≤ 0 + 2, as required. (Again, if we did not require that the projection was connected,
then the projection of the unlink with 2 or more components, as given in Figure ??, would
invalidate our claim.)

Now assume that the result is true for all m ∈ N with 0 ≤ m ≤ n − 1. Let LΠ

have n crossings. Select any crossing of LΠ. Clearly, performing either type of split at this
crossing will produce a projection, denoted L′

Π′ , of a new link L′; of course L′
Π′ depends on

the type of split performed, but it will most certainly have n − 1 crossings. It follows from
the connectedness of LΠ that for some choice of splitting (either A or B), L′

Π′ will also be
connected. Indeed, without loss of generality, suppose that an A split achieves a connected
L′

Π′ . Thus, since L′
Π′ is connected and has n−1 crossings, it satisfies the inductive hypothesis.

If we let s′A and s′B denote, respectively, the states of L′
Π′ in which all of the n−1 crossings are

A split or B split, then it is immediate that sA = s′A and |sB | = |s′B |±1. Using the inductive
hypothesis, we have that |sA|+ |sB | = |s′A|+ |s′B| ± 1 ≤ (n− 1) + 2± 1 ≤ n + 1± 1 ≤ n + 2,
as desired.

Now assume that LΠ is alternating. Then, everything discussed in the first three para-
graphs of the proof of Lemma 2.11 is valid, as reduction of the projection had not yet been
invoked. Consider, then, the shadow of LΠ, and the labeling it induces on the plane. Using
the geographical analogy introduced in the proof of Lemma 2.11, we recall that |sA| counts
the number of shorelines created when the A regions, filled with water, were allowed to burst
through the dams. Moreover, every shoreline also corresponds to a unique island, and vice
versa. If an island had more than one shoreline, then there would be a lake somewhere in
its interior, which violates the fact that the A regions were opened to allow the bodies of
water to become contiguous. Since the islands, in this case, are the B regions, |sA| equals the
number of B regions. Similarly, |sB | equals the number of A regions, and so |sA|+ |sB | equals
the total number of regions into which the shadow of LΠ divides the plane. By Proposition
2.7, this number is equal to n + 2, where n denotes the number of crossings in LΠ — hence
the result. �
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5.4. Step 4: The Kauffman and Jones Polynomials — A Reprise. Only one
more auxiliary lemma is needed before we can complete our proof of Theorem 2.5; it calls
upon the Kauffman and Jones polynomials.

Lemma 2.14. Suppose that ~LΠ is a connected projection of an oriented link ~L. Suppose

further that ~LΠ has n crossings. Let V~L
[t] denote the Jones polynomial of ~L, computed using

~LΠ. Let max V~L
[t] and minV~L

[t] denote, respectively, the maximum and minimum degrees of

V~L
[t], and let spanV~L

[t] := maxV~L
[t]−minV~L

[t]. Then spanV~L
[t] ≤ n, with equality if ~LΠ is

alternating and reduced.

Proof. Let span 〈LΠ〉[x] := max〈LΠ〉[x] − min〈LΠ〉[x]. Using Lemma 2.12, we have
that span 〈LΠ〉[x] ≤ 2n + 2|sA| + 2|sB | − 4, where, as usual, sA ∈ SLΠ

denotes the state
of LΠ in which all crossings are A split, and sB ∈ SLΠ

denotes the state of LΠ in which

all crossings are B split. Note that when we multiply 〈LΠ〉[x] by (−x3)−w(~LΠ) to get the

Kauffman polynomial, we increase both max〈LΠ〉[x] and min〈LΠ〉[x] by −3w(~LΠ), and so
their difference does not change. Thus, if we let spanX~L

[x] := max X~L
[x] − minX~L

[x],
then spanX~L

[x] = span〈LΠ〉[x]. Hence, spanX~L
[x] ≤ 2n + 2|sA| + 2|sB | − 4. Since the

substitution x 7→ t−
1

4 scales all the exponents in the bracket polynomial by a factor of 4,
we find that spanV~L

[t] = spanX~L
[x] ÷ 4, or, equivalently, 4 · spanV~L

[t] = spanX~L
[x]. Thus,

4 · spanV~L
[t] ≤ 2n + 2|sA| + 2|sB | − 4. By Lemma 2.13, however, 2|sA| + 2|sB | ≤ 2n + 4,

whence 4 · spanV~L
[t] ≤ 4n, and so spanV~L

[t] ≤ n.

If ~LΠ is alternating, connected, and reduced, then it is adequate (Lemma 2.11). There-

fore, by Lemma 2.12, span 〈LΠ〉[x] = 2n + 2|sA| + 2|sB | − 4. Moreover, because ~LΠ is
alternating and connected, Lemma 2.13 tells us that 2|sA| + 2|sB | = 2n + 4. As before,
4 · spanV~L

[t] = spanX~L
[x] = span 〈LΠ〉[x], and thus spanV~L

[t] = n. �

5.5. Step 5: Endgame.

Proof of Theorem 2.5. Begin by giving an orientation to each of the components

of LΠ1
and LΠ2

. Then we can use ~LΠ1
to compute the Jones polynomial of ~L. Indeed,

because this projection is alternating, connected, and reduced, spanV~L
[t] = n1, by Lemma

2.14. However, because ~LΠ2
has n2 crossings (and is connected), Lemma 2.14 also says that

spanV~L
[t] ≤ n2, and so n1 ≤ n2, as desired. �

6. Proof of the Second Tait Conjecture

The reader may very well have forgotten the precise statement of the Second Tait Con-
jecture, and so we paraphrase it here for convenience: any two alternating, reduced, and
connected projections of an oriented link will have the same writhe. In fact, the proof will
draw on many results from the previous section, including Theorem 2.5! As before, we will
break apart the proof into several small steps.10 The first two steps serve to introduce two
new concepts, linking numbers and r-parallels. We begin with the former.

10Again, we will follow the proofs in Lickorish’s text [?]; his methods, however, were first developed by
Stong [?].
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6.1. Step 1: The Linking Number. Recall that Reidemeister I moves always
alter the writhe of an oriented link projection by ±1. Notice, however, that these moves
introduce or remove crossings that involve only one of the link’s components. Thus, if we
only consider the crossings at which two distinct components of the link meet, we might stand
a better chance at coming up with an invariant. These observations motivate the following
definition.

Definition 2.15. Suppose that ~LΠ is a projection of an oriented link ~L with more than one

component. Select any two components of ~L; denote them as ~Li and ~Lj, and let ~Li
Π and

~L
j
Π denote the pieces of ~LΠ to which they correspond. The linking number of ~Li

Π and ~L
j
Π,

denoted lk(~Li
Π, ~L

j
Π), is the sum, taken over crossings involving only strands from both ~Li

Π and
~L

j
Π, where each term is either 1 or −1, depending on whether the crossing is of +1 type or

−1 type.11

Example 2.16. For the oriented Hopf link ~H, let ~HΠ denote the projection of ~H that is de-

picted on the right of Figure ??. Each of the two crossings in ~HΠ involve distinct components,

and so lk( ~H1
Π, ~H2

Π) = 2.

It is important to note that the linking number is defined for pairs of components in a link,
and so any projection of a link with n components has associated with it

(

n
2

)

individual
linking numbers.

We will now formally prove the invariance of a linking number.

Proposition 2.17. Suppose that ~LΠ1
and ~LΠ2

are two projections of an oriented link ~L.

Select any two components of ~L; denote them as ~Li and ~Lj. Let ~Li
Π1

and ~Li
Π2

denote the pieces

of ~LΠ1
and ~LΠ2

, respectively, to which ~Li corresponds. Let ~L
j
Π1

and ~L
j
Π2

denote the pieces of
~LΠ1

and ~LΠ2
, respectively, to which ~Lj corresponds. Then lk(~Li

Π1
, ~L

j
Π1

) = lk(~Li
Π2

, ~L
j
Π2

).

Proof. Because ~LΠ1
and ~LΠ2

are two projections of the same oriented link, there is

a finite sequence of Reidemeister moves and planar isotopies that transforms ~LΠ1
into ~LΠ2

.
Clearly, planar isotopies will not effect the linking number. Moreover, the proof of Proposition
1.17 can apply equally well in this situation (assuming, of course, that the strands involved

belong to different components) to show that lk(~Li
Π1

, ~L
j
Π1

) = lk(~Li
Π2

, ~L
j
Π2

) when the two
projections differ by a Reidemeister II or III move. Hence, in each of the possible cases,

lk(~Li
Π1

, ~L
j
Π1

) = lk(~Li
Π2

, ~L
j
Π2

), as desired. �

Proposition 2.17, in turn, motivates the following definition.

Definition 2.18. Suppose that ~L is a link with more than one component. Select any two

components of ~L; denote them by ~Li and ~Lj. Let ~LΠ be any projection of ~L, and let ~Li
Π and

~L
j
Π denote the pieces of ~LΠ to which ~Li and ~Lj correspond. Then the linking number of ~Li

and ~Lj, denoted by lk(~Li, ~Lj), is given by lk(~Li, ~Lj) := lk(~Li
Π, ~L

j
Π).

Again, we reiterate that a link with n components has
(

n
2

)

linking numbers naturally associ-
ated with it.

11This formulation is slightly nonstandard; usually the sum is divided by 1

2
.
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Linking numbers will resurface again in §2.6.3. For the time being, however, we put
them aside, and turn to the concept of r -parallels.

6.2. Step 2: R-Parallels. Much attention has been given in this thesis to the
notion of link projections being as simple as possible. Therefore, it may surprise the reader
that our proof of Theorem 2.6 will involve an intermediate passage to an objectively more
complicated class of link projections. Nonetheless, the approach, which uses r-parallels, is
quite clever. The relevant definition is as follows.

Definition 2.19. Suppose that LΠ is a projection of a link L. For a positive integer r, the
r-parallel of LΠ, denoted (LΠ)r, is a projection (of a new link) in which each strand of LΠ is
joined by r− 1 parallel copies of that strand; as a collection, the r strands follow the crossing
patterns of LΠ.

Example 2.20. The picture on the left of Figure ?? depicts the 2-parallel of the trefoil knot
projection, and the picture on the right depicts the 2-parallel of the Hopf link projection.

Figure 29. The 2-parallels of the trefoil knot projection (left) and the Hopf link
projection (right).

Several preliminary remarks regarding r-parallels are in order. First, if a projection is
oriented, then all of its parallels are (by convention) given the same orientation. Second, note
from Figure ?? that r-parallels are not alternating! Still, it makes sense to talk about the
plus- or minus-adequacy, and luckily, taking r-parallels does not destroy that property; we
formalize this with a lemma.

Lemma 2.21. Suppose that LΠ is a projection of a link L. Let (LΠ)r denote the r-parallel of
LΠ. If LΠ is plus-adequate, then Lr

Π is plus-adequate. Moreover, if LΠ is minus-adequate,
then (LΠ)r is minus-adequate.

Proof. We treat the case when LΠ is plus-adequate; the case when LΠ is minus-adequate
is identical. Let sA ∈ S(LΠ)r denote the state of Lr

Π in which all crossings are A split. Let
s′A ∈ SLΠ

denote the state of LΠ in which all crossings are A split. Referring to Figure ??,
we note that, after performing some planar isotopies to smooth out the wrinkles, s ′A = (sA)r

(i.e., to each component of the unlink in sA, we add r− 1 parallel copies). Recalling the test
for plus-adequacy, we must check that none of the components of s′A meets itself at the site
of a former crossing; of course, there are now many more crossings to consider. However, the
geometry of the original link projection comes to our aid. Indeed, because no component of
sA meets itself, and because the components of s′A can be thought of as running parallel to
the original components of sA, it becomes geometrically clear that no component of s′A can
meet itself. Hence, (LΠ)r is plus-adequate. �

The reason for introducing r-parallels into our toolkit will become apparent momentarily.
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Figure 30. Performing all A splits (left) and all B splits (right) on a generic
crossing of a 2-parallel.

6.3. Step 3: The Main Lemma. The following important lemma relates the
number of crossings in plus-adequate diagrams to their writhes, and ties together the concepts
of linking numbers and r-parallels; moreover, it incorporates one of our link polynomials.
Theorem 2.6 will follow directly from this lemma.

Lemma 2.22. Suppose that ~LΠ1
and ~LΠ2

are two projections of an oriented link ~L. Suppose

that ~LΠ1
is plus-adequate. Let n1 and n2 denote, respectively, the number of crossings in ~LΠ1

and ~LΠ2
. Let w(~LΠ1

) and w(~LΠ2
) denote, respectively, the writhes of ~LΠ1

and ~LΠ2
. Then

n1 − w(~LΠ1
) ≤ n2 − w(~LΠ2

).

Proof. Index each of the components of ~L as ~L1, ~L2, . . . ~Lm. Then, each ~Li corresponds

to some piece of ~LΠ1
, and some piece of ~LΠ2

. Let the piece of ~LΠ1
and ~LΠ2

that correspond

to ~Li be denoted as ~Li
Π1

and ~Li
Π2

.

For all i, ~Li
Π1

and ~Li
Π2

have well-defined writhes. To compute w(~Li
Πk

) for a given i,

however, we will (for the time being) disregard the crossings in ~Li
Πk

that involve other com-

ponents; in so doing, we are treating each ~Li
Πk

as a link projection in its own right by imagining
that the other components simply are not there. With that qualification understood, we can

choose, for each i, nonnegative integers di and ei such that w(~Li
Π1

) + di = w(~Li
Π2

) + ei. In

order to realize this equality geometrically (i.e., in order to make the writhes of ~Li
Π1

and
~Li

Π2
equal), we can add very tiny positive twists (i.e., twists which introduce crossings whose

type, in the sense of §1.3, is +1) by performing appropriate Reidemeister I moves (see the
diagram on the right-hand side of Figure ??). The tininess ensures that the new twists do

not interact with the other strands. By performing this process to each ~Li
Πk

, we have added
∑

i di and
∑

i ei positive twists to ~LΠ1
and ~LΠ2

, respectively. Call these new link diagrams
~L×

Π1
and ~L×

Π2
.

Adding the positive twists clearly does not change the plus-adequacy of ~LΠ1
. Thus,

~L×
Π1

is also plus-adequate. Now we compare w(~L×
Π1

) with w(~L×
Π2

). The effect of adding the

positive twists was to make w(~Li
Π1

) = w(~Li
Π2

) for all i. However, recall that, in computing

w(~Li
Πk

), we ignored those crossings which involved distinct components. But such crossings
are precisely the sites used in the computation of the various linking numbers. Indeed, we
can think of the writhe of an oriented link as being computed using two sets of crossings:
those where components cross themselves, and those where distinct components cross each
other. Symbolically, then, we have:
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w(~L×
Πk

) =
∑

i

w(~Li
Πk

) +
∑

i

{di if k=1
ei if k=2} +

∑

i<j

lk(~Li, ~Lj)

Indeed, since linking numbers are invariant, it follows that w(~L×
Π1

) = w(~L×
Π2

).

Consider now the r-parallel (~L×
Π1

)r and (~L×
Π2

)r. Clearly, they are both projections of the

same link (~L, with r − 1 parallel components added) and hence are equivalent. Therefore,

they have the same Kauffman polynomial. Moreover, since every crossing of ~L×
Π1

and ~L×
Π2

corresponds to r2 crossings of (~L×
Π1

)r and (~L×
Π2

)r, we see that w((~L×
Π1

)r) = r2w(~L×
Π1

) =

r2w(~L×
Π2

) = w((~L×
Π2

)r). By the definition of the Kauffman polynomial, it follows immediately

that 〈(~L×
Π1

)r〉 = 〈(~L×
Π2

)r〉.

Let |s1,A| denote the number of connected components in an all-A splitting of ~LΠ1
, and

let |s2,A| denote the number of connected components in all-A splitting of ~LΠ2
. Adding the

positive twists to ~LΠ1
and ~LΠ2

means that the number of connected components in the all-A

splitting of ~L×
Π1

and ~L×
Π2

becomes |s1,A|+
∑

i di and |s2,A|+
∑

i ei. Moreover, when we pass
to the r-parallels, we find that the number of connected components in the all-A splitting of

(~L×
Π1

)r and (~L×
Π2

)r becomes r(|s1,A|+
∑

i di) and r(|s2,A| +
∑

i ei).

Likewise, adding the positive twists to ~LΠ1
and ~LΠ2

means that the number of crossings

in ~L×
Π1

and ~L×
Π2

becomes n1 +
∑

i di and n2 +
∑

i ei. Furthermore, making r-parallels means

that the number of crossings in (~L×
Π1

)r and (~L×
Π2

)r becomes (n1+
∑

i di)r
2 and (n2+

∑

i ei)r
2.

Since ~L×
Π1

is plus-adequate (discussed above), we have, by Lemma 2.21, that (~L×
Π1

)r is
also plus-adequate. By Lemma 2.12:

max〈(~L×
Π1

)r〉 = 2(r(|s1,A| +
∑

i

di)− 1) + (n1 +
∑

i

di)r
2

= (n1 +
∑

i

di)r
2 + 2(|s1,A| +

∑

i

di)r − 2

Also by Lemma 2.12:

max〈(~L×
Π2

)r〉 ≤ 2(r(|s2,A| +
∑

i

ei)− 1) + (n2 +
∑

i

ei)r
2

= (n2 +
∑

i

ei)r
2 + 2(|s2,A| +

∑

i

ei)r − 2

Since 〈(~L×
Π1

)r〉 = 〈(~L×
Π2

)r〉, max〈(~L×
Π1

)r〉 = max〈(~L×
Π2

)r〉, and thus:

(n1 +
∑

i

di)r
2 + 2(|s1,A|+

∑

i

di)r − 2 ≤ (n2 +
∑

i

ei)r
2 + 2(|s2,A|+

∑

i

ei)r − 2

(n1 +
∑

i

di)r
2 + 2(|s1,A| +

∑

i

di)r ≤ (n2 +
∑

i

ei)r
2 + 2(|s2,A|+

∑

i

ei)r
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an inequality which must be true for all positive integers r. Taking r to be very large,
we find, upon comparing coefficients of r2, that n1 +

∑

i di ≤ n2 +
∑

i ei. Recalling that

w(~Li
Π1

) + di = w(~Li
Π2

) + ei, we have:

−
∑

i

w(~Li
Π1

) −
∑

i

di = −
∑

i

w(~Li
Π2

)−
∑

i

ei

and adding this to n1 +
∑

i di ≤ n2 +
∑

i ei gives that n1 −
∑

i w(~Li
Π1

) ≤ n2 −
∑

i w(~Li
Π2

).

Again, using the fact that the linking number is an invariant, we can subtract lk(~Li
Π1

, ~L
j
Π1

) =

lk(~Li
Π2

, ~L
j
Π2

) from both sides of this equation, one for each pair of distinct components of
~L, thereby transforming

∑

i w(~Li
Π1

) and
∑

i w(~Li
Π2

) into w(~LΠ1
) and w(~LΠ2

). Thus, n1 −

w(~LΠ1
) ≤ n2 − w(~LΠ2

), as desired. �

6.4. Step 4: Endgame.

Proof of Theorem 2.6. Let n1 and n2 denote, respectively, the number of crossings

in ~LΠ1
and ~LΠ2

. Because ~LΠ1
and ~LΠ2

are alternating, reduced, and connected projections,

they are adequate (and hence plus-adequate). Thus, by Lemma 2.22, n1 − w(~LΠ1
) ≤ n2 −

w(~LΠ2
) and n2 − w(~LΠ2

) ≤ n1 − w(~LΠ1
), and so n1 − w(~LΠ1

) = n2 − w(~LΠ2
). Moreover,

since alternating, connected, and reduced projections of links have minimal crossing number

(Theorem 2.5), n1 = n2, and thus w(~LΠ1
) = w(~LΠ2

) �

Corollary 2.23. Suppose that LΠ1
and LΠ2

are both alternating, connected, and reduced

projections of an oriented link ~L. Then the number of +1 crossings in each of LΠ1
and LΠ2

is the same, and similarly for the number of −1 crossings.

Proof. This follows at once from Theorem 2.5 and Theorem 2.6. �

Not only do the proofs of Theorems 2.5 and 2.6 demonstrate the power of polynomial
invariants, but they also underscore the fruitfulness of using states to analyze links.

7. Applications of the Tait Conjectures

We will now describe some straightforward (and pretty!) applications of the Tait Con-
jectures.

7.1. Amphicheirality. Imagine that we take our standard projection of the trefoil knot
and reverse each of its crossings (see Figure ??). This is known as taking the mirror image
of a link projection.
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Figure 31. Our standard projection of the trefoil knot (left) and its mirror image (right).

A natural question to ask, then, is whether or not we can transform the trefoil knot projection
into its mirror image using Reidemeister moves and/or planar isotopies. In general, if a given
link projection can be deformed into its mirror image, we say that the underlying link is
amphicheiral. In fact, if the link projection is alternating, connected, and reduced, we can
use Theorem 2.6 to deduce some necessary conditions for amphicheirality. The theorem is as
follows.

Theorem 2.24. Suppose that LΠ is an alternating, connected, and reduced projection of a
link L. Let LΠ denote the mirror image of LΠ If the number of crossings in LΠ is odd, then
L can never be amphicheiral.

Proof. When we reverse each crossing, we change its type; hence, w(LΠ) = −w(LΠ).
Suppose now that LΠ is equivalent to LΠ. By assumption, LΠ will also be alternating and
reduced. Therefore, because LΠ and LΠ are both alternating and reduced projections of
the same link, they must, by Theorem 2.6, have the same writhe; thus, w(LΠ) = w(LΠ) =
−w(LΠ), and so it follows that w(LΠ) = 0. However, the writhe of a link can only equal zero
if it has an even number of crossings, and that gives the theorem. �

Hence, because our alternating, reduced projection of the trefoil knot has an odd number
of crossings, it cannot be transformed into its mirror image through any conceivable combi-
nation of Reidemeister moves and planar isotopies! As it turns out, the knot depicted on the
left in Figure ?? — known as the figure-eight knot — is amphicheiral; this can be verified
directly without too much difficulty.

7.2. The Minimal Crossing Number of Composite Knots. Given two knots K1

and K2, their composite — also sometimes referred to as their connected sum — is a new
knot, denoted K1#K2, which is formed by cutting a very tiny section of string from each of
K1 and K2, and then splicing the two knots together; the knots K1 and K2 are called the
factor knots of K1#K2. For example, Figure ?? depicts the construction of the composite of
the figure-eight knot and the trefoil knot.12

12There are some qualifications that need to be made about where on the projection we are allowed to
perform this surgery; technically, we can only splice knots on their outer-most strands.
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Figure 32. Forming the composite of the figure-eight knot and the trefoil knot.

One might wonder whether or not it is possible to redraw K1#K2 so that it has fewer than
7 crossings. It turns out that the answer is no, and the reason has everything to do with the
fact that K1#K2 is also an alternating knot.

Indeed, William Menasco proved a theorem which says that if (K1#K2)Π is an alter-
nating projection of a knot K1#K2, then there is a topological loop in the projection plane
that intersects (K1#K2)Π exactly twice, so that the factor knots that appear on either side
of the loop are alternating (see, for example, Figure ??).13

Figure 33. A special case of Menasco’s theorem.

Combining Menasco’s Theorem and Theorem 2.5, we obtain the following result.

Theorem 2.25. Suppose that K1#K2 is an alternating knot. Then the minimal number of
crossings that can be realized in a projection of K1#K2 equals the sum of the minimal number
of crossings that can be realized in projections of K1 and K2.

Proof. Choose a reduced, alternating projection (K1#K2)Π of K1#K2. By Menasco’s
theorem, the factor knots K1 and K2 will appear alternating in (K1#K2)Π. Since (K1#K2)Π
is reduced, so are the projections of the factor knots in (K1#K2)Π. Therefore, we can apply
Theorem 2.5 to conclude that the factor knots, being alternating and reduced (and obviously
connected), are each drawn with the minimum possible number of crossings. Moreover,
because (K1#K2)Π is alternating and reduced (and obviously connected), it too is drawn
with the minimum possible number of crossings. But the number of crossings that appears
in (K1#K2)Π is clearly equal to the number of crossings that appears in each of the factor
knots, which gives the theorem. �

13We are stating the theorem as it is found on page 162 of Adams’ book [?].
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Theorem 2.25 tells us, then, that the composite knot shown in Figure ?? cannot be drawn
with less than 7 crossings. It is still an open question whether or not the minimal number of
crossings that can be realized in a projection of K1#K2 for non-alternating, reduced knots K1

and K2 equals the sum of the minimal number of crossings that can be realized in projections
of K1 and K2.

8. The Third Tait Conjecture

We have, at this point, said all we wish to say about states, link polynomials, and
the First and Second Tait Conjectures. To close, we will briefly describe the Third Tait
Conjecture, whose existence we alluded to in §2.4. Although its stock-in-trade is the same —
alternating, connected, and reduced link projections — its conclusion is slightly less intuitive.

Given any link, we can easily draw a circle in the projection plane that encloses some
region of the link. If, however, the circle intersects the link exactly four times, we call the
enclosed region a tangle. Examples of tangles are given below in Figure ??.

Figure 34. Examples of tangles.

There is a special transformation, involving tangles, that can be performed on links: we
simply choose any tangle in the link, fix the four points of the link that lie on the circle,
and then rotate the tangle by 180◦. This operation is called a flype,14 and it is illustrated
in Figure ??. Notice how flypes will take a crossing one side of a tangle and move it to the
other side.

14According to www.mathworld.com, “flype” derives from the Scottish verb meaning “to turn or fold
back.”
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T

T

flype

180
o

Figure 35. Performing a flype.

Tait conjectured that any two reduced, alternating projections of the same knot can be
transformed into each other through a finite sequence of flypes. (In fact, the conjecture is true
more generally for alternating, connected, and reduced projections of the same link.) Like
its sisters, the Third Tait Conjecture remained an open problem until the discovery of the
Jones polynomial, which is used in its proof. However, the techniques for proving it are much
different than those employed in this thesis; indeed, they merit a thesis all to themselves.

∗ ∗ ∗
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