Qualifying Exams I, 2013 Fall

1. (ALGEBRA) Consider the algebra $M_2(k)$ of 2×2 matrices over a field k. Recall that an *idempotent* in an algebra is an element e such that $e^2 = e$.

(a) Show that an idempotent $e \in M_2(k)$ different from 0 and 1 is conjugate to

$$e_1 := \left(\begin{array}{cc} 1 & 0\\ 0 & 0 \end{array}\right)$$

by an element of $GL_2(k)$.

(b) Find the stabilizer in $GL_2(k)$ of $e_1 \in M_2(k)$ under the conjugation action.

(c) In case $k = \mathbb{F}_p$ is the prime field with p elements, compute the number of idempotents in $M_2(k)$. (Count 0 and 1 in.)

2. (ALGEBRAIC GEOMETRY) (a) Find an everywhere regular differential *n*-form on the affine *n*-space \mathbb{A}^n .

(b) Prove that the canonical bundle of the projective *n*-dimensional space \mathbb{P}^n is $\mathcal{O}(-n-1)$.

3. (COMPLEX ANALYSIS) (Bol's Theorem of 1949). Let \tilde{W} be a domain in \mathbb{C} and W be a relatively compact nonempty subdomain of \tilde{W} . Let $\varepsilon > 0$ and G_{ε} be the set of all $(a, b, c, d) \in \mathbb{C}$ such that $\max(|a - 1|, |b|, |c|, |d - 1|) < \varepsilon$. Assume that $cz + d \neq 0$ and $\frac{az+b}{cz+d} \in \tilde{W}$ for $z \in W$ and $(a, b, c, d) \in G_{\varepsilon}$. Let $m \geq 2$ be an integer. Prove that there exists a positive integer ℓ (depending on m) with the property that for any holomorphic function φ on \tilde{W} such that

$$\varphi(z) = \varphi\left(\frac{az+b}{cz+d}\right) \frac{(cz+d)^{2m}}{(ad-bc)^m}$$

for $z \in W$ and $(a, b, c, d) \in G_{\varepsilon}$, the ℓ -th derivative $\psi(z) = \varphi^{(\ell)}(z)$ of $\varphi(z)$ on \tilde{W} satisfies the equation

$$\psi(z) = \psi\left(\frac{az+b}{cz+d}\right)\frac{(ad-bc)^{\ell-m}}{(cz+d)^{2(\ell-m)}}$$

for $z \in W$ and $(a, b, c, d) \in G_{\varepsilon}$. Express ℓ in terms of m. Hint: Use Cauchy's integral formula for derivatives. **4.** (ALGEBRAIC TOPOLOGY) (a) Show that the Euler characteristic of any contractible space is 1.

(b) Let B be a connected CW complex made of finitely many cells so that its Euler characteristic is defined. Let $E \to B$ be a covering map whose fibers are discrete, finite sets of cardinality N. Show the Euler characteristic of E is N times the Euler characteristic of B.

(c) Let G be a finite group with cardinality > 2. Show that BG (the classifying space of G) cannot have homology groups whose direct sum has finite rank.

5. (DIFFERENTIAL GEOMETRY) Let $H = \{(x, y) \in \mathbb{R}^2 : y > 0\}$ be the upper half plane. Let g be the Riemannian metric on H given by

$$g = \frac{(\mathrm{d}x)^2 + (\mathrm{d}y)^2}{y^2}.$$

(H,g) is known as the half-plane model of the hyperbolic plane.

(a) Let $\gamma(\theta) = (\cos \theta, \sin \theta)$ and $\eta(\theta) = (\cos \theta + 1, \sin \theta)$ for $\theta \in (0, \pi)$ be two paths in H. Compute the angle A at their intersection point shown in Figure 1, measured by the metric g.

Figure 1: Angle A between the two curves γ and η in the upper half plane H.

(b) By computing the Levi-Civita connection

$$\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} = \sum_{k=1}^2 \Gamma_{ij}^k \frac{\partial}{\partial x_k}$$

of g or otherwise (where $(x_1, x_2) = (x, y)$), show that the path γ , after arclength reparametrization, is a geodesic with respect to the metric g. 6. (REAL ANALYSIS) For any positive integer n let M_n be a positive number such that the series $\sum_{n=1}^{\infty} M_n$ of positive numbers is convergent and its limit is M. Let a < b be real numbers and $f_n(x)$ be a real-valued continuous function on [a, b] for any positive integer n such that its derivative $f'_n(x)$ exists for every a < x < b with $|f'_n(x)| \le M_n$ for a < x < b. Assume that the series $\sum_{n=1}^{\infty} f_n(a)$ of real numbers converges. Prove that

- (a) the series $\sum_{n=1}^{\infty} f_n(x)$ converges to some real-valued function f(x) for every $a \le x \le b$,
- (b) f'(x) exists for every a < x < b, and
- (c) $|f'(x)| \le M$ for a < x < b.

Hint for (b): For fixed $x \in (a, b)$ consider the series of functions

$$\sum_{n=1}^{\infty} \frac{f_n(y) - f_n(x)}{y - x}$$

of the variable y and its uniform convergence.

Qualifying Exams II, 2013 Fall

1. (ALGEBRA) Find all the field automorphisms of the real numbers \mathbb{R} . *Hint:* Show that any automorphism maps a positive number to a positive number, and deduce from this that it is continuous.

2. (ALGEBRAIC GEOMETRY) What is the maximum number of ramification points that a mapping of finite degree from one smooth projective curve over \mathbb{C} of genus 1 to another (smooth projective curve of genus 1) can have? Give an explanation for your answer.

3. (COMPLEX ANALYSIS) Let ω and η be two complex numbers such that $\operatorname{Im}\left(\frac{\omega}{\eta}\right) > 0$. Let G be the closed parallelogram consisting of all $z \in \mathbb{C}$ such that $z = \lambda \omega + \rho \eta$ for some $0 \leq \lambda, \rho \leq 1$. Let ∂G be the boundary of G and Let $G^0 = G - \partial G$ be the interior of G. Let $P_1, \dots, P_k, Q_1, \dots, Q_\ell$ be points in G^0 and let $m_1, \dots, m_k, n_1, \dots, n_\ell$ be positive integers. Let f be a function on G such that

$$\frac{f(z)\prod_{j=1}^{\ell}(z-Q_j)^{n_j}}{\prod_{p=1}^{k}(z-P_p)^{m_p}}$$

is continuous and nowhere zero on G and is holomorphic on G^0 . Let $\varphi(z)$ and $\psi(z)$ be two polynomials on \mathbb{C} . Assume that $f(z+\omega) = e^{\varphi(z)}f(z)$ if both z and $z + \omega$ are in G. Assume also that $f(z+\eta) = e^{\psi(z)}f(z)$ if both z and $z + \eta$ are in G. Express $\sum_{p=1}^{k} m_p - \sum_{j=1}^{\ell} n_j$ in terms of ω and η and the coefficients of $\varphi(z)$ and $\psi(z)$.

4. (ALGEBRAIC TOPOLOGY) (a) Fix a basis for H_1 of the two-torus (with integer coefficients). Show that for every element $x \in SL(2,\mathbb{Z})$, there is an automorphism of the two-torus such that the induced map on H_1 acts by x. *Hint:* $SL(2,\mathbb{Z})$ also acts on the universal cover of the torus.

(b) Fix an embedding $j : D^2 \times S^1 \to S^3$. Remove its interior from S^3 to obtain a manifold X with boundary T^2 . Let f be an automorphism of the two-torus and consider the glued space

$$X_f := (D^2 \times S^1) \cup_f X.$$

If X is homotopy equivalent to $D^2 \times S^1$, compute the homology groups of X_f .

5. (DIFFERENTIAL GEOMETRY) Let M = U(n)/O(n) for $n \ge 1$, where U(n) is the group of $n \times n$ unitary matrices and O(n) is the group of $n \times n$ orthogonal matrices. M is a real manifold called the Lagrangian Grassmannian.

(a) Compute and state the dimension of M.

(b) Construct a Riemannian metric which is invariant under the left action of U(n) on M.

(c) Let ∇ be the corresponding Levi-Civita connection on the tangent bundle TM, and X, Y, Z be any U(n)-invariant vector fields on M. Using the given identity (which you are not required to prove)

$$\nabla_X Y = \frac{1}{2} [X, Y],$$

show that the Riemannian curvature tensor R of ∇ satisfies the formula

$$R(X,Y)Z = \frac{1}{4}[Z,[X,Y]].$$

6. (REAL ANALYSIS) Show that there is no function $f : \mathbb{R} \to \mathbb{R}$ whose set of continuous points is precisely the set \mathbb{Q} of all rational numbers.

Qualifying Exams III, 2013 Fall

1. (ALGEBRA) Consider the function fields $K = \mathbb{C}(x)$ and $L = \mathbb{C}(y)$ of one variable, and regard L as a finite extension of K via the \mathbb{C} -algebra inclusion

$$x \mapsto \frac{-(y^5 - 1)^2}{4y^5}$$

Show that the extension L/K is Galois and determine its Galois group.

2. (ALGEBRAIC GEOMETRY) Is every smooth projective curve of genus 0 defined over the field of complex numbers isomorphic to a conic in the projective plane? Give an explanation for your answer.

3. (COMPLEX ANALYSIS) Let $f(z) = z + e^{-z}$ for $z \in \mathbb{C}$ and let $\lambda \in \mathbb{R}$, $\lambda > 1$. Prove or disprove the statement that f(z) takes the value λ exactly once in the open right half-plane $H_r = \{z \in \mathbb{C} : \operatorname{Re} z > 0\}.$

4. (ALGEBRAIC TOPOLOGY) (a) Let X and Y be locally contractible, connected spaces with fixed basepoints. Let $X \vee Y$ be the wedge sum at the basepoints. Show that $\pi_1(X \vee Y)$ is the free product of $\pi_1 X$ with $\pi_1 Y$.

(b) Show that $\pi_1(X \times Y)$ is the direct product of $\pi_1 X$ with $\pi_1 Y$.

(c) Note the canonical inclusion $f: X \vee Y \to X \times Y$. Assume that X and Y have abelian fundamental groups. Show that the map f_* on fundamental groups exhibits $\pi_1(X \times Y)$ as the abelianization of $\pi_1(X \vee Y)$.

Hint: The Hurewicz map is natural.

5. (DIFFERENTIAL GEOMETRY) (a) Let $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$ be a circle and consider the connection

$$\nabla := \mathbf{d} + \pi \sqrt{-1} \mathbf{d}\theta$$

defined on the trivial complex line bundle over \mathbb{S}^1 , where θ is the standard coordinate on $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$ descended from \mathbb{R} . By solving the differential equation for flat sections $f(\theta)$

$$\nabla f = \mathrm{d}f + \pi \sqrt{-1} f \mathrm{d}\theta = 0$$

or otherwise, show that there does not exist global flat sections with respect to ∇ over \mathbb{S}^1 .

(b) Let $T = V/\Lambda$ be a torus, where Λ is a lattice and $V = \Lambda \otimes \mathbb{R}$ is the real vector space containing Λ . Let L be the trivial complex line bundle equipped with the standard Hermitian metric. By identifying flat U(1) connections with U(1) representations of the fundamental group $\pi_1(T)$ or otherwise, show that the space of flat unitary connections on L is the dual torus $T^* = V^*/\Lambda^*$, where $\Lambda^* := \operatorname{Hom}(\Lambda, \mathbb{Z})$ is the dual lattice and $V^* := \operatorname{Hom}(V, \mathbb{R})$ is the dual vector space.

6. (REAL ANALYSIS) (Fundamental Solutions of Linear Partial Differential Equations with Constant Coefficients). Let Ω be an open interval (-M, M) in \mathbb{R} with M > 0. Let n be a positive integer and $L = \sum_{\nu=0}^{n} a_{\nu} \frac{d^{\nu}}{dx^{\nu}}$ be a linear differential operator of order n on \mathbb{R} with constant coefficients, where the coefficients $a_0, \dots, a_{n-1}, a_n \neq 0$ are complex numbers and x is the coordinate of \mathbb{R} . Let $L^* = \sum_{\nu=0}^{n} (-1)^{\nu} \overline{a_{\nu}} \frac{d^{\nu}}{dx^{\nu}}$. Prove, by using Plancherel's identity, that there exists a constant c > 0 which depends only on M and a_n and is independent of a_0, a_1, \dots, a_{n-1} such that for any $f \in L^2(\Omega)$ a weak solution u of Lu = f exists with $\|u\|_{L^2(\Omega)} \leq c \|f\|_{L^2(\Omega)}$. Give one explicit expression for c as a function of M and a_n .

Hint: A weak solution u of Lu = f means that $(f, \psi)_{L^2(\Omega)} = (u, L^*\psi)_{L^2(\Omega)}$ for every infinitely differentiable function ψ on Ω with compact support. For the solution of this problem you can consider as known and given the following three statements.

- (I) If there exists a positive number c > 0 such that $\|\psi\|_{L^2(\Omega)} \leq c \|L^*\psi\|_{L^2(\Omega)}$ for all infinitely differentiable complex-valued functions ψ on Ω with compact support, then for any $f \in L^2(\Omega)$ a weak solution u of Lu = fexists with $\|u\|_{L^2(\Omega)} \leq c \|f\|_{L^2(\Omega)}$.
- (II) Let $P(z) = z^m + \sum_{k=0}^{m-1} b_k z^k$ be a polynomial with leading coefficient 1. If F is a holomorphic function on \mathbb{C} , then

$$|F(0)|^{2} \leq \frac{1}{2\pi} \int_{\theta=0}^{2\pi} |P\left(e^{i\theta}\right) F\left(e^{i\theta}\right)|^{2} d\theta.$$

(III) For an L^2 function f on \mathbb{R} which is zero outside $\Omega = (-M, M)$ its Fourier transform

$$\hat{f}(\xi) = \int_{-M}^{M} f(x) e^{-2\pi i x \xi} dx$$

as a function of $\xi \in \mathbb{R}$ can be extended to a holomorphic function

$$\hat{f}\left(\xi+i\eta\right) = \int_{-M}^{M} f(x)e^{-2\pi i x(\xi+i\eta)} dx$$

on \mathbb{C} as a function of $\xi + i\eta$.