QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Tuesday September 2, 2014 (Day 1)

1. (AG) For any $0 < k < m \leq n \in \mathbb{Z}$, let $M \cong \mathbb{P}^{nm-1}$ be the space of nonzero $m \times n$ matrices mod scalars, and let $M_k \subset M$ be the subset of matrices of rank k or less.

(a) Show that M_k is closed in M (in the Zariski topology).
(b) Show that M_k is irreducible.
(c) What is the dimension of M_k?
(d) What is the degree of M_1?

2. (A) Let S_3 be the group of automorphisms of a 3-element set.

(a) Classify the conjugacy classes of S_3.
(b) Classify the irreducible representations of S_3.
(c) Write the character table for S_3.

3. (DG) Let x, y, z be the standard coordinates on \mathbb{R}^3. Consider the unit sphere $S^2 \subset \mathbb{R}^3$.

1. Compute the critical points of the function $x|_{S^2}$. Show that they are isolated and non-degenerate.
2. Equip S^2 with the standard metric induced from \mathbb{R}^3. Compute the gradient vector field of $x|_{S^2}$. Compute the integral curves of this vector field.

4. (RA)

Find a solution for the heat equation

$$\frac{\partial}{\partial t} u(x, t) - \frac{\partial^2}{\partial x^2} u(x, t) = 0, \quad (t > 0, \quad 0 < x < 1),$$

with the initial condition $u(x, 0) = A$ where A is a constant and the boundary conditions $u(0, t) = u(1, t) = 0, \quad t > 0$.

5. (AT)

(a) Show that a continuous map $f : X \to \mathbb{R}P^n$ factors through $S^n \to \mathbb{R}P^n$ if and only if the induced map $f^* : H^1(\mathbb{R}P^n, \mathbb{Z}/2) \to H^1(X, \mathbb{Z}/2)$ is zero.
(b) Show that a continuous map \(f : X \to \mathbb{CP}^n \) factors through \(S^{2n+1} \to \mathbb{CP}^n \) if and only if the induced map \(f^* : H^2(\mathbb{CP}^n; \mathbb{Z}) \to H^2(X, \mathbb{Z}) \) is zero.

6. (CA) Let \(f \) be a meromorphic function on a contractible region \(U \subset \mathbb{C} \), and let \(\gamma \) be a simple closed curve inside that region. Recall that the argument principle for a meromorphic function says that the integral

\[
\frac{1}{2\pi i} \oint_{\gamma} \frac{f'}{f}
\]

is equal to the number of zeroes minus the number of poles of \(f \) inside \(\gamma \).

(a) Prove Rouché's Theorem. That is, assume (1) \(f \) and \(g \) are holomorphic in \(U \), (2) \(\gamma \) is a simple, smooth, closed curve in \(U \), and (3) \(|f| > |g|\) on \(\gamma \). Then the number of zeroes of \(f + g \) inside \(\gamma \) is equal to the number of zeroes of \(f \) inside \(\gamma \). You may assume the Argument Principle.

(b) Show that for any \(n \), the roots of the polynomial

\[
\sum_{i=0}^{n} z^i
\]

all have absolute value less than 2.
1. (AT)
 (a) Let X and Y be compact, oriented manifolds of the same dimension n. Define the degree of a continuous map $f : X \to Y$.
 (b) What are all possible degrees of continuous maps $f : \mathbb{CP}^3 \to \mathbb{CP}^3$?

2. (A)
 (a) Show that every finite extension of a finite field is simple (i.e., generated by attaching a single element).
 (b) Fix a prime $p \geq 2$ and let \mathbb{F}_p be the field of cardinality p. For any $n \geq 1$, show that any two fields of degree n over \mathbb{F}_p are isomorphic as fields.

3. (CA) Fix two positive real numbers $a, b > 0$. Calculate the value of the integral
 \[
 \int_{-\infty}^{\infty} \frac{\cos(ax) - \cos(bx)}{x^2} \, dx.
 \]

4. (AG) Let $C \subset \mathbb{P}^2$ be the smooth plane curve of degree $d > 1$ defined by the homogeneous polynomial $F(X,Y,Z) = 0$
 (a) If $p \in C$, find the homogeneous linear equation of the tangent line $T_p C \subset \mathbb{P}^2$ to C at p.
 (b) Let \mathbb{P}^{2*} be the dual projective plane, whose points correspond to lines in \mathbb{P}^2. Show that the Gauss map $g : C \to \mathbb{P}^{2*}$ sending each point $p \in C$ to its tangent line $T_p C \subset \mathbb{P}^{2*}$ is a regular map.
 (c) Let $C^* \subset \mathbb{P}^{2*}$ be the dual curve of C; that is, the image of the Gauss map. Assuming that the Gauss map is birational onto its image, what is the degree of $C^* \subset \mathbb{P}^{2*}$?

5. (DG) Let U the be upper half plane $U = \{(x,y) \in \mathbb{R}^2 | y > 0\}$ and introduce the Poincaré metric
 \[
 g = y^{-2}(dx \otimes dx + dy \otimes dy).
 \]
 Write the geodesic equations.

6. (RA)
 (a) Define what is meant by an equicontinuous sequence of functions on the closed interval $[-1, 1] \subset \mathbb{R}$.
(b) Prove the Arzela-Ascoli theorem: that if \(\{f_n\}_{n=1,2,...} \) is a bounded, equicontinuous sequence of functions on \([-1,1]\), then there exists a continuous function \(f \) on \([-1,1]\) and an infinite subsequence \(\Lambda \subset \{1,2,\ldots\} \) such that

\[
\lim_{n \in \Lambda \text{ and } n \to \infty} \left(\sup_{t \in [-1,1]} |f_n(t) - f(t)| \right) = 0
\]
1. (DG) The symplectic group $Sp(2n, \mathbb{R})$ is defined as the subgroup of $Gl(2n, \mathbb{R})$ that preserves the matrix
\[
\Omega = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}
\]
where I_n is the $n \times n$ identity matrix. That is, it is composed of elements of $Gl(2n, \mathbb{R})$ that satisfy the relation
\[
M^T \Omega M = \Omega.
\]
(a) Show that every symplectic matrix is invertible with inverse $M^{-1} = \Omega^{-1} M^T \Omega$.
(b) Show that the square of the determinant of a symplectic metric is 1. (In fact, the determinant of a symplectic matrix is always 1, but you don’t need to show this.)
(c) Compute the dimension of the symplectic group.

2. (RA) Suppose that σ is a positive number and f is a non-negative function on \mathbb{R} such that
\[
\int_{\mathbb{R}} f(x) dx = 1; \quad \int_{\mathbb{R}} x f(x) dx = 0 \quad \text{and} \quad \int_{\mathbb{R}} x^2 f(x) dx = \sigma^2.
\]
Let \mathcal{P} denote the probability measure on \mathbb{R} with density function f.
(a) Supposing that ρ is a positive number, give a non-trivial upper bound in terms of σ for the probability as measured by \mathcal{P} of the subset $[\rho, \infty)$.
(b) Given a positive integer N, let $\{X_1, \ldots, X_N\}$ denote N independent random variables on \mathbb{R}, each with the same probability measure \mathcal{P}. Let S_N be the random variable on \mathbb{R}^N given by
\[
S_N = \frac{1}{N} \sum_{i=1}^{N} X_i.
\]
What are the mean and standard deviation of S_N?
(c) Let $\{X_1, X_2, \ldots, X_N\}$ be independent random variables on \mathbb{R}, each with the same probability measure \mathcal{P}, and let $F_N(x)$ denote the function on \mathbb{R} given by the probability that
\[
\frac{1}{\sqrt{N}} \sum_{k=1}^{N} X_k < x.
\]
Given $x \in \mathbb{R}$, what is the limit as $N \to \infty$ of the sequence $\{P_N(x)\}$?

3. (AG) Let X be the blow-up of \mathbb{P}^2 at a point.
 (a) Show that the surfaces \mathbb{P}^2, $\mathbb{P}^1 \times \mathbb{P}^1$ and X are all birational.
 (b) Prove that no two of the surfaces \mathbb{P}^2, $\mathbb{P}^1 \times \mathbb{P}^1$ and X are isomorphic.

4. (AT) Suppose that G is a finite group whose abelianization is trivial. Suppose also that G acts freely on S^3. Compute the homology groups (with integer coefficients) of the orbit space $M = S^3/G$.

5. (CA) Recall that a function $u : \mathbb{R}^2 \to \mathbb{R}$ is called harmonic if $\Delta u := \partial^2 u + \partial^2 u = 0$. Prove the following statements using harmonic conjugates and standard complex analysis.
 (a) Show that the average value of a harmonic function along a circle is equal to the value of the harmonic function at the center of the circle.
 (b) Show that the maximum value of a harmonic function on a closed disk occurs only on the boundary, unless u is constant.

6. (A) Let G be a finite group.
 (a) Let V be any \mathbb{C}-representation of G. Show that V admits a Hermitian, G-invariant inner product.
 (b) Let N be a $\mathbb{C}[G]$-module which is finite-dimensional over \mathbb{C}, and let $M \subset N$ a submodule. Show that the inclusion splits.
 (c) Consider the action of S_3 on \mathbb{C}^3 given by permuting the axes. Decompose \mathbb{C}^3 into irreducible S_3-representations.