QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Tuesday August 30, 2022 (Day 1)

1. (AG) Let V, W be complex vector spaces of dimensions $m \geq n \geq 2$, respectively. Let $\mathbb{P H o m}(V, W) \cong \mathbb{P}^{m n-1}$ be the projective space of nonzero linear maps $\phi: V \rightarrow W$ modulo scalars. Further, let $\Phi \subset \mathbb{P H o m}(V, W)$ be the subset of those linear maps ϕ which do not have full rank n. Prove that Φ is an irreducible subvariety of $\mathbb{P}^{m n-1}$ and find its dimension.
2. (AT) Let S^{n} be the standard n-sphere

$$
S^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1} \mid \sum x_{i}^{2}=1\right\}
$$

and let $S^{k} \subset S^{n}$ be the locus defined by the vanishing of the last $n-k$ coordinates x_{k+1}, \ldots, x_{n}. Assume $n-1>k>0$.

1. Find the homology groups of the complement $S^{n} \backslash S^{k}$.
2. Suppose now that $T \subset S^{n}$ is the sphere defined by the vanishing of the first k coordinates; that is,

$$
T=\left\{\left(0, \ldots 0, x_{k+1}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1} \mid \sum x_{i}^{2}=1\right\} .
$$

What is the fundamental class of T in the homology group $H_{n-k-1}\left(S^{n} \backslash\right.$ $\left.S^{k}\right)$?
3. (CA) Compute

$$
\int_{0}^{2 \pi} \frac{1}{(3+\cos \theta)^{2}} d \theta
$$

using contour integration.
4. (A) Show that the symmetric group S_{n} has at least one Sylow p-subgroup which is a cyclic group of order p. (You may use the fact that for any prime p, there exists a prime in the interval $(p, 2 p)$.)
5. (DG) Let $X=T^{*} \mathbb{C}^{\times}=\mathbb{C}^{\times} \times \mathbb{C}$, where we write z, w for holomorphic coordinates on the base and fiber, respectively. Find all time-1 periodic orbits of the vector field $V=\operatorname{Re}\left(z w \frac{\partial}{\partial z}\right)$ - i.e., all points $x \in X$ such that the time- 1 flow of x under V is equal to x.
6. (RA) Let $X_{1}, X_{2}, X_{3}, \ldots$ be independent and identically distributed random variables with finite expected value μ and finite nonzero variance. Let

$$
\overline{X_{n}}=\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right) .
$$

Use Chebyshev's inequality to prove that $\overline{X_{n}}$ converges to μ in probability as $n \rightarrow \infty$.

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Wednesday August 31, 2022 (Day 2)

1. (CA) Let $\Omega \subset \mathbb{C}$ denote the open set

$$
\Omega=\{z:|z-1|>1 \text { and }|z-3|<3\} .
$$

Give a conformal isomorphism between Ω and the unit disk $D=\{z:|z|<1\}$.
2. (A) Let $F=\mathbb{Q}(z)$ where

$$
z=\cos \frac{2 \pi}{13}+\cos \frac{10 \pi}{13}
$$

i) Prove that $[F: \mathbb{Q}]=3$ and F / \mathbb{Q} is a Galois extension.
ii) Prove that if p is a prime and $p \neq 13$ then p is unramified in F, and that p is split in F if and only if $p \equiv \pm 1$ or $\pm 5 \bmod 13$.
3. (DG) Let $u \mapsto \tau(u)$, for $a<u<b$, be a smooth space curve in \mathbb{R}^{3} with both its curvature and torsion nowhere zero. Assume that the parameter u is the arc-length of $u \mapsto \tau(u)$. Suppose $\sigma(v)$, for $c<v<d$, is a smooth function with $\sigma^{\prime}(v)$ nowhere zero. Consider the surface S defined by

$$
(u, v) \mapsto \vec{r}(u, v)=\tau(u)+\sigma(v) \tau^{\prime}(u)
$$

for $a<u<b$ and $c<v<d$. Compute the first and second fundamental forms of S in terms of $\tau(u)$ and $\sigma(v)$ and their derivatives. Determine the condition on the function $\sigma(v)$ so that the Gaussian curvature of the surface S is identically zero.
4. (RA) Let V be the vector space of continuous functions $[0,1] \rightarrow \mathbb{R}$, and let $g: V \rightarrow \mathbb{R}$ be the linear functional $f \mapsto \int_{0}^{1} x^{-1 / 3} f(x) d x$. For which $p \in(1, \infty)$ does g extend to a continuous functional $\bar{g}: L^{p}([0,1]) \rightarrow \mathbb{R}$? For those p, what is the norm of this functional?
5. (AG) Let $X \subset \mathbb{P}^{n}$ be any hypersurface of degree $d \geq 2$, and $\Lambda \subset X \subset \mathbb{P}^{n}$ a k-plane in \mathbb{P}^{n} contained in X.

1. Show that if $k \geq n / 2$, then X is necessarily singular.
2. If $k=n / 2$ and $X \subset \mathbb{P}^{n}$ is a general hypersurface containing a k-plane, describe the singular locus of X.
3. (AT)
(a) Given compact oriented manifolds M and N, both of dimension n, define the degree of a continuous map $f: M \rightarrow N$.
(b) What are the possible degrees of continuous maps $\mathbb{C P}^{4} \rightarrow \mathbb{C P}^{4}$? Justify your answer.

QUALIFYING EXAMINATION

Harvard University

Department of Mathematics
Thursday September 1, 2022 (Day 3)

1. (DG) Let X be a compact Riemannian manifold.
(a) Let ξ_{i} be a smooth 1 -form on X which is both d-closed and d^{*}-closed. Let Δ denote the Laplacian. Denote by $|\xi|$ the pointwise norm of ξ. Denote by $|\nabla \xi|$ the pointwise norm of the covariant differential $\nabla \xi$ of ξ. Use the notation Ricci for the Ricci tensor of X. Prove the following identity of Bochner on X

$$
\frac{1}{2} \Delta\left(|\xi|^{2}\right)=|\nabla \xi|^{2}+\operatorname{Ricci}(\xi, \xi)
$$

by directly computing $\Delta\left(|\xi|^{2}\right)$ and appropriately contracting the commutation formula for $\nabla_{\alpha} \nabla_{\beta} \xi-\nabla_{\alpha} \nabla_{\beta} \xi$ with ξ to yield the Ricci term.
(b) Assume that the Ricci curvature is positive semidefinite everywhere on X and is strictly positive at at least one point of X. By integrating Bochner's identity in (a) over X to prove that every harmonic 1 -form on X must be identically zero. Here harmonic means d-closed and d^{*}-closed.
2. (RA) Suppose $w:[0,1] \rightarrow(0, \infty)$ is a continuous function.
i) Prove that there exist unique monic polynomials $p_{0}, p_{1}, p_{2}, \ldots \in \mathbb{R}[x]$ such that each p_{n} has degree n and $\int_{0}^{1} w(x) p_{m}(x) p_{n}(x) d x=0$ for all $m, n \geq 0$ such that $m \neq n$.
ii) Prove that for each $n>0$ the four polynomials $p_{n-1}, p_{n}, x p_{n}, p_{n+1}$ are linearly dependent.
3. (AG) Let $\Gamma \subset \mathbb{P}^{n}$ be any closed algebraic variety.

1. Define the Hilbert function $h_{\Gamma}(m)$.
2. If $\Gamma=D \cap E \subset \mathbb{P}^{2}$ is the transverse intersection of plane curves D, E of degrees d and e, what is the Hilbert function of Γ ?
3. (AT) Let $G=\mathbb{Z} / m$ denote a finite cyclic group of odd order m. Suppose that we are given a free action of G on S^{3}. Compute the homology groups with integer coefficients of of the orbit space $M=S^{3} / G$.
4. (CA) Let $f(z)$ be an entire function. Assume that for any $z_{0} \in \mathbb{R}$, at least one coefficient in the analytic expansion $f(z)=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ around z_{0} is equal to zero, i.e. $c_{n}=0$, for some $n \in \mathbb{Z}_{\geq 0}$. Prove that f is a polynomial.
5. (A) Let k be the finite field $\mathbb{Z} / 13 \mathbb{Z}$; let C be the subgroup $\{1,5,8,12\}$ of k^{*}; and let G be the group of 52 permutations of k of the form $g_{a, b}: x \mapsto a x+b$ where $a \in C$ and $b \in k$. Let (V, ρ) be the permutation representation of G acting on complex-valued functions on k, and χ its associated character.
6. i) Determine $\chi\left(g_{a, b}\right)$ for all $a \in C$ and $b \in g$, and prove that $\langle\mathbf{1}, \chi\rangle=1$ and $\langle\chi, \chi\rangle=4$. Here $\mathbf{1}$ is the character of the trivial 1-dimensional representation V_{1} of G.
7. Deduce that V is the direct sum of four pairwise non-isomorphic irreducible representations of G.
