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1. (AG) Let V,W be complex vector spaces of dimensions m > n > 2, respec-
tively. Let PHom(V, W) = P™"~1 be the projective space of nonzero linear
maps ¢ : V — W modulo scalars. Further, let ® C PHom(V, W) be the sub-
set of those linear maps ¢ which do not have full rank n. Prove that ® is an
irreducible subvariety of P™"~! and find its dimension.

Solution: 1t’s convenient to realize PHom(V, W) as the space of nxm matrices.
If A € ® is a matrix of rank k, it can be written as A = C1 Ry, where C1, R;
are matrices of sizes n x k and k x m, respectively. Since kK < n—1, we can also
express A = CR, where C, R are matrices of sizes n x (n—1) and (n—1) x m,
respectively (add zeroes). Let X = P*(»—1-1 and Y = P(r—Dm—1 pbe the
projective spaces of n x (n — 1) and (n — 1) X m matrices. Our observation
implies that the product morphism X x Y — & is surjective. The product
X x Y of projective spaces is irreducible and complete, so the image ® is an
irreducible closed subset of P™"~!, It remains to find its dimension.

If Ahasrankn—1 and A = CR = C'R’ are two decompositions as above, then
C'" = CG and R' = G7'R, for some G € GL(n — 1,C). Moreover, let ® C
P~1 be the subset of matrices of rank < n — 2; by a similar reasoning, this
is closed, and clearly is a proper subset of ®, therefore dim(®) = dim(® \ ¢’).
Take any A € ® \ @, i.e. a matrix of rank = n — 1. Its fiber under the
surjective morphism X x Y — @ is dim GL(n — 1,C) = (n — 1)? — 1. Hence,
dim(®) = dim(X xY) —((n—1)2-1) =[n(n —1) = 1] +[(n — )m — 1] —
[(n—1)2%2—=1]=mn—m+n—2.

2. (AT) Let S™ be the standard n-sphere
" = ({50 ) € B[ Y a2 = 1)

and let S¥ C S™ be the locus defined by the vanishing of the last n — k
coordinates Tpi1,...,Tn. Assumen —1 >k > 0.

1. Find the homology groups of the complement S™ \ S*.

2. Suppose now that T' C S™ is the sphere defined by the vanishing of the
first k£ coordinates; that is,

T ={(0,...0,Zpy1,...,2,) € R"| fo =1}.



What is the fundamental class of T" in the homology group H,,_r_1(S™\
Sky?

Solution. The complement S™ \ S* is the same as the complement R™ \ R =
R* x (R™*\ {0}), so this has the homotopy type of S" *~1: accordingly we
have

Z,ifm=0orm=n—k—1; and

H,,(S™\ S%) =~ {

0 otherwise.

Moreover, under the contraction of S™ \ S* to S"~*~! the sphere T is car-
ried isomorphically to S" %=1 so its fundamental class is the generator of
Hn—k—l(Sn \ Sk)

. (CA) Compute
2m 1
/0 (34 cosh)? 40

using contour integration.

24271

9 so that cosf = =—, we obtain

Solution: Making the substitution z = €’
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The polynomial 22+ 6z+1 has simple roots —342+v/2. Only the root —3+2/2
lies in the unit disk, so the residue theorem implies that
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4. (A) Show that the symmetric group S, has at least one Sylow p-subgroup
which is a cyclic group of order p. (You may use the fact that for any prime
p, there exists a prime in the interval (p,2p).)

Solution: By the fact in parentheses, if we let p be the largest prime < n, then
2p is greater than n. In other words, we have § < p < n. This ensures that
p | n! but p? t n!, so we conclude that any p-Sylow subgroup must have order

p and is therefore a cyclic group.

5. (DG) Let X = T*C* = C* x C, where we write z,w for holomorphic coor-
dinates on the base and fiber, respectively. Find all time-1 periodic orbits of
the vector field V' = Re(zw%) — i.e., all points € X such that the time-1
flow of x under V is equal to x.

Solution: Let q be the locally-defined coordinate on the base given by ¢ =
log(z), so that we can rewrite the vector field as Re(wa%). This vector field
preserves the fibers of the map T*C* — C,, so we may study each fiber
individually. Write ¢ = £ 4 0. If w has nonzero real component, then the
vector field will have nontrivial a% component, which acts as a translation
and cannot have periodic orbits. On the other hand, if w = ic € iR, then the
vector field is —c%. In each such cylinder fiber {w = ic}, the vector field is a
rotation of the cylinder, and the points in the fiber will return to themselves
precisely if they complete an integral number of rotations.

Therefore, up to a normalization, the time-1 orbits of the vector field are
precisely all the points in the fibers {z € C*,w € 2miZ}.

6. (RA) Let X, X2, X3,... be independent and identically distributed random
variables with finite expected value p and finite nonzero variance. Let

— 1
Xn =

=~ (X144 Xa).

Use Chebyshev’s inequality to prove that X,, converges to ju in probability as
n — oo.

Solution. Let the variance of X; be ¢2. Then the expected value of X, is is p
. - . o2 . .
and the variance of X, is 2-. By Chebyshev’s inequality

__ o2
P (|Xn—p| =) =32

for any € > 0, which implies that X,, converges to u in probability as n — cc.
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1. (CA) Let 2 C C denote the open set
Q={z:|z—1]>1and |z — 3| <3}.

Give a conformal isomorphism between € and the unit disk D = {z : |z| < 1}.

Solution: The conformal transformation z % sends €2 to the open strip

S ={z:} <Re(z) < §}. The conformal map z 3™(z=5) transforms the
strip S to the upper half-plane, and z — %= sends the upper half plane to

z+1
the open unit disk.

Composing these, we obtain the desired conformal isomorphism

637ri(§—%) —
— .
T e 1
2. (A) Let F = Q(z) where
0o 2 4 o 107
z=cos g +cos .

i) Prove that [F': Q] = 3 and F/Q is a Galois extension.

ii) Prove that if p is a prime and p # 13 then p is unramified in F', and that
p is split in F' if and only if p = +1 or +5 mod 13.

Solution. 1) Let w be the 13th root of unity exp(27i/13), so
2z:w+w71+w5+w*5;

and let K = Q(w). Then [K : Q] is the 13th cyclotomic extension, so it is
Galois and we can identify Gal(K/Q) with the group G = (Z/13Z)* so that
each ¢ € (Z/13Z)* acts by w — w°. Now H := {£1,+5} C G is a subgroup
(note that 52 = —1 in Z/13Z), so ¢ € G fixes z if and only if ¢ € H [this uses
the fact that the minimal polynomial of z is (21 —1)/(z —1)], whence F is the
subfield of K fixed by H. Thus by a fundamental theorem of Galois theory
F/Q is Galois with group G/H, which proves the claim because [G : H] = 3.

ii) If p # 13 then p is unramified in K (the discriminant of the minimal



polynomial of w is +1 times a power of 13 — in fact it is 13!!). Then p
splits in F' if and only if the p-Frobenius element of Gal(K/Q) is in H. But
this Frobenius element is identified with the residue of p mod 13 under our
identification of Gal(K/Q) with G = (Z/13Z)*, because w goes to wP. Thus
p splits if and only if p mod 13 € H = {+1,4+5}, QED.

. (DG) Let u = 7(u), for a < u < b, be a smooth space curve in R? with both
its curvature and torsion nowhere zero. Assume that the parameter u is the
arc-length of u — 7(u). Suppose o(v), for ¢ < v < d, is a smooth function
with o/(v) nowhere zero. Consider the surface S defined by

(u,v) = 7(u,v) = 7(u) + o(v)r'(u)

for a < u < band ¢c < v < d. Compute the first and second fundamental
forms of S in terms of 7(u) and o(v) and their derivatives. Determine the
condition on the function o(v) so that the Gaussian curvature of the surface
S is identically zero.

Solution. Since the parameter u is the arc-length of v — 7(u), the length
of 7/(u) is identically 1 so that 7”(u) is perpendicular to 7/(u). The first
fundamental form I = Edu? + 2Fdudv + Gdv? is given by

STy, = (T’(u) + 0’(1))7'”(’11,)) . (T'(u) + U(U)T”(u)) =1+ 0(1})2 (T”(u) -T”(u))
7y = (7'(u) + o(v)7" (w)) - o' (v) 7' (u) = o' (v)

7y =o' (v)7'(u) - o' (v)T (u) = o' (v)?

Q=&
Il
SR

I
el

DG — F? = g(v)?%0’ (v)? (7" (u) - 7" (w)) .

To compute the unit normal vector 7, we compute

Fu X 7y = (7'(u) + o(v)7" (v)) X o' (V)7 (u) = =0 (v)o’ (V)7 (u) X 7" (u)

to form ()
7= —r'(u) x 2

X ]
because ||7, x 7| = VEG — F2. Tt means that

"

i, 7' (u), T
W

form an orthonormal frame. To obtain the coefficients L, M, N of the second
fundamental form 11 = Ldu? + 2Mdudv + Ndv?, we compute the partial
derivatives of the radius vector 7 of order 2,

Fuw = 7" (u) + o(v)7" (u),

Fuv = UI(U)T”(U)7

Fm} = OJ/ (U)T/ (u) ’



so that

h
I

it=(7"(u) + o(v)r"(v)) - 7t
o) (7" (u) x 7" (u)
[ead]
(o' (0)T"(w)) - 7T =

= (o"(v)'(w)) -

R
Tuu *

M =7y -1l
N =7y, -1

The Gaussian curvature
LN — M?

EG — F?

is always zero for any function o(v).

Remark. With use of the more general function o(v) instead of o(v) = v, this
problem is simply the statement, in disguise, that the tangent developable
surface has zero Gaussian curvature.

. (RA) Let V' be the vector space of continuous functions [0,1] — R, and let
g : V — R be the linear functional f — fol 213 f(x) dz. For which p € (1, 00)
does g extend to a continuous functional g : LP([0,1]) — R? For those p, what
is the norm of this functional?

Solution. Let ¢ = p/(p—1),s01/p+1/q = 1. Using the isometric identification
of L4(]0,1]) with the dual of LP([0, 1]), we see that there is such a continuous
functional g if and only if =1/ is an L9 function, in which case ||| is the
L9 norm of that function. Now z~/3 is in L9([0,1]) < fol =3 dr < 0o &
—q/3> -1 q¢<3 < p>3/2. For such p, the the LY norm of /3 s

1 1/q 3 1/q
</ x /3 d:z:) = <> .
0 3—q

[We do not require the rewriting of 3/(3 — ¢q) as (3p — 3)/(2p — 3), or of 1/q
as (p—1)/p.]

. (AG) Let X C P" be any hypersurface of degree d > 2, and A C X C P" a
k-plane in P" contained in X.
1. Show that if £ > n/2, then X is necessarily singular.

2. If k =n/2 and X C P" is a general hypersurface containing a k-plane,
describe the singular locus of X.



Solution. For the first, suppose that A = {[Xo, ..., Xk,0,...,0]} is defined by
the vanishing of the last n — k coordinates; suppose that X is the zero locus
of the homogeneous polynomial F'(Xj,...,X,). At any point of A, we have

oF
=0 for i=1,...,k
0X;
and since k > n — k, by Bezout the remaining partial derivatives 88—)2 with
i=k-+1,...,n must have a common zero in A; thus X is singular. This also

answers the second question: if X is general, then since the partial derivatives
887)2 are general polynomials of degree d—1 on P*, X will have (d—1)* singular

points.

. (AT)

(a) Given compact oriented manifolds M and N, both of dimension n, define
the degree of a continuous map f: M — N.

(b) What are the possible degrees of continuous maps CP* — CP*? Justify
your answer.

Solution:

(a) The orientations determine isomorphisms H™(M;7Z) = Z and H"(N;7Z) =
Z, and the degree is given by the image of 1 € Z under the map
Z= H(N;Z) L5 H(M;Z) = Z.

(b) The degree may be any integer of the form A* for A € Z. The cohomology
ring of CP* is given by H*(CP*; Z) = Z[x]/(2°) with x in degree 2. Given
a continuous map f : CP* — CP*, let A € Z be such that f*(z) = \z.
Then we must have f*(z%) = f*(x)* = A\a?. This implies that the
degree of such a map must be of the form A\*.

To show that every integer of the form A* is the degree of a continu-
ous map f : CP* — CP*, we begin by noting that A may be assumed
nonnegative without loss of generality. Then the map

(Zy:Zo: Z3: Zy: Zs) v |27 : Zo : 23 - Z3 - Z2)

does the job.
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1. (DG) Let X be a compact Riemannian manifold.

(a) Let & be a smooth 1-form on X which is both d-closed and d*-closed. Let
A denote the Laplacian. Denote by || the pointwise norm of £&. Denote by
|V&| the pointwise norm of the covariant differential V& of £. Use the notation
Ricci for the Ricci tensor of X. Prove the following identity of Bochner on X

1
54 (1€]*) = |VE€? + Ricci(€, €)

by directly computing A (\f |2) and appropriately contracting the commuta-
tion formula for V,Vg¢ — V, Vg with £ to yield the Ricci term.

(b) Assume that the Ricci curvature is positive semidefinite everywhere on X
and is strictly positive at at least one point of X. By integrating Bochner’s
identity in (a) over X to prove that every harmonic 1-form on X must be
identically zero. Here harmonic means d-closed and d*-closed.

Solution. (a) We use the convention of summing over an index which occurs
both as a subscript and a superscript. Let g;; be the Riemannian metric of X
with Riemannian curvature tensor R!,, and Ricci curvature

ijk
_ pi
Ri; = ijk

Direct computation of the Laplacian of |¢|? yields

]‘ 1 rSs a rs _a rs _a
FAUE) = 507 VaVi(9"6a8s) = 979" V18 Vs + 679" (Vs Vi Ea) -

(The factor % occurs from differentiating a quadratic expression.) Contracting
the formula of commutation of covariant differentiation

ViV;& — V;iVi& = §eRfjk
with gij gkmgm yields

() §7g"En ViV & — g7 g MV Vil = g7 gM 6 RE = R



Use V;& = Vi€ (from d€ = 0) to change the first term of (x) to
979" EmViVi&s = ¢ 6n Vi (97 Vi&5) = 0

where ¢ V;£; = 0 comes from d*¢ = 0. Again, use V;& = V;¢; (from d€ = 0)
to change the second term of (x) to

g7 gFm e,V Vi = gV "€,V iV i),

which with a change of indices becomes ¢"*¢®(V,V,£,)&, so that we can
conclude that

% A(E%) = g"* 9" Vr€aV & — R €.
Thus, .
3O (I6) = V&P + Ricei(¢, €)

if d¢ =0 and d*¢ = 0. (The sign and notation convention for the components
of the curvature tensor follows Bochner’s original choice.)

(b) Integrating over X yields

/|V§2+/ Ricci(¢, £) = 0.
X X

If the Ricci curvature is positive semidefinite everywhere, then V& = 0 and £
is parallel. If the Ricci curvature is strictly positive at some point, ¢ has to
vanish at that point and the parallel property of £ implies that £ is identically
Z€ro.

. (RA) Suppose w : [0,1] — (0, 00) is a continuous function.

i) Prove that there exist unique monic polynomials pg, p1,p2, ... € R[z] such
that each p, has degree n and fol w(x) pm(x) pn(z)dz = 0 for all m,n > 0
such that m # n.

ii) Prove that for each n > 0 the four polynomials p,_1,pn, Tpn, Pnt1 are
linearly dependent.

Solution. i) Since w is a continuous real-valued function on a compact set, w
attains its infimum; since w takes values in (0, 00), this infimum is positive.
In particular it follows that (p,q) := fol w(z) p(z) g(x) dr defines an inner
product on R[z]. We can now argue by induction. Base case: pp must be 1.
For n > 0, assume we have proven existence and uniqueness of p,, for 0 < m <
n. These are linearly independent (the coefficient matrix is triangular with
1’s on the diagonal), and thus span the n-dimensional vector space P,,_1 of



polynomials of degree at most n— 1. Therefore the condition that (p,,, pn) =0
for each m < n means p,, is the orthogonal complement of P,,_1 in P,. This
complement has dimension (n+ 1) —n = 1, and intersects P, trivially (if p
is in the intersection then (p,p) = 0 so p = 0), so its nonzero elements have
nonzero =" coefficients. There is thus a unique choice of p, for which that
coefficient is 1.

ii) Since {py, : m < n+1} is a basis for P, 41, we can write zp,, = Zf;;lo AP

We claim a,,, = 0 for m < n—1. Indeed each a,, is determined by ., (Pm, Pm) =
(Pny Pm), but (ppn,Pm) = (Pn, Tpm) which is a positive multiple of the co-
efficient of p,, in the expansion of xp,, with respect to the orthogonal basis
D0, P1, P2, - .. for R[z]. If m < n —1 then degxp,, < n so p, does not occur in
this expansion, QED.

. (AG) Let I' C P™ be any closed algebraic variety.

1. Define the Hilbert function hp(m).

2. If ' = DN E C P? is the transverse intersection of plane curves D, E of
degrees d and e, what is the Hilbert function of I'?

Solution. For the first part, the Hilbert function hr(m) is defined to be the
codimension, in the space .S, of homogeneous polynomials of degree m on P",
of the mth graded piece I(I"),, of the homogeneous ideal I(T").

For the second, if D and F are the curves given by homogeneous polynomials

F and G, then the homogeneous ideal I(T") is generated by F' and Gj that is,
we have a surjective map

F.G
Sm—d @ Sm—e (41 I(F)m
The kernel of this map, moreover, is simply the image of the inclusion S, _q_. <
Sm—d ® Sm—e given by sending A € S,,,_4_e to (GA, —FA). Counting dimen-
sions, we have

he(m) m+ 2 m—d+ 2 m—e+2 . m—d—e+?2

m) = — —

. 2 2 2 2

(note that this is valid for all m, if we adopt the convention that the binomial
coefficient () is 0 when a < b).

. (AT) Let G = Z/m denote a finite cyclic group of odd order m. Suppose
that we are given a free action of G on S3. Compute the homology groups
with integer coefficients of of the orbit space M = S3/G.



Solution: By definition, M is a compact connected smooth manifold of di-
mension 3, and since S? is simply connected 7 M = G = Z/m. It follows that
Ho(M;Z) =2 Z and Hy(M;Z) = (71 M)ap, = Z/m.

Since m is odd, all maps mM = Z/m — 7/2 are zero, so that M must be
orientable. It follows from Poincaré duality that Hy(M;Z) = HY(M;7Z) =
Hom(m M, Z) = 0 and that H3(M;Z) = H°(M;Z) = Z. Finally, the homol-
ogy groups in degrees > 4 vanish for dimension reasons.

. (CA) Let f(z) be an entire function. Assume that for any zp € R, at least
one coefficient in the analytic expansion f(z) = > 7 cn(z — 20)™ around 2o
is equal to zero, i.e. ¢, = 0, for some n € Z>(. Prove that f is a polynomial.

Solution: By contradiction, assume f is not a polynomial. Observe that the
set of roots of any nonzero entire function is countable. Indeed, this follows
because the number of roots inside any compact subset of C is finite (otherwise
the roots would accumulate at some point, implying that the entire function
is identically zero). Therefore the set Zy of zeroes of f is countable. Moreover,
since f(z) is not a polynomial, then all higher derivatives f(™(z) are nonzero
and entire. Then the set Z,, of zeroes of f() is also countable, for any n € Z>q.
It follows that | J,,~y Zn is countable.

But by assumption, for any zgp € R, there exists some n € Z>o such that
f™(20) = n!- ¢, = 0. This implies that R C U,5¢ Zn, and so U,;>o Zn is
uncountable. We have reached a contradiction, as needed.

. (A) Let k be the finite field Z/13Z; let C' be the subgroup {1,5,8,12} of k*;
and let G be the group of 52 permutations of £ of the form g, :  — azx + b
where a € C and b € k. Let (V,p) be the permutation representation of G
acting on complex-valued functions on k, and x its associated character.

i) Determine x(gq) for all @ € C and b € g, and prove that (1,x) = 1 and

(x,x) = 4. Here 1 is the character of the trivial 1-dimensional representation
V1 of G.

ii) Deduce that V is the direct sum of four pairwise non-isomorphic irreducible
representations of G.

Solution. i) The character of a permutation representation takes any permu-
tation to its number of fixed points. If @ = 1 then g, fixes all elements of &
if b = 0, and none otherwise; so x(g15) = 13 or 0 according as b =0 or b # 0.



If a # 1 then there is a unique fixed point, so x(g1) = 1 for all b. Thus

1, %) |G|ZX 5(1:134+12:0+39-1) =
. x) \G|Z‘X (1 132 4+12-02439-1%) =4
geG

as claimed.

i) Let V = @iVi@n" be a decomposition of V' as a direct sum of irreducible
representations, with the V; pairwise distinct and V; the trivial representation.
Then ng = (1,x) = 1 and Y, n? = (x, x) = 4. Therefore >0 n?=4-1=3.
Since 22 = 4 > 3, this means that each multiplicity n; is either 0 or 1, so there
are three ¢ # 0 such that n; = 1 and all other multiplicities are zero.



