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Chapter 1

Introduction

1.1 Motivation

1.1.1 ADE Classification

Dynkin diagrams of type ADE are unreasonably effective in classifying objects throughout
mathematics. They look as follows:

‚

‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚

An Dn

. . . . . .

‚

‚ ‚ ‚ ‚ ‚

E6

‚

‚ ‚ ‚ ‚ ‚ ‚

E7

‚

‚ ‚ ‚ ‚ ‚ ‚ ‚

E8

What makes these graphs special is that they are the only graphs with the property
that their vertices admit a labelling so that twice the value at a vertex is the sum of the



6 Chapter 1. Introduction

values at the adjacent vertices.
This property might seem obscure. But very many classification problems can be

interpreted in terms of ADE Dynkin diagrams. Here are some examples.

1. Simply laced Lie algebras/groups. These are special examples of Lie groups,
i.e. groups which also have the structure of a smooth manifold.

An ðñ SUpn` 1q, the group of nˆ n unitary matrices w/ det “ 1

Dn ðñ Spinp2nq, the universal cover of SOp2nq, the 2nˆ 2n orthogonal matrices w/ det “ 1

E6, E7, E8 ðñ Special exceptional groups which fall into no family.

The ADE Lie groups play an immense role in mathematics and physics as natural
symmetry groups. For instance, Spinpnq is so called because it describes the notion
of spin in quantum physics.

The graphical perspective can feed back into useful study of the groups. For in-
stance, D3 is the same graph as A3. So if our classification works, there should be
an isomorphism Spinp6q » SUp4q. Indeed, this is the case. But if we didn’t have
the graphs, it would be far from obvious that SUp4q should be the universal cover
of SOp6q. See [K2] for more details.

2. Du Val singularities and the McKay correspondence. C2 has a natural
action of SUp2q, the group of two-by-two unitary matrices of determinant one.
Let G Ă SUp2q be a finite subgroup. Then the quotient, C2{{G, is a singular
complex surface. Up to analytic isomorphism, the singularities induced follow an
ADE classification:

An ðñ w2
` x2

` yn`1
“ 0

Dn ðñ w2
` ypx2

` yn´2
q “ 0

E6 ðñ w2
` x3

` y4
“ 0

E7 ðñ w2
` xpx2

` y3
q “ 0

E8 ðñ w2
` x3

` y5
“ 0

This also provides an ADE classification of finite subgroups of SUp2q. An corre-
sponds to the cyclic group Z{pn ` 1qZ. D4 corresponds to the quaternion group.
The Dą4, E series correspond to covers of symmetry groups of Platonic solids.

Note that the precise correspondence here is not with the ADE Dynkin diagrams
as we have listed them above, but with the closely related affine ADE Dynkin
diagrams. See [R1] for an explanation of how this arises.

3. Minimal model conformal field theories. A 2D conformal field theory is a 2D
quantum field theory invariant under local conformal (angle-preserving) transfor-
mations.

The states of a conformal field theory form a projective representation of the algebra
of holomorphic local conformal transformations, and also a projective representation
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of the antiholomorphic local conformal transformations. So in fact, the states are
a representation of the tensor product of these two (projectivised) algebras.

We say a 2D conformal field theory is a minimal model if its space of states is a
sum of finitely many irreducible representations of this tensor product of algebras.

Distinct minimal models also fall into an ADE classification. For instance, An
graphs correspond to ‘diagonal models’ built out of irreducible representations Rb
R, i.e. built out of a tensor product of two of the same irreducible representations.
See [G2] for more details.

1.1.2 Inverting the ADE classification for Lie algebras

The objects classified above clearly have more data than just that of an ADE Dynkin
diagram. So however it is that we classified them, this classification should not be straight-
forwardly invertible.

However, we can ask what it takes to invert the ADE classification. For instance,
given an ADE Dynkin diagram, can we construct an associated Lie algebra in some nice
systematic way? Is the associated Lie algebra the ADE Lie algebra we wanted?

There is a classical answer, known as the Chevalley-Serre relations. Given a Dynkin
diagram D, we can directly associate to it a Lie algebra with some preferred basis of
generators tEi, Fi, HiuiPV ertpDq, whose commutation relations depend on the edges of the
Dynkin diagram.

However, the choice of these generators is somewhat ad hoc. Can we do better? Using
structures ‘naturally associated to a graph’, can we construct an ADE Lie algebra starting
with an ADE Dynkin diagram? This question is the central one tackled in this thesis.

1.2 Overview
Take an ADE Dynkin diagram. It’s a graph, so you can choose an orientation on it to
turn it into a directed graph. So given a choice of orientation, we get an ADE Dynkin
directed graph – what we’ll call an ADE Dynkin quiver.

Importantly for us, directed graphs/quivers have a good notion of representation
theory. A quiver representation is roughly the following data: to each vertex, attach
a vector space; to each edge, attach a linear map between the vector spaces on the
edge’s vertices. Quiver representations form a category, which has surprising richness.
In particular, the category of quiver representations of an ADE Dynkin diagram is very
closely related to the associated ADE Lie algebra.

This undergraduate thesis is a survey of how the category of quiver representations
of an ADE Dynkin quiver can be used to investigate combinatorial aspects of Lie theory.

1. First, we’ll discuss how quiver representation categories categorify the idea of root
systems. We will prove the classical Gabriel’s theorem and its stronger derived
variants, which roughly say that ‘decategorified, the quiver representation category
of a Dynkin quiver is the associated root system’.

We’ll look at the combinatorial insights this categorification provides. In particu-
lar, we’ll use our category of quiver representations to define something called the
Auslander-Reiten quiver, and we’ll show how the combinatorics of the Auslander-
Reiten quiver totally encode the data of the root system.
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2. In the previous part, everything was done with reference to a choice of orientation
on a Dynkin diagram. But all the results in the previous sections have been inde-
pendent of this choice of orientation. Hence, one would like some construction of
the categorical information which depends on no choice of orientation at all. We
wil provide such a choiceless construction.
Then we will discuss the notion of a t-structure and Bridgeland stability condition,
which make precise the ways in which the information of an orientation can be
preserved at the level of the derived category, and give an example where considering
stability is natural.

3. Finally, we will use quiver theory to construct the Lie algebra itself, not just its root
system, via the twisted Hall algebra of the category of Dynkin quiver represetnta-
tions. In fact, we will do a little better and construct the whole quantum associated
to a Lie algebra. We will then briefly discuss what our categorical notion of BGP
reflection, etc., imply for the quantum group. Our results here will rely on the
orientation we started with.

1.2.1 Assumed mathematics

This thesis assumes some knowledge of category theory and homological algebra. Impor-
tant assumed concepts are those of: a projective resolution; an adjoint functor; an abelian
category; a derived category; a triangulated category; pushout and pullback; coproduct;
Ext1pA,Bq. A good general reference is [GM]. See [M] for an excellent exposition of
Ext1 and projective resolutions. There is also some use of 8-categories, a quick and
informal introduction to which is given in section 2.5. For a more complete introduction,
see chapter one of [L1].

This thesis does not assume much knowledge of ADE Lie theory; hardly any result
relies on results in classical Lie theory.

One could take the Grothendieck group of a category of quiver representations to be
the definition of the root lattice, and the Hall algebra of a category of quiver represen-
tations to be the definition of a quantum group/Lie algebra. Then our theorems mostly
stand alone.

But this would be a very strange way to learn Lie theory. This thesis will be better
motivated if you have seen the classical ADE Lie theory: see [K2] for a reference.

1.2.2 Acknowledgments

I would like to thank Prof. Arthur Jaffe for his excellent work as an advisor, for inviting
me to wonderful group seminars, and for many exciting conversations about the relation
between mathematics and physics. I would also like to thank Zhengwei Liu for introducing
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Lie theory. I also benefited immensely from conversations with Arnav Tripathy, William
Norledge, Michele Tienni, Reuben Stern, and Serina Hu. Thank you to all of them.

Outside the scope of this thesis, I would like to thank the Harvard mathematics and
physics communities at large for being incredibly welcoming, kind and generous. I have
learned so much from, and been so inspired, by my peers and professors here.

And a thanks to all those who have advised me, formally or informally, on the path
here: Beta Chau, Wyatt Mackey, Arnav Tripathy, Zijian Yao and Profs. Dennis Gaits-
gory, Arthur Jaffe, Daniel Jafferis, Mikhail Lukin, Curtis McMullen, and Yum-Tong Siu.
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Chapter 2

Background on quiver representations
and higher categories

2.1 Definition of quiver representations.
We are going to work with quivers. Less abstractly,

Definition 2.1.1. A quiver ~Q is a set of vertices, V ertp ~Qq, and directed edges between
them.

This is almost the same as a directed graph. The difference is that directed graphs
are defined to have at most one edge between any two vertices; a quiver can have as many
edges between two vertices as you like.

Definition 2.1.2. A quiver representation of a quiver ~Q is

• A vector space Vi for each vertex i;

• A map me : Vi Ñ Vj for each edge e : iÑ j.

We are also going to define quivers via a more abstract perspective, where we define
the category of quiver representations as some functor category.

The advantage of this perspective is twofold. First, notions like a morphism of quiver
representations, or a subrepresentation of a quiver representation, are not entirely obvious.
Rather than define them one-by-one, we will get them ‘for free’ from general functorial
notions: e.g. a morphism of quiver representations will be a natural transformation, and
a subrepresentation will be a subfunctor.

Second, we will define a lot of quivers by forgetting information about categories.
Viewing quivers as free categories makes it clear that this is a natural operation.

Definition 2.1.3. The base quiver category, XQ, is the category with

• Two objects, V the ‘vertex object’ and E the ‘edge object’.

• Two nonidentity morphisms, s : E Ñ V , t : E Ñ V , called ‘source’ and ‘target’.

Definition 2.1.4. A quiver is a functor ~Q : XQ Ñ Set. The category of quivers,
Quiv, is the category of functors XQ Ñ Set.

• There is a functor Graph : Catsmall Ñ Quiv, given by sending a category C to the
quiver with vertices the objects and edges the morphisms.
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• Graph admits a left adjoint functor Free : Quiv Ñ Catsmall given by forming the
free category generated by objects the vertices of a quiver and morphisms the edges.

• Consequently, we say a quiver representation of ~Q, over a field k, is a functor

Freep ~Qq Ñ V ectk

• The category of quiver representations of ~Q, Repkp ~Qq, is the category of such
functors.

2.2 The Auslander-Reiten quiver.
Before we get into some examples of quivers, we will sign-post one important tool which
will play a prominent role later on: the Auslander-Reiten quiver.

The idea is as follows: we have a functor, Graph, which makes a quiver from a category.
But the resultant quiver has usually infinitely many vertices and infinitely many edges
between each, and doesn’t seem to tell us what was ‘important’ about the category we
started with.

We want a way to get a quiver from a category which better distinguishes the impor-
tant information in the category. Roughly, the Auslander-Reiten quiver remembers only
those morphisms and vertices from which you can build all others. It often has finitely
many edges and vertices, and in this case typically tells a lot about the underlying cate-
gory.

We will see eventually that the Auslander-Reiten quiver can be used to give a totally
combinatorial encoding of root system data, and to give a choiceless construction of
the root system. Hence, a lot of this thesis will be devoted to tools to help calculate
Auslander-Reiten quivers.

Definition 2.2.1. Fix a (possibly p8, 1q´) category C.

• An object O is indecomposable if it is not equivalent to a nontrivial coproduct.

• A morphism f : X Ñ Y is irreducible if f admits no right or left inverse and for
any commuting diagram

X Y

Z

α

f

β

either α admits a left inverse or β admits a right inverse.

Definition 2.2.2. The Auslander-Reiten quiver, ARpCq, of a category C is the quiver
with vertices the isomorphism classes of indecomposable objects, and edges isomorphism
classes of irreducible morphisms between them.

Calculating the Auslander-Reiten quiver is often hard; we need a complete handle on
the irreducible morphisms and indecomposable objects in our category. For any given
quiver, the brute-force calculation of the Auslander-Reiten quiver is usually not too bad,
but developing a general theory of what it should look like is more difficult. So we’ll
spend a lot of time dancing around the Auslander-Reiten quiver, building up the tools
necessary to calculate it.
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2.3 Dynkin quivers and an example
Almost exclusively, we will be interested in a special case of quivers, Dynkin quivers. Let
D an ADE Dynkin diagram. We can fix an orientation on D to turn it into a Dynkin
quiver, which we’ll denote ~DΩ. It has an associated category of quiver representations,
Repkp ~D

Ωq.

Example 2.3.1. 1. We can choose the ‘standard’ orientation on an An Dynkin dia-
gram to make it into a quiver,

~An
std

:“ 1 2 3 . . . n

To make contact with the precise definition discussed previously, this is the quiver

• With vertex set AnpV q :“ t1, . . . , nu;
• With edge set AnpEq :“ t1, . . . , n´ 1u;
• With sourcepjq :“ j;
• With targetpjq :“ j ` 1.

2. A quiver representation assigns to every vertex a vector space Vi and every edge a
linear map me: so a representation looks like

V1 V2 V3 . . . Vn
m1Ñ2 m2Ñ3 m3Ñ4 mn´1Ñn

3. A morphism of quiver representations f : V Ñ W is a morphism fi : Vi Ñ Wi at
every vertex i so that the resulting diagram commutes. That is, a morphism looks
like

V1 V2 V3 . . . Vn

W1 W2 W3 . . . Wn

m1Ñ2

f1 f2

m2Ñ3

f3

m3Ñ4 mn´1Ñn

fn

m11Ñ2 m12Ñ3 m13Ñ4
m1n´1Ñn

where the diagram is required to commute.

4. Now we can calculateARpRepkp ~Astd
n qq. For simplicitly, we calculateARpRepRp ~Astd2 qq.

(a) By linear algebra, every object is isomorphic to one of the form Rn1 Rn2
idRm‘0 .

(b) Consequently, (up to isomorphism) indecomposable objects are

i. R Rid

ii. R 00

iii. 0 R0

(c) Irreducible morphisms in this case, up to isomorphism, are essentially all the
nonisomorphism nonzero maps you can write down between indecomposable
objects.

R R

R 0

id

id

0

0

0 R

R R

0

0 id

id
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(d) Now we can write down

ARpRepRp ~A
std
2 qq :“

pRÑ Rq

pRÑ 0q p0 Ñ Rq

2.4 Quiver representations are modules over the path
algebra

To really be able to do representation theory, we have to hope that Repkp ~Qq is an abelian
category, which is not immediately obvious from the way we defined it.

In fact, we’ll go further and show that the category of quiver representations for any
quiver is equivalently the category of modules over a k-algebra, the ‘path algebra’ k ~Q
of ~Q. Even better, we’ll show that if ~Q is acyclic then every object of Repkp ~Qq has a
projective resolution of length two. This will be very useful when we move to the derived
category.

Definition 2.4.1. • Let ~Q a quiver. A path of length n - 1 in ~Q is an inclusion

Pn : Repkp ~Anq Ă Repkp ~Qq

• The path algebra over a field k, k ~Q, is the algebra generated by paths with
multiplication by concatenation of paths, so given Pn : Repkp ~Anq Ă Repkp ~Qq, Pm :

Repkp ~Amq Ă Repkp ~Qq, we let:

1. If Pnpr1sq “ Pmprmsq, let PnPm : Repkp ~An`m´1q Ă Repkp ~Qq be the con-
catenated path, such that PnPmprjsq “ Pmprjsq if j ď m and PnPmprjsq “
Pnprj ` 1´msq if j ě m.

2. Otherwise, let PnPm “ 0.

Graphically, this relation is clearer. Say you have a copy of ~A3, 1 Ñ 2 Ñ 3. The
relations say, for instance, that p2 Ñ 3qp1 Ñ 2q “ p1 Ñ 2 Ñ 3q, p2 Ñ 3qp2q “ p2 Ñ 3q,
etc.

Example 2.4.2. Consider ~A2, t0u Ñ t1u. It has one path of length one, P1 “ t0u Ñ t1u,
and two paths of length zero, P 0

0 “ t0u and P 1
0 “ t1u. These elements generate k ~A2. The

relations in k ~A2 are:

• P1 ends at t1u and starts at t0u so P 1
0P1 “ P1, P 0

0P1 “ 0, P1P
0
0 “ P1, P1P

1
0 “ 0.

• Vertices start and end at the same point, so they square to themselves and are zero
when multiplied by any other vertex. pP 0

0 q
2 “ P 0

0 , pP 1
0 q

2 “ P 1
0 , P 0

0P
1
0 “ 0 “ P 1

0P
0
0 .

Proposition 2.4.3. There is an equivalence of categories k ~Q´mod » Repkp ~Qq.

Proof. Let V P Repkp ~Qq, let VT :“ ‘vPV p ~QqVv the direct sum of the vector spaces at each
vertex. A path Pn induces a map Pnpr1sq Ñ Pnprnsq by composing all maps along the
path, i.e a map mPn :“ V pPnpen´1qq ˝ V pPnpen´2qq ˝ ¨ ¨ ¨ ˝ V pPnpe1qq. Let Pn act on VT as
mPn . Clearly these maps give VT the structure of a k ~Q-module.
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Given a morphism f : V Ñ W in Repkp ~Qq, send it to the morphism sending VT to
WT . Because f is a natural transformation, this is compatible with the action of paths,
so is a morphism of k ~Q-modules.

In the other direction, let M a k ~Q-module. Define a representation M̃ as follows:

• At vertices: there is a unique path Pi of length zero, containing only the vertex i.
Let imPi “ M̃i, the vector space at vertex i.

• At edges: there is a unique path Pe:iÑj of length one, containing an edge and its
corresponding vertices. Let me : M̃i Ñ M̃j be the map induced by the restriction
of Pe:iÑj to domain M̃i.

Now let f : M Ñ N a morphism of modules. Observe that Pif “ fPi, so imPif “
imfPi Ă Ñi. Hence f̃i : M̃i Ñ Ñi is a well-defined linear map. It suffices to show that the
induced f̃ is a natural transformation, i.e. that PiÑj f̃i “ f̃jPiÑj. This is clear because

PiÑj f̃i “ PiÑjPif “ PiÑjf

f̃jPiÑj “ fPjPiÑj “ fPiÑj

and f and PiÑj commute, because f is a morphism of modules.
Hence we have defined functors in both directions, which by computation are clearly

inverse.

Now, we are going to use the perspective of the path algebra to study the projective
objects in k ~Q´mod, so equivalently in Repkp ~Qq. The projective objects will be especially
useful when we move to the derived category, where objects are identified with their
projective resolutions.

Recall

Definition 2.4.4. M is projective if the functor V Ñ HompM,V q is exact. Equiva-
lently, for every epimorphism N Ñ N 1 and morphism M Ñ N 1, there exists a morphism
M Ñ N making the following diagram commute:

N

M N 1

Definition 2.4.5. Let i P V ertp ~Qq. Then Simplepiq P ObpRepkp ~Qqq is the quiver repre-
sentation which is k at vertex i and otherwise trivial.

Proposition 2.4.6. Let i a vertex, and Ei the path including ~A1 as that vertex. Let
Projpiq “ pk ~QqEi, i.e. the algebra of paths starting at the vertex i. Then Projpiq

is projective and indecomposable. Furthermore, if ~Q is acyclic and M P k ~Q ´ mod is
projective, it is a direct sum of some indecomposable tProjpiqu.

Proof. • First, I claim HompProjpiq, V q » Hompk, Viq » Vi. Given any map ` :
k Ñ Vi, and an edge e : i Ñ j, there is a unique map η “ me ˝ ` completing the
commutative diagram

k k

Vi Vj

` η

me
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Inductively, any map k Ñ Vi extends to a unique map Projpiq Ñ V . In the other
direction, there is a restriction map HompProjpiq, V q Ñ Hompk, Viq.

• Therefore, because the functor V Ñ Vi is exact, HompProjpiq,_q is exact, so
Projpiq is projective.

Furthermore,HompProjpiq, P rojpiqq “ k, so Projpiq is indecomposable: if Projpiq “
X ‘ Y , we would at least have dimHompProjpiq, P rojpiqq ě dimHompX,Xq `
dimHompY, Y q ě 2 because of the identity morphisms.

• Finally, let P a projective module. Let P 1 “ ‘ipdimHompP, SimplepiqqqProjpiq,
where the prefactor pdimHompP, Simplepiqqq denotes taking the direct sum of
Projpiq pdimHompP, Simplepiqqq times.

Then any nonzero morphism P Ñ Simplepiq induces a morphism P Ñ Projpiq
such that

Projpiq Ă P 1

P Simplepiq

Choosing a basis of such morphisms induces a map P Ñ P 1. In the other direc-
tion, since every nonzero map into Simplepiq is surjective, for every pair of surjections
Projpiq Ñ Simplepiq, P Ñ Simplepiq we get a map P Ñ Projpiq which, combined,
induce an inverse map P 1 Ñ P . So P 1 » P , and the conclusion follows.

Now we establish a length two projective resolution of any acyclic quiver representa-
tion.

Proposition 2.4.7. Let V P k ~Q, ~Q acyclic. There is a short exact sequence

0 ‘e:iÑjPEp ~QqProjpjq b kPe b Vi ‘iPV ertp ~QqProjpiq b Vi V 0
d1 d0

where d0 : pb v Ñ Pppvq and d1 : pb hb v Ñ phb v ´ pb Phpvq.

Proof. There is clearly a surjective map ‘iPV ertp ~QqSimplepiq b Vi Ñ V , which factors
through d0 : ‘iPV ertp ~QqProjpiq b Vi Ñ V by taking simple representations as subspaces
generated by paths at one vertex only. Hence d0 is surjective. Furthermore d1 is injective:
otherwise,

ř

n pnhn b vn “ pn b Phnpvnq. But the paths of greatest degree in pnhn are of
length one longer than the paths of greatest degree pn, so they cannot be equal.

Finally, d0 ˝ d1 “ 0 because Pphpvq “ PpPhpvq.

2.5 Higher categories, cofibres and fibres
The literature on which this thesis is based is largely written by considering the derived
category as a triangulated category. However, the derived category can be equipped with
more structure: it is in particular a stable p8, 1q category.

Using this extra structure makes the mathematics cleaner. The main improvement is
that mapping cones are not functorial in triangulated categories, but they are in stable
p8, 1q categories. Because what follows extensively uses the concept of a mapping cone,
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the setting of higher category theory makes proofs much less ad hoc and eliminates much
of the necessity for extensive checking of axioms found when using triangulated categories.

It also allows us to use techniques truly unavailable at the level of triangulated cat-
egories. For instance, we will explain how simple reflection can be categorified via the
Grothendieck construction. This technique absolutely requires the use of higher categor-
ical language.

Unfortunately, the language of p8, 1q categories is likely more obscure to the reader
than that of triangulated categories. As used in this thesis, stable-8 categories can be
considered, roughly, as triangulated categories in which cones are functorial and called
‘cofibres’, cocones are called ‘fibres’, the translation functor T is called ‘suspension’ and
denoted Σ, and the inverse translation functor T´1 is called ‘looping’ and denoted Ω.
Whenever we say ‘the homotopy category’ (of a stable-8 category), we mean the under-
lying triangulated category.

Here is an informal ‘user’s guide’ to these concepts.

Definition 2.5.1. A small p8, 1q-category C, roughly, is

• A set of objects ObpCq;

• A set of 1-morphisms, often just called ‘morphisms’, between objects which act just
like morphisms in a normal category;

• A set of n-morphisms between pn ´ 1q-morphisms which act just like morphisms
in a category where the pn ´ 1q-morphisms are objects, satisfying some coherence
conditions;

• So that if n ą 1, all n-morphisms are invertible.

Every morphism we will consider explicitly in this thesis will be a 1-morphism. The
benefit of higher morphisms is that they encode homotopy equivalence. This allows maps
to be unique ‘up to homotopy’ in a categorical setting, relaxing the strong constraints
imposed by universal properties and functoriality in the ordinary categorical setting.

For instance, we can encode the notion of a triangle functorially as a cofibre sequence.

Definition 2.5.2. • A zero object 0 is an object so that for every other object X,
there are unique morphisms X Ñ 0, 0 Ñ X. Unique morphism here means unique
up to the action of n-morphisms for n ą 1.

• A cofibre sequence associated to f : X Ñ Y is a pushout diagram

X Y

0 Z

f

• A fibre sequence associated to f : X Ñ Y is a pullback diagram

Z X

0 Y

f
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In the above, pushout and pullback mean the same things as in ordinary categories,
except morphisms now need only be unique up to higher morphisms/‘up to homotopy’.

Definition 2.5.3. A small p8, 1q-category C is stable if

• It has a zero object.

• A diagram is a cofibre sequence if and only if it is a fibre sequence.

• Every morphism is part of a cofibre sequence and a fibre sequence.

The notion of a stable p8, 1q category is supposed to be an enhanced version of the
notion of a triangulated category. In particular, we need an enhancement of the notion
of the translation functor T .

Definition 2.5.4. • ΣX, the suspension of X, is the pushout

X 0

0 ΣX

• ΩX, the loop space of X, is the pullback

ΩX 0

0 X

Here Σ is a higher categorical version of T , and Ω is a higher categorical version of
T´1. By the universal property, clearly ΣΩ » 1 » ΩΣ.

How do we recover a triangulated category from an enhanced8-categorical structure?

Definition 2.5.5. Let C an p8, 1q-category. The homotopy category, hC is (roughly)
the same set of objects and the same morphisms, with higher morphisms forgotten.

Warning. In our user’s guide, we have swept huge subtleties under the rug involving
what precisely objects and higher morphisms are. The definition of a homotopy category
is especially imprecise.

Fact 2.5.6. Let C a stable p8, 1q category. Then the homotopy category, hC is a trian-
gulated category.

• Σ is identified with the translation functor T ;

• Ω is identified with the inverse translation functor T´1;

• Cofibre sequences X Ñ Y Ñ Z are identified with distinguished triangles X Ñ Y Ñ
Z Ñ TZ.
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Chapter 3

The root system via the category of
quiver representations

3.1 Classical BGP reflection functors and Gabriel’s the-
orem

There is a very good way to calculate the indecomposable objects of general ADE quiver
categories, inspired by Lie theory. We will need to develop a categorified notion of ‘simple
reflection’, called the Bernstein-Gelfand-Ponomarev (BGP) reflection functors, and show
that all indecomposables are related by categorified ‘simple reflection’. This sections
covers that story.

It is absolutely better to consider derived BGP reflection functors, which are concep-
tually clearer and allow for stronger results. We will consider them shortly. This section
is included as a ‘warm-up’ to gather intuition before we go to the derived world.

Definition 3.1.1. A quiver ~Q is acyclic if the only endomorphisms in Freep ~Qq are
identity morphisms. A graph G is acyclic if for every orientation Ω then ~GΩ is acyclic.

Pictorially, this means the graph has no cycles. In what follows, we will state most
theorems in the generality of acyclic graphs or quivers. Note that, in particular, ADE
Dynkin diagrams are acyclic.

Definition 3.1.2. • A vertex i of a quiver ~Q is a sink if it is the source of no edge.
A vertex i is a source if it is the target of no edge.

• If i is a source or sink of a quiver ~Q, let si ~Q be the quiver with the direction of all
arrows starting at i reversed.

• Let i a sink. There is a left exact functor S`i : Repp ~Qq Ñ Reppsi ~Qq, which acts on
objects by

– For every vertex j, let

∗ If j ‰ i, S`i Vj “ Vj

∗ If j “ i, S`i Vi “ kerp‘e:kÑiVk Ñ Viq

– For every edge e, let

∗ If targetpeq ‰ i, let S`i me “ me.
∗ If targetpeq “ i, let S`i me be the natural map kerpmeq Ñ Vsourcepeq.
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If i is a source, there is a right exact functor S´i which is defined the same
with arrows reversed. These functors are adjoint. We call the S˘i the BGP
reflection functors.

Proposition 3.1.3. Given an acyclic graph G with finitely many vertices and two ori-
entations Ω1 and Ω2 on G, there exists a sequence so Ω2 “ si1 . . . sinΩ1, and all vertices
flipped are sinks.

Proof. Any such nontrivial graph always has a vertex attached to exactly one edge.
Any vertex connected to exactly one edge is always a source or a sink. Therefore, the
orientation of the edge attached to it can be flipped as desired. So WLOG it suffices to
find si relating the restricted orientations Ω11 and Ω12 on the graph G1 with all vertices of
G connected to exactly one edge removed.

Because G1 is still an acyclic graph, repeating this procedure and inducting on the
number of vertices, eventually we’ll reach the trivial graph for which all orientations are
the same.

Proposition 3.1.4. S`i and S´i are adjoint.

Proof. By explicit computation.

Now, we are ready to use the BGP reflection functors to classify indecomposables.

Definition 3.1.5. Let ~DΩ an ADE quiver. Choose simple roots αi for the root system
corresponding to D. There is a map dim : ObjpRepkp ~D

Ωqq Ñ GrpRepkp ~D
Ωqq, (the

Grothendieck group of the category) given by

V Ñ
ÿ

iPV ertpDq

pdimViqαi

Definition 3.1.6. O P ObjpRepkp ~D
Ωqq is simple if it contains no nontrivial subrepre-

sentation (precisely, no nontrivial subfunctor).

Theorem 3.1.7. (Gabriel’s Theorem): The map dim induces a bijection between in-
decomposable representations of ~DΩ and the positive roots of the root lattice.

Our strategy will be to classify simple representations, then show that we can build
all indecomposable representations from them via BGP reflection.

There are three main propositions we need to prove to establish Gabriel’s Theorem.
We postpone their proofs to the end of the section to better show the main flow of the
logic.

Proposition 3.1.8. If ~Q is acyclic, then Repkp ~Qq has simple objects isomorphic to the
representations Simplepiq which assign to the vertex i the vector space k, and trivial
vector spaces to all other vertices, with all trivial edge maps.

Furthermore, dimS`i Simplepjq “ s`i dimSimplepjq, except for i “ j.

That is, S`i decategorified is almost simple reflection with respect to αi.

Proposition 3.1.9. If X is indecomposable in Repkp ~DΩq and i is a sink, then either

• S`i X “ 0 and X is Simplepiq.
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• S`i X is irreducible, S´i S
`
i X » X and

1. dimS`i pXqj “ dimVj for j ‰ i;

2. dimS`i pXqi “ p
ř

e:kÑi dimVkq ´ dimVi

Consequently, indecomposability is preserved under BGP reflection.

Proposition 3.1.10. If X is indecomposable, there is a sequence ij so that S`im . . . S
`
i1
X

is simple.

Now Gabriel’s Theorem follows: every indecomposable is reached by BGP reflection
from a simple object and is positive, consequently is a positive root. Because every
positive root can be reached by iterated simple reflection on simple roots, this establishes
the required bijection.

Here are the proofs of the preceding propositions.

Proof. (Of Prop. 3.1.8) Suppose V is a simple quiver representation. The subquiver
on which V is nontrivial is also acyclic, therefore admits a sink i. Then there is a
subrepresentation which assigns to i the vector space Vi and is otherwise trivial. Because
V is simple, therefore i is the only nontrivial vertex and dimVi “ 1.

The final identity now follows by definition.

Proof. (Of Prop. 3.1.9) There is an isomorphism HompS`i X,S
`
i Xq Ñ HompS´i S

`
i X,Xq

given by adjointness; call the image of the identity map ι. Now ι admits a left inverse,
so by the splitting lemma there is a split exact sequence

0 Ñ S´i S
`
i X Ñ X Ñ coker ιÑ 0

Therefore, because X is indecomposable, either S´i S
`
i X “ 0 or coker ι “ 0.

If S´i S
`
i X “ 0, then by definition of the S˘i , X is necessarily only nontrivial at the

vertex i. Because X is indecomposable, therefore X “ Simplepiq.
Otherwise, S´i S

`
i X » X. Suppose S`i X “ A ‘ B. Then because S´i is additive

(because it is left adjoint, hence preserves coproducts), then X “ S´i pAq ‘ S´i pBq; one
factor is zero by indecomposability, say S´i pAq “ 0. Let ρ the image of the identity
under the natural isomorphism HompS´i S

`
i X,S

´
i S

`
i Xq Ñ HompS`i X,S

`
i S

´
i S

`
i Xq. It

is an isomorphism, with ρ´1 the image of the identity under the natural isomorphism
HompS´i S

`
i X,S

´
i S

`
i Xq Ñ HompS`i S

´
i S

`
i X,S

`
i Xq. ρ induces a restricted isomorphisms

ρ|A. But ρ|A has range S`i S
´
i pAq “ 0. Hence A “ 0 also. Therefore, S`i is indecompos-

able.
It remains to establish the given formula on dimensions. By rank-nullity, it suffices to

show that the map p‘e:kÑiVkq Ñ Vi is surjective. Let U a complement to the image, and
Ũ the quiver representation which has U at vertex i and is otherwise trivial. Ũ is clearly
a direct summand of X, therefore Ũ “ 0 ùñ U “ 0.

Proof. (Of Prop. 3.1.10) Given ~DΩ with n vertices, choose a sequence i1, . . . , in so that

• ij is a sink for D with orientation sij´1
. . . si1Ω;

• No vertex appears twice.
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This gives rise to a Coxeter functor, C :“ S`i1 . . . S
`
in
, which under the map dim is

a Coxeter element C of the Weyl group. I claim for now without justification that C
has finite order h and C ´ 1 is invertible. (See [K2] for classical proofs of these claims.
Alternatively, we will discuss a categorification of Coxeter elements starting in section
3.6. We prove categorical versions of both of these statements, see prop. 3.6.7 and corr.
3.7.2.1, which imply this result.)

Now I claim for v ą 0 in the root system, there exists k so Ckv ď 0. We have
0 “ pC ´ 1q´1pCh ´ 1qv “ Ch´1v ` ¨ ¨ ¨ ` Cv ` v. Therefore at least one Ckv ď 0.
Apply this for dimX. Then there exists minimal k so Ck dimX ď 0. So by the previous
proposition, Ck´1X is simple.

3.2 Moving to the derived category: homological pre-
requisites

There was a problem with Gabriel’s theorem. We said that the BGP reflection functors
were a categorified notion of simple reflection. Yet we had that

S`i Simplepiq “ 0

so the analogy was not precise; if the reflection functors really categorified simple reflec-
tion, we would have

S`i Simplepiq “ “´ Simplepiq2

In particular, our simple reflections ‘couldn’t see the negative roots’, because we had
no good categorical notion of negativity. We will solve this problem by moving to a
slightly larger category with a good categorified notion of negativity.

Before we can get there, we’ll need some homological algebra prerequisites.

Definition 3.2.1. A hereditary category is an abelian category in which Ext2pA,Bq
vanishes for all A,B.

Note that, interpreting the ExtnpA,Bq as right-derived functors of AÑ HompA,Bq,
vanishing of Ext2pA,Bq clearly implies vanishing of all higher Extn.

Proposition 3.2.2. Categories of quiver representations are hereditary.

Proof. We earlier (2.4.7) constructed an explicit projective resolution of length two for
any quiver representation, hence Ext2 must vanish.

Lemma 3.2.3. If f : N Ñ M is a surjection in a hereditary category, then there is a
surjection Ext1pX,Nq Ñ Ext1pX,Mq.

Proof. Choose a projective resolution 0 Ñ P1 Ñ P0 Ñ X Ñ 0. The surjection f induces
a map of cochain complexes

0 HompP0, Nq HompP1, Nq 0

0 HompP0,Mq HompP1,Mq 0

BN1

f‹ f‹

BM1
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which induces a surjectionExt1pX,Nq “ HompP1, Nq{imB
N
1 Ñ HompP1,Mq{imB

M
1 “

Ext1pX,Mq because f ‹ is a surjectionHompP1, Nq Ñ HompP1,Mq such that f ‹pimBN1 q Ă
imBN2 .

Now we will prove the most important property of hereditary categories: namely, in
a hereditary category A, chain-complexes are always quasi-isomorphic to the direct sum
of translates of objects of A.

Proposition 3.2.4. If A is hereditary, there is a roof diagram of quasi-isomorphisms
between the chain complexes X‚ and ‘nPZHnpX‚qr´ns.

Proof. By the previous lemma 3.2.3, the surjection Bn´1 : Xn´1 Ñ imBn´1 induces a sur-
jection Ext1pHnX,Xn´1q Ñ Ext1pHnX, imBn´1q. Hence, by the classical interpretation
of Ext1, there exists Xn and maps such that the diagram of short exact sequences (where
ι indicates an inclusion map)

0 Xn´1 X
n

HnX 0

0 imBn´1 Xn HnX 0

Bn´1

ι

commutes.
Let Xn

‚ denote the complex ¨ ¨ ¨ Ñ 0 Ñ Xn´1 Ñ X
n
Ñ 0 Ñ . . . , where Xn is in degree

n.
There is a clear morphism X

n

‚ Ñ X‚, which has trivial maps except in degree n, where
it has the map Xn

Ñ Xn given in the commutative diagram above. By the short exact
sequence given, this map is an isomorphism on the n-th homology group.

Hence there is a quasi-isomorphism‘nPZX
n

‚ Ñ X‚. Furthermore clear quasi-isomorphisms
X
n

‚ Ñ HnpX‚qr´ns induce a roof diagram

‘nPZX‚
n

‘nPZH
npX‚qr´ns X‚

as desired.

In 8-categorical language, the aforementioned quasi-isomorphism presents a derived
equivalence between X‚ and ‘nPNΩnHnpX‚q. We will now use this to prove that the
two-periodic derived category also has nice properties.

Definition 3.2.5. Model DpAq as KompAq (the category of chain complexes in A) with
weak equivalences inverted.

The two-periodic derived 8-category DpAq{Σ2 is the full subcategory of DpAq with
objects weakly equivalent to one of the form

. . . X0 X1 X0 X1 X0 . . .α β α β

We call this the root category of our Dynkin quiver in the case that Repkp ~DΩq “ A.

Proposition 3.2.6. DpAq{Σ2 is stable if A is hereditary.
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Proof. To show a subcategory of a stable category is stable, it suffices to show that the
subcategory contains zero and all fibres and cofibres. DpAq{Σ2 contains zero clearly.
Further, because DpAq{Σ2 is closed under Ω and ΩcofibpX Ñ Y q » fibpX Ñ Y q, it in
fact suffices to show that the subcategory contains all cofibres.

Because A is hereditary, choose complexes equivalent to X and Y with trivial cochain
maps by the previous proposition.

Then the cofibre sequence splits as

‘nPZΣ2npX0 ‘ ΣX1q ‘nPZΣ2npY0 ‘ ΣY1q

0 ‘nPZΣ2npcofibpX0 Ñ ΩY1 ‘ Y0 ‘ ΣY1q ‘ cofibpΣX1 Ñ Y0 ‘ ΣY1 ‘ Σ2Y0qq

Now ‘nPZΣ2npcofibpX0 Ñ Y0q ‘ ΣcofibpX1 Ñ Y1qq is clearly in the subcategory, and is
equivalent to cofibpX Ñ Y q.

Remark 3.2.7. We defined the two-periodic derived category in terms of a modelling by
chain complexes to be concrete. But we could have defined it more abstractly. Further,
the category is stable even if the underlying abelian category isn’t hereditary. The dis-
cussion surrounding prop. 4.1.6 will present this proof and definition in a more abstract
and general context.

Finally, the theorem on equivalences in a derived category also nets a classification of
its indecomposables:

Corollary 3.2.7.1. Up to equivalence, indecomposable objects in the (two-periodic) de-
rived category of a hereditary category are translates by Ω or Σ of indecomposable objects
in the underlying hereditary category.

In particular, in the Dynkin case Gabriel’s theorem therefore identifies all the inde-
composables in the root category.

3.3 Derived BGP reflection functors
The derived BGP reflection functors are the derived functors associated to the previously
introduced BGP reflection functors. But whilst the normal BGP reflection functors were
defined in a seemingly ad hoc way, the derived ones can be motivated more clearly.

Given a map B Ñ C, is there a way to ‘reflect the arrow’ functorially without losing
information? That is, we have a map out of B and into C. Can we somehow get a map
out of C or a map into B from this? In a stable p8, 1q category, there are two natural
candidates for orientation reversal.

We can take the cofibre map C Ñ cofibpB Ñ Cq induced by the pushout/pullback
square

B C

0 cofibpB Ñ Cq
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or we could alternatively take the fibre map fibpB Ñ Cq Ñ B induced by the
pushout/pullback square

fibpB Ñ Cq B

0 C

These maps are mutually inverse, i.e. fibpC Ñ cofibpB Ñ Cqq “ B and cofibpfibpB Ñ
Cq Ñ Bq “ C, because each internal square is pushout and pullback,

fibpB Ñ Cq B 0

0 C cofibpB Ñ Cq

hence they are information preserving.
More generally, given maps tBi Ñ CuiPI in a stable p8, 1q category, we get maps

fibp‘iBi Ñ Cq Ñ ‘iBi Ñ Bi, which can be inverted with cofib to the original maps
Bi Ñ C. We can do the same with arrows in the opposite direction.

Hence, derived BGP reflection functors are in some sense the natural invertible orientation-
reversing maps of diagrams in a stable p8, 1q-category. This perspective will be made
more precise in section 3.9.

Definition 3.3.1. • Recall a vertex i P ~Q is a sink if there are no edges pointing out
of i;

• Recall a vertex i P ~Q is a source if there are no edges pointing into i.

• If i is a sink, the BGP reflection functor RS`i sends all maps associated to edges
j Ñ i to the maps fibp‘jVj Ñ Viq Ñ ‘jVj Ñ Vj.

It is a functor DpRepkp ~Qqq Ñ DpRepkpsi ~Qqq, where si ~Q is the quiver with the same
underlying graph and the orientation of all arrows pointing into i flipped.

• If i is a source, the BGP reflection functor LS´i sends all maps associated to
edges iÑ j to the maps Vj Ñ ‘jVj Ñ cofibpVi ‘j Vjqj.

It is a functor DpRepkp ~Qqq Ñ DpRepkpsi ~Qqq, where si ~Q is the quiver with the same
underlying graph and the orientation of all arrows pointing out of i flipped.

Immediately, we have

Proposition 3.3.2. If G is an acylic graph, Ω1 and Ω2 arbitrary orientations, then there
is an equivalence of stable p8, 1q-categories DpRepkp~GΩ1qq Ñ DpRepkp~GΩ2qq induced by
iterated BGP reflection on sinks. In particular, this is true for Dynkin quivers which are
all acyclic.

We can also verify analogously to the non-derived case that

• Derived BGP functors preserve indecomposabilility (Proof: suppose RS`i X “ A ‘
B. Then LS´i A ‘ LS´i B » X. But if X is indecomposable, since LS´i is an
equivalence, then A or B are zero. So RS`i X is indecomposable.)
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• If X is indecomposable, there is a sequence ij so that RS`im . . . RS
`
i1
X is simple.

(The same proof as Prop 3.1.10)

Immediately, we get

Proposition 3.3.3. The indecomposable objects of DpRepp ~DΩqq are in bijection with the
roots of the root system corresponding to the Dynkin diagram D. The derived functors
RS´i act as simple reflection and generate the Weyl group.

3.4 The Categorical Root System Inner Product
We have the roots system and the Weyl group: there is one more piece of data needed to
specify a root system; namely, an inner product of roots. Furthermore, we need a formal
tool to get the whole root lattice, generalising the dim map of def. 3.1.5.

Definition 3.4.1. Let C a triangulated category. Then the Grothendieck group, or
zero-th order K-theory, K0pCq is the group generated by isomorphism classes of objects
of C subject to the relation that if X Ñ Y Ñ Z Ñ TZ is a triangle, then

rXs ` rZs “ rY s

Remark 3.4.2. We can more generally define the Grothendieck group than just for
triangulated categories. For an abelian category, we can impose relations rAs`rCs “ rBs
for every exact sequence 0 Ñ A Ñ B Ñ C Ñ 0. For a stable 8-category, we can let
rAs ` rCs “ rBs for every fibre sequence AÑ B Ñ C.

Note that the Grothendieck group of an abelian category is therefore the free abelian
group generated by its (isomorphism classes of) indecomposable objects, soK0pDpRepkp ~DΩq{T 2qq

is in fact the root lattice.
Now, the inner product of roots.

Definition 3.4.3. Fix a root category of an ADE Dynkin quiver. Define a bilinear form
on isomorphism classes of indecomposables

xrXs, rY sy :“ dimRHompX, Y q ` dimRHompY,Xq

Note that dimRHompX, Y q “ dimHompX, Y q ´ dimExt1pX, Y q.

Proposition 3.4.4. BGP reflection is an isometry:

xrRS`i Xs, rRS
`
i Xsy “ xrXs, rXsy

Proof. dimRHompX, Y q is preserved under RS`i because it’s an equivalence, hence the
bilinear form is also preserved.

Corollary 3.4.4.1. All roots are long, i.e. xrXs, rXsy “ 2 for all indecomposables.

Proof. dimHompSimplepiq, Simplepiqq “ dimHomk´algpk, kq “ 1 and

dimExt1pSimplepiq, Simplepiqq “ dimExt1pk, kq “ 0

. Therefore xrSimplepiqs, rSimplepiqsy “ 2. Now write any indecomposable as the BGP
reflection of simple objects.



3.5. The Auslander-Reiten quiver and combinatorial Lie theory 25

Proposition 3.4.5. The inner product is compatible with simple reflection in the usual
way: rRS`i Xs “ rXs ´ xrXs, rSimplepiqsy rSimplepiqs

Proof. This is clearly true if X » Simplepiq. Otherwise,

fibp‘e:kÑiVk Ñ Viq » kerp‘e:kÑiVk Ñ Viq

,by definition. Consequently, we can apply the dimension formula of Prop. 3.1.9. It
suffices to prove that

ř

e:kÑi dimXk ´ dimXi “ dimXi ´ xrXs, rSimplepiqsy.
Clearly dimHompX,Simplepiqq “ dimpXi, kq “ dimXi “ dimpk,Xiq “ dimHompSimplepiq, Xq.

Likewise, dimExt1pX,Simplepiqq “ dim‘e:kÑiVk and dimExt1pSimplepiq, Xq “ 0, where
Ext groups are computed by projective resolution. Plugging these calculations in gets
the desired result.

Putting all this together gets

Theorem 3.4.6. (Gabriel’s theorem, enhanced) Let D a Dynkin diagram, Ω an orien-
tation, and R “ DpRepkp ~DΩqq{Σ2 the corresponding root category. The following data
specify the root system corresponding to D:

• Roots the isomorphism classes of indecomposable objects of R;

• Vector space generated by the Grothendieck group K0pRq;

• Weyl group generated by the derived BGP reflection functors;

• An inner product of roots xrXs, rY sy :“ dimRHompX, Y q ` dimRHompY,Xq.

3.5 The Auslander-Reiten quiver and combinatorial Lie
theory

The previous section justifies the sense in which the ‘root category’ DpRepkp ~Qqq{Σ2 cat-
egorifies combinatorial Lie theory. Now we are going to show how the Auslander-Reiten
quiver of this 8-category gives a combinatorial quiver-theoretic interpretation of Lie the-
ory.

Definition 3.5.1. Fix D a Dynkin diagram. Choose any orientation Ω. Let D̂cyc :“

ARpDpRepkp ~DΩq{Σ2qq; call it the periodic Auslander-Reiten quiver associated to
D.

By the work of the previous sections, the vertices of this periodic Auslander-Reiten
quiver are in bijection with the roots of the root system; what are the edges of the
Auslander-Reiten quiver? Before we proceed in general, we’ll consider an instructive
example.

Example 3.5.2. We will work in the homotopy category Dbp ~A2

std
q{T 2. Let’s calculate

Â2cyc “ ARpDbpRepRp ~A2

std
q{T 2q. We know the indecomposable objects are translates of

the indecomposable objects we calculated for RepRp ~A2

std
q in Example 2.3.1. It suffices

to calculate the irreducible morphisms.
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Morphisms from objects X to Y are then in bijection with tuples pfi, eiq, where
fi : H iX Ñ H iY are morphisms and the ei P Ext1pHnX,Hn´1Y q. Ext1p0 Ñ R, Xq “ 0,
therefore the irreducible morphisms p0 Ñ Rq Ñ pR Ñ Rq and T p0 Ñ Rq Ñ T pR Ñ Rq
from Ex. 2.3.1 are preserved.

Likewise, Ext1pX, 0 Ñ Rq “ 0, so the irreducible morphism pR Ñ Rq Ñ p0 Ñ Rq
and its translate are preserved. However, dimExt1pR Ñ 0, 0 Ñ Rq “ 1. dimExt1pR Ñ
0,RÑ Rq “ 1 also, but one can show this factors via the morphism p0 Ñ Rq Ñ pRÑ Rq.
So the Auslander-Reiten quiver looks like

T p0 Ñ Rq pRÑ 0q

T pRÑ Rq pRÑ Rq

T pRÑ 0q p0 Ñ Rq

In general, we can calculate the Auslander-Reiten quiver combinatorially. This calcu-
lation will take some work.

Definition 3.5.3. Let D an ADE Dynkin diagram with associated Coxeter number h.
We can associate a quiver, D ˆ Z, with

• Vertex set V pD ˆ Zq “ D ˆ Z

• An edge pv, jq Ñ pw, j ` 1q whenever v ´ w is an edge of the Dynkin diagram.

Because Dynkin diagrams are bipartite, D ˆ Z has two identical connected compo-
nents. Let D̂ a connected component of the quiver D ˆ Z; we call it the Auslander-
Reiten quiver associated to D.

Proposition 3.5.4. ARpDpRepkp ~DΩqqq “ D̂.

We know the indecomposable objects in DpRepkp ~DΩqq; it suffices to calculate the
irreducible morphisms. Here’s the idea: we’ll calculate the irreducible morphisms of
ARpRepkp ~D

Ωqq, then we’ll identify an operation τ which ‘translates’ it. Formally devel-
oping this idea will take up the next section.

3.6 Auslander-Reiten translation
We are going to introduce lots of notions of duality, which don’t quite commute. By
composing them, we will get an interesting autoequivalence, the Auslander-Reiten trans-
lation τ , which will in fact be a Serre functor, and will give us the tool of almost-split
sequences. Many of our arguments appeal to projective resolution, and we omit some of
the detailed checking formally required to avoid getting bogged down in the commutative
algebra details. See e.g. [K5] for a more careful treatment.

Definition 3.6.1. • Let Λ :“ k ~Q, for ~Q Dynkin. (More generally, what we’ll say
works for a Noetherian ring which is a k-algebra);

• There is a duality functor, p_q‹ :“ HomΛp_,Λq : modΛ Ñ modΛop;
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• Given a projective presentation P 1 Ñ P 0 Ñ X, let TrX :“ cofibppP 1 Ñ P 0q‹q, the
Auslander-Bridger transpose. In a hereditary category with enough projectives
and injectives, this gives an equivalence DpmodΛq Ñ DpmodΛopq.

• There is an equivalence D :“ Homkp_, kq : modΛ Ñ modΛop.

• Let τ :“ D ˝ Tr : DpmodΛq Ñ DpmodΛq, the Auslander-Reiten translation.

Remark 3.6.2. Recall we defined Projpiq :“ k ~QEi, the algebra of paths starting the
vertex i. We could equivalently have defined Injpiq :“ Eik ~Q, the algebra of paths ending
at the vertex i, and we could show that the Injpiq are a full list of the indecomposable
injectives in our quiver the same way as we did in Prop. 2.4.6 for Projpiq, for instance
because Injpiq is the projective indecomposable starting at vertex i for the opposite
quiver ~Qop.

Proposition 3.6.3. 1. τ is an additive equivalence, with inverse τ´1 :“ Tr ˝D.

2. If X P modΛ is indecomposable, considered as a complex in degree zero, then τX
lowers the degree of X if X is projective, sending projective objects to lower-graded
injective objects, and otherwise preserves grading.

3. Στ is a Serre functor: i.e. HompX, Y q » HompY,ΣτXq‹ naturally.

Proof. 1. Because Tr and D are dualities.

2. Suppose X is projective, X “ Projpiq “ P . Then τP “ DTrP “ Dcofibp‹p0 Ñ
P1qq “ DΣP ‹1 “ ΩDP ‹1 . We can compute by definition DProjpiq‹ “ Injpiq, hence
DP ‹1 is injective. So τProjpiq “ ΩInjpiq. Hence, τ lowers grading on projective
objects, and sends projective objects to injective ones.
Otherwise, let P0 Ñ P1 a projective resolution ofX. τX “ DTrX “ Dcofibp‹pP0 Ñ

P1qq “ Dcokerp‹pP0 Ñ P1qq “ kerD ‹ pP0 Ñ P1q, hence has grading zero.

3. Hence, on projective objects ΣτProjpiq » Injpiq. Hence to establish Serre duality,
taking projective resolutions, it suffices to establish isomorphismsHompProjpiq, P rojpjqq »
HompProjpjq, Injpiqq‹, which are clear because both vector spaces are generated
by the paths iÑ j.

Using Auslander-Reiten translation, we are ready to study almost-split sequences.

Definition 3.6.4. A short exact sequence 0 Ñ AÑ B Ñ C Ñ 0 is almost split if

1. A and C are indecomposable;

2. The sequence is not split;

3. Given any indecomposables X, Y , and nonisomorphisms AÑ X, Y Ñ C, the maps
factor

Y

0 A B C 0

X
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Proposition 3.6.5. If X is a nonprojective indecomposable, then there is X̃ and an
almost split exact sequence 0 Ñ τX Ñ X̃ Ñ X Ñ 0.

Proof. In this case, Serre duality tells us that Ext1pX, τXq » DEndpXq » k. By the
classical interpretation of Ext1, therefore there exists X̃ and a short exact sequence
0 Ñ τX Ñ X̃ Ñ X Ñ 0 which is not split. Further, τX is indecomposable because τ is
invertible and additive.

Now suppose we have Y indecomposable with a map into X. Now HompY,Xq »
HompX,ΣτY q‹. Choosing an identification of the dualHompX,ΣτY q‹ » HompX,ΣτY q,
we get a map to HompX,ΣτY q Ñ HompX̃,ΣτY q; composing all this nets a map
HompY,Xq Ñ HompY, X̃q (choosing an identification of the dual once more.)

Tracing the exact maps and using the fact that an indecomposable cannot split, we can
show that the composition HompY,Xq Ñ HompY, X̃q Ñ HompY,Xq is an isomorphism.
Then choose identifications of the dual so that this isomorphism is the identity map.

Note that this proposition is still true if X is projective, except that the objects are
no longer necessarily complexes in degree zero.

Also note that in the process of our proof, we showed that

Corollary 3.6.5.1. If AÑ X is an irreducible morphism and 0 Ñ AÑ B Ñ C Ñ 0 is
an almost split exact sequence, X is a direct summand of B.

We are almost done; we just need a bit more handle on irreducible maps.

Proposition 3.6.6. If M Ñ N is irreducible, the functorially induced map τM Ñ τN
is also. Furthermore, if N is not projective, there is an irreducible morphism τN ÑM .

Proof. Irreducibility is preserved because τ is an additive equivalence.
Now given the morphism M Ñ N , the factoring property of the almost split exact

sequence 0 Ñ τN Ñ Ñ Ñ N Ñ 0 implies the existence of a morphism M Ñ Ñ , which
by the irreducibility of M Ñ N must admit a section. Hence Ñ »M ‘ Ñ 1.

Now, projection induces a morphism τN Ñ M . τN Ñ M is irreducible, because if
it factors with some τN Ñ Z Ñ M the lifting property of almost split exact sequences
implies there exists a map M Ñ Z which is a one-sided inverse to Z ÑM .

Lemma 3.6.7. There is no 0 ‰ X indecomposable in k ~Q´mod so τ kX » X.

Proof. Because τ lowers degree on projective objects, take a projective resolution and
compute.

Equivalently, prop. 3.6.8 below establishes τ as a categorified Coxeter element. We
can appeal to the classical fact that the orbit of every positive root under a Coxeter
element contains a nonpositive root, hence for some ` we must have τ `X with lower
grading than X.

Corollary 3.6.7.1. For ~Q Dynkin, every irreducible object in Repkp ~Qq is the image of
iterated inverse Auslander-Reiten translation of a projective object.

Proof. For a Dynkin quiver, dimHompSimplepiq, Simplepiqq “ 1 clearly. Now BGP re-
flection preserves the dimension ofHom-spaces, so for any indecomposableX dimHompX,Xq “
1. Hence, we can apply the previous proposition, to show that τ has no fixed points.

Now Dynkin quivers have finitely many indecomposables in fixed degree and τ only
lowers degree on projective objects, hence apply the pigeonhole principle.
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Consequently, we can apply Auslander-Reiten translation to build up the Auslander-
Reiten quiver. We will discuss this further shortly.

Note that there is an alternate description of Auslander-Reiten translation for quiver
representation categories in terms of simple reflection. This justifies calling Auslander-
Reiten translation a ‘Coxeter functor’, for RS`im . . . RS

`
i1

decategorified is a Coxeter ele-
ment.

Proposition 3.6.8. Let ~Q Dynkin; consider Dpk ~Q´modq. There is a sequence tiju so
that RS`im . . . RS

`
i1
» τ .

Proof. Let n the number of vertices. There exists a sequence i1, . . . , in, all ij distinct,
such that at each step ij is a sink. Hence, under RS`in . . . RS

`
i!
every edge has orientation

reversed twice. Therefore C :“ RS`inRS
`
in´1

. . . RS`i1 is an (invertible) endofunctor on
DpRepkp ~Qqq; call this a Coxeter functor.

Now we can calculate CProjpiq “ ΩInjpiq. Choose a sink v on which the representa-
tion Projpiq is nontrivial. If v ‰ i, there is a unique edge j on which Projpiq is nontrivial,
and the associated map is id : k Ñ k. Hence fibpk Ñ kq “ 0. Inductively, if j ‰ i and
there is a path iÑ ¨ ¨ ¨ Ñ j, pCProjpiqqj “ 0.

Conversely, suppose j lies on a path j Ñ ¨ ¨ ¨ Ñ i. fibp0 Ñ kq “ Ωk, so inductively
pCProjpiqqj “ Ωk and the maps on the path are the identity.

Finally, suppose there is no path j Ñ i or i Ñ j. Then fibp0 Ñ 0q “ 0; inductively,
pCProjpiqqj “ 0.

So, putting this all together, CProjpiq “ ΩInjpiq, as desired. Now by the same
argument as the last part of prop. 3.6.3, C is a Serre functor. By the Yoneda lemma, all
Serre functors are isomorphic, so C » τ .

3.7 Proof of the combinatorial description of the Auslander-
Reiten quiver, and the theory of height functions

We are going to do one final example calculation before doing the proof.

Example 3.7.1. Consider the quiver ~A3,

1 2 3

which has indecomposable projectives k Ñ k Ñ k, 0 Ñ k Ñ k, 0 Ñ 0 Ñ k.

1. The commutative diagram

0 0 k

0 k k

k k k

id

id

id id

id id

Makes it clear that there is a sequence of irreducible morphisms p0 Ñ 0 Ñ kq Ñ
p0 Ñ k Ñ kq Ñ pk Ñ k Ñ kq.
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2. Now we can apply inverse Auslander-Reiten translation. We have, viewing opposite
representations on the quiver as representations on the opposite quiver

τ´1
p0 Ñ 0 Ñ kq “ TrDp0 Ñ 0 Ñ kq “ Trp0 Ð 0 Ð kq

We have a projective resolution 0 Ñ pk Ð k Ð 0q Ñ pk Ð k Ð kq Ñ p0 Ð 0 Ð
kq Ñ 0, hence because Projpiq‹ “ Projpiqop,

τ´1
p0 Ñ 0 Ñ kq “ cofibpp0 Ñ 0 Ñ kq Ñ p0 Ñ k Ñ kqq “ 0 Ñ k Ñ 0

3. Likewise, we can compute τ´1p0 Ñ k Ñ kq “ pk Ñ k Ñ 0q and τ´1pk Ñ k Ñ kq “
pk Ñ 0 Ñ 0q.

4. Earlier, we showed that if A Ñ X is irreducible, then X is a summand of B in
the almost split exact sequence 0 Ñ A Ñ B Ñ τ´1C Ñ 0. Hence we know all
morphisms and we can write down the Auslander-Reiten quiver ARpRepkp ~A3qq,

p0 Ñ k Ñ 0q

p0 Ñ k Ñ kq pk Ñ k Ñ 0q

p0 Ñ 0 Ñ kq pk Ñ k Ñ kq pk Ñ 0 Ñ 0q

Now, we are going to exactly mimic the ideas we used in the above example more ab-
stractly to prove the previous proposition. First, we are going to calculate the projective
indecomposables and the irreducible morphisms between them. Then we will use trans-
lation invariance under BGP reflection to construct the entire Auslander-Reiten quiver.
Then we will define a grading on the Auslander-Reiten quiver to show that our calculation
gives the same result as the combinatorial description does.

Theorem 3.7.2. Let D̂ be a connected component of the quiver D ˆ Z, with D Dynkin.
Then ARpDpRepkp ~DΩqq “ D̂.

Proof. If there is an edge iÑ j, there is a clear irreducible morphism Projpjq Ñ Projpiq
which is the identity map between vertices other than j and the 0 map on j.

Because dimHompProjpjq, P rojpkqq ď 1, these constitute a full list of irreducibles
between projective indecomposables: if dimHompProjpjq, P rojpkqq “ 1, and j and k
are not adjacent, there is an intermediate vertex i such that any nontrivial map factors
Projpjq Ñ Projpiq Ñ Projpkq, contradicting its irreducibility.

So by invariance of the Auslander-Reiten quiver under BGP reflection, the quiver is
composed of translates of copies of ~DΩs.

We can construct morphisms other than those between our projective slice by repeat-
edly applying inverse Auslander-Reiten translation.

Functoriality of τ´1 means that when applied to our copy of ~DΩ, it produces another
copy of ~DΩ. The connecting irreducible morphisms factor through the sequences 0 Ñ
X Ñ X̃ Ñ τ´1X Ñ 0.
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Suppose X “ Projpiq. If there is an edge j Ñ i, by corollary 3.6.5.1, the irreducible
map Projpiq Ñ Projpjq implies Projpjq is a direct summand of X̃ and there is an
irreducible morphism Projpjq Ñ τ´1Projpiq.

By translation invariance under BGP reflection, all such arrows must be of this form;
hence, this constructs the Auslander-Reiten quiver.

Now we would like to show that ARpDpRepkp ~DΩqq “ D̂. Grade ARpDpRepkp ~DΩqq by
D ˆ Z as follows. Choose a sink, v, of our projective slice of ~DΩ Ă ARpDpRepkp ~DΩqq,
and declare that it has grading pi, 0q, where i is the vertex in D to which it corresponds.

Then

• If there is a path v Ñ v1, and the minimum path v Ñ v1 is of length `, label v1 by
pj, `q where v1 is the image of Auslander-Reiten translation of j P ~DΩ, considered
as the projective slice Ă ARpDpRepkp ~DΩqq discussed above;

• If there is a path v1 Ñ v, and the minimum path v1 Ñ v is of length `, label v1 by
pj,´`q;

• If there are no paths v Ñ v1 or v1 Ñ v, declare v1 to have grading pj, 0q.

This grading is well-defined because the Auslander-Reiten quiver is acyclic because
τ kX fi X, per prop. 3.6.7.

It suffices to show that if i ´ j in D, then there is an irreducible morphism pi, nq Ñ

pj, n ` 1q. By translation invariance, we can assume pi, nq “ Projpiq. If j Ñ i P ~DΩ,
then Projpiq Ñ Projpjq constitutes the necessary morphism. If i Ñ j P ~DΩ, then
Projpiq Ñ τ´1Projpjq suffices.

Therefore ARpDpRepkp ~Qqq “ D̂.

Corollary 3.7.2.1. Hence, ARpDpRepkp ~Qqq{Σ2q is a connected component of D ˆ Z2h,
where h is the order of τ on indecomposables in DpRepkp ~Qqq{Σ2.

Definition 3.7.3. h is the Coxeter number.

To justify that this matches up with the usual definition of the Coxeter number, it suf-
fices to appeal to the classical theorem that a root system has |D|h roots (indecomposable
objects).

This further justifies that τ can be identified as a Coxeter functor, as previously
discussed in prop 3.6.8.

Note also, labelling D̂ as a connected component of D ˆ Z, we have

Corollary 3.7.3.1. τpi, nq “ pi, n´ 2q

3.8 Combinatorial theory of the Auslander-Reiten quiver
Now that we have combinatorial handle on the Auslander-Reiten quiver, we can decate-
gorify our insights coming from the quiver representation category and hope to express
combinatorial Lie theory in terms of the combinatorics of the Auslander-Reiten quiver.

First, we will explicitly describe the root system inner product in terms of the edges of
the Auslander-Reiten quiver, demonstrating that the Auslander-Reiten quiver pictorially
encodes all data of a root system.
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Second, we will develop the theory of height functions, which let us encode ordinary
Dynkin quivers as subquivers of the Auslander-Reiten quiver. We will explain how a
height functions gives us a choice of simple roots. This allows us to more precisely view
the Auslander-Reiten quiver as ‘all possible orientations on the Dynkin diagram glued
together’.

3.8.1 Root system in terms of the Auslander-Reiten quiver

Theorem 3.8.1. Let D a Dynkin diagram, pDˆZ2hq0 the corresponding periodic Auslander-
Reiten quiver. The following data constitute a root system:

• Roots the vertices of D̂cyc;

• An Euler form x,yE defined by the equations:

xpi, nq, pj, nqy “ δij (3.1)

xpi, nq, pj, n` 1qy “ The number of paths pi, nq Ñ pj, n` 1q (3.2)

xpk,mq, pi, nqy “ r
ÿ

j connected to i in D

xpk,mq, pj, n` 1qys ´ xpk,mq, pi, n` 2qy (3.3)

• A root system inner product xX, Y yR :“ xX, Y yE ` xY,XyE;

• A vector space generated by the roots under the relations pi, n` hq ` pi, nq “ 0;

Note that the number of paths pi, nq Ñ pj, n` 1q is, in particular, one or zero.

Proof. Given previous results, it remains to prove the formula for the Euler form.
To calculate this, fix an overlying category Repkp ~DΩq.
Now equations 3.1 and 3.2 follow by definition of the grading we used to give the

combinatorial description of D̂cyc in Theorem 3.7.2. Finally, because translation pi, nq Ñ
pi, n ` 2q is decategorified inverse Auslander-Reiten translation, equation 3.3 follows by
the existence of the unique split exact sequence between X and τ´1 (see 3.6.5), and that
every indecomposable inbetween X and τ´1X is a direct summand of the middle term of
the split exact sequence by corr. 3.6.5.1.

Example 3.8.2. Take the example of the quiver ~A3, 1 Ñ 2 Ñ 3 which has Coxeter
number 4. We’ll label objects as Xipjq, where i P V ertpDq and j P Z2h.
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The Auslander-Reiten quiver has 12 vertices,

X1p1q

X2p0q X2p2q

X3p1q

X1p7q X3p7q X3p3q X1p3q

X3p5q

X2p6q X2p4q

X1p5q

xX2p0q, X1p1qy “ 1 “ xX2p0q, X3p1qy and xX1p1q, X2p2qy “ 1 “ xX3p1q, X2p2qy deter-
mine the root system; we can get the rest by induction.

This prescription makes calculating a lot easier than the alternative of calculating the
categorical Auslander-Reiten translation of all objects and then the dimensions of their
respective RHom-spaces.

3.8.2 A quick introduction to height functions.

The Auslander-Reiten quiver forgot the orientation on our Dynkin diagram. What data,
combinatorially, remembers the orientation we imposed? The key observation is that, for
all possible orientations Ω on D, the Auslander-Reiten quiver has ~DΩ as a subquiver.

Definition 3.8.3. Let D an ADE Dynkin diagram. A height function is a function
h : V ertpDq Ñ Z or V ertpDq Ñ Z2h, such that if i is adjacent to j in D then hpiq´hpjq “
˘1.

A height function induces an orientation on D in a straightforward way.

Definition 3.8.4. Given a height function h on a Dynkin diagram D, define a quiver ~Dh

such that iÑ j if hpjq ´ hpiq “ 1, and j Ñ i if hpiq ´ hpjq “ 1.

But it also does better: it defines ~Dh as a subquiver of the Auslander-Reiten quiver.
If h : D Ñ Z2h, then the graph of h presents ~Dh Ă D̂cyc. By doing so, a height function
chooses a set of simple roots: namely, the vertices of the subquiver D̂h.

We’ll use height functions to understand how we can give a ‘choiceless’ construction
of the the category DbpRepkp ~D

Ωqq{T 2.
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3.9 A purely formal theory of BGP functors
This section makes precise the way in which BGP functors are natural orientation-
reversing maps, by building them from a totally formal and general equivalence of stable-
8 categories. Our treatment is a much abbreviated version of the one given in [DJW2],
which goes far beyond only the case of classical BGP reflection functors.

To do so, it extensively uses the general tool of the Grothendieck construction, which
we will avoid to make the section more accessible. Instead, we’ll explicitly construct what
we could have instead constructed much more abstractly.

This section lies outside the main development of this thesis and can be skipped.

Definition 3.9.1. Let F : B Ñ A an exact functor of 8-categories.
Let L‹pFq the category defined by the pullback in p8, 1qCat, the category of p8, 1q

categories:

L‹pFq Funp ~A2,Aq

B Funpt0u,Aq » AF

And let L‹pFq the category defined by the pullback

L‹pFq Funp ~A2,Aq

B Funpt1u,Aq » AF

Proposition 3.9.2. There are inverse equivalences S´ : L‹pFq Ñ L‹pFq, S` : L‹pFq Ñ
L‹pFq.

Proof. Define S´, S` by the Cartesian cube below, where because cofib and fib are
inverse S´ and S` are also.

B Funpt1u,Aq

L‹pFq Funp ~A2 “ t0 Ñ 1u,Aq

B Funpt1u,Aq

L‹pFq Funp ~A2 “ t1 Ñ 2u,Aq

F

S´ cofib

S` fib

This phenomenon is very general, and somehow can be thought of as ‘generalised
BGP reflection’, in the following sense. L‹pFq is roughly the category with objects
pB,FpBq Ñ Aq, where B P B and A P A, and L‹pFq is the category with objects
pB,AÑ FpBqq.
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So we can view L‹pFq as a category of diagrams with a new ‘source’ (B) glued in
along F , and L‹pFq as the same category of diagrams except B is glued in as a sink with
one arrow out of it.

We will be interested in a special case of the theorem, namely regular BGP reflection.
Note that regular BGP reflection applies to a vertex with many arrows out of (or into)

it. So we will need a formal tool which lets us acquire these many arrows. The tool will
be a special type of quiver:
Definition 3.9.3. Call a quiver ~Q bipartite on edges if there exists a decomposition
V ertp ~Qq “ Q0 \Q1, where every edge of ~Q has source in Q0 and target in Q1.

We are going to define some useful categories, which are ordinarily constructed via
the Grothendieck construction. But in this special case, we will instead define them via
pushouts:
Definition 3.9.4. Let ~Q bipartite on edges, F : Freep ~Qq Ñ p8, 1qCat a functor. Then
the upper and lower Grothendieck constructions,

ş

Q
F and

şQF , are the pushouts

š

α:q0Ñq1
Fpq0q

š

q1PQ1
Fpq1q

š

q0PQ0
Fpq0q ˆ q0\Freep ~Qq

ş

Q
F

Fpmαq š

α:q0Ñq1
Fpq0q

š

q1PQ1
Fpq1q

š

q0PQ0
Fpq0q ˆ Freep ~Qq

op{q0

ş

Q
F

Fpmαq

(3.4)
where q0\Freep ~Qq and Freep ~Qq{q0 are the under- and over- slice categories: that is, an
object of q0\Freep ~Qq is a vertex q with a map q0 Ñ q, and a morphism q Ñ q1 is the
subset of morphisms in Freep ~Qq which make the following diagram commute:

q q1

q0

Proposition 3.9.5. Let ~Q a finite quiver bipartite on edges, F : Freep ~Qq Ñ Cat8 a
functor. Let D the derived stable 8-category of k-vector spaces. There is an exact functor
F : Homp

š

vPQ1
Fpvq,Dq Ñ Homp

š

vPQ0
Fpvq,Dq, and an equivalence

L‹pF q » Homp

ż

Q

F ,Dq Ô Homp

ż Q

F ,Dq » L‹pF q

Proof. Define F as the composition of functors

Homp
š

q1PQ1
Fpvq,Dq

‘q1PQ1 ‘α:q0Ñq1 HompFpq0q,Dq ‘q0PQ0HompFpq0q,Dq » Homp
š

q0PQ0
Fpq0q,Dq

tpFpeqq‹ueu

Taking X Ñ HompX,Dq transforms the diagrams of eq. 3.4 into pullback diagrams.
It suffices to show that L‹pF q satisfies the universal property of Homp

ş

Q
F ,Dq, which

can be done by tracing definitions.
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Now we will apply this result in a very special case.

Definition 3.9.6. Let ~Kd be the quiver with two vertices, 0 and 1, and d edges pointing
from 0 Ñ 1. It is bipartite on edges.

One can compute

Fact 3.9.7. Let Freep ~Qq a quiver considered as a free 8-category, and f1, . . . , fd : 0 Ñ

Freep ~Qq functors corresponding to classifying vertices vi. Then
ş

~Kd
f is the (free category

associated to the) quiver with a vertex adjoined with edges into the vi, and
ş ~Kd f is the

quiver with a vertex adjoined with edges out of the vi.

Now definitionally HompFreep ~Qq,Dq » DpRepkp ~Qqq. We call the induced equiva-
lences S`, S´ between DpRepkp

ş

Kd
fqq and DpRepkp

şKd fq the BGP reflection func-
tors.

Remark 3.9.8. This construction is satisfying in that it justifies our earlier intuition
that BGP reflection functors are somehow a natural way to reverse arrows. Practically it
is overkill for defining ordinary BGP reflection functors. But it would be very interesting
if one could use similar formal techniques to directly define the Serre functor.
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Chapter 4

Choiceless and choiceful ways to
construct the root category

For a Dynkin diagram D, the corresponding root categories DbpRepkp ~D
Ωqq{T 2 are equiv-

alent for all choices of Ω, related by the derived BGP reflection functors.
One can ask: does the orientation we started with matter, and how can we keep track

of it? The answer is that the data of an orientation is equivalentlty that of a ‘t-structure’,
as we will discuss in the next section.

Then, the results we have established so far do not depend on the orientation, just
on the root category. Can we construct a representative of the root category, defined
without a preferred choice of orientation/t-structure, equivalent to all these categories?
The answer is yes, and we will construct this category in two different ways.

Then we will study a natural enhancement of the notion of t-stucture, known as
Bridgeland stability, and construct the root category in a way such that it acquires a
preferred notion of Bridgeland stability.

4.1 What structure preserves orientation?
The choice of orientation on a Dynkin diagram is equivalent to a choice of simple roots
for the root system, for they correspond to representations Simplepiq of the quiver ~DΩ.
We know the set of simple representations is not preserved by BGP reflection. Yet in Lie
theory, we know that a distinguished set of simple roots is very significant. Once we’ve
made a choice of orientation, we should keep track of it.

We would like a structure which allows us to do so. The key idea is that though the
derived categories DpRepkp ~DΩqq are equivalent for different Ω, the categories Repkp ~DΩq

are generally not: for instance, decategorified, they correspond to different choices of
simple roots.

Hence, the choice of an orientation is equivalently the choice of a distinguished abelian
subcategory A Ă DpRepkp ~DΩqq. We can formalise this with the idea of a t-structure.

Definition 4.1.1. Let C a triangulated category. A t-structure on C is a pair of full
subcategories Cě0, Cď0 such that

1. Let X P Cě0, Y P Cď0. Then HompX,T´1Y q “ 0.

2. TCě0 Ă Cě0, T´1Cď0 Ă Cď0.

Given a t-structure, let Cěn :“ T nCě0 and Cď´n :“ T´nCď0.
A t-structure on a stable-8 category C is a t-structure on its homotopy category. In

this case let Cěn denote the full subcategory spanned by objects which descend in the
homotopy category to objects of hCěn.
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Definition 4.1.2. The heart of a stable 8-category C equipped with a t-structure, C♥,
is the full subcategory Cď0 X Cě0 Ă C.

Example 4.1.3. Say A is an abelian category with enough projectives, DpAq its associ-
ated triangulated derived category. There is a natural t-structure, given by letting

1. DpAqě0 be those objects X such that H ipXq “ 0 for i ą 0;

2. DpAqď0 be those objects X such that H ipXq “ 0 for i ă 0.

In this case, DpAq♥ » A as abelian categories.

Hence, the natural t-structure induced from DpRepkp ~D
Ωqq distinguishes Repkp ~DΩq as

its heart.
Note that t-structure also distinguishes a notion of cohomology;

Definition 4.1.4. • View a triangulated category C as chain complexes, with weak
equivalences the quasi-isomorphisms. Let τď0 : C Ñ Cď0 the functor truncating
chain complexes in degree ą 0, τě0 the functor truncating chain complexes in
degree ă 0.

• Define Hn :“ τď0τě0Σn, the n-th cohomology functor.

We won’t immediately apply the idea of a t-structure; but knowing what it is allows
us to understand the limitations on how we might construct a choiceless root category. In
particular, we won’t be able to construct it as the derived category of some nice abelian
category.

4.1.1 The two-periodic case

Note that our definition 3.2.5 of DbpAq{T 2 implicitly relied on the natural t-structure
coming from the derived category, for we modelled DbpAq{T 2 as some subcategory of
complexes in A up to weak equivalence. But we can give a definition independent of
t-structure.

Definition 4.1.5. Let T a stable-8 category. Define a subcategory, T {Σ2, as the full
subcategory of objects O so that Σ2O » O.

Proposition 4.1.6. T {Σ2 is a stable-8 category.

Proof. A subcategory of a stable 8 category is stable if it contains zero and is closed
under fibres and cofibres. The category clearly contains 0 and is closed under Ω, so it
suffices to check if T {Σ2 contains all cofibres.

Σ commutes with taking cofibres up to unique isomorphism, because we have a dia-
gram

X Y 0

0 cofibpX Ñ Y q ΣX 0

0 ΣY ΣcofibpX Ñ Y q

So ΣcofibpX Ñ Y q » cofibpΣX Ñ ΣY q. Hence Σ2cofibpX Ñ Y q » cofibpΣ2X Ñ

Σ2Y q » cofibpX Ñ Y q, so the category contains all cofibres and is stable.
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As defined, the notion of t-structures is not very well suited to a two-periodic stable
8-categories.

Suppose you had a t-structure on a triangulated category. Then in this case, Cě0 “

T 2Cě0 Ă TCě0 Ă Cě0. So Cě0 “ TCě0, and Cď0 “ TCď0. Therefore if X P Cě0, Y P Cď0,
then HompX, Y q “ 0, because Y “ T Ỹ for some Ỹ .

In particular, therefore if X P Cě0 X Cď0, then HompX,Xq “ 0. So C♥ would be
necessarily empty. Therefore, while the notion of a t-structure captures the notion of
orientation for DbpRepkp ~D

Ωqq, it is ill-suited to describe DbpRepkp ~D
Ωqq{T 2.

That is not to say that moving to the two-periodic subcategory forgets the original
choice of orientation. In general the question of what data of the t-structure remains
after moving to the two-periodic subcategory is complicated; we will deal only with our
very specific case of interest.

Proposition 4.1.7. If A is hereditary, DbpAq{T 2 has a natural Z{2Z grading, inherited
from the natural t-structure.

Proof. Model DbpAq{T 2 as two-periodic objects in KompAq with weak equivalences in-
verted. It has a natural grading coming from the underlying category of chain complexes.

That is, declare 0 ‰ A P DbpAq{T 2 to have degree 0 if A is weakly equivalent to a
complex which is zero in odd degrees, and 0 ‰ A P DbpAq{T 2 to have degree 1 if it is
weakly equivalent to a complex zero in even degrees.

Now because A is hereditary, applying prop. 3.2.4, every object in DbpAq{T 2 is a
direct sum of graded objects, as desired.

Remark 4.1.8. Note that though the Z{2Z grading lets us pick out a distinguished
abelian subcategory, we no longer have any ‘Hom-vanishing’ condition. That is, if
degX “ 0 and deg Y “ 1, we can still have HompX,TY q ‰ 0.

For instance, in DbpRepkp1 Ñ 2qq{Σ2,

HompSimplep1q, TSimplep2qq » Ext1pSimplep1q, Simplep2qq

, which has dimension one.

4.2 Orientation-free root category via the Auslander-
Reiten quiver

The first way in which we will construct the root category without orientation is from
the Auslander-Reiten quiver of the root category.

The idea, due to [KT3], is as follows. The Auslander-Reiten quiver D̂cyc associated to
the root category of ~DΩ contains every possible orientation on D as a subquiver. Clearly,
a represention of D̂cyc can contain much more data than can one of ~DΩ. However, we can
look for a subcategory of representations of D̂cyc, which are those ‘determined by their
value on any Dynkin subquiver of D̂cyc’. What should such a subcategory look like?

In the previous section, we were able to describe the root system inner product in
terms of the Auslander-Reiten quiver by the data of the inner product on a Dynkin
subquiver, and then some relation involving decategorified Auslander-Reiten translation.
One idea, which will turn out to be successful, is to use a categorified version of this
relation to define our candidate subcategory.

This definition will require some preliminaries.
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Definition 4.2.1. Let ~Q a quiver with at most one edge between any two vertices, and
no self-loops. Define an endofunctor m : Repkp ~Qq Ñ Repkp ~Qq as follows.

Let V a representation. Denote the vector space at a vertex q by Vq and the map at
an edge e by me.

• At a vertex q, let mVq :“ ‘e:qÑq1Vq1 ;

• At an edge e : q Ñ q1, let mpmeq : mVq Ñ mVq1 be the map

Vq1 Ă ‘e:qÑq2Vq2 ‘e:q1Ñq3Vq3
‘e:qÑq1me

Now let µ : V Ñ V 1 a map of quiver representations. Let mpµq : mVq “ ‘e:qÑq1Vq1 Ñ
mV 1q “ ‘e:qÑq2V

1
q2 be the direct sum of the maps µ : Vq1 Ñ V 1q2 .

The assignment is functorial; given a morphism µ : V Ñ V 1 of quiver representations,
the induced mapmpµq : mVq Ñ mV 1q is given by the direct sums of the maps µ : Vq1 Ñ V 1q1 ,
and likewise on edges.

More informally, what is m? On any path, it ’pushes all vector spaces one back’, so
e.g. mpV1 Ñ V2 Ñ V3q “ V2 Ñ V3 Ñ 0. On cyclic paths, it rotates the path backward by
one unit:

mp

V1

V3 V2

q “

V2

V1 V3

Definition 4.2.2. Suppose there is at most one edge between any two vertices in ~Q, and
no self-loops. Then there is a distinguished map, sm : V Ñ mV , given on vertices by

psmqq : Vq Ñ mVq “ ‘e:qÑq1Vq1

psmqq “ ‘e:qÑq1me

This is a map of quiver representations, because the square

Vq Vq1

‘e:qÑq2Vq2 ‘e:q1Ñq3Vq3

mqÑq1

‘e:qÑq2me ‘e:q1Ñq3me

‘e:q1Ñq3me

commutes.

Definition 4.2.3. Now let ~Q be the Auslander-Reiten quiver. We know τ , decategorified,
is an automorphism of the underlying quiver. This induces a distinguished endofunctor
τ̃ : Repkp ~Qq Ñ Repkp ~Qq, given just by shifting vertices pi, nq Ñ pi, n´ 2q.

There is a morphism tm : mV Ñ τ̃V , given by sending mVq Ñ τ̃Vq by the map
‘q1Ñτq : ‘q1:qÑq1Vq1 Ñ Vτq.

Remark 4.2.4. Though we defined the periodic Auslander-Reiten quiver as the Auslander-
Reiten quiver of some category, and choosing that category required choosing an orien-
tation, the combinatorial description 3.8.1 allows us to construct the periodic Auslander-
Reiten quiver with no choice of orientation needed.
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Example 4.2.5. Note that even though we informally described m as roughly ‘shift one
to the left’ and τ̃ as ‘shift two to the left’, m2 is not the same as τ̃ . The simplest example
for which they disagree is for the Auslander-Reiten quiver of ~A3, which we calculated in
example 3.8.2.

A quiver representation X looks like

X “

X1p1q

X2p0q X2p2q

X3p1q

X1p7q X3p7q X3p3q X1p3q

X3p5q

X2p6q X2p4q

X1p5q

Hence we have τ̃X

τ̃X “

X1p3q

X2p2q X2p4q

X3p3q

X1p1q X3p1q X3p5q X1p5q

X3p7q

X2p0q X2p6q

X1p7q
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However, mX looks like

mX “

X2p2q

X1p1q ‘X3p1q X1p3q ‘X3p3q

X2p2q

X2p0q X2p0q X2p4q X2p4q

X2p6q

X3p7q ‘X1p7q X3p5q ‘X1p5q

X2p6q

Therefore, m2X is
X1p3q ‘X3p3q

X2p2q ‘X2p2q X2p4q ‘X2p4q

X1p3q ‘X3p3q

X1p1q ‘X3p1q X1p1q ‘X3p1q X1p5q ‘X3p5q X1p5q ‘X3p5q

X1p7q ‘X3p7q

X2p0q ‘X2p0q X2p6q ‘X2p6q

X1p7q ‘X3p7q

Which is not the same as τ̃X. The reason why they do not agree is that when we shift
by one, we ‘forget’ which vertex the object we are shifting came from. So m2 corresponds
to some symmetrised version of τ̃ .

Now, we are ready to describe our special subcategory. It is going to be the subcate-
gory where the representation V is somehow related to the representations shifted by m
and τ̃ .

Definition 4.2.6. An object X of DbpRepkpD̂cycqq satisfies the fundamental relation
if the induced maps X Ñ mX Ñ τ̃X define a cofibre sequence.

Let DD Ă DbpRepkpD̂cycqq be the full subcategory with objects satisfying the funda-
mental relation.
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The idea of this definition is that we can compute the represention X up to isomor-
phism if we know it on a Dynkin subquiver, by taking cofibres.

Proposition 4.2.7. DD is a stable p8, 1q-category.

Proof. Because DD is a subcategory of a stable p8, 1q-category, it suffices to show that
DD is closed under finite limits and colimits. In particular, it suffices to show m and τ̃
are exact functors. τ̃ is an exact functor because it is an equivalence. m is exact because
it is exact on every vertex.

Now the functor ρh : DbpRepkpD̂cycqq Ñ DbpRepkp ~DΩqq, defined by pullback along a
height function h, restricts to a functor DD Ñ DbpRepkp ~DΩhqq.

Proposition 4.2.8. The induced functor, ρh : DD Ñ DbpRepkp ~DΩhqq is an equivalence
of stable p8, 1q-categories.

Proof. First, I claim ρh is essentially surjective.
Let v P ~DΩh Ă D̂cyc a source, and X P DbpRepkp ~DΩhqq. Define Xτv :“ cofibpXv Ñ

mXvq. Note mXv only depends on X, because v is a source.
Furthermore, we have maps toXτv from all v1 entering, by the restriction of the natural

map Xv1 Ă mXv Ñ cofibpXv Ñ mXvq. Now we have defined a derived representation on
~DΩh Y tvu Ă D̂cyc. For every Dynkin subquiver and every source, we can repeat, to get
a derived representation X 1 of D̂cyc. By the universal property of cofibres, it is the only
representation of D̂cyc such that ρhX 1 “ X and X 1 Ñ mX 1 Ñ τ̃X 1 is a cofibre sequence.

Second, I claim ρh is full and faithful. Let X, Y P DD. There is a clear map
HomDDpX, Y q Ñ HomD´pRepkp ~DΩh qq

pρhX, ρhY q, given by restriction.
In the other direction, let f P HomD´pRepkp ~D

Ω
h qq
pρhX, ρhY q. Define the extension

f : cofibpXv Ñ mXvq Ñ cofibpYv Ñ mYvq by functoriality of mapping cones. Now
repeat the above procedure to explicitly construct f 1 P HomDDpX, Y q.

4.3 Universal root category via the quantum projective
line.

The next idea to construct a choiceless root category, originally carried out in [KT4], is
by the quantum McKay correspondence.

Let G Ă SUp2q a finite subgroup. The normal McKay correspondence can be under-
stood as a correspondence between G-equivariant coherent sheaves on P1 and affine ADE
Dynkin diagrams.

The quantum McKay correspondence provides a correspondence between ‘finite quan-
tum subgroups’ of quantum sl2 and regular ADE Dynkin diagrams. So the idea is to find
a quantum analogue of the category of ‘G-equivariant coherent sheaves on P1’, and hope
that by the quantum McKay correspondence this is the root category we wanted.

How will we construct such a quantum analogue? We will attempt to understand
the projective line in terms of SUp2q. Then we’ll construct a ‘quantum projective line’
analogously in terms of quantum SUp2q.

The definition of a ‘finite quantum subgroup’, or a ‘quantum irreducible representa-
tion’, are complicated. We are going to sketch the construction and not be particularly
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careful about the specifics here. For our purposes, it suffices to consider them just like
subgroups are irreducible representations. See [KO] for careful definitions.

Now, the key idea. We can consider P1 “ PV ‹, where V is the fundamental represen-
tation of SUp2q.

We have a well-known equivalence CohpP1q » SympV q´modgr, the category of finitely
generated graded SympV q-modules.

We can notice that

Fact 4.3.1. We can write SympV q “ ‘nVn, where Vn is the irreducible representation of
SUp2q of highest weight n.

Hence, we can consider ‘coherent sheaves on P1’ to be finitely generated graded mod-
ules over ‘nVn.

This immediately suggests a quantum analogue: we are just going to define a coherent
sheaf on quantum P1 to be a finitely generated graded module over the sum of all quantum
irreducible representations of quantum SUp2q.

We have

Fact 4.3.2. Let q “ e
iπ
h a root of unity. The semisimple quotient of the category of

representations of Uqsl2, Cq is a fusion category with finitely many simple objects, 1 “
V0, . . . , Vh´2.

The fusion rule is
Vn b Vm “ ‘

minpn`m,2ph´2q´pn`mqq
k“|n´m|,k`n`m is even Vk

We consider simple objects of this category to be ‘quantum irreducible representations’.

We could try to consider a ‘quantum symmetric algebra’ Sq “ ‘h´2
i“0 Vi. To do so and

define a category of graded modules on it, we would need to define a grading on Sq. But
there are two natural ways to define a grading.

1. We could define VnVm to be the image of the projection map Vnb Vm Ñ Vn`m, the
highest module in their fusion. This is seemingly the most natural fusion structure.

2. But Vh´2bVn “ Vh´2´n. So tensoring with Vh´2 is a nontrivial automorphism. One
can check that Sqphq b Vh´2 is also graded, where h denotes a grading shift by h.

To avoid making an arbitrary choice, we should therefore define some sort of symmetric
algebra where we ‘make both choices at once’.

Definition 4.3.3. The quantum structure sheaf, Oq, is the two-periodic complex
with trivial differential

Sq Sqphq b Vh´2

0

0

So Oq is an algebra. We are now going to work with the category DpReppOqqq, the
derived category of representations of Oq.

We will not attempt to state what a ‘finite quantum subgroup’ G is. But the upshot
is that given such a G, we can define a category, DGpReppOqqq, of G-equivariant derived
representations of Oq. Then the statement of the quantum McKay correspondence in
[KO] is equivalently
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Theorem 4.3.4. Let G correspond to a Dynkin diagram D. There is an exact functor

DGpReppOqqq Ñ DpReppD ˆ Z2hq

Of course, by theorem 3.7.2, either connected component ofDˆZ2h is the two-periodic
Auslander-Reiten quiver D̂cyc.

From here on out the proof strategy is straightforward: we define a subcategory
of DGpReppOqqq by pulling back the subcategory defined by a connected component of
D ˆ Z2h, then pulling back the relation of def. 4.2.6 we used in the case of constructing
the root category from the Auslander-Reiten qiver.

We call this subcategory DGpCohpP1
qqq. By how we defined it, it’s equivalent to the

subcategory DD (also of def. 4.2.6) which we defined in the process of constructing the
root category from the Auslander-Reiten quiver. So by prop. 4.2.8, it is equivalent to
the category DpRepkp ~DΩqq, as desired.

Therefore,

Theorem 4.3.5. DGpCohpP1
qqq » DbpRepkp ~DΩqq.

4.4 Bridgeland stability
Studying t-structures in our derived categories of Dynkin quiver representations has
proven interesting; for instance, we showed that t-structures were generally induced by a
choice of simple roots. How the choice of simple roots can be different is a very interesting
problem; for instance, it leads us to the notion of the Weyl group.

While the space of t-structures is not rigid enough to be interesting to study, we can
enhance the notion of a t-structure to a more rigid ‘stability condition’. We could hope
that the study of stability conditions on DbpRepkp ~DΩqq is interesting.

The notion of a stability condition is motivated from physics. The ‘category of D-
branes’ (i.e. boundary conditions for B-model string theories) on some space X is often
taken to be derived category of coherent sheaves on X, DbpCohpXqq. But not all the
boundary conditions are physical. That is, some choice of boundary conditions/D-branes
might not admit a physical theory.

There should be some natural subcategory of physical, or ‘stable’, D-branes. What
condition should cut out such a subcategory? Bridgeland [B1], based on physical work
of Douglas [D1], defined a ‘Bridgeland stability condition’ as a guess at what such a
condition should be. Bridgeland’s notion can be defined for any triangulated category,
not just derived categories of coherent sheaves.

Even in this more general setting, Bridgeland stability shares many of the properties
that one would expect from the physics. For instance, the moduli space of stability
conditions has a complex structure.

This section and the next are a brief introduction to stability for quiver representation
categories. They lay slightly outside the main development of this thesis, and can be
skipped. Much appeal is made to physics intuition to compensate for the lack of rigorous
proofs, which if included would have extended this section by several dozen pages.

Definition 4.4.1. Let C a triangulated category. A stability condition on C is pZ, P q,
where

1. Z : K0pCq Ñ C is a group homomorphism;
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2. For each θ P R, a full additive subcategory P pθq

such that:

1. For 0 ‰ E P P pθq, ZpEq “ mpEqeiπθ for mpEq P R`;

2. P pθ ` 1q “ TP pθq;

3. If θ1 ą θ2 and Aj P P pθjq, then HomDpA1, A2q “ 0;

4. For all E P D there is a finite sequence φ1 ą ¨ ¨ ¨ ą φn of real numbers and triangles

0 “ E0 E1 . . . En´1 En “ E

A1 An

So that Ai P P pφiq.

Given this definition,

Definition 4.4.2. 1. Each subcategory P pφq is abelian; if 0 ‰ E P P pφq, we call it
semistable of phase φ. The simple objects of P pφq are stable of phase φ.

2. The decomposition by Ei is unique up to isomorphism. Let φ`pEq “ φ1, φ´pEq “
φn. Let mpEq :“

ř

i |ZpAiq|.

This definition makes manifest that the space of stability conditions has a metric.

Definition 4.4.3. StabpCq is the space of stability conditions on C. It is a metric space,
with the metric topology induced by

dppZ1, P1q, pZ2, P2qq “ sup0‰EPCt|φ
´
2 pEq ´ φ

´
1 pEq|, |φ

`
2 pEq ´ φ

`
1 pEq|, | log

m2pEq

m1pEq
|u

In fact, we expect that physical moduli space should generally be better than metric
spaces: they should admit complex structures. Indeed, this is true. A hard theorem of
Bridgeland which we will not prove, see [B1], establishes

Fact 4.4.4. The space of stability conditions StabpCq is a complex manifold.

However, the previous definition of a stability condition was a lot of data. There is a
another way to think of a stability condition in terms of t-structures, which allows them
to be more easily constructed.

Definition 4.4.5. A stability function on an abelian category A is a group homomor-
phism Z : KpAq Ñ C such that

• 0 ‰ E P A ùñ ZpEq P R`eiπφpEq, with 0 ă φpEq ď 1;

• An object E is semistable if for all subobjects A Ă E then φpAq ď φpEq;

• if 0 ‰ E P A then there is a finite filtration 0 “ E0 Ă E1 Ă ¨ ¨ ¨ Ă En´1 Ă

En “ E, such that the Ej{Ej´1 are semistable and φpE1{E0q ą φpE2{E1q ą ¨ ¨ ¨ ą

φpEn{En´1q.

Proposition 4.4.6. A stability condition is the same as a bounded t-structure and a
stability function on the heart.
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4.4.1 (Lack of) Bridgeland stability for two-periodic categories

Unfortunately, there seems to be as yet no good notion of Bridgeland stability on two-
periodic categories. The reason is as follows: the practical study of Bridgeland stability
conditions relies heavily on the ‘Hom-vanishing’ condition that if θ1 ą θ2 and Aj P P pθjq,
then HomDpA1, A2q “ 0.

This Hom-vanishing gives Bridgeland stability structures substantial rigidity. In the
two-periodic case, unfortunately, we can have no Hom-vanishing; see remark 4.1.8. With-
out this rigid structure, candidate spaces of stability conditions are generically much less
well behaved.

What, if any, rigid structure can replace Hom-vanishing to make for a good definition
of two-periodic Bridgeland stability is as yet unclear.

Physical considerations suggest that two-periodic Bridgeland stability may not be
well defined. For Bridgeland stability is motivated physically as a condition cutting out
a physical subcategory of D-branes from a larger mathematical space of derived coherent
sheaves. The physical spaces under consideration are supersymmetric, and generically
have R-symmetry group1 at least Up1q. A Up1qR symmetry induces a Z grading.

Yet two-periodic categories do not (generally) admit a Z-grading. This is a sign
that these categories are unphysical, therefore the question of stability is not necessarily
well-defined here.

Nonetheless, it is natural to ask about stability on many two-periodic categories. The
approach taken in the literature is to find additional structure as a way to promote the
category in question to a Z-graded category.

4.5 Root category via matrix factorisations with spe-
cial stability structure

There is another viewpoint on the root category which provides an example of the pro-
cedure by which one can add structure to allow for the study of Bridgeland stability on
a two-periodic category. This example comes from the study of matrix factorisations,
which let us study a natural kind of two-periodic category associated to an abelian group
G.

By the McKay correspondence discussed in the introduction 1.1.1, the Dynkin diagram
An can be associated with the cyclic group Z{pn ` 1q. So we can just try setting G “

Z{pn ` 1q, and see what sort of category comes out. Happily, it gives us the An root
category, as we would like. In fact, constructing the category this way gives us more:
instead of just a t-structure, we get a distinguished Bridgeland stability condition.

The category of matrix factorisations was originally motivated as the category of
boundary conditions for a topological Landau-Ginzburg model. By this interpretation,
the distinguished Bridgeland stability condition is just that which cuts out the actual
physical boundary conditions for the Landau-Ginzburg model in question. See [K4] for a
discussion in this language.

For brevity, we’re only going to sketch this construction for the type An Dynkin
diagrams. The constructuion can be extended to the full ADE case. See [T] for the
original rigorous construction of the type A case and [KST] for the full ADE picture.

1The R-symmetry group is the group of global symmetries transforming the supercharges.
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Definition 4.5.1. • A Z` category charged by Φ, pC, w,Φq, is the data of a cat-
egory, C, and a natural transformation w : idC Ñ Φ, where Φ : C Ñ C is an
equivalence.

• Let Â2 be the quiver

Â2 “ 0 1

Equip FreepÂ2q with the structure of a Z` category, with w : 0 Ñ 0 the map
induced by the cycle 0 Ñ 1 Ñ 0 and w : 1 Ñ 1 the cycle 1 Ñ 0 Ñ 1.

• A loop factorisation in C charged by Φ is a functor of Z` categories pÂ2, w, idCq Ñ
pC, w,Φq.

• The category of loop factorisations charged by Φ, LF pC,Φq, is the category of
loop factorisations in C with morphisms generated by k-linear envelopes (i.e. sums
with coefficients in k) of natural transformations. It is naturally a linear stable
p8, 1q-category.

• Let L an abelian group, R an L-graded k-algebra, and w P R a 0-graded central
element. Let PerfLR the category of finitely generated projective left R-modules.
pPerfLR , w,Φq is then a Z` category.

• The category of matrix factorisations charged by Φ isMFLpR,w,Φq :“ LF pPerfLR , w,Φq.

• Let T nΦ :“MF Z{pn`1qpkrzs, zn`1,Φq, where krzs is a graded with z in degree one.

Less abstractly,

• An object in MFLpR,w,Φq is a tuple pA,B, fA, fBq where

1. A,B P PerfLR ;

2. fA P HompA,ΦBq;

3. fB P HompB,Aq;

subject to the consistency condition induced by the natural transformation w

fB ˝ fA “ wpidAq

ΦpfAq ˝ fB “ wpidBq

• Morphism sets are naturally enriched as chain complexes, so T nΦ is a dg-category.
We have

pn “ 2`q ùñ HomnpE,F q “ HomApEA,Φ
`FAq ‘HomApEB,Φ

`FBq

pn “ 2`` 1q ùñ HomnpE,F q “ HomApEA,Φ
`FAq ‘HomApEB,Φ

``1FBq

Let puA, uBq P HomnpE,F q a morphism. Then the differential acts as

pn “ 2`q ùñ dpuA, uBq “ puB ˝ fE,A ´ Φ`
pfF,Aq ˝ uA,ΦpfAq ˝ fE,B ´ Φ`

pfF,Bq ˝ uBq

pn “ 2`` 1q ùñ dpuA, uBq “ puB ˝ fE,A ` Φ`
pfF,Bq ˝ uA,ΦpfAq ˝ fE,B ` Φ`

pfF,Aq ˝ uBq
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Example 4.5.2. If we set Φ “ T , T 2 “ 1, we get a two periodic dg-category.
The main theorem of of [T] implies that

Fact 4.5.3. DbpRepkp ~Anqq{Σ
2 is derived equivalent to T nT .

The physical interpretation here is that an object in the category of matrix factori-
sations represents a brane-antibrane pair pA,Bq, plus a field configuration pfA, fBq that
condenses them together. Φ, roughly, represents the charge of these branes under Up1qR.

When we set Φ “ T , this corresponds to assigning trivial Up1qR charge. This is
unphysical, and as expected, the resulting category is only two-periodic so admits no
Bridgeland stable subcategory of physical D-branes.

The suggestion of [T] is to identify the Auslander-Reiten translation functor as our
candidate charge.

Indeed,

Fact 4.5.4. 1. There is a Serre functor, S : PerfLR Ñ PerfLR when L “ Z{pn ` 1qZ,
R “ krzs. Then let τ :“ S´1T .

2. The category T nτ is Z-graded.

3. T nτ is derived equivalent to DbpRepkp ~A
Ω
n qq.

Given a graded matrix factorisation pA,B, fA, fBq, we can equivalently represent it as
a pair pQ,Sq by:

• Choosing a basis of A‘B and its image under w, a basis of A‘ΦpBq, and writing
the maps fA, fB as a matrix, which we define to be Q;

• S is the diagonal matrix with entries the charge under Up1qR of each basis element,
where for basis elements of A the charge is just the degree and for basis elements
of B the charge is just the degree minus one.

The Z-grading on T nτ defines a t-structure, hence to define a stability condition, it suffices
to define a stability function by prop. 4.4.6.

Fact 4.5.5. There is a stability condition defined on T nτ , with t-structure coming from
the chain complex structure on morphism sets and stability function ZpQ,Sq :“ TrpeiπSq.
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Chapter 5

Constructing the full Lie algebra as a
Hall algebra

We have now shown that combinatorial Lie theory is entirely encoded in the two-periodic
derived category of quiver representations, the ‘root category’. We have constructed this
category in a bunch of different ways. So can we use this category to recover the full Lie
algebra in a natural way?

The answer is ‘almost’. We will have to move from the root category to the category of
two-periodic projective k ~DΩ-modules. Then we can use a ‘twisted Hall algebra’ to recover
the full quantum group associated to the Lie algebra. Taking a limit as our deformation
goes to 1 then recovers the Lie algebra.

The proof that this is so is not difficult; with the proper definitions it is a straightfor-
ward computation, no hard work needed.

However, the proper definition of the twisted Hall algebra is complicated, the def-
inition of the quantum group is complicated, and the ‘straightforward computation’ in
question is lengthy. So this chapter, which attempts to motivate the twisted Hall algebra’s
construction and do the computation carefully, is a lot of definitions and computations.

First, informally: what is a Hall algebra? It is an algebra associated to a category
with an ~A3 quiver structure. By this I mean: say you have (the k-linear envelope of) a
category C, and (the k-linear enevelope of) another category C3, where the objects of C3

are of the form A1 Ñ A2 Ñ A3, where the Ai are objects in C. There are distinguished
maps fj : pA1 Ñ A2 Ñ A3q Ñ Aj. The Hall algebra multiplication is induced by pulling
back pA,Bq along pf1, f3q and pushing forward along f2. In less abstract terms, the
multiplication ObpCq ˆ ObpCq Ñ ObpCq is given by sending pA,Cq to the sum of all B
such that AÑ B Ñ C is in ObpC3q.

Here is a sketch, subsection-by-subsection, to keep track of the bigger picture of what’s
going on in this section.

1. First, we’ll define what a (finite field) Hall algebra is. We’ll do a really simple
computation to help understand what these things look like.

2. Then, we’ll specialise to the case of the two-periodic derived categories of quiver
representations we’re interested in. We’ll show that the naive Hall algebra is too
commutative to admit the structure of a semisimple Lie algebra.

3. We’ll define a twisting and do some computations to show how it introduces non-
commutativity.

4. We’ll define quantum groups associated to a Dynkin diagram in terms of a special
generating basis tEi, Fi, Kiu. We’ll then define a corresponding special generating
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basis of our two-periodic twisted Hall algebra, which we’ll also call tEi, Fi, Kiu. We
will hope to show that these two bases can be identified. We will show that both
the quantum group and the two-periodic twisted Hall algebra admit the structure
of a Hopf algebra.

5. Finally, we will show that the two-periodic twisted Hall algebra tEi, Fi, Kiu satisfy
the commutation relations of the quantum group generators, so equip the Hall
algebra with the structure of the desired quantum group, by just computing the
commutation relations with classical facts about Ext1.

5.1 An introduction to Hall algebras
Definition 5.1.1. 1. Let A an essentially small abelian category. We say that A

admits a finite field Hall algebra if :

(a) Its Hom-spaces are finite as sets;

(b) The category is Fq-linear, for some finite field;

(c) A has enough projectives.

2. For such A, let Ext1pA,CqB Ă Ext1pA,Cq be the subset of extensions with middle
term isomorphic to B. To be very specific, this is the set of short exact sequences
0 Ñ AÑ B1 Ñ C Ñ 0, where B1 is isomorphic to B, under the equivalence relation
that 0 Ñ A Ñ B1 Ñ C Ñ 0 is the same extension as 0 Ñ A Ñ B2 Ñ C Ñ 0 if
there is a morphism of short exact sequences

0 A B1 C 0

0 A B2 C 0

f1

id g

f2

id

f 11 f 12

in which case two-out-of-three implies g is an isomorphism.

3. Then the (finite field Ringel–) Hall algebra, HpAq, is the associative algebra

(a) With underlying set IsopAq, the isomorphism classes of objects in A;

(b) With multiplication rAsrCs :“
ř

BPIsopAq
|Ext1pA,CqB |
|HompA,Cq|

rBs.

(c) We call the numbers sBAC :“ |Ext1pA,CqB |
|HompA,Cq|

the structure constants of the Hall
algebra.

Note that we include the zero map in these sets. Therefore |HompA,Cq| “ 1 even if
there are no nontrivial maps AÑ C, so we never divide by zero.

Example 5.1.2. The simplest example will be A “ V ectFq , the category of Fq´vector
spaces.

• Isomorphism classes of objects are represented by rFnq s, n P N.



5.2. Hall algebras of two-periodic complexes 53

• Because short exact sequences conserve dimension,

rFnq srFmq s “
|Ext1pFnq ,Fmq q|
|HompFnq ,Fmq q|

rFn`mq s

• We can calculate |Ext
1pFnq ,Fmq q|

|HompFnq ,Fmq q|
as the number of points in the GrassmannianGrFqpm,n`

mq times |AutpFnq q||AutpFmq q|
|AutpFn`mq q|

. The upside is that

prnsq!
rFnq s

|AutpFnq q|
qprmsq!

rFmq s
|AutpFmq q|

q “ rn`msq!
rFn`mq s

|AutpFn`mq q|

where

rnsq :“
ÿ

0ďiăn

qi

rnsq! :“
ź

1ďjďn

rjsq

The point is that the normalised generators rFnq s
|AutpFnq q|

induce an isomorphism

HpV ectFqq » Zrx,
x2

r2sq!
,
x3

r3sq!
, . . . s

This algebra is commutative and associative.

5.2 Hall algebras of two-periodic complexes

The two-periodic derived category, DpRepkp ~DΩqq{T 2 does not admit a Hall algebra in the
way we have defined it. Any construction of the Lie algebra by preferred basis elements
will correspond to a choice of simple roots, hence the data of an orientation on the Dynkin
diagram D. This suggests that to construct the full Lie algebra, we will need the data of
a t-structure, or, per section 4.1.1, a Z{2Z grading.

Therefore instead of DpRepkp ~DΩqq{T 2 we consider a naturally Z{2Z-graded rela-
tive, namely the Z2-graded complexes of projective objects in A: we write this as
KomZ2pProjpAqq. This was first done by Bridgeland [B2].

We will also need to twist our product. To motivate the need for twisting, I will
explain how the isomorphism fails when we do not have it.

Definition 5.2.1. A two-periodic complex is acyclic if it is quasi-isomorphic to the 0
object.

Definition 5.2.2. The localised Hall algebra, DHpAq, is the Hall algebra of two-
periodic projective complexes localised at the set of acyclic complexes:

DHpAq :“ HpKomZ2pProjpAqqq{rrM‚s
´1;H‹pM‚q “ 0s
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The reduced localised Hall algebra, DHredpAq is the algebra where we set acyclic
objects invariant under the translation functor T to 1;

DHredpAq :“ DHpAq{prM‚s ´ 1; rTM‚s “ rM‚sq

This reduced localised Hall algebra is our candidate Lie algebra; after twisting, it will
be our Lie algebra. To show this, we are going to explicitly construct generators Ki, Ei, Fi
and show how they satisfy the Serre relations. Let’s start that process.

Proposition 5.2.3. There is a homomorphism K : K0pAq Ñ DHpAq, sending

rAs Ñ r A A

id

0

s “: KA

for projectives, and for classes α :“ rP s ´ rQs then Kα :“ KP ‹K
´1
Q .

To prove this, we will establish a nice lemma:

Lemma 5.2.4. For arbitrary M‚,

KP ‹ rM‚s “ rKP ‘M‚s “ rM‚s ‹KP

Proof. There are no nontrivial extensions by acyclic objects, for they are quasi-isomorphic
to zero. Therefore KP ‹ rM‚s “ rKP ‘M‚s by definition.

Proof. (Of Prop. 5.2.3) We have

KA ‹KB “ rKA ‘KBs “ KA‘B

But the lemma 5.2.4 also implies that an untwisted Hall algebra cannot give rise to
the semisimple Lie algebras we want to correspond to our Dynkin diagrams. For the
lemma implies rKP ,Os “ 0 for all O. Hence we have a huge abelian ideal generated
by the tKP u in our candidate Lie algebra. Even if it’s a Lie algebra, it is definitely not
semisimple, so it isn’t one of the ADE Lie algebras we want to find.

So we’ll need to twist in a way that destroys the commutatitivity of this bracket.

5.3 Twisting the Hall algebra.

Because A “ Repkp ~D
Ωq is hereditary, it admits a nonsymmetric Euler form,

xM,Ny :“ dimRHompM,Nq

This is a natural nonsymmetric form on our category; hence, it seems like a good
candidate for twisting. Indeed, we define (for a general hereditary A admitting a Hall
algebra, but really we only care about A “ Repkp ~D

Ωq)

Definition 5.3.1. Let the twisted Hall algebra HtwpKomZ2pProjpAqqq be the algebra
with
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• Underlying set HpKomZ2pProjpAqqq;

• Multiplication rM‚s ‹tw rN‚s :“ txM0,N0y`xM1,N1yrM‚s ‹ rN‚s;

• where t is a choice of square root of q, assuming A is linear over some finite field
Fq.

Likewise, let the twisted localised Hall algebra be the same as it was before,
except with twisting:

DHtwpAq :“ HtwpKomZ2pProjpAqqq{rrM‚s
´1;H‹pM‚q “ 0s

and the same for the twisted reduced localised Hall algebra :

DHred
tw pAq :“ DHpAq{prM‚s ´ 1; rTM‚s “ rM‚sq

We still have the same nice acyclic complexes KP , but it commutes less well than
before:

Lemma 5.3.2. For arbitrary M‚,

t´xP,M‚yKP ‹tw rM‚s “ rKP ‘M‚s “ txM‚,P yrM‚s ‹tw KP

Proof. By definition; the sign swaps when we commute objects because RHom swaps
sign.

So now
rKP ,M‚s “ pt

xP,M‚y ´ t´xM‚,P yqrKP ‘M‚s

which is generically noncommutative, as desired.

Remark 5.3.3. We have so far denoted the twisted product by ‹tw. In what follows, all
products are twisted so we use ‹tw and ‹ interchangeably.

What kind of objects do we need deal with in our categry of complexes? First,
recall that in a hereditary category, every complex is quasi-isomorphic to one of the form
A ‘ TB, where A and B are objects in A. Choosing minimimal projective resolutions,
we have the following

Proposition 5.3.4. Every object in KomZ2pProjpAqq has a direct sum decomposition

ResA ‘ TResB ‘KP1 ‘ TKP2

where the KPi are acyclic projectives, and given a minimal projective resolution

0 PA QA A 0
fA

we let

ResA :“ r PA QA

fA

0

s



56 Chapter 5. Constructing the full Lie algebra as a Hall algebra

Example 5.3.5. Consider the Hall algebra HtwpKomZ2pProjpV ectFqqqq. By the above
lemma, isomorphism classes of objects are generated by

• KrFnq s “ Fnq Fnq

id

0

, TKrFnq s “ Fnq Fnq

0

id

• ResrFnq s “ 0 Fnq

0

0

, TResrFnq s “ Fnq 0

0

0

We’ll prove that the Lie bracket on this algebra will end up endowing it with the
structure of quantum SUp2q; hence, the relations to define this algebra are going to be
relatively complicated. So we won’t try to exhaustively describe this algebra. But here
are some observations:

• The subalgebra spanned by all ResrFnq s is a twisted copy of the Hall algebra we anal-
ysed in our previous example. Because dimHompFnQ,Fmq q “ nm and all extensions
are trivial,

prnsq!
rFnq s

|AutpFnq q|
q ‹tw prmsq!

rFmq s
|AutpFmq q|

q “ tnmrn`msq!
rFn`mq s

|AutpFn`mq q|

This is a commutative subalgebra, and of course the tTResrFnq su generate an iso-
morphic subalgebra.

• The subalgebra spanned by all KrFnq s (or the TKrFnq s) is the abelian group generated
by KFq , hence a copy of Z;

• Because dimHompFq, TFqq “ 0 and dimExt1pFq, TFqq “ 1, and the extension is
clearly spanned by KFq ,

ResFq ‹tw TResFq “ rResFq ‘ TResFq s ` pq ´ 1qKFq

TResFq ‹tw ResFq “ rResFq ‘ TResFq s ` pq ´ 1qTKFq

Hence, they have nonzero commutator:

rResFq , TResFq s “ pq ´ 1qpKFq ´ TKFqq

5.4 Quantum groups, Hopf algebras and triangular de-
composition

The quantum group is a continuous one-parameter deformation of our Lie algebra. In
terms of generators, as an algebra dependent on a parameter t,

Definition 5.4.1. • Let Γ a finite graph; let nij the number of edges connecting i´j.
Let αΓ

ij :“ 2δij ´ nij, the generalised Cartan matrix associated to Γ.
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• Let
`

n
k

˘

t
:“

śm´1
i“0

1´tn´1

1´ti`1 , the t´binomial coefficient.

• Let Utpgq, the quantum enveloping algebra of the corresponding derived
Kac-Moody Lie algebra g, be generated by symbols Ei, Fi, Ki, K

´1
i , subject to

relations

KiK
´1
i “ 1 “ K´1

i Ki

rKi, Kjs “ 0

KiEj “ ta
Γ
ijEjKi

KiFj “ t´a
Γ
ijFjKi

rEi, Fjs “ δij
Ki ´K

´1
i

t´ t´1

1´aΓ
ij

ÿ

n“0

p´1qn
ˆ

1´ aΓ
ij

n

˙

t

En
i EjE

1´aΓ
ij´n

i “ 0, i ‰ j

1´aΓ
ij

ÿ

n“0

p´1qn
ˆ

1´ aΓ
ij

n

˙

t

F n
i FjF

1´aΓ
ij´n

i “ 0, i ‰ j

(5.1)

If we define Hi :“
Ki´K

´1
i

t´t´1 and take a limit tÑ 1 in some suitable sense, this recovers
the classical Serre relations, verifying that this algebra is somehow a deformation of the
universal enveloping algebra of the underlying Lie algebra.

In what space is it a deformation? In the space of Hopf algebras: algebras which are
also coalgebras, with nice consistency conditions.

Definition 5.4.2. A k-bialgebra pA,m,m_, η, η_q is

• A vector space A;

• An associative multiplication m : Ab AÑ A

• A unit η : k Ñ A so that pA, η,mq is an associative unital algebra;

• A coassociative comultiplication m_ : AÑ Ab A;

• A counit η_ : A Ñ k so that pA, η_,m_q is a coassociative counital coalgebra (i.e.
all the diagrams an algebra satisfies are satisfied with the arrows in reverse).

• The unit and multiplication are homomorphisms of A as a coalgebra;

• The counit and comultiplication are homomorphisms of A as an algebra
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Definition 5.4.3. A Hopf algebra is a k-bialgebra pA,m,m_, η, η_q with an antipode
map, S : AÑ A, so that

A

Ab A Ab A

k

Ab A Ab A

A

m_
m_

η_

idbS Sbid

η

m
m

Fact 5.4.4. The quantum group is a Hopf algebra, with

• Structure of an algebra given by multiplication under the relations listed;

• Coproduct

m_
pKiq “ Ki bKi

m_
pEiq “ Ei b 1`Ki b Ei

m_
pFiq “ 1b Fi ` Fi bK

´1
i

• Antipode

SpKiq “ K´1
i

SpEiq “ ´K
´1
i Ei

SpFiq “ ´FiKi

• Counit

η_pKiq “ 1

η_pEiq “ 0 “ η_pFiq

To prove this, we would need to check that all the given operations satisfy the relations
given on generators, and that all diagrams are satisfied. This is a lot of data, so for brevity
we omit checking.

Just like the Lie algebra can be split into a Cartan subalgebra and positive and
negative halves, we can split the quantum group.

Fact 5.4.5. • There is an involution

σ : UtgÑ Utg

σpEiq “ Fi

σpFiq “ Ei

σpKiq “ K´1
i
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• Let Utpnq` be the subalgebra generated by the tEiu. Let Uth » Crx˘1
1 , . . . , x˘1

n s be
the subalgebra generated by the K˘1

i .

• Then the natural multiplication map

Utpn
`
q bC Utphq bC σpUtpn

`
qq Ñ Utg

is an isomorphism.

The Hopf algebra structure is very rigid, and hence a powerful tool for analysing
quantum groups. However, a Hopf algebra is a lot of data, and the theory of Hopf
algebras takes a while to build up. Hence, in what follows we avoid the use of all but the
algebra structure on the Hall algebra and the quantum group.

5.5 The quantum group is the two-periodic reduced
twisted Hall algebra

Our proof strategy is as follows.
First, we will define a candidate basis of our reduced hall algebra EA, FA, KA, which

we want to relate to the generating basis of the quantum group of def. 5.4.1. We will
show the EA, resp. FA generate HtwpAq subalgebras and KA a CrK0pAqs.

Lemma 5.5.1. (Triangular decomposition for the Hall algebra) Let A “ Repkp ~D
Ωq,

with D Dynkin. The multiplication map

HtwpAq bC CrK0pAqs bC HtwpAq Ñ DHpAq
AbB b C Ñ EA ‹tw KB ‹tw FC

is an isomorphism.

Then we will try to show the equivalence on each part of the decomposition. That is,
we want to show

Lemma 5.5.2. (The twisted Hall algebra is the positive half of the quantum
group) Let A “ Repkp ~D

Ωq, with D Dynkin. There is an isomorphism of Hopf algebras

ι : HtwpAq » Utpn
`
q

Combining the lemmas with the obvious isomorphism

h : CrK0pAqs » Uth

Proves:

Proposition 5.5.3. There is a commutative diagram of vector spaces

Utpn
`q bC Utphq bC Utpn

´q HtwpAq bC CrK0pAqs b CHtwpAq

Utpgq DHredpAq

„

ιbhbι

„

which furnishes an isomorphism Utpgq » DHredpAq.
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It then suffices to show that this morphism of vector spaces is in fact a morphism of
(Hopf) algebras. That is, we need to check that we have a candidate generating basis
pEi, Fi, Kiq which satisy the quantum group relations. Once we do so, then

Theorem 5.5.4. There is an isomorphism of Hopf algebras Utpgq » DHredpAq.

5.5.1 Candidate E,F,K basis

We already defined our candidate KA. To recall the definition,

Definition 5.5.5. • For P projective,

KP :“ P P

id

0

And K´1
P :“ TKP . For α in the class rP s ´ rQs, then Kα :“ KP ‹K

´1
Q .

• For 0 Ñ PA Ñ QA Ñ AÑ 0 a minimal projective resolution,

ResA :“ r PA QA

fA

0

s

We will now define our E and F . The idea is as follows. We want EA, FA, KA, K
´1
A

to generate the reduced Hall algebra. We know by 5.3.4 that every object has a decom-
position K´1

A ‘KB ‘ rResCs ‘ T rResDs. Hence a natural candidate for EA, FA would be
rResAs, T rResAs. In fact, this definition does not quite work. An intuitive reason is that
we chose a minimal resolution of A to define rResAs; our definition of E,F , should be
independent of the choice of resolution we made. Rather, we have

Definition 5.5.6. Let A an object; denote its minimal projective resolution 0 Ñ PA Ñ
QA Ñ AÑ 0. Then define

EA :“ txPA,AyK´PA ‹ rResAs

FA :“ TEA

The reason why we have EA, not just rResAs, is that this twisting makes the definition
of EA invariant under choice of resolution. A different resolution, nonminimal, would be
of the form rResAs ‘KR, for some R.

Then we would get (applying the identity of lemma 5.3.2)

txPA‘R,AyK´PA‘R ‹ rKR ‘ResAs

“ txPA‘R,Ay´xR,AyK´PA‘R ‹KR ‹ rResAs

“ txPA,AyK´PA ‹ rResAs

So that EA does not depend on our choice of resolution.
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Proposition 5.5.7. There are injective morphisms of rings

I` : HtwpAq Ñ DHtwpAq
I`rAs “ EA

I´ : HtwpAq Ñ DHtwpAq
I´rAs “ FA

Proof. By definition,

EA1 ‹tw EA2 “ txPA1
,A1y`xPA2

,A2yK´PA1
‹tw rResA1s ‹tw K´PA2

‹tw rResA2s

We use lemma 5.3.2 to commute rResA1s and K´PA2
,

EA1 ‹tw EA2 “ txPA1
,A1y`xPA2

,A2y`xPA2
,A1yK´pPA1

`PA2
q ‹tw rResA1s ‹tw rResA2s

We know that rResA1s ‹tw rResA2s “ txQA1
,QA2

y`xPA1
,PA2

y
ř

sA3
A1A2

rResA3s. Putting all this
together,

EA1 ‹tw EA2

“ txPA2
,A1y`xA1,PA2

y`xPA1
,A1y`xPA2

,A2y´xPA1
`PA2

,A1`A2y`xPA1
,PA2

y`xQA1
,QA2

y´2xQA1
,PA2

y
ÿ

sA3
A1A2

EA3

Now QAi “ Ai`PAi in equivalence class, hence substituting this in and doing algebra
we get

EA1 ‹tw EA2 “ txA1,A2y
ÿ

sA3
A1A2

EA3

establishing the required homomorphism.
To establish injectivity, we will explicitly identify a left inverse; the map rM‚s Ñ

t´xM1,H0pM‚qyrH0pM‚qs provides the required inverse, by computation.
By translation symmetry, the map I´ : A Ñ FA is also an injective morphism of

rings.

5.5.2 Triangular decomposition for the two-periodic twisted Hall
algebra

Now we’ve defined the maps; we need a little bit more information about DHpAq to
establish the desired triangular decomposition. By prop 5.3.4, DHpAq has a basis of
elements of the form

rResA ‘ TResBs ‹Kα ‹ TKβ

because the effect of multiplication with Kα is to take the direct sum, up to an invertible
coefficient.

Definition 5.5.8. Let α P K0pAq. Let DHďγ Ă DHpAq be the subspace spanned by
those basis vectors for which rAs`rBs ď γ in the Grothendieck group, where γ is positive.

Lemma 5.5.9. DHďγ ‹DHďζ Ă DHďγ`ζ. Consequently, these subspaces define a filtra-
tion on DHpAq.
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Proof. Let 0 Ñ M‚ Ñ N‚ Ñ P‚ Ñ 0 be an extension. It is a short exact sequence of
complexes, therefore induces a long exact sequence in homology,

H0pM‚q H0pN‚q H0pP‚q

H1pP‚q H1pN‚q H1pM‚q

Taking kernels and cokernels of the upper and lower rows, we get two exact sequences

0 Ñ ker0 Ñ H0pM‚q Ñ H0pN‚q Ñ H0pP‚q Ñ coker0 Ñ 0

0 Ñ coker0 Ñ H1pM‚q Ñ H1pN‚q Ñ H1pP‚q Ñ ker0 Ñ 0

Where the kernels and cokernels identify as such because exactness means the map
H0pP‚q Ñ H1pM‚q factors through the cokernel, hence also applying exactness atH1pM‚q Ñ

H1pN‚q, we have a diagram

H0pN‚q H0pP‚q

0 coker0 0

H1pM‚q H1pN‚q

where the upper square is a pushout square but the lower square is not necessarily a
pullback. So by the universal property of kernels, we get a map coker0 Ñ ker1. We
could run the analysis in reverse with ker1 in the middle, and the lower square a pullback
square, to get a map ker1 Ñ coker0. Hence coker0 » ker1.

Summing the Grothendieck group relations induced by the short exact sequence,

rH0pN‚qs ` rH1pN‚qs ` 2rker0s ` 2rcoker0s “ rH0pM‚qs ` rH1pM‚qs ` rH0pP‚qs ` rH1pP‚qs

Classes of objects in the Grothendieck group are always nonnegative; hence, dropping
all the kernel and cokernel terms, we get an inequality

rH0pN‚qs ` rH1pN‚qs ď rH0pM‚qs ` rH1pM‚qs ` rH0pP‚qs ` rH1pP‚qs (5.2)

so that the filtration works, as desired.

Now we are ready to establish that
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Lemma 5.5.10. The map

µ :“

HtwpAq bC CrK0pAqs bC HtwpAq

DHpAq bC DHpAq bC DHpAq

DHpAq bC DHpAq

DHpAq

I`bKbI´

‹bid

‹

is an isomorphism.

Proof. In the analysis of the previous lemma, let M‚ “ ResA, P‚ “ TResB. By definition

of a resolution, ResA “ PA QA

f

0

, the map f is injective. Hence H0pResAq “

cokerf » A, and H1pResAq “ 0.
Hence, H1pM‚q “ 0 and H0pP‚q “ 0. Therefore, coker0 “ 0.
I claim ker0 “ 0 if and only if the extension is trivial. If the extension is trivial, then

N‚ » ResA ‘ TResB and ker0 “ 0 by computing its homology. Now suppose ker0 “ 0.
Then H0pN‚q » H0pM‚q » A and H1pN‚q » H1pP‚q » B. But because by assumption

our category is hereditary, by 3.2.4 P‚ » ResA‘TResB, therefore the extension is trivial.
Therefore: if the inequality 5.2 is an equality, the extension is trivial. Hence, because

µprAs b α b rBsq attains the bound,

µprAs b α b rBsq

“ tnK´PA ‹ rResAs ‹ pKα ‹ TKβq ‹ TK´PB ‹ T rResBs

“ tn
1

rResA ‘ TResBs ‹Kα´PA ‹ TKβ´PB

where n1 is some number.
Hence, basis elements are sent to basis elements, up to an invertible power of t. This

map is surjective and injective clearly.

5.5.3 Isomorphism of the positive half

Here is the idea. We want a basis directly corresponding to the Ei which generate the
positive half of the quantum group. What should it be? The best idea is that Ei should
correspond to ESimplepiq.

Proposition 5.5.11. The classes rSimplepiqs generate HtwpRepkp ~D
Ωqq.

Proof. Grade quiver representations in Repkp ~D
Ωq by the number of vertices, n, of the

largest connected subquiver on which the quiver representation is nontrivial.
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We’ll prove the result by induction on n. Let Xn an indecomposable on n vertices. It
suffices to show that Xn is generated by algebra elements of lesser grading. Clearly all
indecomposables nontrivial on one vertex are simple, so the base case is clear. Now let
Xn an indecomposable on n vertices. Choose a vertex, v, which is a sink for the subquiver
on which Xn is nontrivial. Let X1 :“ Simplepvq. Let Xn´1 be the quiver representation
which agrees with Xn except on the vertex v, where it is trivial.

I claim rXn´1s‹rX1s “ ArXn´1‘X1s`BrXns, whereA andB are invertible. Proof: the
existence of both these extensions is clear, and we can easily calculate dimExtpXn´1, X1q “

1.
Further, rX1s ‹ rXn´1s “ CrXn´1 ‘ X1s by construction. So we can write rXns in

terms of these two elements.
Therefore done.

Therefore, it remains to prove

Proposition 5.5.12. The morphism ι : Utn
` Ñ HtwpRepkp ~D

Ωqq` generated by

ι : Ei Ñ Simplepiq

is an isomorphism of Hopf algebras.

Proof. Because the Ei, Simplepiq generate, the morphism is a surjective morphism of
Hopf algebras if the Simplepiq obey the quantum Serre relation obeyed by Ei,

1´aΓ
ij

ÿ

n“0

p´1qn
ˆ

1´ aΓ
ij

n

˙

t

En
i EjE

1´aΓ
ij´n

i “ 0, i ‰ j

It is injective if the Simplepiq obey no other relation.
We will check both these conditions independently.

Lemma 5.5.13. The tSimplepiqu obey the quantum Serre relation. Hence, ι is surjective.

Proof. 1. Suppose i and j are not connected, i ‰ j, so aij “ 0 and there are no
nontrivial extensions. The quantum Serre relation says

Simplepjq ‹ Simplepiq ´ Simplepiq ‹ Simplepjq “ 0

which is true because dimRHompSimplepiq, Simplepjqq “ 0 “ dimRHompSimplepjq, Simplepiqq
, so the twisting is trivial.

2. Suppose i and j are connected by an arrow i Ñ j, so aij “ ´1 and the space of
extensions is spanned by

. . . 0 k . . .

. . . k k . . .

. . . k 0 . . .

id

id

id
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i.e. dimExtpSimplepiq, Simplepjqq “ 1, dimExtpSimplepjq, Simplepiqq “ 0.

We need to do a bunch of calculation.

Simplepjq ‹ Simplepiq “ rSimplepjq ‘ Simplepiqs

because there are no nontrivial extensions Simplepjq Ñ Simplepiq, but there are in
the other direction, so

Simplepiq ‹ Simplepjq “ t´1
prSimplepjq ‘ Simplepiqs ` pt2 ´ 1qrPiÑjsq

We have so far calculated |Ext1pA,CqB |
|HompA,Cq|

without comment. For brevity, we will mostly
continue to do so. But to very careful just once,

• We have |HompSimplepiq, Simplepjqq| “ 1 because there is only the zero map.
And |Ext1pSimplepiq, SimplepjqqSimplepiq‘Simplepjq| “ 1 because any extension,
for invertible maps f, f 1

0 k

k k

k 0

f

0

f 1

there is an automorphism of Simplepiq ‘ Simplepjq, namely f´1 ‘ pf 1q´1,
demonstrating that this extension is equivalent to the one where all maps are
the identity.

• We have |Ext1pSimplepiq, SimplepjqqPiÑj | “ pt2 ´ 1q because given some ex-
tension

0 k

k k

k 0

f

id

f 1

An automorphism of PiÑj is totally determined by its value on either vertex
i or j, so we can only invert one of the two maps, say for instance f , to the
identity. So we have free choice of f 1. There are pq ´ 1q “ pt2 ´ 1q invertible
elements in Fq, so that many choices of f 1.

Hence,

Simplepjq ‹ Simplepjq ‹ Simplepiq “ pSimplepjq ‹ Simplepjqq ‹ Simplepiq

“ t2r2!strSimplepjq ‘ Simplepjqs ‹ Simplepiq “ tpt2 ` 1qrSimplepjq ‘ Simplepjq ‘ Simplepiqs

Simplepiq ‹ Simplepjq ‹ Simplepjq “ tpt2 ` 1qSimplepiq ‹ rSimplepjq ‘ Simplepjqs

“ t´1
pt2 ` 1qprSimplepjq ‘ Simplepjq ‘ Simplepiqs ` pt2 ´ 1qrSimplepjq ‘ PiÑjsq
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And

Simplepjq ‹ Simplepiq ‹ Simplepjq “ rSimplepjq ‘ Simplepiqs ‹ rSimplepjqs

“ pt2 ` 1qrSimplepjq ‘ Simplepjq ‘ Simplepiqs ` pt2 ´ 1qrSimplepjq ‘ PiÑjs

Which imply a linear relation

Simplepjq ‹ Simplepjq ‹ Simplepiq ´ pt` t´1
qSimplepjq ‹ Simplepiq ‹ Simplepjq

`Simplepiq ‹ Simplepjq ‹ Simplepjq “ 0

which is the quantum Serre relation desired.

3. Suppose i and j are connected by an arrow j Ñ i. Then almost the same calculation
as we just did above gets the quantum Serre relation.

Hence, ι is a morphism of Hopf algebras, and surjective. We still need to show it is
injective.

Proposition 5.5.14. ι is injective.

Proof. Let

H1t :“ HtwpRepkp ~D
Ω
qq bZrt,t´1 Qrt, t´1

s

U 1t :“ Utpn
`
q bZrt,t´1s Qrt, t´1

s

Functorially, we get ι1 : U 1t Ñ H1t. It suffices to show ι1 is injective. Both U 1t .H1tw are
graded by K0pRepkp ~D

Ωqq, and ι1 respects this grading. For an arbitrary class γ in K0, it
hence suffices to show the restricted mapped ι1γ is injective.

Now U 1t,γ is torsion free, hence because Qrt, t´1s is a PID it is a free module over
Qrt, t´1s. The dimension of U 1t,γ does not change as t varies. Now a standard result in
the theory of quantum groups is that U 1t,γ{pt ´ 1q is Upn`qγ, the γ-graded part of the
(universal enveloping algebra of) the positive part of the usual Lie algebra associated to
our quiver. Ht,γ is also a free Qrt, t´1s-module.

Let Φ` a choice of set of positive roots associated to our Dynkin diagram. Both Ht,γ

and Upn`qγ have dimension

upγq :“ the number of maps m : Φ` Ñ N` so
ÿ

α

mpαqα “ γ

the prior by definition, and the latter by the Poincare-Birkhoff-Witt theorem (see [K2].)
Now ι1γ is a surjection between free modules of the same dimension, so by rank-nullity

is an injection also.

5.5.4 Quantum group relations

Now that we have established isomorphisms of Hopf algebras between each part in the tri-
angular decomposition, we need to show that the linear map Utpn`qbCUtphqbCUtpn

´q Ñ

HtwpAq bC CrK0pAqs bCHtwpAq is an isomorphism of Hopf algebras. To do so, we need
to show all the relations of eq. 5.1 are satisfied, except for the quantum Serre relations,
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which we have already checked. We need not show that it is an isomorphism, which
follows because it is an isomorphism on each of the tensor components.

The remainder of this section is a series of extensive, and not particularly enlightening,
calculations. They are given here for completeness, but one does not lose any conceptual
understanding by skipping them.

Proposition 5.5.15. rESimplepiq, FSimplepiqs “ pt2 ´ 1qpTKSimplepiq ´KSimplepiqq.

Proof. We have Ext1pSimplepiq, TSimplepiqq » HompSimplepiq, Simplepiqq. Clearly the
nontrivial extension is by TKSimplepiq.

Hence, as always using lemma 5.3.2 to commute the Ks,

ESimplepiq ‹ FSimplepiq

“ t2xPSimplepiq,SimplepiqyK´PSimplepiq ‹ rResSimplepiqs ‹ TK´PSimplepiq ‹ rTResSimplepiqs

“ txPSimplepiq,Simplepiqy´xSimplepiq,PSimplepiqyK´PSimplepiq ‹ TK´PSimplepiq ‹ rResSimplepiqs ‹ rTResSimplepiqs

“ txPSimplepiq,Simplepiqy´xSimplepiq,PSimplepiqyrResSimplepiqs ‹ rTResSimplepiqs

“ txPSimplepiq,Simplepiqy´xSimplepiq,PSimplepiqytxQSimplepiq,PSimplepiqy´xPSimplepiq,QSimplepiqy

ˆprResSimplepiq ‘ TResSimplepiqs ` pt
2
´ 1qTKSimplepiqq

“ rResSimplepiq ‘ TResSimplepiqs ` pt
2
´ 1qTKSimplepiq

where in the last step the coefficient of t is zero by inserting the Grothendieck group
relation rAs “ rQs ´ rP s to simplify the Euler forms.

Now taking T of both sides,

FSimplepiq ‹ ESimplepiq “ rResSimplepiq ‘ TResSimplepiqs ` pt
2
´ 1qKSimplepiq

Subtracting the difference gets the desired commutation relation.

Proposition 5.5.16. Suppose i ‰ j. Then rESimplepiq, FSimplepjqs “ 0.

Proof. There are no nontrivial extensions because

Ext1pSimplepiq, TSimplepjqq » HompSimplepiq, Simplepjqq

“ 0

“ HompSimplepjq, Simplepiqq » Ext1pSimplepjq, TSimplepiqq

So that

ESimplepiq ‹ FSimplepjq

“ txPSimplepiq,Simplepiqy`xPSimplepjq,Simplepjqy´xSimplepiq,PSimplepjqy´xSimplepjq,PSimplepiqy

ˆK´PSimplepiq ‹ TK´PSimplepjq ‹ rResSimplepiqs ‹ rTResSimplepjqs

“ txPSimplepiq,Simplepiqy`xPSimplepjq,Simplepjqy´xSimplepiq,PSimplepjqy´xSimplepjq,PSimplepiqy

ˆtxQSimplepiq,PSimplepjqy´xPSimplepiq,QSimplepjqyK´PSimplepiq ‹ TK´PSimplepjq ‹ rResSimplepiq ‘ TResSimplepjqs

Rewriting rQs “ rAs ` rP s as in the previous proof,

“ txPSimplepiq,Simplepiqy`xPSimplepjq,Simplepjqy´xPSimplepiq,Simplepjqy´xPSimplepjq,Simplepiqyˆ

K´PSimplepiq ‹ TK´PSimplepjq ‹ rResSimplepiq ‘ TResSimplepjqs
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Now writing the overall power of t as tn, noting that it is invariant under interchange
of i and j,

rESimplepiq, FSimplepjqs “ ESimplepiq ‹ FSimplepjq ´ T pESimplepjq ‹ FSimplepiqq

“ tntK´PSimplepiq ‹ TK´PSimplepjq ‹ rResSimplepiq ‘ TResSimplepjqs

´TK´PSimplepjq ‹K´PSimplepiq ‹ rResSimplepiq ‘ TResSimplepjqsu

and TK´PSimplepjq‹K´PSimplepiq “ K´PSimplepiq‹TK´PSimplepjq , because they commute because
xPSimplepiq, PSimplepjqy “ 0, so this is just zero, as desired.

Proposition 5.5.17. KSimplepiqESimplepjq “ ta
Γ
ijESimplepjqKSimplepiq. Likewise, KSimplepiqFSimplepjq “

t´a
Γ
ijFSimplepjqKSimplepiq.

Proof. Translation Simplepiq Ñ TSimplepiq flips the sign of the Euler form, hence it suf-
fices to show for the KiEj case. Now aΓ

ij “ xSimplepiq, PSimplepjqy`xPSimplepjq, Simplepiqy
by the symmetrised Euler form description of the inner product on roots, theorem 3.8.1.

Now we have verified all the necessary quantum group relations. Hence, the map of
proposition 5.5.3 is a map of Hopf algebras. Because it is an isomorphism on each of
the triangular components by 5.5.2, the map is an isomorphism. Hence we have proved
theorem 5.5.4.

5.5.5 Using the Hall algebra to understand the quantum group

Now that we have equated the two-periodic Hall algebra and the quantum group, we could
use all the tools we defined for quiver representation categories to study the quantum
group. For instance, BGP reflection induces an automorphism of the two-periodic twisted
Hall algebra, hence on the quantum group. In the literature, this set of automorphisms
carries the name “Lusztig’s symmetries”, see [C] for a full discussion.

Hall algebras can also be used to understand Lusztig’s canonical basis, see [R3], and
Kashiwara’s crystal basis, see [S2].
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