Solutions of Qualifying Exams I, 2013 Fall

1. (ALGEBRA) Consider the algebra $M_2(k)$ of 2×2 matrices over a field k. Recall that an *idempotent* in an algebra is an element e such that $e^2 = e$.

(a) Show that an idempotent $e \in M_2(k)$ different from 0 and 1 is conjugate to

$$e_1 := \left(\begin{array}{cc} 1 & 0\\ 0 & 0 \end{array}\right)$$

by an element of $GL_2(k)$.

(b) Find the stabilizer in $GL_2(k)$ of $e_1 \in M_2(k)$ under the conjugation action.

(c) In case $k = \mathbb{F}_p$ is the prime field with p elements, compute the number of idempotents in $M_2(k)$. (Count 0 and 1 in.)

Solution. (a) Since $e \neq 0, 1$, the image and the kernel of e are both onedimensional. Let v_1 be a nonzero element in the image, so $v_1 = e(v_0)$ for some $v_0 \in k^{\oplus 2}$. Then

$$e(v_1) = e(e(v_0)) = e^2(v_0) = e(v_0) = v_1.$$

Pick a nonzero element v_2 in the kernel of e, and we get a basis of $k^{\oplus 2}$ in which e takes the form e_1 .

(b) For a general element

$$g = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

to be in the stabilizer, it must satisfy $ge_1 = e_1g$. Writing the equation in four entries out, one sees that it means b = c = 0 (and a, d arbitrary). So the centralizer is the subgroup of diagonal matrices.

(c) By (a) and (b), the set of rank 1 idempotents is in bijection with $GL_2(\mathbb{F}_p)/T(\mathbb{F}_p)$, whose cardinality is

$$\frac{(p^2 - 1)(p^2 - p)}{(p - 1)(p - 1)} = (p + 1)p.$$

So the total number of idempotents is equal to $p^2 + p + 2$.

2. (ALGEBRAIC GEOMETRY) (a) Find an everywhere regular differential *n*-form on the affine *n*-space \mathbb{A}^n .

(b) Prove that the canonical bundle of the projective *n*-dimensional space \mathbb{P}^n is $\mathcal{O}(-n-1)$.

Solution (Sketch). Part (a) is really a hint for Part (b). Letting x_1, x_2, \ldots, x_n be affine (\mathbb{A}^n) coordinates, put $\omega := dx_1 \wedge dx_2 \cdots \wedge dx_n$ giving (a). Denoting the corresponding homogenous \mathbb{P}^n coordinates t_0, t_1, \ldots, t_n , with $x_i := t_i/t_0$ for $i = 1, 2, \ldots, n$ extend ω to \mathbb{P}^n writing $dx_i = dt_i/t_0 - t_i/t_0^2 dt_0$ and wedging to discover that the divisor of poles of ω is (n + 1)H where H is the hyperplane at infinity $(t_0 = 0)$ and then conclude (appropriately).

3. (COMPLEX ANALYSIS) (Bol's Theorem of 1949). Let \tilde{W} be a domain in \mathbb{C} and W be a relatively compact nonempty subdomain of \tilde{W} . Let $\varepsilon > 0$ and G_{ε} be the set of all $(a, b, c, d) \in \mathbb{C}$ such that $\max(|a - 1|, |b|, |c|, |d - 1|) < \varepsilon$. Assume that $cz + d \neq 0$ and $\frac{az+b}{cz+d} \in \tilde{W}$ for $z \in W$ and $(a, b, c, d) \in G_{\varepsilon}$. Let $m \geq 2$ be an integer. Prove that there exists a positive integer ℓ (depending on m) with the property that for any holomorphic function φ on \tilde{W} such that

$$\varphi(z) = \varphi\left(\frac{az+b}{cz+d}\right)\frac{(cz+d)^{2m}}{(ad-bc)^m}$$

for $z \in W$ and $(a, b, c, d) \in G_{\varepsilon}$, the ℓ -th derivative $\psi(z) = \varphi^{(\ell)}(z)$ of $\varphi(z)$ on \tilde{W} satisfies the equation

$$\psi(z) = \psi\left(\frac{az+b}{cz+d}\right) \frac{(ad-bc)^{\ell-m}}{(cz+d)^{2(\ell-m)}}$$

for $z \in W$ and $(a, b, c, d) \in G_{\varepsilon}$. Express ℓ in terms of m.

Hint: Use Cauchy's integral formula for derivatives.

Solution. Let

$$Az = \frac{az+b}{cz+d}$$

for $A \in G_{\varepsilon}$. We take a positive integer ℓ which we will determine later as a function of n. We use Cauchy's integral formula for derivatives to take the ℓ -th derivative $\psi(z)$ of $\varphi(z)$. For $z \in \tilde{W}$ we use U(z) to denote an open neighborhood of z in \tilde{W} and use $\partial U(z)$ to denote its boundary. The ℓ -th derivative ψ of φ at $z \in \tilde{W}$ is given by the formula

$$\psi(z) = \frac{\ell!}{2\pi\sqrt{-1}} \int_{\zeta \in \partial U(z)} \frac{\varphi(\zeta)d\zeta}{(\zeta - z)^{\ell+1}}$$

and

$$\psi(Az) = \frac{\ell!}{2\pi\sqrt{-1}} \int_{\zeta \in \partial U(Az)} \frac{\varphi(\zeta)d\zeta}{(\zeta - Az)^{\ell+1}} \quad \text{when } Az \in \tilde{W}.$$

It follows from

$$\zeta \in U(z) \iff A\zeta \in U(Az),$$

$$\zeta \in \partial U(z) \iff A\zeta \in \partial U(Az),$$

with the change of variable $\zeta \mapsto A\zeta$, that

$$\int_{\zeta \in \partial U(Az)} \frac{\varphi(\zeta) d\zeta}{(\zeta - Az)^{\ell+1}} = \int_{A\zeta \in \partial U(Az)} \frac{\varphi(A\zeta) d(A\zeta)}{(A\zeta - Az)^{\ell+1}}.$$

From the following straightforward direct computation of the discrete version of the formula for the derivative of fractional linear transformation

$$A\zeta - Az = \frac{a\zeta + b}{c\zeta + d} - \frac{az + b}{cz + d}$$

= $\frac{(a\zeta + b)(cz + d) - (az + b)(c\zeta + d)}{(c\zeta + d)(cz + d)}$
= $\frac{(ac\zeta z + bcz + ad\zeta + bd) - (ac\zeta z + adz + bc\zeta + bd)}{(c\zeta + d)(cz + d)}$
= $\frac{(ad - bc)(\zeta - z)}{(c\zeta + d)(cz + d)}$

we obtain

$$\begin{split} \int_{A\zeta\in\partial U(Az)} \frac{\varphi(A\zeta)d(A\zeta)}{(A\zeta-Az)^{\ell+1}} &= \int_{\zeta\in\partial U(z)} \frac{\varphi\left(\frac{a\zeta+b}{c\zeta+d}\right)\frac{ad-bc}{(c\zeta+d)^2}d\zeta}{\frac{(ad-bc)^{\ell+1}(\zeta-z)^{\ell+1}}{(c\zeta+d)^{\ell+1}(cz+d)^{\ell+1}}} \\ &= \int_{\zeta\in\partial U(z)} \frac{\varphi(\zeta)\frac{(ad-bc)^m}{(c\zeta+d)^{2m}}\frac{ad-bc}{(c\zeta+d)^{2m}}d\zeta}{\frac{(ad-bc)^{\ell+1}(\zeta-z)^{\ell+1}}{(c\zeta+d)^{\ell+1}(cz+d)^{\ell+1}}} \\ &= \frac{(cz+d)^{\ell+1}}{(ad-bc)^{\ell-m}}\int_{\zeta\in\partial U(z)} \frac{\varphi(\zeta)d\zeta}{(\zeta-z)^{\ell+1}} (c\zeta+d)^{\ell-1-2m}. \end{split}$$

The extra factor $(c\zeta + d)^{\ell-1-2m}$ inside the integrand on the extreme righthand side becomes 1 and can be dropped if $\ell - 1 - 2m = 0$, that is, if $\ell = 2m + 1$. Thus, if $\ell = 2m + 1$, then

$$\psi(Az) = \frac{(cz+d)^{\ell+1}}{(ad-bc)^{\ell-m}}\psi(z).$$

That is,

$$\psi(z) = \psi\left(\frac{az+b}{cz+d}\right)\frac{(ad-bc)^{\ell-m}}{(cz+d)^{2(\ell-m)}},$$

because $\ell = 2m + 1$ implies $\ell + 1 = 2(\ell - m)$.

4. (ALGEBRAIC TOPOLOGY) (a) Show that the Euler characteristic of any contractible space is 1.

(b) Let B be a connected CW complex made of finitely many cells so that its Euler characteristic is defined. Let $E \to B$ be a covering map whose fibers are discrete, finite sets of cardinality N. Show the Euler characteristic of E is N times the Euler characteristic of B.

(c) Let G be a finite group with cardinality > 2. Show that BG (the classifying space of G) cannot have homology groups whose direct sum has finite rank.

Solution. (a) The homology of a point with coefficients in a field k is $H_0 = k$, $H_i = 0$ for i > 0. Hence its Euler characteristic is $\sum (-1)^i \dim H_i = 1$. All contractible spaces are homotopy equivalent so their Euler characteristic is that of the point.

(b) For any open cover $\{U_i\}$, we know that the chain complex of singular chains living in U_i for some *i* has equivalent homology to the chain complex of all chains. Taking the cover of *B* by trivializing neighborhoods U_i , the chain complex of chains living in U_i receives a map from chains in *E* living in $\pi^{-1}(U_i)$. The latter is simply |G| direct sums of the former, and the chain map between them is the "add every component" map. This shows the ranks of homology of *E* is *N* times the rank of homology of *B*.

(c) Strictly speaking, this problem cannot be solved based on easy machinery (as far as I know). A much more reasonable problem would be: Prove BG is not homotopy equivalent to anything made up of only finitely many cells. I did not take off points for people not distinguishing between this condition,

and the condition stated in the problem itself. We know BG = EG/G, but EG is contractible. So $\chi(EG) = 1$. If BG has finite homology, $\chi(BG) = 1/|G|$, which cannot be an integer unless |G| = 1.

5. (DIFFERENTIAL GEOMETRY) Let $H = \{(x, y) \in \mathbb{R}^2 : y > 0\}$ be the upper half plane. Let g be the Riemannian metric on H given by

$$g = \frac{(\mathrm{d}x)^2 + (\mathrm{d}y)^2}{y^2}.$$

(H,g) is known as the half-plane model of the hyperbolic plane.

(a) Let $\gamma(\theta) = (\cos \theta, \sin \theta)$ and $\eta(\theta) = (\cos \theta + 1, \sin \theta)$ for $\theta \in (0, \pi)$ be two paths in H. Compute the angle A at their intersection point shown in Figure 1, measured by the metric g.

Figure 1: Angle A between the two curves γ and η in the upper half plane H.

(b) By computing the Levi-Civita connection

$$\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} = \sum_{k=1}^2 \Gamma_{ij}^k \frac{\partial}{\partial x_k}$$

of g or otherwise (where $(x_1, x_2) = (x, y)$), show that the path γ , after arclength reparametrization, is a geodesic with respect to the metric g.

Solution. (a) The intersection point is $(1/2, \sqrt{3}/2)$: solving for

$$\gamma(\theta) = (\cos \theta, \sin \theta) = (\cos \phi + 1, \sin \phi) = \eta(\phi)$$

we obtain $\theta = \pi/3$, $\phi = 2\pi/3$.

The angle A satisfies

$$\cos A = \frac{\langle \gamma'(\pi/3), -\eta'(2\pi/3) \rangle_g}{||\gamma'(\pi/3)||_g || - \eta'(2\pi/3)||_g}$$
$$= \frac{\langle (-\sqrt{3}/2, 1/2), (\sqrt{3}/2, 1/2) \rangle_g}{||(-\sqrt{3}/2, 1/2)||_g ||(\sqrt{3}/2, 1/2)||_g}$$
$$= \frac{-\frac{1}{2}\frac{1}{y^2}}{\frac{1}{y^2}}$$
$$= -\frac{1}{2}$$

and so $A = 2\pi/3$.

(b) Using the formula

$$\Gamma^i_{jk} = \frac{1}{2}g^{il}(g_{jl,k} + g_{jl,j} - g_{jk,l})$$

one obtains

$$\Gamma_{jk}^{i} = \frac{-1}{y} (\delta_{ij}\delta_{k,2} + \delta_{ki}\delta_{j,2} - \delta_{jk}\delta_{i,2}).$$

After arc-length reparametrization, the tangent vectors of the path are

$$v(\theta) = \frac{\gamma'(\theta)}{||\gamma'(\theta)||_g} = (-\sin^2\theta, \sin\theta\cos\theta).$$

Then

$$\nabla_{v(\theta)}v(\theta) = v'(\theta) + \left(\begin{array}{cc} \Gamma_1^1 & \Gamma_2^1 \\ \Gamma_1^2 & \Gamma_2^2 \end{array}\right) \cdot v(\theta)$$

where

$$\begin{split} \Gamma_{1}^{1} &= (-\sin\theta)\Gamma_{11}^{1} + (\cos\theta)\Gamma_{21}^{1} = -\cot\theta; \\ \Gamma_{2}^{1} &= (-\sin\theta)\Gamma_{12}^{1} + (\cos\theta)\Gamma_{22}^{1} = 1; \\ \Gamma_{1}^{2} &= (-\sin\theta)\Gamma_{11}^{2} + (\cos\theta)\Gamma_{21}^{2} = -1; \\ \Gamma_{2}^{2} &= (-\sin\theta)\Gamma_{12}^{2} + (\cos\theta)\Gamma_{22}^{2} = -\cot\theta. \end{split}$$

Thus one has $\nabla_{v(\theta)}v(\theta) = 0.$

6. (REAL ANALYSIS) For any positive integer n let M_n be a positive number such that the series $\sum_{n=1}^{\infty} M_n$ of positive numbers is convergent and its limit is M. Let a < b be real numbers and $f_n(x)$ be a real-valued continuous function on [a, b] for any positive integer n such that its derivative $f'_n(x)$ exists for every a < x < b with $|f'_n(x)| \le M_n$ for a < x < b. Assume that the series $\sum_{n=1}^{\infty} f_n(a)$ of real numbers converges. Prove that

- (a) the series $\sum_{n=1}^{\infty} f_n(x)$ converges to some real-valued function f(x) for every $a \le x \le b$,
- (b) f'(x) exists for every a < x < b, and
- (c) $|f'(x)| \le M$ for a < x < b.

Hint for (b): For fixed $x \in (a, b)$ consider the series of functions

$$\sum_{n=1}^{\infty} \frac{f_n(y) - f_n(x)}{y - x}$$

of the variable y and its uniform convergence.

Solution. (a) Fix $x \in (a, b]$. For $q > p \ge 1$, by the Mean Value Theorem applied to the function $\sum_{n=p}^{q} f_n$ on [a, x] we can find $a < \xi_{p,q} < x$ such that

$$\sum_{n=p}^{q} f_n(x) - \sum_{n=p}^{q} f_n(a) = (x-a) \sum_{n=p}^{q} f'_n(\xi_{p,q}),$$

which implies that

$$\left|\sum_{n=p}^{q} f_n(x)\right| \leq \left|\sum_{n=p}^{q} f_n(a)\right| + (x-a) \left|\sum_{n=p}^{q} f'_n(\xi_{p,q})\right|$$
$$\leq \left|\sum_{n=p}^{q} f_n(a)\right| + (x-a) \sum_{n=p}^{q} M_n.$$

Since both series $\sum_{n=1}^{\infty} f_n(a)$ and $\sum_{n=1}^{\infty} M_n$ are convergent and therefore Cauchy, for any $\varepsilon > 0$ we can find a positive integer N_1 such that

$$\left|\sum_{n=p}^{q} f_n(a)\right| < \frac{\varepsilon}{2}$$

for $q > p \ge N_1$ and we can find a positive integer N_2 such that

$$\left|\sum_{n=p}^{q} M_n\right| < \frac{\varepsilon}{2(x-a)}$$

for $q > p \ge N_2$. Thus for $n \ge \max(N_1, N_2)$ we have

$$\left|\sum_{n=p}^{q} f_n(x)\right| < \varepsilon$$

and the series $\sum_{n=1}^{\infty} f_n(x)$ is Cauchy. Hence the series $\sum_{n=1}^{\infty} f_n(x)$ converges to some real-valued function f(x) for every $a \le x \le b$.

(b) Before the proof of the statement in (b), we would like to state that the uniform limit of continuous functions is continuous. That is, if $h_n(x)$ is a sequence of functions on a metric space E which converges to a function h(x)on E uniformly on E and if for some $x_0 \in E$ and for every n the function $h_n(x)$ is continuous at $x = x_0$, then h(x) is continuous at x_0 . This results from the so-called 3ε argument as follows. Given any $\varepsilon > 0$. The uniform convergence of $h_n \to h$ on E implies that there exists some positive integer Nsuch that $|h_N(x) - h(x)| < \varepsilon$ for all $x \in E$. Since h_N is continuous at $x = x_0$, there exists some $\delta > 0$ such that $|h_N(x) - h_N(x_0)| < \varepsilon$ for $d_E(x, x_0) < \delta$ (where $d_E(\cdot, \cdot)$ is the metric of the metric space E). Thus for $d_E(x, x_0) < \delta$ we have

$$|h(x) - h(x_0)| \le |h(x) - h_N(x)| + |h_N(x) - h_N(x_0)| + |h_N(x_0) - h(x_0)| < 3\varepsilon,$$

which implies the continuity of h at $x = x_0$.

We now prove the statement in (b). Take $x_0 \in (a, b)$. We introduce the function $g_{n,x_0}(x)$ on [a, b] which is defined by

$$\begin{cases} g_{n,x_0}(x) = \frac{f_n(x) - f_n(x_0)}{x - x_0} & \text{for } x \neq x_0 \\ \\ g_{n,x_0}(x_0) = f'_n(x_0) \,. \end{cases}$$

It follows from the continuity of f_n on [a, b] and the existence of $f'_n(x_0)$ that g_{n,x_0} is a continuous function on [a, b].

When $x \in [a, b]$ with $x \neq x_0$, by the Mean Value Theorem

$$\frac{f_n(x) - f_n(x_0)}{x - x_0} = f'_n(\xi_x)$$

for some ξ_x strictly between x_0 and x and as a consequence

$$|g_{n,x_0}(x)| = |f'_n(x_0)| \le M_n$$

When $x = x_0$,

$$|g_{n,x_0}(x)| = |f'_n(x_0)| \le M_n$$

Thus $|g_{n,x_0}(x)| \leq M_n$ for $x \in [a, b]$. From $\sum_{n=1}^{\infty} M_n \leq M < \infty$ it follows that the series $\sum_{n=1}^{\infty} g_{n,x_0}$ is uniformly convergent on [a, b]. It follows that the uniform limit $\sum_{n=1}^{\infty} g_{n,x_0}$ is a continuous function on [a, b] by the 3ε argument given above. For $x \neq x_0$

$$\sum_{n=1}^{\infty} g_{n,x_0}(x) = \sum_{n=1}^{\infty} \frac{f_n(x) - f_n(x_0)}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0}.$$

The continuity of $\sum_{n=1}^{\infty} g_{n,x_0}(x)$ at $x = x_0$ means that the limit of

$$\frac{f(x) - f(x_0)}{x - x_0}$$

exists as $x \to x_0$, which implies that $f'(x_0)$ exists and is equal to

$$\sum_{n=1}^{\infty} g_{n,x_0}(x_0) = \sum_{n=1}^{\infty} f'_n(x_0).$$

(c) From

$$f'(x_0) = \sum_{n=1}^{\infty} g_{n,x_0}(x_0) = \sum_{n=1}^{\infty} f'_n(x_0)$$

and $|f'_n(x_0)| \leq M_n$, it follows that

$$\left|f'\left(x_{0}\right)\right| \leq \sum_{n=1}^{\infty} M_{n} = M.$$

Solutions of Qualifying Exams II, 2013 Fall

1. (ALGEBRA) Find all the field automorphisms of the real numbers \mathbb{R} .

Hint: Show that any automorphism maps a positive number to a positive number, and deduce from this that it is continuous.

Solution. If t > 0, there exists an element $s \neq 0$ such that $t = s^2$. If φ is any field automorphism of \mathbb{R} , then

$$\varphi(t) = \varphi(s^2) = (\varphi(s))^2 > 0.$$

It follows that φ preserves the order on \mathbb{R} : If t < t', then

$$\varphi(t') = \varphi(t + (t' - t)) = \varphi(t) + \varphi(t' - t) > \varphi(t).$$

Any real number α is determined by the set (Dedekind's cut) of rational numbers that are less than α , and any field automorphism fixes each rational number. Therefore φ is the identity automorphism.

2. (ALGEBRAIC GEOMETRY) What is the maximum number of ramification points that a mapping of finite degree from one smooth projective curve over \mathbb{C} of genus 1 to another (smooth projective curve of genus 1) can have? Give an explanation for your answer.

Solution (Sketch). By the Riemann-Hurwitz formula, if we have a mapping f of finite degree d from one smooth projective (irreducible, say) curve onto another the Euler characteristic of the source curve is d times the Euler characteristic of the target minus a certain nonnegative number e, and moreover e is zero if and only if the mapping is unramified. Now compute: the Euler characteristic of our source and target curves is, by hypothesis, 0 and so this e is zero, and therefore the mapping is unramified.

3. (COMPLEX ANALYSIS) Let ω and η be two complex numbers such that $\operatorname{Im}\left(\frac{\omega}{\eta}\right) > 0$. Let G be the closed parallelogram consisting of all $z \in \mathbb{C}$ such that $z = \lambda \omega + \rho \eta$ for some $0 \leq \lambda, \rho \leq 1$. Let ∂G be the boundary of G and Let $G^0 = G - \partial G$ be the interior of G. Let $P_1, \dots, P_k, Q_1, \dots, Q_\ell$ be points in G^0 and let $m_1, \dots, m_k, n_1, \dots, n_\ell$ be positive integers. Let f be a function on G such that

$$\frac{f(z)\prod_{j=1}^{\ell}(z-Q_j)^{n_j}}{\prod_{p=1}^{k}(z-P_p)^{m_p}}$$

is continuous and nowhere zero on G and is holomorphic on G^0 . Let $\varphi(z)$ and $\psi(z)$ be two polynomials on \mathbb{C} . Assume that $f(z+\omega) = e^{\varphi(z)}f(z)$ if both z and $z + \omega$ are in G. Assume also that $f(z + \eta) = e^{\psi(z)}f(z)$ if both z and $z + \eta$ are in G. Express $\sum_{p=1}^{k} m_p - \sum_{j=1}^{\ell} n_j$ in terms of ω and η and the coefficients of $\varphi(z)$ and $\psi(z)$.

Solution. Let A = 0, $B = \eta$, $C = \eta + \omega$, and $D = \omega$. Since $\operatorname{Im}\left(\frac{\omega}{\eta}\right) > 0$, it follows that going from A to B, to C, to D and then back to A is in the counterclockwise direction. By the argument principle

$$\begin{split} \sum_{p=1}^{k} m_p - \sum_{j=1}^{\ell} n_j &= \frac{1}{2\pi\sqrt{-1}} \oint_{\partial G} d\log f \\ &= \frac{1}{2\pi\sqrt{-1}} \left(\int_{\overrightarrow{AB}} d\log f + \int_{\overrightarrow{BC}} d\log f + \int_{\overrightarrow{CD}} d\log f + \int_{\overrightarrow{DA}} d\log f \right) \\ &= \frac{1}{2\pi\sqrt{-1}} \left(\int_{\overrightarrow{AB}} d\log f - \int_{\overrightarrow{CD}} d\log f + \int_{\overrightarrow{BC}} d\log f - \int_{\overrightarrow{AD}} d\log f \right) \\ &= \frac{1}{2\pi\sqrt{-1}} \left(- \int_{\overrightarrow{AB}} d\varphi(z) + \int_{\overrightarrow{AD}} d\psi(z) \right) \\ &= \frac{1}{2\pi\sqrt{-1}} \left(-\varphi(\eta) + \varphi(0) + \psi(\omega) - \psi(0) \right). \end{split}$$

Thus, the answer is

$$\sum_{p=1}^{k} m_p - \sum_{j=1}^{\ell} n_j = \frac{1}{2\pi\sqrt{-1}} \left(-\varphi(\eta) + \varphi(0) + \psi(\omega) - \psi(0)\right).$$

4. (ALGEBRAIC TOPOLOGY) (a) Fix a basis for H_1 of the two-torus (with integer coefficients). Show that for every element $x \in SL(2,\mathbb{Z})$, there is an automorphism of the two-torus such that the induced map on H_1 acts by x. *Hint:* $SL(2,\mathbb{Z})$ also acts on the universal cover of the torus.

(b) Fix an embedding $j : D^2 \times S^1 \to S^3$. Remove its interior from S^3 to obtain a manifold X with boundary T^2 . Let f be an automorphism of the two-torus and consider the glued space

$$X_f := (D^2 \times S^1) \cup_f X.$$

If X is homotopy equivalent to $D^2 \times S^1$, compute the homology groups of X_f .

Solution. (a) Given $g \in SL(2,\mathbb{Z}) \subset SL(2,\mathbb{R})$ let $x : \mathbb{R}^2 \to \mathbb{R}^2$ be the induced action. Since g is in $SL(2,\mathbb{Z})$ it respects the relationship of whether two vectors in \mathbb{R}^2 differ by integer coordinates. So the map on the torus $[(x_1, x_2)] \mapsto [g(x_1, x_2)]$ is well-defined. This clearly sends a homology generating pair given by the curves $(x_1, 0)$ and $(0, x_2)$ to the expected images via g.

(b) There is an ambiguity in the problem about how f glues X and $D^2 \times S^1$ together; so I gave full credit regardless of whether you identified this ambiguity or not. Note $X_f = (D^2 \times S^1) \cup_{S^1 \times S^1} X$. Write $U = D^2 \times S^1$ and V = X. The Mayer-Vietoris sequence gives

$$\longrightarrow H_0(U \cap V) \longrightarrow H_0(U) \oplus H_0(V) \longrightarrow H_0(U \cup V)$$
$$\longrightarrow H_1(U \cap V) \longrightarrow H_1(U) \oplus H_1(V) \longrightarrow H_1(U \cup V)$$
$$\longrightarrow H_2(U \cap V) \longrightarrow H_2(U) \oplus H_2(V) \longrightarrow H_2(U \cup V)$$
$$\longrightarrow H_3(U \cap V) \longrightarrow H_3(U) \oplus H_3(V) \longrightarrow H_3(U \cup V)$$

but because we know the homology of $D^2 \times S^1 \simeq S^1$ and $S^1 \times S^1$, we can fill in various groups in the long exact sequence:

Since g is an isomorphism, we know H_1 must inject into \mathbb{Z} , but the inclusion map $H_0(U \cap V) \to H_0(U) \oplus H_0(V)$ is an injection, so $H_1(U \cup V) = 0$.

We know H_0 is either equal to \mathbb{Z} from the long exact sequence above, or by observing that X_f is path-connected.

If f induces an isomorphism, we see H_2 must be zero; this was the intent of the problem, but you can get a different answer based on how you interpreted the "gluing" by f.

Finally, H_3 is also isomorphic to \mathbb{Z} by the exactness of the above sequence.

5. (DIFFERENTIAL GEOMETRY) Let M = U(n)/O(n) for $n \ge 1$, where U(n) is the group of $n \times n$ unitary matrices and O(n) is the group of $n \times n$ orthogonal matrices. M is a real manifold called the Lagrangian Grassmannian.

(a) Compute and state the dimension of M.

(b) Construct a Riemannian metric which is invariant under the left action of U(n) on M.

(c) Let ∇ be the corresponding Levi-Civita connection on the tangent bundle TM, and X, Y, Z be any U(n)-invariant vector fields on M. Using the given identity (which you are not required to prove)

$$\nabla_X Y = \frac{1}{2} [X, Y],$$

show that the Riemannian curvature tensor R of ∇ satisfies the formula

$$R(X,Y)Z = \frac{1}{4}[Z,[X,Y]]$$

Solution. (a)

$$T_{[I]}M \cong \mathfrak{u}(n)/\mathfrak{o}(n) \cong \operatorname{Sym}^2(\mathbb{R}^n)$$

where $\operatorname{Sym}^2(\mathbb{R}^n)$ denotes the space of real $n \times n$ symmetric matrices. Thus

$$\dim M = \frac{n(n+1)}{2}.$$

(b) Define a metric on $\operatorname{Sym}^2(\mathbb{R}^n)$ by

$$A, B\rangle = \operatorname{tr}(AB^t) = \operatorname{tr}(AB).$$

 $g \in O(n)$ acts on $T_{[I]}M \cong \operatorname{Sym}^2(\mathbb{R}^n)$ by $g \cdot A = gAg^{-1}$. Then $\langle g \cdot A, g \cdot B \rangle = \operatorname{tr}(g \cdot ABg^{-1}) = \langle A, B \rangle.$

Hence this metric is invariant under the action of O(n). By translating the metric to tangent spaces at other points by the action of U(n), this gives a well-defined invariant metric on U(n)/O(n).

(c)

$$\nabla_X Y = \frac{1}{2} [X, Y].$$

Then

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$

= $\frac{1}{4} ([X, [Y, Z]] - [Y, [X, Z]]) - \frac{1}{2} [[X, Y], Z]$
= $\frac{1}{4} [Z, [X, Y]]$

where the last equality follows from Jacobi identity.

6. (REAL ANALYSIS) Show that there is no function $f : \mathbb{R} \to \mathbb{R}$ whose set of continuous points is precisely the set \mathbb{Q} of all rational numbers.

Solution. For fixed $\delta > 0$ let $C(\delta)$ be the set of points $x \in \mathbb{R}$ such that for some $\varepsilon > 0$ we have $|f(x') - f(x'')| < \delta$ for all $x', x'' \in (x - \varepsilon, x + \varepsilon)$. Clearly $C(\delta)$ is open since for every $x \in C(\delta)$, we have $(x - \varepsilon, x + \varepsilon) \subset C(\delta)$. Now let C denote the set of continuous points of f. From the definitions, we have that

$$C = \bigcap_{n=1}^{\infty} C(1/n).$$

Now suppose that $C = \mathbb{Q}$. Then

$$\mathbb{R} - \mathbb{Q} = \bigcup_{n=1}^{\infty} X_n,$$

where $X_n = \mathbb{R} - C(1/n)$. Since C(1/n) is open, X_n is closed. Also \mathbb{Q} is countable, say $\mathbb{Q} = \{q_1, q_2, \dots\}$. Let $Y_n = \{q_n\}$. Then

$$\mathbb{R} = \left(\bigcup_{n=1}^{\infty} X_n\right) \cup \left(\bigcup_{n=1}^{\infty} Y_n\right),$$

i.e. we have written \mathbb{R} as a countable union of closed sets. Then by Baire's theorem, some X_n or Y_n has nonempty interior. Clearly it cannot be one of the Y_n . So there exists X_n containing an interval (a, b). But this is impossible because $X_n \subset \mathbb{R} - \mathbb{Q}$ and every interval contains a rational number. Thus, we obtain a contradiction, which shows that $C \neq \mathbb{Q}$.

Solutions of Qualifying Exams III, 2013 Fall

1. (ALGEBRA) Consider the function fields $K = \mathbb{C}(x)$ and $L = \mathbb{C}(y)$ of one variable, and regard L as a finite extension of K via the \mathbb{C} -algebra inclusion

$$x \mapsto \frac{-(y^5 - 1)^2}{4y^5}$$

Show that the extension L/K is Galois and determine its Galois group.

Solution. Consider the intermediate extension $K' = \mathbb{C}(y^5)$. Then clearly [L:K'] = 5 and [K':K] = 2, therefore [L:K] = 10.

Thus, to prove that L/K is Galois it is enough to find 10 field automorphisms of L over K. Choose a primitive 5th root of 1, say $\zeta = e^{2\pi i/5}$. For $i \in \mathbb{Z}/5$ and $s \in \{\pm 1\}$, the \mathbb{C} -algebra automorphism $\sigma_{i,s}$ of L defined by

$$y \mapsto \zeta^i y^s$$

leaves x, hence K, fixed.

There can be many ways to determine the group, here's one.

Looking at the law of composition of these automorphisms, one sees that the subgroup $\operatorname{Gal}(L/K') \simeq \mathbb{Z}/5$, (which is necessarily normal, being of index 2) is not central, for conjugation by $\sigma_{0,-1}$ acts as -1 on it.

So the group is the dihedral group of 10 elements.

2. (ALGEBRAIC GEOMETRY) Is every smooth projective curve of genus 0 defined over the field of complex numbers isomorphic to a conic in the projective plane? Give an explanation for your answer.

Solution (Sketch). Yes. Apply the Riemann-Roch theorem which guarantees the existence of a nonconstant meromorphic function with a simple pole at exactly one point. Argue that this meromorphic function identifies the curve with \mathbb{P}^1 , and using that fact, embed the curve as a conic in the plane in any convenient way, e.g., If t_0, t_1 are projective (\mathbb{P}^1) coordinates, let $z_0 = t_0^2$, $z_1 = t_0 t_1 \ z_2 = t_1^2$ be the map to \mathbb{P}^2 . The conic, then, would be $z_0 z_2 = z_1^2$. (Alternatively: one can consider the complete linear system attached to the anticanonical divisor.) **3.** (COMPLEX ANALYSIS) Let $f(z) = z + e^{-z}$ for $z \in \mathbb{C}$ and let $\lambda \in \mathbb{R}$, $\lambda > 1$. Prove or disprove the statement that f(z) takes the value λ exactly once in the open right half-plane $H_r = \{z \in \mathbb{C} : \text{Re } z > 0\}.$

Solution. First, let us consider the real function $f(x) = x + e^{-x}$. Since f is continuous, f(0) = 1 and $\lim_{x\to\infty} f(x) = \infty$, by the intermediate value theorem, there exists $u \in \mathbb{R}$ such that $f(u) = \lambda$. Now let us show that such u is unique. Let $R > 2\lambda$ and let Γ be the closed right half disk of radius R centered at the origin

$$\left\{z = x + iy \in \mathbb{C} : x = 0, |y| \le R\right\} \cup \left\{z \in \mathbb{C} : |z| = R, -\frac{\pi}{2} \le \arg(z) \le \frac{\pi}{2}\right\}.$$

Let $F(z) = \lambda - z$ and $G(z) = -e^{-z}$. Then for $z \in \Gamma$, we have $|G(z)| = |e^{-\operatorname{Re} z}| \leq 1$ since Re $z \geq 0$, while |F(z)| > 1 by construction. Hence by Rouché's theorem, $\lambda - f(z) = F(z) + G(z)$ has the same number of zeros inside Γ as F(z), namely 1. Since this is true for all R large enough, we conclude that the point u is unique.

4. (ALGEBRAIC TOPOLOGY) (a) Let X and Y be locally contractible, connected spaces with fixed basepoints. Let $X \vee Y$ be the wedge sum at the basepoints. Show that $\pi_1(X \vee Y)$ is the free product of $\pi_1 X$ with $\pi_1 Y$.

(b) Show that $\pi_1(X \times Y)$ is the direct product of $\pi_1 X$ with $\pi_1 Y$.

(c) Note the canonical inclusion $f: X \vee Y \to X \times Y$. Assume that X and Y have abelian fundamental groups. Show that the map f_* on fundamental groups exhibits $\pi_1(X \times Y)$ as the abelianization of $\pi_1(X \vee Y)$. *Hint:* The Hurewicz map is natural.

Solution. (a) This follows form the Van Kampen theorem: Writing $X \vee Y$ as the union

 $X \cup_* Y$

we have that $\pi_1(X \vee Y) \cong \pi_1(X) *_{\pi_1(*)} \pi_1(Y) = \pi_1(X) * \pi_1 Y.$

(b) There is the obvious continuous map

$$Maps_*(S^1, X) \times Maps_*(S^1, Y) \rightarrow Maps_*(S^1, X \times Y)$$

given by sending $(t \mapsto \gamma_X(t), t \mapsto \gamma_Y(t)) \mapsto (t \mapsto (\gamma_X(t), \gamma_Y(t)))$. This map is a continuous so it induces a map

$$\pi_0(Maps_*(S^1, X) \times Maps_*(S^1, Y)) \to \pi_0 Maps_*(S^1, X \times Y)$$

where the lefthand side is isomorphic to $\pi_0 Maps_*(S^1, X) \times \pi_0 Maps_*(S^1, Y))$. Further, the above map is clearly a bijection, so it induces an injection and a surjection on π_0 .

(c) The Hurewicz map is natural so we have a commutative diagram

where the vertical maps are abelianizations by the Hurewicz theorem. But the lower-right corner is equal to $H_1(X) \times H_1(Y)$ by the Kunneth theorem (since X and Y are connected), and the bottom copy of f_* is the obvious isomorphism on H_1 . Since q is an abelianization by definition, but the bottom arrow and rightmost arrow are both isomorphisms, the top arrow must also be an abelianization.

5. (DIFFERENTIAL GEOMETRY) (a) Let $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$ be a circle and consider the connection

$$\nabla := \mathbf{d} + \pi \sqrt{-1} \mathbf{d} \theta$$

defined on the trivial complex line bundle over \mathbb{S}^1 , where θ is the standard coordinate on $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$ descended from \mathbb{R} . By solving the differential equation for flat sections $f(\theta)$

$$\nabla f = \mathrm{d}f + \pi\sqrt{-1}f\mathrm{d}\theta = 0$$

or otherwise, show that there does not exist global flat sections with respect to ∇ over \mathbb{S}^1 .

(b) Let $T = V/\Lambda$ be a torus, where Λ is a lattice and $V = \Lambda \otimes \mathbb{R}$ is the real vector space containing Λ . Let L be the trivial complex line bundle equipped with the standard Hermitian metric. By identifying flat U(1) connections with U(1) representations of the fundamental group $\pi_1(T)$ or otherwise, show that the space of flat unitary connections on L is the dual torus $T^* = V^*/\Lambda^*$, where $\Lambda^* := \text{Hom}(\Lambda, \mathbb{Z})$ is the dual lattice and $V^* := \text{Hom}(V, \mathbb{R})$ is the dual vector space.

Solution. (a) The differential equation

$$f'(\theta) + \pi\sqrt{-1}f(\theta) = 0$$

has a unique solution

$$f(\theta) = A \mathrm{e}^{-\pi\sqrt{-1}\theta}$$

up to a constant $A \in \mathbb{C}$. This is not a well-defined function over \mathbb{S}^1 because $f(0) \neq f(1)$.

(b) The space of flat G-connections over T can be identified as

$$\operatorname{Hom}(\pi_1(T), G)/\operatorname{Ad} G.$$

Since $\pi_1(T) = \Lambda$ and for the abelian group G = U(1) the adjoint action is trivial, we have

$$\operatorname{Hom}(\pi_1(T), G) / \operatorname{Ad} G = \operatorname{Hom}(\Lambda, U(1)) = T^*.$$

6. (REAL ANALYSIS) (Fundamental Solutions of Linear Partial Differential Equations with Constant Coefficients). Let Ω be an open interval (-M, M) in \mathbb{R} with M > 0. Let n be a positive integer and $L = \sum_{\nu=0}^{n} a_{\nu} \frac{d^{\nu}}{dx^{\nu}}$ be a linear differential operator of order n on \mathbb{R} with constant coefficients, where the coefficients $a_0, \dots, a_{n-1}, a_n \neq 0$ are complex numbers and x is the coordinate of \mathbb{R} . Let $L^* = \sum_{\nu=0}^{n} (-1)^{\nu} \overline{a_{\nu}} \frac{d^{\nu}}{dx^{\nu}}$. Prove, by using Plancherel's identity, that there exists a constant c > 0 which depends only on M and a_n and is independent of a_0, a_1, \dots, a_{n-1} such that for any $f \in L^2(\Omega)$ a weak solution u of Lu = f exists with $\|u\|_{L^2(\Omega)} \leq c \|f\|_{L^2(\Omega)}$. Give one explicit expression for c as a function of M and a_n .

Hint: A weak solution u of Lu = f means that $(f, \psi)_{L^2(\Omega)} = (u, L^*\psi)_{L^2(\Omega)}$ for every infinitely differentiable function ψ on Ω with compact support. For the solution of this problem you can consider as known and given the following three statements.

(I) If there exists a positive number c > 0 such that $\|\psi\|_{L^2(\Omega)} \leq c \|L^*\psi\|_{L^2(\Omega)}$ for all infinitely differentiable complex-valued functions ψ on Ω with compact support, then for any $f \in L^2(\Omega)$ a weak solution u of Lu = fexists with $\|u\|_{L^2(\Omega)} \leq c \|f\|_{L^2(\Omega)}$. (II) Let $P(z) = z^m + \sum_{k=0}^{m-1} b_k z^k$ be a polynomial with leading coefficient 1. If F is a holomorphic function on \mathbb{C} , then

$$|F(0)|^{2} \leq \frac{1}{2\pi} \int_{\theta=0}^{2\pi} |P(e^{i\theta}) F(e^{i\theta})|^{2} d\theta.$$

(III) For an L^2 function f on \mathbb{R} which is zero outside $\Omega = (-M, M)$ its Fourier transform

$$\hat{f}(\xi) = \int_{-M}^{M} f(x) e^{-2\pi i x \xi} dx$$

as a function of $\xi \in \mathbb{R}$ can be extended to a holomorphic function

$$\hat{f}\left(\xi + i\eta\right) = \int_{-M}^{M} f(x)e^{-2\pi i x(\xi + i\eta)} dx$$

on \mathbb{C} as a function of $\xi + i\eta$.

Solution. This problem is to compute the constant c in Lemma 3.3 on p.225 of the book of Stein and Shakarchi on *Real Analysis* by going over its arguments and keeping track of the constants involved in each step.

Introduce the polynomial

$$Q(\zeta) = \sum_{k=0}^{n} \left(-1\right)^{k} \overline{a_{k}} \left(2\pi\zeta\right)^{k}$$

so that

(#)
$$\left(\widehat{L^*\psi}\right)(\zeta) = Q(\zeta)\widehat{\psi}(\zeta)$$

any $\psi \in \mathcal{C}_0^{\infty}(\mathbb{R})$, where $\widehat{}$ denotes taking the Fourier transform. Consider first the special case where $a_n = \frac{1}{(2\pi i)^n}$ so that the coefficient of ξ^n in the polynomial $Q(\zeta)$ of degree n in ζ is 1. Writing $\zeta = \xi + \sqrt{-1\eta}$ (with both ξ and η real) and taking the L^2 of both sides of (#) over \mathbb{R} as functions of η . Then

$$(\flat) \qquad \int_{-\infty}^{\infty} \left| Q\left(\xi + i\eta\right) \hat{\psi}\left(\xi + i\eta\right) \right|^2 d\xi = \int_{-\infty}^{\infty} \left| \left(\widehat{L^*\psi}\right) \left(\xi + i\eta\right) \right|^2 d\xi.$$

Since from the definition of Fourier transform

$$\left(\widehat{L^*\psi}\right)(\xi+i\eta) = \int_{x=-\infty}^{\infty} \left(L^*\psi\right)(x)e^{-2\pi i(\xi+i\eta)x}dx = \int_{x=-\infty}^{\infty} \left(\left(L^*\psi\right)(x)e^{2\pi\eta x}\right)e^{-2\pi i\xi x}dx$$

it follows that $(\widehat{L^*\psi})(\xi + i\eta)$ is equal to the value at ξ of the Fourier transform of the function $(L^*\psi)(x)e^{2\pi\eta x}$. Thus, by applying Plancherel's identity to the function $(L^*\psi)(x)e^{2\pi\eta x}$, we get

$$\int_{\xi=-\infty}^{\infty} \left| \left(\widehat{L^*\psi} \right) (\xi+i\eta) \right|^2 d\xi$$
$$= \int_{x=-\infty}^{\infty} \left| (L^*\psi) (x) e^{2\pi\eta x} \right|^2 dx \le e^{4\pi|\eta|M} \int_{-\infty}^{\infty} \left| (L^*\psi) (x) \right|^2 dx,$$

because the support of $\psi(x)$ (as well as the support of $(L^*\psi)(x)$) is in the interval $\Omega = (-M, M)$. Thus from (b) it follows that

$$(\sharp) \qquad \int_{-\infty}^{\infty} \left| Q\left(\xi + i\eta\right) \hat{\psi}\left(\xi + i\eta\right) \right|^2 d\xi \le e^{4\pi |\eta| M} \int_{-\infty}^{\infty} \left| \left(L^*\psi\right) (x) \right|^2 dx.$$

Setting $\eta = \sin \theta$ in (\sharp), we get from $|\eta| \leq 1$ that

(†)
$$\int_{-\infty}^{\infty} \left| Q\left(\xi + i\sin\theta\right) \hat{\psi}\left(\xi + i\sin\theta\right) \right|^2 d\xi \le e^{4\pi M} \int_{-\infty}^{\infty} \left| \left(L^*\psi\right) \left(x\right) \right|^2 dx$$

Replacing ξ by $\xi + \cos \theta$ in the integrand on the left-hand side of (†), we get

(‡)
$$\int_{-\infty}^{\infty} \left| Q \left(\xi + \cos \theta + i \sin \theta \right) \hat{\psi} \left(\xi + \cos \theta + i \sin \theta \right) \right|^2 d\xi$$
$$\leq e^{4\pi M} \int_{-\infty}^{\infty} |(L^*\psi) \left(x \right)|^2 dx.$$

By Statement (III) given above the function $\hat{\psi}(\xi + i\eta)$ as a function of $\xi + i\eta \in \mathbb{C}$ is holomorphic on \mathbb{C} . Since $Q(\xi + i\eta)$ as a function of $\xi + i\eta \in \mathbb{C}$ is a polynomial of degree *n* with leading coefficient 1, it follows from Statement (II) applied to $F(z) = \hat{\psi}(\xi + z)$ and $P(z) = Q(\xi + z)$ that

$$\left|\hat{\psi}\left(\xi\right)\right|^{2} \leq \frac{1}{2\pi} \int_{\theta=0}^{2\pi} \left|Q\left(\xi + \cos\theta + i\sin\theta\right)\hat{\psi}\left(\xi + \cos\theta + i\sin\theta\right)\right|^{2} d\theta.$$

Integrating both sides over $\xi \in (-\infty, \infty)$ and using (\ddagger) , we get

$$\begin{split} \int_{\xi=-\infty}^{\infty} \left| \hat{\psi}\left(\xi\right) \right|^2 &\leq \int_{\xi=-\infty}^{\infty} \left(\frac{1}{2\pi} \int_{\theta=0}^{2\pi} \left| Q\left(\xi + \cos\theta + i\sin\theta\right) \hat{\psi}\left(\xi + \cos\theta + i\sin\theta\right) \right|^2 d\theta \right) d\xi \\ &= \frac{1}{2\pi} \int_{\theta=0}^{2\pi} \left(\int_{\xi=-\infty}^{\infty} \left| Q\left(\xi + \cos\theta + i\sin\theta\right) \hat{\psi}\left(\xi + \cos\theta + i\sin\theta\right) \right|^2 d\xi \right) d\theta \\ &\leq \frac{1}{2\pi} \int_{\theta=0}^{2\pi} \left(e^{4\pi M} \int_{-\infty}^{\infty} \left| (L^*\psi) \left(x\right) \right|^2 dx \right) d\theta = e^{4\pi M} \int_{-\infty}^{\infty} \left| (L^*\psi) \left(x\right) \right|^2 dx. \end{split}$$

By applying Plancherel's formula to ψ , we conclude that

$$\|\psi(\xi)\|_{L^{2}(\Omega)}^{2} \leq e^{4\pi M} \|(L^{*}\psi)(x)\|_{L^{2}(\Omega)}^{2}$$

under the additional assumption that $a_n = \frac{1}{(2\pi i)^n}$. When this additional assumption is not satisfied, we can apply the argument for the special case to

$$\frac{1}{a_n \left(2\pi i\right)^n} L$$

instead of to L to conclude that

$$\|\psi(\xi)\|_{L^{2}(\Omega)}^{2} \leq \frac{e^{4\pi M}}{|a_{n}(2\pi)^{n}|^{2}} \|(L^{*}\psi)(x)\|_{L^{2}(\Omega)}^{2},$$

or

$$\|\psi(\xi)\|_{L^{2}(\Omega)} \leq c \|(L^{*}\psi)(x)\|_{L^{2}(\Omega)},$$

with

$$c = \frac{e^{2\pi M}}{\left|a_n\right| \left(2\pi\right)^n}.$$

By Statement (I) given above, when we set

$$c = \frac{e^{2\pi M}}{\left|a_n\right| \left(2\pi\right)^n},$$

we can conclude that for any $f \in L^2(\Omega)$ a weak solution u of Lu = f exists with $||u||_{L^2(\Omega)} \leq c ||f||_{L^2(\Omega)}$.