QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Tuesday September 2, 2014 (Day 1)

- 1. (AG) For any $0 < k < m \le n \in \mathbb{Z}$, let $M \cong \mathbb{P}^{mn-1}$ be the space of nonzero $m \times n$ matrices mod scalars, and let $M_k \subset M$ be the subset of matrices of rank k or less.
 - (a) Show that M_k is closed in M (in the Zariski topology).
 - (b) Show that M_k is irreducible.
 - (c) What is the dimension of M_k ?
 - (d) What is the degree of M_1 ?
- 2. (A) Let S_3 be the group of automorphisms of a 3-element set.
 - (a) Classify the conjugacy classes of S_3 .
 - (b) Classify the irreducible representations of S_3 .
 - (c) Write the character table for S_3 .
- 3. (DG) Let x, y, z be the standard coordinates on \mathbb{R}^3 . Consider the unit sphere $\mathbb{S}^2 \subset \mathbb{R}^3$.
 - 1. Compute the critical points of the function $x|_{\mathbb{S}^2}$. Show that they are isolated and non-degenerate.
 - 2. Equip \mathbb{S}^2 with the standard metric induced from \mathbb{R}^3 . Compute the gradient vector field of $x|_{\mathbb{S}^2}$. Compute the integral curves of this vector field.

4. (RA)

Find a solution for the heat equation

$$\frac{\partial}{\partial t}u(x,t) - \frac{\partial^2}{\partial x^2}u(x,t) = 0, \quad (t > 0, \quad 0 < x < 1),$$

with the initial condition u(x,0)=A where A is a constant and the boundary conditions $u(0,t)=u(1,t)=0,\quad t>0.$

5. (AT)

(a) Show that a continuous map $f: X \to \mathbb{RP}^n$ factors through $S^n \to \mathbb{RP}^n$ if and only if the induced map $f^*: H^1(\mathbb{RP}^n; \mathbb{Z}/2) \to H^1(X, \mathbb{Z}/2)$ is zero.

- (b) Show that a continuous map $f: X \to \mathbb{CP}^n$ factors through $S^{2n+1} \to \mathbb{CP}^n$ if and only if the induced map $f^*: H^2(\mathbb{CP}^n; \mathbb{Z}) \to H^2(X, \mathbb{Z})$ is zero.
- **6.** (CA) Let f be a meromorphic function on a contractible region $U \subset \mathbb{C}$, and let γ be a simple closed curve inside that region. Recall that the argument principle for a meromorphic function says that the integral

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f}$$

is equal to the number of zeroes minus the number of poles of f inside γ .

- (a) Prove Rouché's Theorem. That is, assume (1) f and g are holomorphic in U, (2) γ is a simple, smooth, closed curve in U, and (3) |f| > |g| on γ . Then the number of zeroes of f + g inside γ is equal to the number of zeroes of f inside γ . You may assume the Argument Principle.
- (b) Show that for any n, the roots of the polynomial

$$\sum_{i=0}^{n} z^{i}$$

all have absolute value less than 2.

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Wednesday September 3, 2014 (Day 2)

1. (AT)

- (a) Let X and Y be compact, oriented manifolds of the same dimension n. Define the degree of a continuous map $f: X \to Y$.
- (b) What are all possible degrees of continuous maps $f: \mathbb{CP}^3 \to \mathbb{CP}^3$?

2. (A)

- (a) Show that every finite extension of a finite field is simple (i.e., generated by attaching a single element).
- (b) Fix a prime $p \geq 2$ and let \mathbb{F}_p be the field of cardinality p. For any $n \geq 1$, show that any two fields of degree n over \mathbb{F}_p are isomorphic as fields.
- 3. (CA) Fix two positive real numbers a, b > 0. Calculate the value of the integral

$$\int_{-\infty}^{\infty} \frac{\cos(ax) - \cos(bx)}{x^2} dx.$$

- **4.** (AG) Let $C \subset \mathbb{P}^2$ be the smooth plane curve of degree d > 1 defined by the homogeneous polynomial F(X, Y, Z) = 0
 - (a) If $p \in C$, find the homogeneous linear equation of the tangent line $\mathbb{T}_p C \subset \mathbb{P}^2$ to C at p.
 - (b) Let \mathbb{P}^{2*} be the dual projective plane, whose points correspond to lines in \mathbb{P}^2 . Show that the Gauss map $g:C\to\mathbb{P}^{2*}$ sending each point $p\in C$ to its tangent line $\mathbb{T}_pC\in\mathbb{P}^{2*}$ is a regular map.
 - (c) Let $C^* \subset \mathbb{P}^{2*}$ be the *dual curve* of C; that is, the image of the Gauss map. Assuming that the Gauss map is birational onto its image, what is the degree of $C^* \subset \mathbb{P}^{2*}$?
- 5. (DG) Let U the be upper half plane $U=\{(x,y)\in\mathbb{R}^2|y>0\}$ and introduce the Poincaré metric

$$g = y^{-2}(dx \otimes dx + dy \otimes dy).$$

Write the geodesic equations.

6. (RA)

(a) Define what is meant by an *equicontinuous* sequence of functions on the closed interval $[-1,1] \subset \mathbb{R}$.

(b) Prove the Arzela-Ascoli theorem: that if $\{f_n\}_{n=1,2,...}$ is a bounded, equicontinuous sequence of functions on [-1,1], then there exists a continuous function f on [-1,1] and an infinite subsequence $\Lambda \subset \{1,2,...\}$ such that

 $\lim_{n\in\Lambda \text{ and } n\to\infty} \left(\sup_{t\in[-1,1]} |f_n(t) - f(t)| \right) = 0$

QUALIFYING EXAMINATION

HARVARD UNIVERSITY

Department of Mathematics

Thursday September 4, 2014 (Day 3)

1. (DG) The symplectic group $Sp(2n,\mathbb{R})$ is defined as the subgroup of $Gl(2n,\mathbb{R})$ that preserves the matrix

$$\Omega = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$$

where I_n is the $n \times n$ identify matrix. That is, it is composed of elements of $Gl(2n, \mathbb{R})$ that satisfy the relation

$$M^T\Omega M = \Omega.$$

- (a) Show that every symplectic matrix is invertible with inverse $M^{-1} = \Omega^{-1}M^T\Omega$.
- (b) Show that the square of the determinant of a symplectic metric is 1. (In fact, the determinant of a symplectic matrix is always 1, but you don't need to show this.)
- (c) Compute the dimension of the symplectic group.
- 2. (RA) Suppose that σ is a positive number and f is a non-negative function on \mathbb{R} such that

$$\int_{\mathbb{R}} f(x) dx = 1; \quad \int_{\mathbb{R}} x f(x) dx = 0 \quad \text{and} \quad \int_{\mathbb{R}} x^2 f(x) dx = \sigma^2.$$

Let \mathcal{P} denote the probability measure on \mathbb{R} with density function f.

- (a) Supposing that ρ is a positive number, give a non-trivial upper bound in terms of σ for the probability as measured by \mathcal{P} of the subset $[\rho, \infty)$.
- (b) Given a positive integer N, let $\{X_1, \ldots, X_N\}$ denote N independent random variables on \mathbb{R} , each with the same probability measure \mathcal{P} . Let S_N be the random variable on \mathbb{R}^N given by

$$S_N = \frac{1}{N} \sum_{i=1}^N X_i$$

What are the mean and standard deviation of S_N ?.

(c) Let $\{X_1, X_2, \ldots, X_N\}$ be independent random variables on \mathbb{R} , each with the same probability measure \mathcal{P} , and let $P_N(x)$ denote the function on \mathbb{R} given by the probability that

$$\frac{1}{\sqrt{N}} \sum_{k=1}^{N} X_k \ < \ x.$$

Given $x \in \mathbb{R}$, what is the limit as $N \to \infty$ of the sequence $\{P_N(x)\}$?

- **3.** (AG) Let X be the blow-up of \mathbb{P}^2 at a point.
 - (a) Show that the surfaces \mathbb{P}^2 , $\mathbb{P}^1 \times \mathbb{P}^1$ and X are all birational.
 - (b) Prove that no two of the surfaces \mathbb{P}^2 , $\mathbb{P}^1 \times \mathbb{P}^1$ and X are isomorphic.
- 4. (AT) Suppose that G is a finite group whose abelianization is trivial. Suppose also that G acts freely on S^3 . Compute the homology groups (with integer coefficients) of the orbit space $M = S^3/G$.
- **5.** (CA) Recall that a function $u: \mathbb{R}^2 \to \mathbb{R}$ is called *harmonic* if $\Delta u := \partial_x^2 u + \partial_y^2 u = 0$. Prove the following statements using harmonic conjugates and standard complex analysis.
 - (a) Show that the average value of a harmonic function along a circle is equal to the value of the harmonic function at the center of the circle.
 - (b) Show that the maximum value of a harmonic function on a closed disk occurs only on the boundary, unless u is constant.
- **6.** (A) Let G be a finite group.
 - (a) Let V be any \mathbb{C} -representation of G. Show that V admits a Hermitian, G-invariant inner product.
 - (b) Let N be a $\mathbb{C}[G]$ -module which is finite-dimensional over \mathbb{C} , and let $M \subset N$ a submodule. Show that the inclusion splits.
 - (c) Consider the action of S_3 on \mathbb{C}^3 given by permuting the axes. Decompose \mathbb{C}^3 into irreducible S_3 -representations.