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1. (AG) Let V,W be complex vector spaces of dimensions m ≥ n ≥ 2, respec-
tively. Let PHom(V,W ) ∼= Pmn−1 be the projective space of nonzero linear
maps φ : V → W modulo scalars. Further, let Φ ⊂ PHom(V,W ) be the sub-
set of those linear maps φ which do not have full rank n. Prove that Φ is an
irreducible subvariety of Pmn−1 and find its dimension.

Solution: It’s convenient to realize PHom(V,W ) as the space of n×mmatrices.
If A ∈ Φ is a matrix of rank k, it can be written as A = C1R1, where C1, R1

are matrices of sizes n×k and k×m, respectively. Since k ≤ n−1, we can also
express A = CR, where C,R are matrices of sizes n× (n−1) and (n−1)×m,
respectively (add zeroes). Let X ∼= Pn(n−1)−1 and Y ∼= P(n−1)m−1 be the
projective spaces of n × (n − 1) and (n − 1) ×m matrices. Our observation
implies that the product morphism X × Y → Φ is surjective. The product
X × Y of projective spaces is irreducible and complete, so the image Φ is an
irreducible closed subset of Pmn−1. It remains to find its dimension.

If A has rank n−1 and A = CR = C ′R′ are two decompositions as above, then
C ′ = CG and R′ = G−1R, for some G ∈ GL(n − 1,C). Moreover, let Φ′ ⊂
Pmn−1 be the subset of matrices of rank ≤ n− 2; by a similar reasoning, this
is closed, and clearly is a proper subset of Φ, therefore dim(Φ) = dim(Φ \Φ′).
Take any A ∈ Φ \ Φ′, i.e. a matrix of rank = n − 1. Its fiber under the
surjective morphism X × Y → Φ is dim GL(n− 1,C) = (n− 1)2 − 1. Hence,
dim(Φ) = dim(X × Y ) − ((n − 1)2 − 1) = [n(n − 1) − 1] + [(n − 1)m − 1] −
[(n− 1)2 − 1] = mn−m+ n− 2.

2. (AT) Let Sn be the standard n-sphere

Sn = {(x0, . . . , xn) ∈ Rn+1 |
∑

x2
i = 1}

and let Sk ⊂ Sn be the locus defined by the vanishing of the last n − k
coordinates xk+1, . . . , xn. Assume n− 1 > k > 0.

1. Find the homology groups of the complement Sn \ Sk.
2. Suppose now that T ⊂ Sn is the sphere defined by the vanishing of the

first k coordinates; that is,

T = {(0, . . . 0, xk+1, . . . , xn) ∈ Rn+1 |
∑

x2
i = 1}.



What is the fundamental class of T in the homology group Hn−k−1(Sn \
Sk)?

Solution. The complement Sn \ Sk is the same as the complement Rn \Rk ∼=
Rk × (Rn−k \ {0}), so this has the homotopy type of Sn−k−1; accordingly we
have

Hm(Sn \ Sk) ∼=

{
Z, if m = 0 or m = n− k − 1; and

0 otherwise.

Moreover, under the contraction of Sn \ Sk to Sn−k−1 the sphere T is car-
ried isomorphically to Sn−k−1; so its fundamental class is the generator of
Hn−k−1(Sn \ Sk).

3. (CA) Compute ∫ 2π

0

1

(3 + cos θ)2
dθ

using contour integration.

Solution: Making the substitution z = eiθ, so that cos θ = z+z−1

2 , we obtain∫ 2π

0

1

(3 + cos θ)2
dθ =

∫
|z|=1

1

(3 + z+z−1

2 )2

dz

iz

=
4

i

∫
|z|=1

z

(z2 + 6z + 1)2
dz.

The polynomial z2+6z+1 has simple roots −3±2
√

2. Only the root −3+2
√

2
lies in the unit disk, so the residue theorem implies that∫ 2π

0

1

(3 + cos θ)2
dθ = 8π · resz=−3+2

√
2

(
z

(z2 + 6z + 1)2

)
= 8π lim

z→−3+2
√

2

∂

∂z

z

(z + 3 + 2
√

2)2

= 8π lim
z→−3+2

√
2

(
1

(z + 3 + 2
√

2)2
− 2z

(z + 3 + 2
√

2)3

)
= 8π

2 · 3
(4
√

2)3
=

3
√

2π

16
.



4. (A) Show that the symmetric group Sn has at least one Sylow p-subgroup
which is a cyclic group of order p. (You may use the fact that for any prime
p, there exists a prime in the interval (p, 2p).)

Solution: By the fact in parentheses, if we let p be the largest prime ≤ n, then
2p is greater than n. In other words, we have n

2 < p ≤ n. This ensures that
p | n! but p2 - n!, so we conclude that any p-Sylow subgroup must have order
p and is therefore a cyclic group.

5. (DG) Let X = T ∗C× = C× × C, where we write z, w for holomorphic coor-
dinates on the base and fiber, respectively. Find all time-1 periodic orbits of
the vector field V = Re(zw ∂

∂z ) – i.e., all points x ∈ X such that the time-1
flow of x under V is equal to x.

Solution: Let q be the locally-defined coordinate on the base given by q =
log(z), so that we can rewrite the vector field as Re(w ∂

∂q ). This vector field

preserves the fibers of the map T ∗C× → Cw, so we may study each fiber
individually. Write q = ξ + iθ. If w has nonzero real component, then the
vector field will have nontrivial ∂

∂ξ component, which acts as a translation
and cannot have periodic orbits. On the other hand, if w = ic ∈ iR, then the
vector field is −c ∂∂θ . In each such cylinder fiber {w = ic}, the vector field is a
rotation of the cylinder, and the points in the fiber will return to themselves
precisely if they complete an integral number of rotations.

Therefore, up to a normalization, the time-1 orbits of the vector field are
precisely all the points in the fibers {z ∈ C×, w ∈ 2πiZ}.

6. (RA) Let X1, X2, X3, . . . be independent and identically distributed random
variables with finite expected value µ and finite nonzero variance. Let

Xn =
1

n
(X1 + · · ·+Xn).

Use Chebyshev’s inequality to prove that Xn converges to µ in probability as
n→∞.

Solution. Let the variance of Xi be σ2. Then the expected value of Xn is is µ
and the variance of Xn is σ2

n . By Chebyshev’s inequality

P
(∣∣Xn − µ

∣∣ ≥ ε) ≤ σ2

nε2

for any ε > 0, which implies that Xn converges to µ in probability as n→∞.
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1. (CA) Let Ω ⊂ C denote the open set

Ω = {z : |z − 1| > 1 and |z − 3| < 3}.

Give a conformal isomorphism between Ω and the unit disk D = {z : |z| < 1}.

Solution: The conformal transformation z 7→ 1
z sends Ω to the open strip

S = {z : 1
6 < Re(z) < 1

2}. The conformal map z 7→ e3πi(z− 1
6

) transforms the
strip S to the upper half-plane, and z 7→ z−i

z+i sends the upper half plane to
the open unit disk.

Composing these, we obtain the desired conformal isomorphism

z 7→ e3πi( 1
z
− 1

6
) − i

e3πi( 1
z
− 1

6
) + i

.

2. (A) Let F = Q(z) where

z = cos
2π

13
+ cos

10π

13
.

i) Prove that [F : Q] = 3 and F/Q is a Galois extension.

ii) Prove that if p is a prime and p 6= 13 then p is unramified in F , and that
p is split in F if and only if p ≡ ±1 or ±5 mod 13.

Solution. i) Let w be the 13th root of unity exp(2πi/13), so

2z = w + w−1 + w5 + w−5;

and let K = Q(w). Then [K : Q] is the 13th cyclotomic extension, so it is
Galois and we can identify Gal(K/Q) with the group G = (Z/13Z)∗ so that
each c ∈ (Z/13Z)∗ acts by w 7→ wc. Now H := {±1,±5} ⊂ G is a subgroup
(note that 52 = −1 in Z/13Z), so c ∈ G fixes z if and only if c ∈ H [this uses
the fact that the minimal polynomial of z is (z13−1)/(z−1)], whence F is the
subfield of K fixed by H. Thus by a fundamental theorem of Galois theory
F/Q is Galois with group G/H, which proves the claim because [G : H] = 3.

ii) If p 6= 13 then p is unramified in K (the discriminant of the minimal



polynomial of w is ±1 times a power of 13 — in fact it is 1311). Then p
splits in F if and only if the p-Frobenius element of Gal(K/Q) is in H. But
this Frobenius element is identified with the residue of p mod 13 under our
identification of Gal(K/Q) with G = (Z/13Z)∗, because w goes to wp. Thus
p splits if and only if p mod 13 ∈ H = {±1,±5}, QED.

3. (DG) Let u 7→ τ(u), for a < u < b, be a smooth space curve in R3 with both
its curvature and torsion nowhere zero. Assume that the parameter u is the
arc-length of u 7→ τ(u). Suppose σ(v), for c < v < d, is a smooth function
with σ′(v) nowhere zero. Consider the surface S defined by

(u, v) 7→ ~r(u, v) = τ(u) + σ(v)τ ′(u)

for a < u < b and c < v < d. Compute the first and second fundamental
forms of S in terms of τ(u) and σ(v) and their derivatives. Determine the
condition on the function σ(v) so that the Gaussian curvature of the surface
S is identically zero.

Solution. Since the parameter u is the arc-length of u 7→ τ(u), the length
of τ ′(u) is identically 1 so that τ ′′(u) is perpendicular to τ ′(u). The first
fundamental form I = Edu2 + 2Fdudv +Gdv2 is given by

E = ~ru · ~ru =
(
τ ′(u) + σ(v)τ ′′(u)

)
·
(
τ ′(u) + σ(v)τ ′′(u)

)
= 1 + σ(v)2

(
τ ′′(u) · τ ′′(u)

)
F = ~ru · ~rv =

(
τ ′(u) + σ(v)τ ′′(u)

)
· σ′(v)τ ′(u) = σ′(v)

G = ~rv · ~rv = σ′(v)τ ′(u) · σ′(v)τ ′(u) = σ′(v)2

so that
DG− F 2 = σ(v)2σ′(v)2

(
τ ′′(u) · τ ′′(u)

)
.

To compute the unit normal vector ~n, we compute

~ru × ~rv =
(
τ ′(u) + σ(v)τ ′′(u)

)
× σ′(v)τ ′(u) = −σ(v)σ′(v)τ ′(u)× τ ′′(u)

to form

~n = −τ ′(u)× τ ′′(u)

‖τ ′′(u)‖
because ‖~ru × ~rv‖ =

√
EG− F 2. It means that

~n, τ ′(u),
τ ′′(u)

‖τ ′′(u)‖
form an orthonormal frame. To obtain the coefficients L,M,N of the second
fundamental form II = Ldu2 + 2Mdudv + Ndv2, we compute the partial
derivatives of the radius vector ~r of order 2,

~ruu = τ ′′(u) + σ(v)τ ′′′(u),

~ruv = σ′(v)τ ′′(u),

~rvv = σ′′(v)τ ′(u),



so that
L = ~ruu · ~n =

(
τ ′′(u) + σ(v)τ ′′′(u)

)
· ~n

= −σ(v)(τ ′′(u)× τ ′′′(u)

||τ ′′||
M = ~ruu · ~n =

(
σ′(v)τ ′′(u)

)
· ~n = 0,

N = ~ruu · ~n =
(
σ′′(v)τ ′(u)

)
· ~n = 0.

The Gaussian curvature
LN −M2

EG− F 2

is always zero for any function σ(v).

Remark. With use of the more general function σ(v) instead of σ(v) = v, this
problem is simply the statement, in disguise, that the tangent developable
surface has zero Gaussian curvature.

4. (RA) Let V be the vector space of continuous functions [0, 1] → R, and let
g : V → R be the linear functional f 7→

∫ 1
0 x
−1/3f(x) dx. For which p ∈ (1,∞)

does g extend to a continuous functional g : Lp([0, 1])→ R? For those p, what
is the norm of this functional?

Solution. Let q = p/(p−1), so 1/p+1/q = 1. Using the isometric identification
of Lq([0, 1]) with the dual of Lp([0, 1]), we see that there is such a continuous
functional g if and only if x−1/3 is an Lq function, in which case ‖g‖ is the
Lq norm of that function. Now x−1/3 is in Lq([0, 1]) ⇔

∫ 1
0 x
−q/3 dx < ∞ ⇔

−q/3 > −1 ⇔ q < 3 ⇔ p > 3/2. For such p, the the Lq norm of x−1/3 is(∫ 1

0
x−q/3 dx

)1/q

=

(
3

3− q

)1/q

.

[We do not require the rewriting of 3/(3 − q) as (3p − 3)/(2p − 3), or of 1/q
as (p− 1)/p.]

5. (AG) Let X ⊂ Pn be any hypersurface of degree d ≥ 2, and Λ ⊂ X ⊂ Pn a
k-plane in Pn contained in X.

1. Show that if k ≥ n/2, then X is necessarily singular.

2. If k = n/2 and X ⊂ Pn is a general hypersurface containing a k-plane,
describe the singular locus of X.



Solution. For the first, suppose that Λ = {[X0, . . . , Xk, 0, . . . , 0]} is defined by
the vanishing of the last n − k coordinates; suppose that X is the zero locus
of the homogeneous polynomial F (X0, . . . , Xn). At any point of Λ, we have

∂F

∂Xi
= 0 for i = 1, . . . , k

and since k ≥ n − k, by Bezout the remaining partial derivatives ∂F
∂Xi

with
i = k+ 1, . . . , n must have a common zero in Λ; thus X is singular. This also
answers the second question: if X is general, then since the partial derivatives
∂F
∂Xi

are general polynomials of degree d−1 on Pk, X will have (d−1)k singular
points.

6. (AT)

(a) Given compact oriented manifolds M and N , both of dimension n, define
the degree of a continuous map f : M → N .

(b) What are the possible degrees of continuous maps CP4 → CP4? Justify
your answer.

Solution:

(a) The orientations determine isomorphismsHn(M ;Z) ∼= Z andHn(N ;Z) ∼=
Z, and the degree is given by the image of 1 ∈ Z under the map

Z ∼= Hn(N ;Z)
f∗−→ Hn(M ;Z) ∼= Z.

(b) The degree may be any integer of the form λ4 for λ ∈ Z. The cohomology
ring of CP4 is given by H∗(CP4;Z) ∼= Z[x]/(x5) with x in degree 2. Given
a continuous map f : CP4 → CP4, let λ ∈ Z be such that f∗(x) = λx.
Then we must have f∗(x4) = f∗(x)4 = λ4x4. This implies that the
degree of such a map must be of the form λ4.

To show that every integer of the form λ4 is the degree of a continu-
ous map f : CP4 → CP4, we begin by noting that λ may be assumed
nonnegative without loss of generality. Then the map

[Z1 : Z2 : Z3 : Z4 : Z5] 7→ [Zλ1 : Zλ2 : Zλ3 : Zλ4 : Zλ5 ]

does the job.
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1. (DG) Let X be a compact Riemannian manifold.

(a) Let ξi be a smooth 1-form on X which is both d-closed and d∗-closed. Let
∆ denote the Laplacian. Denote by |ξ| the pointwise norm of ξ. Denote by
|∇ξ| the pointwise norm of the covariant differential ∇ξ of ξ. Use the notation
Ricci for the Ricci tensor of X. Prove the following identity of Bochner on X

1

2
∆
(
|ξ|2
)

= |∇ξ|2 + Ricci(ξ, ξ)

by directly computing ∆
(
|ξ|2
)

and appropriately contracting the commuta-
tion formula for ∇α∇βξ −∇α∇βξ with ξ to yield the Ricci term.

(b) Assume that the Ricci curvature is positive semidefinite everywhere on X
and is strictly positive at at least one point of X. By integrating Bochner’s
identity in (a) over X to prove that every harmonic 1-form on X must be
identically zero. Here harmonic means d-closed and d∗-closed.

Solution. (a) We use the convention of summing over an index which occurs
both as a subscript and a superscript. Let gij be the Riemannian metric of X
with Riemannian curvature tensor R`ijk and Ricci curvature

Rij = Riijk.

Direct computation of the Laplacian of |ξ|2 yields

1

2
∆(|ξ|2) =

1

2
grs∇s∇r(gabξaξb) = grsgab∇rξa∇sξb + grsgab(∇s∇rξa)ξb.

(The factor 1
2 occurs from differentiating a quadratic expression.) Contracting

the formula of commutation of covariant differentiation

∇k∇jξi −∇j∇kξi = ξ`R
`
ijk

with gijgkmξm yields

(∗) gijgkmξm∇k∇jξi − gijgkmξm∇j∇kξi = gijgkmξmξ`R
`
ijk = R`mξ`ξm.



Use ∇jξi = ∇iξj (from dξ = 0) to change the first term of (∗) to

gijgkmξm∇k∇iξj = gkmξm∇k
(
gij∇iξj

)
= 0

where gij∇iξj = 0 comes from d∗ξ = 0. Again, use ∇jξi = ∇iξj (from dξ = 0)
to change the second term of (∗) to

gijgkmξm∇j∇kξi = gijgkmξm∇j∇iξk

which with a change of indices becomes grsgab(∇s∇rξa)ξb so that we can
conclude that

1

2
∆(|ξ|2) = grsgab∇rξa∇sξb −R`mξ`ξm.

Thus,
1

2
∆
(
|ξ|2
)

= |∇ξ|2 + Ricci(ξ, ξ)

if dξ = 0 and d∗ξ = 0. (The sign and notation convention for the components
of the curvature tensor follows Bochner’s original choice.)

(b) Integrating over X yields∫
X
|∇ξ|2 +

∫
X

Ricci(ξ, ξ) = 0.

If the Ricci curvature is positive semidefinite everywhere, then ∇ξ = 0 and ξ
is parallel. If the Ricci curvature is strictly positive at some point, ξ has to
vanish at that point and the parallel property of ξ implies that ξ is identically
zero.

2. (RA) Suppose w : [0, 1]→ (0,∞) is a continuous function.

i) Prove that there exist unique monic polynomials p0, p1, p2, . . . ∈ R[x] such
that each pn has degree n and

∫ 1
0 w(x) pm(x) pn(x) dx = 0 for all m,n ≥ 0

such that m 6= n.

ii) Prove that for each n > 0 the four polynomials pn−1, pn, xpn, pn+1 are
linearly dependent.

Solution. i) Since w is a continuous real-valued function on a compact set, w
attains its infimum; since w takes values in (0,∞), this infimum is positive.
In particular it follows that (p, q) :=

∫ 1
0 w(x) p(x) q(x) dx defines an inner

product on R[x]. We can now argue by induction. Base case: p0 must be 1.
For n > 0, assume we have proven existence and uniqueness of pm for 0 ≤ m <
n. These are linearly independent (the coefficient matrix is triangular with
1’s on the diagonal), and thus span the n-dimensional vector space Pn−1 of



polynomials of degree at most n−1. Therefore the condition that (pm, pn) = 0
for each m < n means pn is the orthogonal complement of Pn−1 in Pn. This
complement has dimension (n+ 1)− n = 1, and intersects Pn−1 trivially (if p
is in the intersection then (p, p) = 0 so p = 0), so its nonzero elements have
nonzero xn coefficients. There is thus a unique choice of pn for which that
coefficient is 1.

ii) Since {pm : m ≤ n+1} is a basis for Pn+1, we can write xpn =
∑n+1

m=0 ampm.
We claim am = 0 form < n−1. Indeed each am is determined by am(pm, pm) =
(xpn, pm), but (xpn, pm) = (pn, xpm) which is a positive multiple of the co-
efficient of pn in the expansion of xpm with respect to the orthogonal basis
p0, p1, p2, . . . for R[x]. If m < n− 1 then deg xpm < n so pn does not occur in
this expansion, QED.

3. (AG) Let Γ ⊂ Pn be any closed algebraic variety.

1. Define the Hilbert function hΓ(m).

2. If Γ = D ∩ E ⊂ P2 is the transverse intersection of plane curves D,E of
degrees d and e, what is the Hilbert function of Γ?

Solution. For the first part, the Hilbert function hΓ(m) is defined to be the
codimension, in the space Sm of homogeneous polynomials of degree m on Pn,
of the mth graded piece I(Γ)m of the homogeneous ideal I(Γ).

For the second, if D and E are the curves given by homogeneous polynomials
F and G, then the homogeneous ideal I(Γ) is generated by F and G; that is,
we have a surjective map

Sm−d ⊕ Sm−e
(F,G)- I(Γ)m.

The kernel of this map, moreover, is simply the image of the inclusion Sm−d−e ↪→
Sm−d ⊕ Sm−e given by sending A ∈ Sm−d−e to (GA,−FA). Counting dimen-
sions, we have

hΓ(m) =

(
m+ 2

2

)
−
(
m− d+ 2

2

)
−
(
m− e+ 2

2

)
+

(
m− d− e+ 2

2

)
(note that this is valid for all m, if we adopt the convention that the binomial
coefficient

(
a
b

)
is 0 when a < b).

4. (AT) Let G = Z/m denote a finite cyclic group of odd order m. Suppose
that we are given a free action of G on S3. Compute the homology groups
with integer coefficients of of the orbit space M = S3/G.



Solution: By definition, M is a compact connected smooth manifold of di-
mension 3, and since S3 is simply connected π1M ∼= G = Z/m. It follows that
H0(M ;Z) ∼= Z and H1(M ;Z) ∼= (π1M)ab

∼= Z/m.

Since m is odd, all maps π1M ∼= Z/m → Z/2 are zero, so that M must be
orientable. It follows from Poincaré duality that H2(M ;Z) ∼= H1(M ;Z) ∼=
Hom(π1M,Z) = 0 and that H3(M ;Z) ∼= H0(M ;Z) ∼= Z. Finally, the homol-
ogy groups in degrees ≥ 4 vanish for dimension reasons.

5. (CA) Let f(z) be an entire function. Assume that for any z0 ∈ R, at least
one coefficient in the analytic expansion f(z) =

∑∞
n=0 cn(z − z0)n around z0

is equal to zero, i.e. cn = 0, for some n ∈ Z≥0. Prove that f is a polynomial.

Solution: By contradiction, assume f is not a polynomial. Observe that the
set of roots of any nonzero entire function is countable. Indeed, this follows
because the number of roots inside any compact subset of C is finite (otherwise
the roots would accumulate at some point, implying that the entire function
is identically zero). Therefore the set Z0 of zeroes of f is countable. Moreover,
since f(z) is not a polynomial, then all higher derivatives f (n)(z) are nonzero
and entire. Then the set Zn of zeroes of f (n) is also countable, for any n ∈ Z≥1.
It follows that

⋃
n≥0 Zn is countable.

But by assumption, for any z0 ∈ R, there exists some n ∈ Z≥0 such that
f (n)(z0) = n! · cn = 0. This implies that R ⊂

⋃
n≥0 Zn, and so

⋃
n≥0 Zn is

uncountable. We have reached a contradiction, as needed.

6. (A) Let k be the finite field Z/13Z; let C be the subgroup {1, 5, 8, 12} of k∗;
and let G be the group of 52 permutations of k of the form ga,b : x 7→ ax+ b
where a ∈ C and b ∈ k. Let (V, ρ) be the permutation representation of G
acting on complex-valued functions on k, and χ its associated character.
i) Determine χ(ga,b) for all a ∈ C and b ∈ g, and prove that 〈1, χ〉 = 1 and

〈χ, χ〉 = 4. Here 1 is the character of the trivial 1-dimensional representation
V1 of G.
ii) Deduce that V is the direct sum of four pairwise non-isomorphic irreducible
representations of G.

Solution. i) The character of a permutation representation takes any permu-
tation to its number of fixed points. If a = 1 then ga,b fixes all elements of k
if b = 0, and none otherwise; so χ(g1,b) = 13 or 0 according as b = 0 or b 6= 0.



If a 6= 1 then there is a unique fixed point, so χ(g1,b) = 1 for all b. Thus

〈1, χ〉 =
1

|G|
∑
g∈G

χ(g) =
1

52
(1 · 13 + 12 · 0 + 39 · 1) = 1,

〈χ, χ〉 =
1

|G|
∑
g∈G
|χ(g)|2 =

1

52
(1 · 132 + 12 · 02 + 39 · 12) = 4

as claimed.

ii) Let V = ⊕iV ⊕ni
i be a decomposition of V as a direct sum of irreducible

representations, with the Vi pairwise distinct and V1 the trivial representation.
Then n0 = 〈1, χ〉 = 1 and

∑
i n

2
i = 〈χ, χ〉 = 4. Therefore

∑
i 6=0 n

2
i = 4−1 = 3.

Since 22 = 4 > 3, this means that each multiplicity ni is either 0 or 1, so there
are three i 6= 0 such that ni = 1 and all other multiplicities are zero.


