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List of Tables

The main tables in [18] are reproduced here for reference.

The following two tables keep track of the groups of invariants determined by π0(Cq) for a
given symmetry class that relies periodically on an integer q, and indicate which systems in a
particular dimension have the symmetries T and Q, which stand for time-reversal invariance and
particle number conservation, respectively. Table 1 includes systems with only Q-symmetry, while
Table 2 includes systems with no symmetry, T-symmetry only, and both T and Q-symmetry.

Table 1

q π0(Cq) d = 1 d = 2 d = 3
0 Z (IQHE)
1 0

Classification of Topological Insulators without
Time-Reversal Symmetry, from the left side of [18] Table 1

Table 2

q π0(Rq) d = 1 d = 2 d = 3
0 Z no symmetry T only
1 Z2 no symmetry (MC) T only T and Q
2 Z2 T only T and Q
3 0 T and Q
4 Z

5 0
6 0
7 0 no symmetry

Classification of Topological Superconductors and
Time-Reversal Invariant Insulators, from the right side of [18] Table 1

Note that IQHE stands for integer quantum Hall effect and MC stands for Majorana chain.
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placeholder

The following two tables list the classifying spaces Cq and Rq of operators corresponding to
each symmetry condition, which are referenced in Tables 1 and 2. Each entry is actually meant to
denote the space obtained by taking the direct limit as k, m, n→ ∞.

Table 3

q mod 2 Classifying Space Cq π0(Cq)
0 (U(k + m)/U(k)×U(m))×Z Z

1 U(n) 0

Complex Classifying Spaces, from the left side of [18] Table 2

Table 4

q mod 8 Classifying Space Rq π0(Rq)
0 (O(k + m)/(O(k)×O(m)))×Z Z

1 O(n) Z2
2 O(2n)/U(n) Z2
3 U(2n)/Sp(n) 0
4 (Sp(k + m)/(Sp(k)× Sp(m)))×Z Z

5 Sp(n) 0
6 Sp(n)/U(n) 0
7 U(n)/O(n) 0

Real Classifying Spaces, from the right side of [18] Table 2
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Chapter 1

Mathematical Framework: K-Theory,
Clifford Algebras, and Index Theory

1.1 Introduction

Topological insulators and superconductors are materials with remarkable properties. They have
different electrical properties in their bulk, or interior, than on their surfaces, and they can occupy
symmetry-protected phases of matter that potentially host quasiparticles that could be the key to
topological quantum computing. Their properties are robust to small imperfections and deformi-
ties, but the sense in which they are topological is much more profound than this. The tools for
understanding these materials are topological invariants, which were first introduced in the study
of the quantum Hall effect and which allow for a rich interaction of theoretical condensed mat-
ter physics with algebraic topology. These topological invariants provide information about the
phase of a particular model, and, even better, help understand the space of all possible models. In
particular, a main goal is to classify the possible kinds of topological insulators and superconduc-
tors in each spatial dimension and to determine what kinds of phases these classes can host.

1.1.1 The Periodic Table

Several classification schemes exist, but this thesis will focus on one proposed in 2009 known as the
“Periodic Table,” which uses K-theory to assign invariants and explore the possible phases in each
dimension. This approach is interesting mathematically because it employs a case of the Atiyah-
Singer Index Theorem, which relates the topological index of a manifold to the analytical index.
In the course of the classification, mathematical results including the index theorem for skew-
adjoint Fredholm operators, Bott periodicity, and the loop-space suspension adjunction appear
and contribute to understanding physical phenomena.

Through an exposition of Kitaev’s 2009 paper on the periodic table [18], this thesis aims to give
some useful mathematical background that clarifies its use in condensed matter physics, as well as
offer physical intuition and interesting examples of the classification. It will not cover the entirety
of Kitaev’s paper, but instead will elaborate on low-dimensional examples.

1.1.2 Outline

The idea of the classification is to consider the possible spaces corresponding to Hamiltonian op-
erators that possess certain symmetry properties. These spaces, Rq and Cq, are listed in Tables 3
and 4 on the previous page. Using index theory, a given Hamiltonian corresponding to one of
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those classes can be assigned a K-theory index, which indicates which phase of matter it occupies.
For example, the space of 1D Hamiltonians with neither of the relevant symmetries is R1, and
there are exactly two phases that a Hamiltonian of this kind can occupy, according to the K-theory
invariant, which lives in π0(R1) = Z2, as indicated in Table 2 above. More generally, the periodic
table classification rests upon the following proposal.

Kitaev’s Proposal: The possible phases of gapped, free-fermion models in d dimensions and with p negative
symmetries are classified by

K̃O
−p+d+2

(pt) = π0(Rp−d−2 mod 8) or by K̃−p+d+1(pt) = π0(Cp−d−1 mod 2)

where Rq and Cq denote a spaces of operators. The choice of Rq versus Cq is also determined by the symmetry
properties of the system.

Rather than provide a proof of this proposal, this thesis will give the mathematical and physical
motivation for why it works, with the most thorough argument occurring for the case d = 0. It will
also explore in detail more exciting examples in dimensions 1 and 2, in which K-theory invariants
can be calculated and related to measurable phenomena. References are offered where proofs and
details are omitted.

This thesis begins with mathematical background, defining K-theory and Clifford algebras and
giving an indication of how the assignment of an index to an operator is useful for classifying free
fermion models. It then reviews some physical definitions and tools, before discussing examples
of the classification in dimensions 0, 1, and 2. Several relevant symmetry cases are discussed in
the d = 0 chapter and shown to correspond to the appropriate classifying spaces predicted by the
proposal above. The subsequent chapters on models in d = 1 and d = 2 each focus primarily on
one example: the Majorana chain in 1D, and the integer quantum Hall effect in 2D.

1.2 K-Theory

Topological K-theory is a generalized cohomology theory that was formalized in the 1960s by
Hirzebruch and Atiyah soon after Bott’s proof of the periodicity theorem. It associates a ring
K(X) to a topological space X, providing an invariant that can be used to distinguish phases of
matter. K-theory has a geometric formulation in terms of vector bundles and can be extended
to a cohomology theory using the suspension isomorphism and Bott periodicity. The following
introduction to K-theory is based on [15] Chs. 1-2, [6] Ch. 1, and [23] Lecture 1. It focuses on
intuition needed for physical concepts.

1.2.1 Geometric Definition

Topological K-theory is defined using vector bundles. In some cases of the classification of topo-
logical materials, vector bundles track the ground state of the Hamiltonian as a parameter contin-
uously varies. For example, this parameter could be momentum, which in a d-dimensional lattice
system lives on a torus Td. From now on, all spaces are assumed to be compact Hausdorff.
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Vector Bundles

Definition 1.2.1. An n-dimensional complex vector bundle over a space X is a total space E together
with a projection map p : E→ X such that the following conditions hold.

• Each fiber Ex := p−1(x) for x ∈ X has the structure of a complex vector space.

• Around each point x, there is a neighborhood U for which there is a local trivialization p−1(U) ∼=
U ×Cn.

According to this definition, a vector bundle locally resembles a product of the base space X
with Cn. The interesting properties of vector bundles arise from their potential failure to be written
as products globally.

Example 1.2.2. Any product X ×Cn is a vector bundle. A vector bundle that can be written as a product
globally is called a trivial bundle.

Example 1.2.3. On a complex projective space CPn, one can define a tautological line bundle, denoted
H∗, whose fiber over a point x ∈ CPn is the complex line spanned by x. This bundle is referred to as O(−1)
in algebraic geometry, and the tautological construction works for Grassmannians in general to produce
similar examples.

K-theory is usually first defined using complex vector bundles, but a version of K-theory exists
for real vector bundles as well. A real vector bundle is defined as in Def. 1.2.1, but with real vector
spaces instead of complex vector spaces.

Definition 1.2.4. An n-dimensional real vector bundle over X is a space E together with a projection
map whose fibers have the structure of a real vector space and that satisfies the local triviality condition.

Example 1.2.5. Over X = S1, there are exactly two possible one-dimensional vector bundles. One is the
trivial bundle, which resembles a cylinder, and the other resembles a Möbius strip.

Example 1.2.6. Let X be a manifold. Then the tangent bundle TX is a vector bundle, with fiber the tangent
space at a point. If the manifold has a complex structure, then TX is a complex vector bundle.

Definition 1.2.7. Let p : E → X and q : F → X be two vector bundles over X. They are isomorphic if
there exists a continuous map φ : E → F such that φ ◦ p = q and φ maps each fiber p−1(x) ⊂ E to the
fiber q−1(x) ⊂ F by a linear isomorphism.
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Operations on Vector Bundles

Two operations can be defined on vector bundles that will correspond to ring operations in K(X).

Definition 1.2.8. Let E → X be an n-dimensional vector bundle, and F → X an m-dimensional vector
bundle. Then their direct sum E⊕ F is a vector bundle of dimension m + n over X. It can be defined at
each fiber by (E⊕ F)x = Ex ⊕ Fx. Equivalently, it can be defined as the pullback bundle E×X F, which is
defined so that the following diagram commutes.

E×X F F

E X

Definition 1.2.9. The tensor product of E and F is a vector bundle E⊗ F of dimension m · n whose fiber
is (E⊗ F)x = Ex ⊗ Fx.

A more explicit definition of the tensor product can be given using transition functions but is
not essential here.

Grothendieck Completion

Direct sum and tensor products of isomorphism classes of vector bundles give a semiring, which
is almost the desired algebraic object. However, to form a ring, there must be additive inverses.
The way to fix this is to perform a general construction called Grothendieck group completion.

Definition 1.2.10. Let M be a commutative monoid. The Grothendieck group is a quotient of the free
group on M that creates formal inverses. Let + denote the addition in M and +′ denote the addition in
Gr(M). Then the Grothendieck group on M is

Gr(M) := Z(M)/((x +′ y)−′ (x + y) ∼ 0).

The idea is that the group completion identifies the addition in the monoid with the addition
in the free group, creating formal inverses. The elements of the Grothendieck group are formal
differences of pairs of elements of the monoid.

Example 1.2.11. The natural numbers can be completed into a group by including negative numbers, so
Gr(N) = Z. Elements in the group completion are isomorphism classes of differences. For example, −2 in
Z corresponds to the isomorphism class [1− 3], which is the same class as [2− 4].

When this process is performed on the monoid of vector bundles under direct sum, the result-
ing object is a group of virtual bundles, which are formal differences [E] − [F] of isomorphism
classes of vector bundles E and F. This is the definition of the zeroth group in the cohomology
theory.

Definition 1.2.12. Let X be a compact Hausdorff space, and let VectC(X) denote the monoid of isomor-
phism classes of complex vector bundles with respect to direct sum. The zeroth K-theory group of X
is

K0(X) := Gr(VectC(X)).

With tensor product of vector bundles acting as multiplication, this in fact forms a ring.



1.2. K-Theory 5

Definition 1.2.13. Let VectR(X) denote the monoid of isomorphism classes of real vector bundles with
respect to direct sum. The zeroth KO-theory group of X is

KO0(X) := Gr(VectR(X)).

1.2.2 Extension to a Generalized Cohomology Theory

Vector bundles were used to define the zeroth group K0(X) of K-theory, but K-theory actually
forms a generalized cohomology theory once all of the groups Kn(X) are defined. This gives it a
richer algebraic structure. A quick, intuitive definition of generalized cohomology theories will be
given as a reminder to the reader familiar with cohomology, but the most important attributes to
understand for the physical classification are Bott periodicity and the suspension isomorphism.

Definition 1.2.14. A generalized cohomology theory E∗(−) is a contravariant functor from the cate-
gory of topological spaces to the category of graded abelian groups such that the Eilenberg-Steenrod axioms
hold: homotopy invariance, a suspension isomorphism, the long exact sequence of a pair, additivity, and
excision.

This definition means that for an appropriate space X, E∗(X) gives a graded abelian group
with levels En(X) for n ∈ Z, and if f : X → Y is a continuous map, then there is an induced
homomorphism f ∗ : H∗(Y) → H∗(X). It will not be proved in this thesis that K-theory satisfies
the axioms of a cohomology theory, but the suspension isomorphism will be discussed because
it pertains to a periodic structure in the groups Kn(X). To discuss suspension, one must define a
reduced version of K-theory.

Reduced K-Theory and the Suspension Isomorphism

Definition 1.2.15. Let X be a based space with base point x0, and let ι : x0 ↪→ X be the inclusion map. The
zeroth reduced K-theory group of X is

K̃0(X) := ker ι∗ = ker(K0(X)→K0(x0)).

Taking reduced K-theory can be thought of as modding out by the dimension of the vector
bundle over the base point. In general, unreduced K-theory satisfies K(X) = K̃(X) ⊕ K(x0) =
K̃(X)⊕Z.

Definition 1.2.16. The reduced suspension of a based space X with base point x0 is a quotient space

ΣX := X ∧ S1

where ∧ is the smash product. Equivalently,

ΣX = X× I/(X× {0} ∪ X× {1} ∪ {x0} × I).

Example 1.2.17. The n-fold reduced suspension of a sphere increases the dimension of the sphere. That is,
ΣnSk ' Sn+k, and in particular, Sn ' ΣnS0.

Now K̃n(X) can begin to be defined for n other than zero.
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Definition 1.2.18. Let X be a well-based space, and let n > 0. Define, according to the suspension

isomorphism, K̃−n(X) := K̃0(ΣnX) and K̃O
−n

(X) := K̃O
0
(ΣnX).

Bott Periodicity

As for positive K-groups, one must invoke Bott periodicity. Initially proven by Raoul Bott using
Morse theory, Bott periodicity was one of the first applications of K-theory. In the statements
below, ∗ stands for an arbitrary degree.

Theorem 1.2.19 (Complex Bott Periodicity). There is a group isomorphism K∗(X) ∼= K∗−2(X).

Theorem 1.2.20 (Real Bott Periodicity). There is a group isomorphism KO∗(X) ∼= KO∗−8(X).

There are many different formulations and proofs of Bott periodicity. For example, proof using
a product theorem in K-theory can be found in [6] §2.2 or [15] Ch. 2, and a proof using the index
theory and Clifford algebra techniques discussed later in this thesis can be found in [8] §5. This
thesis will not include a proof.

With the suspension isomorphism defining K̃−n(X), and with Bott periodicity ensuring a pe-
riodic structure, positive K-groups can now be defined.

Definition 1.2.21. Define the positive complex K-groups by

K̃n(X) :=

{
K̃0(X) for n even
K̃0(ΣX) = K̃−1(X) for n odd

Definition 1.2.22. Similarly, define the positive real KO-groups by

K̃O
n
(X) := K̃O

0
(ΣjX) = K̃O

−j
(X) for n ≡ −j (mod 8).

Once negative groups are defined, K-theory forms a cohomology theory. This fact will not be
proven here, but will be invoked in later calculations.

Bott periodicity has wider significance in algebraic topology, but the main result of Bott peri-
odicity for the classification of topological insulators and superconductors is that the classification
is periodic in dimension. Specifically, when the symmetry classes of the classification are writ-
ten in the correct order, increasing the dimension of the material by one will shift the symmetry
class by one; for example, similar phases exist in the 1D Majorana chain and the 2D time-reversal
invariant insulator. A few facts will be asserted next that aid in calculations.

Fact 1.2.23. Let X be compact. As long as there is a metric on the vector bundle, it is possible to find a
complementary vector bundle F over X such that E⊕ F = X×Cn, the n-dimensional trivial bundle.

For proof, see Cor. 1.4.14 in the appendix to [6].

Fact 1.2.24. Any element of K0(X) can be represented as a virtual bundle difference in which one of the
bundles is trivial. That is, any element of K0(X) can be written as [E]− n for n the n-dimensional trivial
bundle X×Cn.

Proof. As in [6] §2.1, let [G]− [F] be an arbitrary element of K0(X). Using the previous fact, let H be
the bundle such that F⊕H ' X×Cn. Then [G]− [F] = [G] + [H]− ([F] + [H]) = [G⊕H]− n.
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1.2.3 Examples

Example 1.2.25. The K-theory of a point or of any contractible space is easily calculated. Assuming that
the homotopy invariance axiom holds, the K-theory of a point and of a contractible space is the same. Then,
a vector bundle over a point is just a single virtual vector space, meaning that the bundle cannot possible be
nontrivial. This virtual vector space is a formal difference of two isomorphism classes of vector spaces, each
of which is determined by the nonnegative integer representing the vector space dimension. The difference
in their dimensions determines the virtual dimension of the bundle, which can be any integer. Since the
virtual bundles over a point correspond to the integers, K0(pt) = Z. The same reasoning holds for real
vector bundles, so KO0(pt) = Z.

Example 1.2.26. Consider a based contractible space. The reduced K-theory mods out by the dimension
over the base point, so if there is no other structure then the reduced group is trivial. Hence K̃0(pt) = 0.

Example 1.2.27. Now consider the complex K-theory of the sphere. For S0, the two disjoint points each
contribute a virtual bundle of integral dimension, so K0(S0) = Z2. Meanwhile, all complex vector bundles
over S1 are trivial, so K0(S1) = Z. Invoking Bott periodicity and the suspension isomorphism, one can
calculate

K̃0(S2n) = K̃−2n(S0) = Z

K̃0(S2n+1) = K̃−2n−1(S0) = 0.

Example 1.2.28. The real KO-theory of the sphere is more complicated, since there is an 8-fold periodicity
instead of only 2-fold. The same argument as for the previous example shows that KO0(S0) = Z2 and

K̃O
0
(S0) = Z, while the claim in Ex. 1.2.5 that there are only two real one-dimensional vector bundles

over the circle gives that K̃O
0
(S1) = Z2. The rest of the groups will not be calculated, but listed here for

reference.

n 0 1 2 3 4 5 6 7

K̃O
0
(Sn) Z Z2 Z2 0 Z 0 0 0

Example 1.2.29. This calculation will use cohomological techniques. Consider T2, the two-dimensional
torus. The torus can be written as a product T2 ' S1 × S1. Recall that the long exact sequence of the pair
X×Y, X ∧Y gives an isomorphism K̃(X×Y) ∼= K̃(X ∧Y)⊕ K̃(X)⊕ K̃(Y), so

K̃(T2) ∼= K̃(S1 × S1)

∼= K̃(S1 ∧ S1)⊕ K̃(S1)⊕ K̃(S1)

∼= K̃(S2)⊕ 0⊕ 0
∼= Z.

This result will be important later when discussing the quantum Hall effect in Ch. 4.

Summary

This concludes a very quick introduction to K-theory. The main takeaways for the rest of this
thesis are the definition of real and complex vector bundles, the examples of K-groups and KO-
groups calculated for spheres and the torus, and the fact that K-theory forms a cohomology theory.
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The last fact will be important in developing index theory for skew-adjoint Fredholm operators.
Elements in K-theory and KO-theory will distinguish phases in the classification of matter, but the
next important ingredient for this is symmetry. The mathematical objects necessary for this are
Clifford algebras.

1.3 Clifford Algebras

Clifford algebras have uses in many areas of mathematics and physics, but in this thesis they will
serve to keep track of the symmetries of condensed matter systems. Specifically, it will be shown
that the algebra generated by Majorana operators acting on the Fock space forms a Clifford alge-
bra, while the symmetry operators for time-reversal symmetry and particle number conservation
act as representations of Clifford generators. These will be discussed in sections 2.2 and 2.5. In
section 1.4.4, commutations with Clifford representations will define more specific subspaces of
Fredholm operators, whose index theory is the mathematical foundation for the K-theoretic clas-
sification. The following introduction to Clifford algebras closely follows [7] Ch. 1.

1.3.1 Definition

A Clifford algebra is a unital, associative algebra generated by a vector space or module that is
equipped with a quadratic form. Let F be a field, let E be a F-module, and let Q : E → F be a
quadratic form on E. Recall that the tensor algebra of E is

T(E) =
∞⊕

i=0

TiE =
∞⊕

i=0

E⊗i = F⊕ E⊕ (E⊗ E)⊕ (E⊗ E⊗ E)⊕ ...

with multiplication given by the tensor product and using the identification TiE⊗ T jE ∼= Ti+jE.
The Clifford algebra is a quotient of the tensor algebra that uses the quadratic form to assign a
signed notion of length to vectors.

Definition 1.3.1. Let I(Q) be the two-sided ideal in T(E) generated by elements of the form x ⊗ x −
Q(x) · 1 for x ∈ E. The Clifford algebra is

Cl(E, Q) := T(E)/I(Q),

the quotient of the tensor algebra by the ideal I(Q).

In this thesis, the Clifford algebras of interest are real Clifford algebras Clp,q, which are more
specifically defined.

Definition 1.3.2. The real Clifford algebra Clp,q with p + q = k is the Clifford algebra defined for the
vector space Rk according to the quadratic form

Q(x) = −
p

∑
i=1

x2
i +

p+q

∑
j=p+1

x2
j

for x = (x1, ..., xk)
T ∈ Rk.
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In the case that q = 0, the quadratic form is negative definite and the Clifford algebra is de-
noted Clp. This is the algebra most commonly referred to when one discusses Clifford algebras.
Complexified versions, ClC

p = Clp ⊗R C, are also of interest.

1.3.2 Presentation

One can write down generators and relations for Clifford algebras using an injection of the module
E into the Clifford algebra. If {ei} is a basis for the copy of E living in Cl(E, Q), then the set of
products with increasing indices ei1 · ei2 · · · eik with i1 < i2 < ... < ik along with 1, form an additive
basis for Cl(E, Q).

For the real Clifford algebra Clp,q, consider the images of the standard basis vectors of Rp+q,
denoted {e1, ..., ep+q}. The Clifford algebra is generated by these elements subject to the constraints
from the quadratic form, so

Clp,q = 〈e1, ..., ep+q | eiej = −ejei, e2
i = −1, e2

j = 1, for 1 ≤ i ≤ p < j ≤ p + q〉.

1.3.3 Grading

Whereas tensor algebras are Z-graded, Clifford algebras are Z2-graded, meaning that they decom-
pose into direct sums of odd and even parts. Specifically, let Cl0(E, Q) be the image of ∑∞

i=0 T2iE in
Cl(E, Q) and let Cl1(E, Q) be the image of ∑∞

i=0 T2i+1E in Cl(E, Q). Then the algebra decomposes
as follows.

(i) Cl(E, Q) = Cl0(E, Q)⊕ Cl1(E, Q)

(ii) If xi ∈ Cli(E, Q) and yj ∈ Cl j(E, Q), then xiyj ∈ Clk(E, Q) for k ≡ i + j mod 2.

Grading is visible for real Clifford algebras using the generators and relations above, and for an
arbitrary element ei1 · · · ein is determined by n mod 2. So, (Clp,q)0 consists of products of even
numbers of basis elements, while (Clp,q)1 consists of products of odd length.

Fact 1.3.3. The even part (Clp+1,q)0 of Clp+1,q is isomorphic to Clp,q.

Proof. Let {e1, ..., ep+q+1} be the standard generators of Clp+1,q, and define a map

ϕ : span{ei | i 6= p + 1} → (Clp+1,q)0 by ϕ(ei) = ep+1ei.

The elements ep+1ei form a basis of (Clp+1,q)0 because any even combination of arbitrary elements
ejek in (Clp+1,q)0 can be achieved by

(ep+1ej)(ep+1ek) = −e2
p+1ejek = (−1)2ejek.
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So, the map is a bijection because it maps basis elements to basis elements. It respects the Clifford
algebra structure because for any vector x = ∑i 6=p+1 xiei,

ϕ(x) · ϕ(x) = ∑
i,j

xixjep+1eiep+1ej

= (−1)2 ∑
i,j

xixjeiej

= x · x,

indicating that ϕ is an algebra homomorphism.

In particular, the even part (Clk+1)
0 of the (k + 1)st Clifford algebra is isomorphic to the Clif-

ford algebra Clk one lower. This fact is useful for calculating Clifford algebras as well as for more
complicated constructions with Clifford modules.

1.3.4 Examples

Low-dimensional Clifford algebras Clk are isomorphic to familiar algebras.

Example 1.3.4. The trivial Clifford algebra is just the ground field, Cl0 ∼= R, which is generated by the
element 1.

Example 1.3.5. The first Clifford algebra is Cl1 ∼= C, the complex numbers, whose nonidentity element i
satisfies i2 = −1 and is identified with e1.

Example 1.3.6. The second Clifford algebra is Cl2 ∼= H, the quaternions. Identify the quaternion elements
as i = e1, j = e2, and k = e1e2.

Example 1.3.7. The third Clifford algebra, Cl3 ∼= H⊕H is the first to be non-simple. Using the Z2-
grading, one can define a map on the generators of the even part to H. In terms of the usual notation for the
elements of H, the correspondence is as follows.

Cl2 Cl0
3

1 1
i e1e2
j e1e3
k e2e3

One can check that the map defined on these basis elements extends linearly to an algebra isomorphism by
computing the products.

1.3.5 Periodicity

A critical property of Clifford algebras is that their representations are periodic. This means that
there are a finite number of isomorphism classes of Clifford algebra representations, which will
lead to a finite number of symmetry classes in the classification of Hamiltonians. There are eight
types of algebras Clk and two types of complexified algebras ClC

k , as shown in the following table,
where the notation F(n) indicates the algebra of n× n matrices over F.
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k Clk ClC
k

1 C C⊕C

2 H C(2)
3 H⊕H

4 H(2)
5 C(4)
6 R(8)
7 R(8)⊕R(8)
8 R(16)

Periodicity will be discussed and briefly proven for the algebras Clk and not for the bigraded
algebras Clp,q or complexified algebras ClC

k , but the approach is similar in those cases. The proof
will follow the approach of [7].

Theorem 1.3.8. The algebras Clk are 8-periodic, with Clk+8
∼= Clk ⊗R Cl8.

Lemma 1.3.9. There are algebra isomorphisms Clk
∼= Cl2 ⊗ Cl0,k−2 and Cl0,k ∼= Cl0,2 ⊗ Clk−2.

Proof. Each isomorphism can be written using the same formula. Let e1, ..., ek be a basis of Clk, or
of Cl0,k, respectively. Define a map on these basis elements by

ei 7−→


e1 ⊗ 1 if i = 1,
e2 ⊗ 1 if i = 2,
e1e2 ⊗ ei−2 if i ≥ 3,

and extend linearly. One can check that this process yields an algebra isomorphism in each case.

Proof of 1.3.8. By the isomorphisms above, Cl4 ∼= Cl2 ⊗ Cl0,2 ∼= Cl0,4. Then

Clk+4
∼= Cl0,k+2 ⊗ Cl2 ∼= Clk ⊗ Cl0,2 ⊗ Cl2 ∼= Clk ⊗ Cl4,

so
Clk+8

∼= Clk+4 ⊗ Cl4 ∼= Clk ⊗ Cl4 ⊗ Cl4 ∼= Clk ⊗ Cl8.

From the table, Cl8 ∼= R(16).

This periodicity has important implications for the representation theory of Clifford algebras
because the algebra Cl8 ∼= R(16) is simple. Recall that an algebra is simple if it has no proper
two-sided ideals.

Fact 1.3.10. All matrix algebras are simple.

A proof can be found in an algebra textbook, such as in [11] Chapter IX.
From this fact, one can see that the algebras Clk are simple for all k 6≡ 3 mod 4, while the

algebras ClC
k are simple for odd k. The consequence of the algebras Cl8 and ClC

2 being simple is
precisely periodicity up to Morita equivalence.

Definition 1.3.11. Two rings R and S are Morita equivalent if the categories of right (resp. left) modules
over R is equivalent to the category of right (resp. left) modules over S.
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Morita equivalence means that two rings have the same representation theory, and it is a fact
that the representation theory of an algebra is preserved upon tensoring with a simple algebra;
see a reference like [4]. So, the periodicity relationship

Clk+8
∼= Clk ⊗R Cl8 ∼= Clk ⊗R R(16),

given the fact that R(16) is simple, ensures that the algebras Clk+8 and Clk are Morita equivalent.
A similar explanation holds for the complex case. Morita equivalence is sufficient for the purposes
of classification because Clifford representations, not Clifford generators, are what will track the
symmetries of Hamiltonian operators.

1.4 Fredholm Operators and the Index Map

Index theory lies at the intersection of algebraic topology and analysis and can be used to demon-
strate important topological results including Bott periodicity. It connects two calculations that can
be done for a space—a topological index and an analytical index. The version of the index theorem
required for the classification of topological materials is index theory for skew-adjoint Fredholm
operators, which associates a particular K-theory class to a family of operators parameterized by
some topological space. This section will introduce Fredholm operators, define the index map for
complex K-theory, and indicate how the space of Fredholm operators classifies K-theory. Clifford
algebras will enter into the picture in the next section.

1.4.1 Fredholm Operators

Recall that a Hilbert space is like a vector space with an inner product, but could be infinite-
dimensional.

Definition 1.4.1. A Hilbert space is a real or complex inner product space that is a complete metric space
with respect to the norm induced by its inner product.

Familiar examples are Rk or Ck with their standard inner products, or the space of periodic
L2 functions. These spaces can hold the states of particles in quantum mechanics. Fredholm
operators are bounded linear operators on Hilbert space that are “almost invertible.”

Definition 1.4.2. An bounded linear operator T is Fredholm if ker T and coker T are finite-dimensional.

For a Fredholm operator T defined on a Hilbert space H, the kernel of T is a subset of H, and
the cokernel coker T = H/im T can be identified with (im T)⊥ ⊂ H. It can be shown that these
finite-dimensionality constraints keep the operator invertible modulo compact operators. See [6]
Prop. A8.

Definition 1.4.3. The index of a Fredholm operator T is index T = dim ker T − dim coker T.

Example 1.4.4 (Finite-dimensional Spaces). The index of a linear operator between finite-dimensional
vector spaces depends only on the dimensions of the spaces and not on the choice of map. If T : V → W
for finite-dimensional vector spaces V and W, then the Rank-Nullity Theorem ensures that index T =
dim V − dim W.
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Example 1.4.5 (Shift Operator). Consider an infinite-dimensional Hilbert spaceH with basis {h1, h2, ...}.
Define the right shift operator Tk : H → H by

Tk : hi 7→
{

hi−k i− k > 0
0 otherwise.

Then ker Tk = Span{h1, ..., hk}, while coker Tk = H/H ∼= 0, so index Tk = k.

1.4.2 Spaces of Operators

Fredholm operators are an analytical concept, but the set of Fredholm operators defined on a
particular Hilbert space also has topological and algebraic structure. In fact, Fredholm operators
on a Hilbert space form a Banach algebra, which is a complete, normed vector space with an
algebraic structure such that for all a, b in the algebra, ||a|| · ||b|| ≥ ||a · b||.

The norm defined on bounded operators is the usual operator norm

||T|| := sup
h∈H, h 6=0

||T h||
||h|| ,

while the vector space structure is given by addition of operators and scaling by elements of the
field of the Hilbert space. The multiplication in the algebra is given by composition of operators.
Proof that the vector space of bounded operators is complete with respect to this norm can be
found in a functional analysis textbook, such as in [21] §2.10.

Definition 1.4.6. Let G (H) be the space of bounded operators defined onH.

It can be shown that the Fredholm operators form an open subset of G (H). It is clear that
linear combinations of Fredholm operators are Fredholm, and one can check that composition of
Fredholm operators is Fredholm. For details, see the appendix to [6].

Definition 1.4.7. Let F (H) denote the space of Fredholm operators defined onH.

The index as defined above is a map F (H) → Z. It is continuous on F (H) with the norm
topology, so since it maps to the integers, a disconnected space, it must be constant on connected
components of F (H). In fact, it determines a bijective map π0(F (H))→ Z. [8]

1.4.3 Extension to K-Theory

Let H be a complex Hilbert space. Consider the case of an operator defined on H that takes in
a parameter from a space X and varies continuously as this parameter changes. For a particular
x ∈ X, the operator Tx is an element of F (H). The family of operators {Tx}x∈X can be described
by a continuous map T : X → F (H) taking x 7→ Tx. The definition of the index map may be
extended to such a family of operators, but in this general case the target is no longer Z, but K(X).
The reference for this section is the appendix to [6].

Definition 1.4.8. Let A : X → F (H) define a continuous family of operators, and assume that ker A
and coker A are vector bundles. Then, the index of A is

index A = [ker A]− [coker A].
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In this case, ker A is the vector bundle with fiber ker Ax over x and coker A is the vector bundle
with fiber coker Ax over x. It can be shown that this definition of index depends only on the
homotopy class of A. The formal difference of [ker A] and [coker A] lies in the Grothendieck ring
of isomorphism classes of vector bundles over X, which is precisely K0(X). Hence the index
defines a map [X, F (H)]→ K0(X).

Remark 1.4.9. The formula above does not hold in general. For general A, the dimensions of ker Ax
and coker Ax are not necessarily locally constant, meaning that ker A and coker A may fail to be vector
bundles. In this case, the map A may be deformed to yield a homotopic admissible operator, for which ker A
and coker A are vector bundles. Alternately, a definition of index using a finite-codimension subspace
V ⊂ H such that ker Ax ⊂ V⊥ for all x works for any operator A, admissible or not. See Prop. A5 in the
appendix to [6]. Other methods also exist to ensure that the index gives a virtual bundle.

Example 1.4.10 (Trivial Case). In the case that X is a point, or is contractible, any operator A : X →
F (H) is homotopic to an operator constant with respect to X. Hence this reduces to calculating the index
of a single operator, which lies in Z as discussed earlier. Indeed, K(pt) = Z, and in this case the index map
gives the dimension of the trivial virtual vector bundle [ker A]− [coker A].

Nontrivial examples with physical motivation will be discussed in later chapters.
It has been argued how the target of the index map lies in K-theory, but the real power of the

index map is that it is an isomorphism.

Theorem 1.4.11. Let X be a compact Hausdorff space, and letH be a complex Hilbert space. Then the map

index : [X, F (H)]→ K0(X)

is a natural isomorphism.

Proof Sketch. This result appears as [6] Prop. A6, and the following sketches the proof given there.
After establishing rigorously that the index map is well-defined up to homotopy, is functorial, and
is a homomorphism, the idea of the proof is to produce an exact sequence of semigroups

[X, G (H)∗]→ [X, F (H)]
index→ K0(X),

where G (H)∗ denotes the invertible bounded operators, which are the units of the algebra of
bounded operators. Kuiper’s Theorem [22] establishes that this group of units is actually con-
tractible, which renders the semigroup [X, G (H)∗] trivial and forces the second map in the exact
sequence to be injective.

Surjectivity of the index can be shown by constructing a virtual bundle for every index using
a projection operator. By 1.2.24, it suffices to find the preimage of an arbitrary element n− [E].

In the case that the Hilbert space is defined over R, the kernel and cokernel of the map de-
fine real vector bundles. A similar result holds for the index map to real KO-theory, and will be
generalized further in the next section.

Theorem 1.4.12. Let X be a compact Hausdorff space, and letHR be a real Hilbert space. Then the map

index : [X, F (HR)]→ KO0(X)
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is a natural isomorphism.

Example 1.4.13. When X = pt, these theorems reduce to an identification between [pt, F ] and K(pt) or
KO(pt), respectively. Maps pt→ F just detect a connected component of F , which lives in π0(F ).

Classifying Spaces and the Loop Space-Suspension Adjunction

This thesis will not discuss very much homotopy theory, but a short discussion of classifying
spaces and loop spaces is necessary to explain how the different spaces of Hamiltonians relate
to each other. Specifically, this section is meant to give context for Kitaev’s comment about the
classifying spaces in [18] Table 2 and to differentiate this relationship between classifying spaces
from Bott periodicity.

Because that the index map is a natural isomorphism, F (H) is a classifying space for K-theory.
This means that the functors K0(−) and [−, F (H)], which stands for homotopy classes of maps
into the space of Fredholm operators, are interchangeable; one specifies the same data to calculate
the K0-group of a space and to calculate the maps from that space into the space of Fredholm
operators. In a similar way, F (HR) classifies KO0.

Higher K-groups are defined using the suspension operation, with K̃−n(X) = K̃0(ΣnX). There
is a related operation called taking the loop space.

Definition 1.4.14. The loop space of a space X is

ΩX := [S1, X]+,

the space of based maps from the circle into X.

Fact 1.4.15. For two spaces X and Y, there is an isomorphism [ΣX, Y] ∼= [X, ΩY].

The categorical language for this fact is that suspension and looping are adjoint functors. Using
this, one defines classifying spaces for the functors K−n. Starting from a negative K-group,

K−n(X) ∼= [ΣnX, F (H)] ∼= [X, Ωn(F (H))]

so one can say that Ωn(F (H)) classifies the functor K−n. After positive K-groups are defined us-
ing Bott periodicity, these classifying space results mean that spaces of Fredholm operators define
an Ω-prespectrum for K-theory, as discussed in [10] Lecture 13.

However, the takeaway for the physical application is that the spaces of Hamiltonians dis-
cussed in [18] and listed in Table 2 are related by loopings. Specifically, the classifying spaces
satisfy Ck+1 ' ΩCk and Rk+1 ' ΩRk. As a result, Cq ' ΩqC0 and Rq ' ΩqR0. It has not been
explained why consecutive symmetry classes should be related by loopings or similar functors,
but this will be clarified in the next section.

Remark 1.4.16. Care should be taken not to attribute these loop space relationships entirely to Bott peri-
odicity. Bott periodicity leads to an 8-periodic structure in the real case and a 2-periodic structure in the
complex case, which is why there are only ten spaces of interest. However, the relationship between consec-
utive spaces Ck and Ck+1 or Rk and Rk+1 really arises from the loop space-suspension adjunction, and only
requires Bott periodicity to relate the spaces Ck ' Ck+2 or Rk ' Rk+7.
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1.4.4 Spaces of Skew-Adjoint, Clifford-Equivariant Fredholm Operators

To get to the theorems that relate to the physical classification, the discussions of Clifford algebras
and index theory must be combined. Instead of considering Fredholm operators in general, one
must consider separate classes of Fredholm operators that possess different symmetries. These
symmetries will be detected by anticommutation relations with operators Ji that serve as represen-
tations of a Clifford algebra. Specifically, an operator that anticommutes with k of these generators
will be Clk-equivariant.

Once index theory for these operators is developed, a Hamiltonian belonging to a specific
symmetry class can be associated with an invariant living in an appropriate K- or KO-group of
the periodic table. One should think of connected components of a particular classifying space as
determining a phase of the corresponding particular class of Hamiltonian.

Skew-Adjoint Fredholm Operators

Skew-adjoint operators will arise naturally in the discussion of Hamiltonians later.

Definition 1.4.17. A skew-adjoint or skew-Hermitian operator is an operator A such that A† = −A.

Definition 1.4.18. Let F̂ (H) denote the space of skew-adjoint Fredholm operators onH.

Classifying Spaces of Skew-Adjoint Fredholm Operators

The space of skew-adjoint Fredholm operators also classifies a K-theory functor. However, it is no
longer at the zeroth level of the cohomology theory, and there are two cases depending on whether
the underlying Hilbert space is real or complex. The theorem statements and letter labels in the
following discussion are from [8], and 1 denotes the identity operator onHR orH, respectively.

Theorem 1.4.19 (A). Let α : F̂ (HR) → ΩF (HR) be the map that takes an operator A ∈ F̂ (HR) to
the path from −1 to 1 in F (HR) defined by

cos πt + A sin πt, 0 ≤ t ≤ 1.

Then α is a homotopy equivalence, and so F̂ (HR) is a classifying space for the functor KO−1.

Remark 1.4.20. The notation ΩF stands for the space of paths in F from −1 to 1. That the space
ΩF (HR) classifies KO−1 (and later, that ΩkF (HR) classifies KO−k) follows from the suspension axiom
and from the fact that F (HR) classifies KO0.

In the complex case, the space of operators breaks up into three components, two of which are
contractible and one of which is a classifying space for the complex K-theory functor K−1.

Theorem 1.4.21 (B). The space F̂ (H) decomposes into three components, denoted F̂+(H), F̂−(H), and
F̂∗(H), characterized by

A ∈ F̂+(H) ⇐⇒ i−1A is essentially positive

A ∈ F̂−(H) ⇐⇒ i−1A is essentially negative

A ∈ F̂∗(H) ⇐⇒ A /∈ F̂±(H).
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The two components F̂+(H) and F̂−(H) are contractible, while the component F̂∗(H) is homotopy equiv-
alent to ΩF (H) by the map α as defined in Thm. 1.4.19. Thus F̂∗(H) is a classifying space for K−1.

Note that i is the imaginary unit, and to say that i−1(A) is essentially positive means i−1(A) is
positive on some invariant subspace ofH of finite codimension.

Remark 1.4.22. The notion of index for these operators is more complicated than the previous case. It
requires an elaboration on the theory of Clifford modules and enters into the realm of noncommutative
geometry. Since this thesis will only include lattice models, which are easier to solve than the general case,
a discussion of noncommutative geometry will not be included, but it can be found in sources like [31].

Clifford Representations

Using Clifford representations, the preceding theorems can each be generalized to subspaces of
the spaces of Fredholm operators to inductively provide classifying spaces for KO−k and K−k.

LetHR be a Hilbert space equipped with an action of Clk−1 and having the property that there
exists an operator Jk on HR such that J∗k = −Jk. This means that there is a *-representation ρ from
the Clifford algebra Clk−1 to the space of bounded operators onHR. If ρ(ei) = Ji for ei the Clifford
generator, then the operators Ji must satisfy

J2
i = −1, J∗i = −Ji, and Ji Jj = −Jj Ji for i, j = 1, ..., k− 1, and J∗k = −Jk.

Clifford-Equivariant Operators

Subspaces of the skew-adjoint operators defined on HR can interact with this Clifford algebra
action.

Definition 1.4.23. Let F k(HR) = {A ∈ F̂ (HR) | AJi = −Ji A for all i = 1, ..., k − 1}. This is the
subspace of real Clk-equivariant skew-adjoint Fredholm operators.

Definition 1.4.24. Similarly, let F k(H) = {A ∈ F̂ (H) | AJi = −Ji A for all i = 1, ..., k− 1}. This is
the subspace of complex Clk-equivariant skew-adjoint Fredholm operators.

For an analog of Thm. 1.4.19, there are two cases. When the Clifford algebra is simple (when
k 6≡ 3 mod 4), take F k(HR)∗ = F k(HR), but otherwise the space of operators A decomposes ac-
cording to whether the operator J1 · · · Jk−1A is essentially positive, essentially negative, or neither,
to give subspaces F k(HR)± and F k(HR)∗ as above. It can be shown that each of these spaces is
nonempty whenever they are defined.

Theorem 1.4.25 (A(k)). The spaces F k
±(HR)—which are defined only for k ≡ 3 mod 4—are con-

tractible. For all k ≥ 1, the space F k
∗ (HR) is homotopy equivalent to Ω(F k−1(HR)) by the map α,

which takes each A ∈ F k
∗ (HR) to the path in F k−1(HR) from Jk−1 to −Jk−1 defined by

Jk−1 cos πt + A sin πt, 0 ≤ t ≤ 1.

Thus F k
∗ (HR) is a classifying space for the functor KO−k.

Remark 1.4.26. The path Jk−1 cos πt + A sin πt lies within F k−1(HR) because at any value of t it is a
linear combination of the operators Jk−1 and A, which lie in F k−1(HR). This is because Jk−1 anticommutes
with all Ji for i = 1, ..., k − 2 by definition, while A ∈ F k implies that A anticommutes with all Ji for
i = 1, ..., k− 1, so in particular for i = 1, ..., k− 2.
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In the complex case, Clifford algebras are simple for even k.

Theorem 1.4.27 (B(k)). The spaces F±(H)—defined only for odd k—are contractible. For all k ≥ 1, the
space F k

∗ is homotopy equivalent to Ω(F k−1(H)) by the map α defined as in Thm. 1.4.25. Thus F k
∗ is a

classifying space for the functor K−k.

Theorems A(k) and B(k) reduce to Theorems A and B, respectively, when k = 1. And combined
with the periodicity of the Clifford algebras Clk and complexified Clifford algebras Clk ⊗C, they
grant Bott periodicity statements as corollaries.

This thesis will not go into detail of the proof in [8] of the two theorems above because it is
fairly involved. There are more readable discussions, including in [10] Lectures 12-14. The proof
uses spectral theory for normal operators, facts about fiber bundles, and Kuiper’s theorem to
prove a series of homotopy equivalences that yield the desired statements.

The index maps for these spaces of operators are more complicated than those for the non-Clk-
equivariant case, but the classifying space results above are enough to understand the structure of
the spaces of operators in the periodic table.

Periodicity Theorems

As mentioned earlier, the two theorems above can also lead to proofs of Bott periodicity. Along the
way to that result, one arrives at an important periodic relationship among the spaces of Fredholm
operators. Namely, if one considers Fredholm operators acting on a Z2-graded Hilbert space, then
the following two facts hold.

Fact 1.4.28. In the real case, Ω8F k
∗ ' F k

∗ , so F k+8
∗ ' F k

∗ .

Fact 1.4.29. In the complex case, Ω2F k
∗ ' F k

∗ , so F k+2
∗ ' F k

∗ .

The full proof can be found in [8], where these statements are included in Thm. (5.1). One
main consequence of these statements is that now only those 8 + 2 = 10 spaces of operators are
distinct, and these correspond to the ten spaces of fermionic Hamiltonians in [18]. Specifically, the
real spaces satisfy F

q
∗ ' Rq and the complex spaces satisfy F

q
∗ ' Cq for Rq and Cq as listed in

Table 2 of [18] and in Tables 3 and 4 on page viii. Another important takeaway is that these spaces
of fermionic Hamiltonians can now be interpreted as classifying spaces for K-theory functors.
Critically, this allows a K-theory invariant to be associated to a given Hamiltonian.

1.5 Summary

This chapter attempted to build up the mathematical framework for the classification of fermionic
Hamiltonians. First, the definition and some examples of K-theory classes were given, using vec-
tor bundles and some properties of generalized cohomology theories. Next, Clifford algebras
were introduced to track symmetries, and it was found that they have a periodic structure that
underlies Bott periodicity and periodicity relationships in spaces of operators. Index theory was
discussed to show how Fredholm operators can be associated K-theory classes, and finally Clif-
ford representations were incorporated to divide up fermionic Hamiltonians into ten classes with
different symmetry properties. It was suggested how the Fredholm index can be used to assign
invariants in general cases, though the noncommutative geometry required to perform these cal-
culations was not developed. The rest of this thesis will expand upon the physical meaning of
these results and offer a few examples of invariants in lattice models.
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Chapter 2

Physical Framework: Hamiltonians and
Symmetries

This chapter seeks to put the results about classifying spaces of Fredholm operators into context
and to develop the physical definitions and techniques that will be required to understand the
examples in the next three chapters. After some background has been built up, the end of this
chapter revisits the Kitaev’s proposal.

2.1 Topological Materials

2.1.1 Topological Insulators and Superconductors

Topological materials are materials with special electronic properties that are particularly robust
to surface imperfections and fluctuations in temperature. Topological insulators are insulating
in the bulk, or interior, of the material, but conducting on the surface. Meanwhile, topological
superconductors exhibit very low electrical resistance protected by symmetry. Technically, a ma-
terial is topological if it can host a symmetry-protected topological phase. The phases exhibited in
topological materials are particularly exciting for theorists and materials scientists alike for their
potential to encode quantum information.

2.1.2 Symmetry-Protected Topological Phases

Recall that a Hamiltonian operator acts on a space of quantum states to determine how a system
evolves in time. The eigenvalues of the Hamiltonian correspond to energy levels of different states
in the system.

A quantum phase is a phase of matter at zero temperature determined by some order param-
eter such that if this order parameter varies within a given range, the ground state energy varies
analytically. While classical order parameters might be macroscopically measurable things like
temperature and pressure, quantum order parameters can be more subtle and phase transitions
happen at zero temperature. Phase transitions occur when a change in order parameter causes the
ground state energy to make a non-analytic transition, usually causing some qualitative properties
of the system to change. The kind of transitions of interest in this thesis are a kind of second-order
phase transitions, in which at the phase transition the first excitation energy vanishes. That is, at
a second-order phase transition, the lowest nonzero eigenvalue of the Hamiltonian goes to zero.
[26]
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Definition 2.1.1. A Hamiltonian is said to be gapped if its energy spectrum is discrete around zero. In
particular, there is a finite gap ∆ between zero and the energy of the first excited state.

A Hamiltonian that is not gapped is said to be gapless. In that case, arbitrarily low energy
excitations exist. In a gapped system, when the first excited energy goes to zero, one says that the
“gap closes,” and when an excited energy becomes nonzero, one says that a “gap opens.” Both
changes in order parameter and changes in symmetry properties can lead the gap to open or close.

To understand what is special about symmetry-protected topological phases, one must first
define trivial phases. A system is in a trivial quantum phase if its ground state can be adiabat-
ically varied until it may be written as a product state. That is, the ground state of the system
is adiabatically connected to a state that features no quantum entanglement. A nontrivial phase,
then, is capable of hosting a ground state with entanglement that prevents it from globally being
written as a product state, even after being deformed slightly. What defines symmetry-protected
topological phases is that without symmetry, they become trivial.

Definition 2.1.2. A symmetry-protected topological (SPT) phase is a nontrivial gapped quantum
phase of matter possessing a combination of symmetries such that if these symmetries are broken, the phase
becomes trivial.

In the language of the previous section, an SPT phase is a connected component of a space of
Fredholm operators with certain symmetries. The trivial phase is the connected component con-
taining the identity. Two Hamiltonians are in the same SPT phase if they are homotopic through
gapped Hamiltonians with the same symmetries, meaning that they can be connected in the space
of operators by a path consisting only of gapped Hamiltonians that all have the same symmetry
properties. Physically, these homotopies are achieved by adiabatically varying parameters. The
definition of SPT phase used in this thesis will be the following.

Definition 2.1.3. A symmetry-protected topological phase is an element of π0 of a classifying space
of gapped Hamiltonian operators with certain symmetries.

SPT phases exhibit interesting properties. Examples will be discussed later, including the topo-
logical phase of the Majorana chain in Ch. 3 and the integer quantum Hall effect in Ch. 4.

2.2 Second Quantization

Second quantization provides a way to express a generic fermionic Hamiltonian. Using this frame-
work, Hamiltonians are written as matrix combinations of operators acting on the space of electron
states. Analyzing the symmetry properties of the matrix allows Hamiltonians to be divided into
different symmetry classes, and the matrices in each class form the classifying space associated to
the K-theory invariant. This section introduces second quantization with examples.

2.2.1 Fock Space

A single particle has a probability amplitude of occupying a certain location that is represented
by some vector in a Hilbert space H, usually a complex number in C. The Hamiltonians consid-
ered in the classification are all single-particle Hamiltonians, meaning that interactions will not be
taken into account, but even the single-particle Hamiltonian must track whether sites are already
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occupied or not because fermions, due to Pauli exclusion, cannot have multiple occupancies at one
site. So it is necessary to track the locations of multiple particles, and to do this one uses the Fock
space. The Fock space is a tensor algebra of identical Hilbert spaces, symmetrized appropriately
for the kind of particle. For fermions, it is antisymmetrized to be compatible with their exchange
statistics, so it becomes the exterior algebra.

Definition 2.2.1. The fermionic Fock space of a Hilbert spaceH over C is the exterior algebra onH.

F(H) =
∞⊕

n=0

H∧n = C⊕H⊕ (H∧H)⊕ (H∧H∧H) · · ·

A useful basis for the Fock space is the occupancy number basis, which consists of states
|n1n2...〉where ni tracks the number of particles in state i. This notateion is short for |n1〉⊗ |n2〉⊗ ....
The state i might be occupancy at a specific site; in the following examples ni will encode the
number of particles at site i, through for fermions, this will only ever be 0 or 1. Thus if the original
Hilbert space is of dimension N, the fermionic Fock space will be of dimension 2N .

2.2.2 Creation and Annihilation Operators

In second quantization, one uses operators to change the number of particles in a given state.
Consider the site j. The corresponding creation operator, denoted a†

j , acts on the Fock space to
create a particle at the site j. If the site is unoccupied, a†

j takes |...0...〉 to |...1...〉. If the site is already
occupied, it cannot host an additional fermion due to Pauli exclusion, so the action of the creation
operator is defined to be a†

j |...1...〉 = 0, the zero vector of H. The adjoint operator aj is called the
annihilation operator; it removes the particle from an occupied site. Hence if the site j is occupied,
the annihilation operator acts as aj|...1...〉 = |...0...〉, where the digit shown is in the jth position. It
is defined to act on unoccupied sites so that aj|...0...〉 = 0.

Fermionic exchange statistics require that if two fermions are exchanged, the overall wave-
function negates. This condition requires that the creation and annihilation operators have the
following anticommutation relations:

ajak + akaj = 0, a†
j a†

k + a†
k a†

j = 0, aka†
j + a†

j ak = δjk.

That is, the operators anticommute except for adjoint operators. A more thorough introduction to
these operators can be found in a quantum mechanics textbook, but some examples will be given
next that demonstrate their algebraic properties.

Remark 2.2.2. Some sources will denote creation and annihilation operators by c† and c instead of a† and
a, but in this thesis the former notation is reserved for Majorana operators. This thesis will only discuss
fermionic creation and annihilation operators, which in other sources might also be denoted f † and f , in
contrast to bosonic creation and annihilation operators, which might be denoted b† and b.

2.2.3 Examples

Example 2.2.3 (One Site). A single site has N = 1, so the dimension of the Fock space is 21 = 2. The
two states correspond to the site holding zero or one electron and can be written as |0〉 and |1〉, respectively.
The creation operator a† adds an electron to the empty site, so a†|0〉 = |1〉. By Pauli exclusion, the creation
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operator sends the occupied state to zero: a†|1〉 = 0. Note that the resulting state is 0, not the vacuum state
|0〉. Meanwhile, the annihilation operator takes the occupied state to the vacuum state, so a|1〉 = |0〉, and
a|0〉 = 0 because one cannot remove an additional electron from an empty site.

These operators can be written as matrices. Let the states |0〉 and |1〉 be identified as standard basis
vectors, with

|0〉 7→
(

1
0

)
and |1〉 7→

(
0
1

)
.

Then, according to their action on the basis vectors as explained above, the creation and annihilation opera-
tors correspond to the matrices

a† 7→
(

0 0
1 0

)
and a 7→

(
0 1
0 0

)
.

It is straightforward to check that these matrices each square to the zero matrix and that they are Hermitian
adjoints, as suggested by the notation. One can also check that they satisfy the fermionic anticommutation
relation {aα, a†

β} = δαβ. Here subscript notation is suppressed because there is only one site; the equation
to check is aa† + a†a = 1, the identity matrix.

As an algebra over C, the 2× 2 matrices representing a† and a generate the matrix algebra M2(C).
That is, any 2× 2 complex matrix can be written as an additive or multiplicative combination of a†, a, and
the identity matrix with complex scalar multiplication.

Note that this algebra is isomorphic to the second complex Clifford algebra ClC
2 discussed in

§1.3. However, the matrices representing a† and a are not the usual anticommuting generators
for this algebra. Instead, new generators called Majorana operators can be formed from combi-
nations of the creation and annihilation operators. These operators make the isomorphism to the
Clifford algebra more apparent, as well as encode important physical information. For one site,
the Majorana operators c1 and c2 are defined as

c1 = a + a† and c2 =
a− a†

i
.

Their corresponding matrices are

c1 7→
(

0 1
1 0

)
and c2 7→

(
0 i
−i 0

)
These operators satisfy the anticommutation relation {cj, ck} = 2δjk, meaning that they anticom-
mute and square to the identity. They correspond to the standard generators of the second com-
plex Clifford algebra when defined with a positive-definite quadratic form, and they are Hermi-
tian, with c†

j = cj.

Remark 2.2.4. Some sources denote Majorana operators by χ† and χ, or γ† and γ, instead of c† and c.

Example 2.2.5 (Two Sites). A two-site system has N = 2 and a Fock space of dimension 22 = 4 with
basis states |00〉, |10〉, |01〉, and |11〉, which represent the occupancy of the two sites. In this case, there
are a pair of creation operators a†

1, a†
2 and a pair of annihilation operators a1, a2. Each operator acts on

its corresponding site and leaves the other site’s occupancy unchanged. For example, a†
1|00〉 = |10〉 and

a2|11〉 = |10〉, while a1|01〉 = 0.
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However, now that two sites are involved, fermionic exchange statistics must be taken into account.
The state produced by first placing an electron at site 1 and then placing an electron at site 2 should be the
negative of first placing an electron at site 2. In terms of operators, the requirement is

a†
2a†

1|00〉 = −a†
1a†

2|00〉.

This is why the operators must anticommute, as claimed above. Then defining

a†
2a†

1|00〉 = a†
2|10〉 = |11〉 necessitates that a†

1a†
2|00〉 = a†

1|01〉 ≡ −|11〉.

Fermionic statistics also require that a1|11〉 = −|01〉. This property can be derived in a similar way as
above, or seen from the fact that a†

1 and a1 are Hermitian adjoints.
Otherwise, the operators act on their corresponding sites in the same way as in the single site example.

Making the identification of |00〉, |10〉, |01〉, and |11〉 with the standard basis vectors of R4 in that order,
the operators can be represented by 4× 4 matrices acting on the Fock space as follows.

a†
1 7→


0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

 a1 7→


0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0



a†
2 7→


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 a2 7→


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


Again, the pairs a1, a†

1 and a2, a†
2 are adjoint operators, and each squares to zero. These operators satisfy the

fermionic anticommutation relation {aj, a†
k} = δjk. One can check that these matrices generate the algebra

M4(C), which is isomorphic to ClC
4 .

As in the single site example, one can recombine these creation and annihilation operators
to form Majorana operators that square to the identity and anticommute, corresponding to the
positive generators of the Clifford algebra ClC

4 . In this case, the Majorana operators are

c1 = a1 + a†
1 c2 =

a1 − a†
1

i

c3 = a2 + a†
2 c4 =

a2 − a†
2

i
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and their matrix representations are

c1 7→


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 c2 7→


0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0



c3 7→


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 c4 7→


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0


One can check using this representation that the Majorana operators are Hermitian and satisfy the
anticommutation relation {cj, ck} = 2δjk.

2.3 Majorana Fermions

Majorana operators have been introduced as the canonical generators of the Clifford algebra that
corresponds to the action of creation and annihilation operators on the Fock space of electrons
on a finite collection of sites. They allow Hamiltonians to be rewritten in more convenient ways;
in particular, all parameters in a Hamiltonian written in the Majorana representation will be real
numbers. This representation allows for the application of results in index theory to lead to a K-
theory invariant for a given Hamiltonian. However, the significance of Majorana operators goes
beyond easing calculations.

Physically, they represent creation and annihilation operators for particles called Majorana
fermions. Since each Majorana operator is Hermitian, with c†

j = cj, the operators can act as both
creation and annihilation operators. The physical condition associated with this is that Majorana
fermions are their own antiparticles, a property posited by Ettore Majorana in 1937. These par-
ticles, while not yet definitively detected in experiment, are of interest for the development of
protected qubits in topological quantum computing.

2.3.1 Definition

A one-dimensional chain with N sites can host at most N electrons and at most 2N Majorana
fermions, since each site can host a pair of Majorana fermions.

Definition 2.3.1. At site j, the associated Majorana operators are

c2j−1 = aj + a†
j and c2j =

aj − a†
j

i
.

One can check using these formulas and the properties of aj and a†
j that the Majorana operators

are Hermitian and satisfy the anticommutation relation {cj, ck} = 2δjk for all j, k ≤ N. These
relations are familiar.

Claim 2.3.2. The algebra generated by the representations of the Majorana operators acting on the Fock
space of an N site system is isomorphic to the 2Nth complex Clifford algebra.
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Proof. Let M denote the algebra of Majorana operators. Define a map ϕ : M → ClC
2N on basis

elements by ϕ : cj 7→ ej and extend linearly. This map is a bijection because it is a bijection on the
generators of each algebra, and it is an algebra homomorphism because the generators in each
case satisfy the same relations.

2.3.2 Topological Quantum Computing

One reason that physicists are excited about Majorana fermions is that they have potential for
applications in quantum computing due to their nonabelian statistics and due to the ability of
topological materials to host Majorana modes that are localized far away from each other.

Exchange statistics, as discussed above for fermions, dictate how the wavefunction corre-
sponding to a state changes if two particles are switched. For bosons and fermions, the wavefunc-
tion is preserved or negated, respectively, so that a wavefunction |ψ〉 goes to ±|ψ〉 and always
returns to the original state when the particles are switched back. However, topological materi-
als have the potential to host Majoranas and other quasiparticles whose wavefunctions are not
preserved by two switches; particles with these more complicated statistics are known as anyons.
This allows for information to be encoded by moving particles relative to each other, a process
known as braiding. [20]

The other draw of Majoranas is that if the pairs of Majoranas can be spatially separated, then
it is very difficult for any local perturbation to affect their state, meaning that they could offer a
robust quantum memory [19]. Speccifically, setups have been proposed that encode a qubit using
four Majoranas. Exactly how a mode—a linear combination of Majoranas—could separate pairs of
Majoranas while still being distributed across the sample will become more clear when discussing
the Majorana chain in §4.1.

2.3.3 Experimental Signatures

Majorana particles have not conclusively been detected in experiment, but there is evidence for
their existence. There are several experimental signatures that Majorana particles should exhibit,
though these signatures are difficult to detect experimentally with current instrument precision.
Namely, Majorana particles should exhibit a 4π-periodic Josephson effect, as opposed to a 2π-
periodic one, as well as Andreev conductance quantization [9]. The fact that Majoranas are their
own antiparticles precludes Majoranas from carrying charge, but they can conduct heat. Recent
experiments in quantized Hall heat transport have found evidence for Majorana edge modes [28].

2.4 Quadratic Hamiltonians

The matrix representations in the previous section were discussed so that the action of the Majo-
rana operators on the physical system was more concrete. However, the Hamiltonian describing a
physical system must contain higher than linear terms in Majorana operators to encode couplings
between sites, and may even track arbitrarily many sites, so it will become too difficult to write
down the action of the Hamiltonian on the Fock space as was done in the previous section for
individual Majorana operators. Instead, a Hamiltonian will be written in terms of Majorana oper-
ators and will be classified on this level. For simplicity, no terms of higher than quadratic degree
will be included.
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A generic quadratic Hamiltonian, containing linear combinations of terms cjck, can be written

H =
i
4 ∑

j,k
Ajkcjck (2.1)

where A is a matrix. On a discrete system of N sites, this matrix is 2N × 2N and the Hamiltonian
acts on the Fock space of dimension 2N . A priori, A has entries in C, but the benefit of writing
Hamiltonians in terms of Majoranas instead of standard creation and annihilation operators is that
the matrices A will necessarily be real. This is because the Hermitian property of the Hamiltonian
requires

H† = H =⇒ (iAjkcjck)
† = iAjkcjck ⇐⇒ Ajkcjck = −A∗kjc

†
k c†

j = −A∗kjckcj =⇒ A† = −A,

so the matrix A must be skew adjoint, while anticommutation relations of the Majoranas require

Ajkcjck = −Ajkckcj = −Akjcjck =⇒ AT = −A

so the matrix is actually skew-symmetric. Then since A† = AT, A∗ = A. Hence these two con-
ditions together require A to be real skew-symmetric, which is exactly the form of matrices in the
index theorem.

Example 2.4.1 (The Trivial Hamiltonian). Perhaps the simplest quadratic Hamiltonian is the “trivial”
Hamiltonian, which only has terms localized to one site. That is, the trivial Hamiltonian is

H =
i
2 ∑

j
c2j−1c2j

where each pair of Majorana operators c2j−1 and c2j belong to the same site, j. Use the anticommutation
relations to rewrite the Hamiltonian as

H =
i
4 ∑

j
(c2j−1c2j − c2jc2j−1).

Then, the real, skew-symmetric matrix for this Hamiltonian is the block-diagonal matrix

Ajk =


0 1 0 0 . . .
−1 0 0 0 . . .
0 0 0 1 . . .
0 0 −1 0 . . .
...

...
...

...
. . .

 .

This Hamiltonian will be revisited later.
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2.5 Physical Symmetries

Hamiltonians will be separated into symmetry classes according to their dimension and symmetry
properties. The two main symmetries, which generate the relevant Clifford algebra, are time-
reversal symmetry and particle number conservation, but other symmetries will be relevant to
discuss for the purposes of solving example Hamiltonians. Here, their physical significance and
relevance to the classification are discussed.

2.5.1 Time-Reversal Symmetry

Time-reversal symmetry (T) is possessed by systems that are unchanged when time is reversed
by a transformation t 7→ −t.

Example 2.5.1 (Projectile Motion). Consider a ball thrown along a parabolic trajectory. If time is reversed,
the velocity of the ball is also reversed, so velocity is not a time-reversal invariant property. Acceleration,
however, is. The gravitational acceleration of the ball along its trajectory is the same whether the ball goes
forward or backward.

Example 2.5.2 (Electromagnetism). Electric fields are time-reversal invariant, but magnetic fields are
not. Since magnetic forces on a charge depend on the velocity of the charge, the negation of velocity under
time-reversal causes the magnetic force to negate as well. Chiral edge modes, which occur in the quantum
Hall effect and other systems, can only exist in the absence of time-reversal symmetry. This is because chiral
modes have a preferred direction, which reverses under time reversal. In 5.2.2, a T-symmetry-breaking
perturbation will model the effects of a magnetic field for the quantum Hall effect.

Example 2.5.3 (Kramers Degeneracy). The Kramers Degeneracy Thm. states that in a system with
time-reversal symmetry and half-integer spin, every eigenstate is doubly degenerate. In particular, electron
systems with time-reversal symmetry feature Kramers pairs of electrons, which are time-reversed copies of
one another. [5]

A Hamiltonian of the form in eqn. (2.1) has time-reversal symmetry when it anticommutes with
the block-diagonal matrix

T =


0 0 −1 0 . . .
0 0 0 1 . . .
1 0 0 0 . . .
0 −1 0 0 . . .
...

...
...

...
. . .


written in the Majorana basis from eqn. (15) of [18].

2.5.2 Particle Number Conservation

Fermionic systems possess particle number conservation, also sometimes referred to as charge
conservation symmetry, when the net number of fermions is conserved. Mathematically, this
means that a quadratic Hamiltonian describing such a system can only have terms of the form
a†

j ak, and none of the form a†
j a†

k or ajak. This symmetry is also called U(1) symmetry because a sub-
stitution aj 7→ eiφaj, which changes the creation and annihilation operators by a phase φ ∈ [0, 2π),



28 Chapter 2. Physical Framework: Hamiltonians and Symmetries

will not change a Hamiltonian with only terms of the form a†
j ak. See that

(eiφaj)
†eiφak = e−iφa†

j eiφak = a†
j ak.

Terms of the form a†
j a†

k or ajak break this symmetry.

Example 2.5.4. Insulators possess particle number conservation, while superconductors do not. This is
because in addition to having electrons hop, superconductors can have electrons be added and removed from
the system in pairs. According to Bardeen–Cooper–Schrieffer (BCS) theory, superconductors can be viewed
as a sort of Bose-Einstein condensate of particles, in which particles all try to occupy the lowest energy
state. However, as fermions, no two electrons can occupy the same state. Instead, electrons can bypass Pauli
exclusion by condensing in pairs known as Cooper pairs [16]. The term a†

j a†
j+1 creates a Cooper pair, while

its conjugate aj+1aj annihilates the pair.

A Hamiltonian of the form in eqn. (2.1) has particle number conservation when it commutes
with the block-diagonal matrix

Q =


0 1 0 0 . . .
−1 0 0 0 . . .
0 0 0 1 . . .
0 0 −1 0 . . .
...

...
...

...
. . .


from eqn. (14) of [18]. This is actually the matrix for the trivial Hamiltonian when written in the
Majorana basis, which measures the occupation of each site in the lattice. Hence commuting with
this matrix means that the number of particles is the same whether it is measured before or after
the Hamiltonian acts.

2.5.3 Particle-Hole Symmetry

A system has particle-hole symmetry, also called charge-conjugation symmetry, when exchang-
ing particles with their antiparticles leaves the system unchanged. Note that a “hole” describes a
site on a lattice of particles that could potentially hold a particle, usually an electron, but does not.
In semiconductors and superconductors, electron holes are areas of relative positive charge that
can move and behave like particles themselves. Systems with particle-hole symmetry have sym-
metric spectrums around the Fermi level, since the exchange of particles with antiparticles negates
energy eigenvalues. This symmetry is used for the Cartan classification discussed in [3], but is not
used directly for classification in [18]. It is introduced here because it will aid calculations for the
Majorana chain in §4.1.

Example 2.5.5 (Electromagnetism). Since particle-hole symmetry exchanges particles and antiparticles,
it negates the charge of individual particles and thus reverses the direction of electric and magnetic fields.
However, these two changes cancel out, and the laws of electromagnetism are unchanged.

Example 2.5.6 (Superconductors). Superconducting systems possess particle-hole symmetry. This allows
their Hamiltonians to be rewritten in a more compact form called the Bogoliubov-de Gennes or BdG form.
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Specifically, the Bogoliubov-de Gennes Hamiltonian HBdG for a Hamiltonian

H =
N

∑
j,k=1

hjka†
j ak +

1
2
(∆jka†

j a†
k + ∆∗kja

†
k a†

k)

with h Hermitian and ∆ antisymmetric, satisfies

H =
1
2

N

∑
j,k=1

(
a†

j aj

)
HBdG

(
ak
a†

k

)
+

1
2

Tr(h) with HBdG =

(
hjk ∆jk
∆∗kj −hkj

)
.

When particle-hole symmetry holds, the trace of h is zero, allowing the analysis of the overall Hamiltonian
to reduce to studying HBdG.

2.5.4 Lattice Translation Symmetry

Periodic systems possess lattice translation symmetry. This symmetry is generated by lattice trans-
lation operators, which translate unit cells onto unit cells.

In crystallography, Bloch’s theorem states that the wavefunctions of a single-particle Hamil-
tonian in a perfectly periodic potential can be written as ψk(r) = eik·ruk(r), for r a position vector,
k the “wave vector,” and uk spatially periodic with respect to the unit cell of the system. This
approach to solving Hamiltonians on a lattice basically amounts to Fourier transforming, and will
be useful in solving the Majorana chain in 4.1 and honeycomb lattice model in 5.2. Generally, the
coordinates ki of the wave vector k are interpreted as momenta. The span of possible k vectors
determines the momentum space, or Brillouin zone, of the system. [5]

2.5.5 Clifford Algebra Structure

The next chapter will discuss how tuning a Hamiltonian to have certain commutation relations
with the matrices T and Q turns into a question about extending Clifford algebras. For now, ob-
serve that the matrices T and QT can serve as representations of negative real Clifford generators
because they each square to −1 and anticommute. That is,

• T2 = −1

• (QT)2 = −1

• T(QT) + (QT)T = 0

Each condition can be easily tested on 4× 4 matrices, then generalized because the matrices are
block-diagonal. Because they satisfy the appropriate relations, T and QT can be viewed as repre-
sentations of the generators of the Clifford algebra Cl2 ∼= H.

For reasons that will be explained in the next chapter, one separately considers the case of Q
symmetry alone. However, Q also satisfies Q2 = −1 and so corresponds to the representation of
the generator in Cl1 ∼= ClC

0
∼= C.
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A Ten Fold Way

Whether a system possess T or Q symmetry or both determines four possible classes of Hamilto-
nians, but viewing these symmetries as living in real and complex Clifford algebras, one can see
how the 8-fold and 2-fold periodicities arise as dimension increases. Refer to Tables 1 and 2 on
page vii to see where the four symmetry cases show up in the wider classification of ten possible
cases. This kind of approach to classification that leads to ten possible cases is sometimes called a
“ten-fold way.”

However, not all “ten-fold ways” are the same. The symmetry classes in Kitaev’s periodic
table are not exactly the same as those in the earlier Altland-Zirnbauer [3] and Ryu et al. [25]
classifications. The latter classifications track time-reversal symmetry and charge conjugation sym-
metry, while Kitaev’s classification tracks time-reversal symmetry and particle number conservation.
The latter classifications also focus on first-quantized Hamiltonians when testing symmetries, and
specify ten classes by allowing symmetry generators T and C to square to either ±1.

Example 2.5.7 (Different Symmetry Classes). The Majorana chain, to be discussed in §4.1, has “no
symmetry” according to Kitaev’s classification, but in the Altland-Zirnbauer classification the charge-
conjugation symmetry it possesses places it in the Cartan class D.

For clarification, the following table compares the Cartan classes of the Altland-Zirnbauer clas-
sification with Kitaev’s labels for the classifying spaces of operators. Note that they are not in the
same order. For a discussion of these Cartan classes and alternate classifications, see [3] or [25].

Classifying Space C0 C1 R0 R1 R2 R3 R4 R5 R6 R7
Cartan Label A AIII DIII D AII CII C CI AI BDI

2.5.6 Review of Kitaev’s Proposal

Recall the proposal from §1.1.2:

Kitaev’s Proposal: The possible phases of gapped, free-fermion models in d dimensions and with p negative
symmetries are classified by

K̃O
−p+d+2

(pt) = π0(Rp−d−2 mod 8) or by K̃−p+d+1(pt) = π0(Cp−d−1 mod 2)

where Rq and Cq denote a spaces of operators. The choice of Rq versus Cq is also determined by the symmetry
properties of the system.

Parts of this result have been argued. After an identification is made of Rq and Cq with the
appropriate spaces F

q
∗ , Thms. 1.4.25 and 1.4.27 give the equivalences with the KO-theory and

K-theory groups, respectively, in the proposal. That is, the equalities in the proposal have been
explicated. That the connected components of the spaces of possible Hamiltonians determine the
possible phases of a particular model follows from the definition of a SPT phase as a space of
Hamiltonians that are homotopic through gapped Hamiltonians.

It remains to see why the spaces Rq and Cq of operators with certain symmetries characterize
the possible Hamiltonians in each dimension. This part of the proposal is essentially taken as
an assumption in this thesis, but it will be motivated and explained in more detail in the d = 0
classification, in particular when discussing the Clifford extension problem in §3.3.
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Chapter 3

Zero-Dimensional Systems

Even in zero dimensions, a number of topological phases can exist. In this model, fermions are
added and removed from states in the system using creation and annihilation operators, but the
situation has a slightly different physical interpretation from the other examples in this thesis.
Specifically, the indices of the creation and annihilation operators no longer stand for sites on a
lattice, but for different electron orbitals on a single site. Due to Pauli exclusion, two fermions
cannot occupy the same state, so if only one electron state were allowed on the single site in
the zero-dimensional system, the classification would only have two possibilities: occupied or
unoccupied. Instead, a Hamiltonian is written down that adds, removes, and pair fermions in
different orbitals.

There are two different cases to discuss, corresponding to Tables 3 and 4 on page viii. Morally,
the reason that two tables are necessary is that each set of loop spaces of Fredholm operators F k

tracks operators with k specific symmetries, so each table only contains one space of operators
F 1 = F̂ with a single symmetry. However, there are two cases that the classification needs to
consider that possess only a single symmetry—the case with only T-symmetry and the case with
only Q-symmetry. The two cases one takes are the cases with Q-symmetry only, which are clas-
sified using complex K-theory, and the cases with T and Q-symmetry, only T-symmetry, and no
symmetry, which are classified with real KO-theory. This zero-dimensional classification clarifies
how the spaces of Fredholm operators naturally arise from the constraints imposed on Hamilto-
nians. This chapter follows the sections “Classification Principles” and “Symmetries and Clifford
Algebras” in [18].

3.1 Cases With Q-Symmetry Only

As discussed previously, Hamiltonians that conserve particle number cannot contain supercon-
ducting terms like a†

j a†
k or ajak, so it is easiest to write the Hamiltonian for such a system using

electron creation and annihilation operators. A general free-fermion quadratic Hamiltonian with
particle number conservation takes the form

H = ∑
j,k

Xjka†
j ak (3.1)

for Xjk a Hermitian matrix. The Hamiltonian acts on the orbitals of the zero-dimensional system,
so if there are N available orbitals, Xjk will be N × N. Analysis of this Hamiltonian will proceed
using spectral theory.
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3.1.1 Spectral Flattening

Recall the following fact from linear algebra.

Fact 3.1.1 (Spectral Theorem for Hermitian Matrices). Hermitian matrices are diagonalizable and have
only real eigenvalues.

So, to understand the space of possible matrices, it suffices to consider diagonal matrices
with real eigenvalues. However, not all such matrices are possible. In order to correspond to
an SPT phase, the Hamiltonian must be gapped, so one can assume that the eigenvalues of Xjk
are bounded away from zero by some positive ∆. Meanwhile, an infinite system with eigenvalues
tending to infinity is unphysical, so one can also assume that the eigenvalues of Xjk are bounded
above. For ε j an eigenvalue, write ∆ ≤ |ε j| ≤ Emax.

Now, scaling the eigenvalues ε j by real, positive constants will yield a homotopic matrix with-
out closing the gap, resulting in a Hamiltonian in the same SPT phase. Specifically, a homotopy ft
can be defined that acts on the eigenvalues of Xjk such that f0(ε j) = ε j and f1(ε j) = sgn(ε j); for
example, take

ft(ε j) =
ε j

|ε j|1−t .

Applying this function to each eigenvalue in the diagonalized form of Xjk defines the spectral
flattening transformation.

3.1.2 Classifying Space of Hamiltonians

Now, to study all possible Hamiltonians in this class, it suffices to study Hamiltonians whose
eigenvalues have been flattened to +1 and −1. The set of possible matrices is

C0 :=
⋃

0≤k≤N

U(N)/(U(k)×U(N − k)),

where N is the size of the system and k is the number of negative eigenvalues. The connected
components of this space consist of matrices with the same number of negative eigenvalues, cor-
responding to an integer invariant. That is, π0(C0) = Z. Referring to Tables 3 and 4 on page viii
and invoking index theory for Fredholm operators, one can see that this group corresponds to
K̃0(pt). For a Hamiltonian that depends on some parameter in a space X, the group of possible
invariants generalizes to [X, C0] ∼= K̃0(X). Physically, this integer parameter corresponds to the
number of filled negative energy orbitals in the system.

3.2 Other Cases

3.2.1 No Symmetry

First consider systems with no symmetry. Since particle number is not conserved, superconduct-
ing terms may exist and it is thus convenient to write the general quadratic Hamiltonian in terms
of Majorana operators. As in eqn. (2.1), the general Hamiltonian is

H =
i
4 ∑

j,k
Ajkcjck
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with A real skew-symmetric. For a system with N states, this matrix is 2N × 2N since there are
twice as many Majorana operators as states. To characterize the space of possible matrices A, first
recall the spectral theorem.

Fact 3.2.1 (Spectral Theorem for Skew-Adjoint Operators). Bounded, skew-adjoint operators defined
on complex Hilbert spaces have only imaginary eigenvalues iε j, and every such operator A can be brought
into a block-diagonal form in the following way. Let

S =


0 iε1 0 0 . . .
−iε1 0 0 0 . . .

0 0 0 iε2 . . .
0 0 −iε2 0 . . .
...

...
...

...
. . .

 .

Then there is some orthogonal matrix R such that A = RSR−1.

Using this theorem, one can generalize the spectral flattening transformation from above to
take the matrix A to a flattened matrix Ã = −isgn(iA) that consists of blocks of positive or neg-
ative ones off of the diagonal. However, this representation is not unique, because the matrix R
can be multiplied by any orthogonal matrix M that commutes with the matrix Q and still yield
(MR)S(MR)−1 = A. The representation will become unique after the quotient is taken by the
space of matrices M.

The trick is that the space of these 2N× 2N matrices M that commute with Q can be identified
with N × N complex matrices.. This is implicitly why the matrices with only Q-symmetry can be
taken to be Hermitian matrices and were classified with complex K-theory in the previous section.
Hence the classifying space of matrices with T-symmetry only is

R2 :=
⋃
N

O(2N)/U(N) = lim
N→∞

O(2N)/U(N).

In this case, the invariant lives in π0(R2) = K̃O
−2
(pt) ∼= Z2. The physical interpretation of this

invariant is the number of filled orbitals modulo 2.
Full arguments are not given for the next two cases, but they are included for completeness.

3.2.2 T-Symmetry Only

The space of matrices corresponding to Hamiltonians with T-symmetry alone is

R3 :=
⋃
N

U(2N)/Sp(N).

There is no meaningful invariant because π0(R3) = K̃−3(pt) = 0.
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3.2.3 T and Q-Symmetry

The space of matrices corresponding to Hamiltonians with T and Q symmetry is

R4 :=
⋃

k+m=N

Sp(k + m)/(Sp(k)× Sp(n))×Z.

The invariant lives in π0(R4) = K̃−4(pt) ∼= Z and represents the number of Kramers pairs of
electrons in the system.

3.3 Clifford Extension Problem

In the real cases above, spaces of Hamiltonians were considered that commuted with Q and anti-
commuted with T, and it was discussed in the previous chapter how T and QT could be viewed as
representations of Clifford generators. Now, the Clifford algebra problem can be more explicitly
defined. If Ã represents the spectrally flattened matrix −isgn(iA), then each of the real cases can
be recast as the problem of extending a given Clifford algebra by adding Ã as the representation
of another symmetry generator.

• In the case of no symmetry, Ã is free, but can be imagined as the representation of a negative
generator in a Clifford algebra because Ã2 = −1.

• In the case of T-symmetry only, T acts as a Clifford generator representation, corresponding
to, say, e1. Then specifying possible matrices Ã is the same as specifying the representation
of a second generator e2.

• In the case of T and Q symmetry, take T as the representation corresponding to a generator
e1 and take QT as the representation corresponding to a generator e2. Then the possible
matrices Ã correspond to extensions of the Clifford algebra by another element e3. Note that
this case illustrates the asymmetry in the treatment of T and Q.

In general, the process of finding representations of an additional Clifford generator that anti-
commutes with the representations of given generators is called the Clifford extension problem.

Claim 3.3.1. The classification of free-fermion Hamiltonians in zero dimensions with p negative symme-
tries is equivalent to the Clifford extension problem with p negative generators.

This claim has been argued through examples for p = 0, 1, 2. But how does this classification
relate back to Kitaev’s proposal? In particular, how do KO-theory classes arise? As in the previous
discussion, the possible Clifford representations that extend in each case form the classifying space
Rp−2, to which index theory allows a KO-theory invariant to be assigned. Then, the statement is
the same as that in the proposal in the case d = 0.

Remark 3.3.2. Calculating the index corresponding to the Clifford representation that determines a par-
ticular phase can be done without directly viewing the representation as an operator. Using the difference
bundle construction, one can form a K-theory or KO-theory class from a difference of two Clifford rep-
resentations. This process was not explained in the Clifford algebras section above, but is detailed in [7]
§7-9.
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Remark 3.3.3. One might wonder where the extra “−2” comes from in Rp−2, or indeed where it arises
in the more general result. If one were to pose the Clifford extension problem in terms of positive Clifford
generators instead of negative generators, using the isomorphism Cl0,p ∼= Cl0,2 ⊗ Clp−2 from Lemma 1.3.8
and recalling the fact that the representation theory is unchanged by tensoring with a simple algebra like
Cl0,2 ∼= R(2), the 2 would disappear. Hence it arises only from the choice to take negative generators.
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Chapter 4

One-Dimensional Systems

This chapter will review a few cases of the 1D classification, focusing on the famous Majorana
chain. Attention is restricted to lattice systems, since they are easier to solve exactly.

4.1 The Majorana Chain

The Majorana chain, also called the Kitaev chain or wire, is a one-dimensional quantum system
designed to host Majorana fermions. In this system, there is neither particle-number conserva-
tion nor time-reversal symmetry. The invariant, the Majorana number, can be calculated using
the Pfaffian of the Fourier-transformed Hamiltonian. This invariant lives in π0(R1) = Z2, distin-
guishing two possible phases. The nontrivial phase in this case has two unpaired Majorana modes
at the edges of the wire.

4.1.1 The Hamiltonian

The Majorana chain is a spinless p-wave superconductor, a kind of “unconventional supercon-
ductor” that breaks time-reversal symmetry. For a wire with N sites, the Hamiltonian is

H = −u
N

∑
j=1

a†
j aj −

v
2

N−1

∑
j=1

(a†
j+1aj + a†

j aj+1) +
v
2

N−1

∑
j=1

(a†
j a†

j+1 + aj+1aj). (4.1)

The first summation in the Hamiltonian consists of trivial terms confined to single sites, which
encode the onsite energy or chemical potential, the second summation contains hopping terms be-
tween adjacent sites, and the last summation in the Hamiltonian includes superconducting terms
that break U(1) symmetry. Breaking this symmetry is desirable because if the symmetry transfor-
mation aj 7→ eiφaj held, it could mix different kinds of operators, which runs counter to the goal
of localizing individual Majorana operators [19].

Remark 4.1.1. The Hamiltonian above may not seem general because the parameter v is repeated. In some
sources, the superconducting parameter is denoted ∆ instead. However, this form is sufficient to demonstrate
the two phases of the model and allows for a more convenient expression in the next section.

Hamiltonian in Terms of Majorana Operators

The form of the Hamiltonian in (4.1) will be useful when solving for its spectrum. However,
writing the Hamiltonian in terms of Majorana operators makes it clearer how unpaired modes can
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arise. Equation (4.2) distinguishes the two different kinds of Majorana pairings—either within the
same site, in which the Majoranas c2j−1 and c2j pair to form a normal fermion, or between sites,
which pairs the Majoranas c2j and c2j+1 but can leave dangling, unpaired Majoranas at the end of
a finite sample.

H =
i
2

(
u

N

∑
j=1

c2j−1c2j + v
N−1

∑
j=1

c2jc2j+1

)
(4.2)

Notice that the Majoranas c1 and c2N do not show up in the second summation, corresponding
to them being left unpaired. It will be shown that when |u| > |v|, the Hamiltonian is in the trivial
phase, while when |u| < |v| the system is in the topological phase.

A useful way to depict these two situations is with a “domino picture,” in which each site j is
represented as an oval and the two Majorana modes associated to it are shown as two dots within
the oval. Pairings are drawn as lines between the Majorana modes. Note that the Hamiltonian
corresponding to the left image below has v = 0 and the the Hamiltonian for the right image has
u = 0.

This domino picture, adapted from [19], shows the pairings in the two phases of the Majorana chain.

The matrix A from the form of the Hamiltonian in eqn. (2.1) can also be written out. For
convenience, the two summations are separated into different matrices, and written in a standard
block diagonal form. This block-diagonal form is achievable using the fact that 2cjck = cjck − ckcj.

A =



0 u 0 0 0 . . . 0 0
−u 0 0 0 0 . . . 0 0
0 0 0 u 0 . . . 0 0
0 0 −u 0 0 . . . 0 0
0 0 0 0 0 . . . 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 . . . −u 0


+



0 0 0 0 0 . . . 0 0
0 0 v 0 0 . . . 0 0
0 −v 0 0 0 . . . 0 0
0 0 0 0 v . . . 0 0
0 0 0 −v 0 . . . 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 . . . 0 0


Zero Modes

Note that in the topological phase, there are two zero eigenvalues, which correspond to the ex-
istence of unpaired Majorana zero modes [29]. The eigenvectors for these two zero eigenvalues
are (

1, 0,
v
w

, 0,
( v

w

)2
, 0, ... ,

( v
w

)N
, 0
)

and
(

0,
( v

w

)N
, 0,
( v

w

)N−1
, ... , 0, 1

)
and these correspond, respectively, to left and right boundary modes

bl = c1 +
v
w

c3 + ... +
( v

w

)N
c2N−1 and br =

( v
w

)N
c2 +

( v
w

)N−1
c4 + ... + c2N .
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In the topological phase with |u| < |v|, these modes decay exponentially away from the opposite
boundary of the sample, meaning that the modes are effectively spatially separated from each
other even though they are distributed across the wire [20].

4.1.2 Checking Symmetries

The Majorana chain does not possess T or Q symmetry. This can be seen explicitly by checking
the commutation relations with the symmetry matrices. For example, when N = 2,

AT + TA =


0 v 0 0
v 0 0 0
0 0 0 −v
0 0 −v 0

 6= 0 and AQ−QA =


0 0 v 0
0 0 0 −v
−v 0 0 0
0 v 0 0

 6= 0.

Note that the superconducting terms, which had the coefficient v
2 , contribute to the breaking of

particle number conservation.

Remark 4.1.2. While the Majorana chain does not possess the symmetries that are part of the classification,
it does have a Z2-symmetry generated by the parity operator P = ∏N

j=1(−ic2j−1c2j), which is of physical
interest in mathematically-equivalent models including the transverse field Ising model. This is discussed
in §2.3 of [19], and a more general classification that does include this Z2-symmetry is given in [36].

4.1.3 Calculating the Invariant

The Z2 invariant that distinguishes the trivial from the topological phase can be calculated by
passing to momentum space and solving for when the spectral gap closes, since when the gap
closes the phase is allowed to change. Mathematically, this involves using an approximate trans-
lation invariance of the wire to invoke Bloch’s theorem and perform a Fourier transform, then
examining the spectrum of the Hamiltonian under different parameter values.

Bogoliubov-de Gennes Hamiltonian

To solve for the spectrum of the Hamiltonian, it is easiest to return to the form (4.1) and take
advantage of the particle-hole symmetry of the system. This approach follows [9]. Using the
vector C = (a1, ..., an, a†

1, ..., a†
n)

T, the Hamiltonian can be written as a 2N × 2N matrix HBdG with
H = C†HBdGC. In matrix form, this is

H =
(
a†

1 a†
2 . . . a†

n a1 a2 . . . an
)



−u − v
2

− v
2 −u

. . . v
2

. . . . . . − v
2

. . .
− v

2 −u v
2

v
2

. . .
v
2





a1
a2
...

an
a†

1
a†

2
...

a†
n


.
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Fermionic anticommutation relations can then be used to rewrite the matrix. For example, one can
rewrite a†

j+1a†
j as 1

2 a†
j+1a†

j −
1
2 a†

j a†
j+1. Then the Hamiltonian becomes

H =
(
a†

1 a†
2 . . . a†

n a1 a2 . . . an
)



− u
2 − v

4 − v
4

− v
4 − u

2
. . . v

4
. . .

. . . . . . − v
4

. . . − v
4

− v
4 − u

2
v
4

v
4

u
2

v
4

− v
4

. . . v
4

u
2

. . .
. . . v

4
. . . . . . v

4
− v

4
v
4

u
2





a1
a2
...

an
a†

1
a†

2
...

a†
n


.

The reason to rewrite the matrix is that now after a change of basis it will be very compactly
expressed. Let |n〉 be the 2N-vector with a single 1 in the nth position, representing an. Let 〈n|
be the corresponding row vector, representing a†

n. Now the matrix can be rewritten using Pauli
matrices as

H = −u σz

N

∑
n=1
|n〉〈n| − v

2
σz

N−1

∑
n=1

(|n〉〈n + 1|+ |n + 1〉〈n|) + v
2

iσy

N−1

∑
n=1

(|n〉〈n + 1|+ |n + 1〉〈n|).

This form will make the spectrum of the Hamiltonian easier to extract.

Fourier Transform

The Majorana chain is an example of a 1-dimensional lattice, meaning that techniques for solving
crystalline systems will be useful. This section will give some algebraic motivation for the Fourier
transform by examining lattice translation operators.

Because the coefficients of the operators in the Hamiltonian are independent of n, the Hamil-
tonian is translation invariant in the limit that the chain is infinitely long or forms a loop. Define a
translation operator t that shifts the state of each site to the site one to the right. The fact that the
Hamiltonian is translation invariant means that it commutes with this translation operator, and
thus shares eigenvectors with it.

So, what are the eigenvectors of t? First, consider the object that t and H are acting on. Observe
that if H = C is the Hilbert space of states above site n, which tracks the probability amplitude
of site n being occupied by an electron, then tH corresponds to the Hilbert space of states above
site n + 1, t2H corresponds to the Hilbert space of states above site n + 2, and so on. It is therefore
useful to consider a Laurent series group ring C[t±1]. The overall Hilbert space of states for the
entire lattice is a module over C[t±1] that is the Hilbert space completion of a free module of rank
1. The basis for the free rank 1 module is a state h ∈ H that encodes the state at one site.

At a given site n in the lattice, the exponential eikn, for some real k in [0, 2π), will be an eigen-
vector of t because when t is applied to it, the lattice position will change to n + 1 and the vector
becomes

teikn = eik(n+1) = eik · eikn.
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The eigenvalue in this case is eik. Similarly, e−ikn is also an eigenvector. The possible values of k
range from 0 to 2π, and are periodic, meaning that k is picked from the circle S1. This circle is the
Brillouin zone of the system.

Remark 4.1.3. Formally, these eigenvectors are the characters of the group Z, which is the group generated
by t. That is, they are maps Z→ U(1), by n 7→ eikn. This formalism will be used again with more examples
in §5.2.

Spectrum of the Hamiltonian

Now that the eigenvectors are determined, the Hamiltonian can be applied to get its eigenvalue
spectrum. Note that the hopping operators a†

j+1aj and aj+1a†
j effectively play the role of t and t−1

because they shift the electron state between adjacent sites, so their eigenvalues are eik and e−ik,
respectively, for the eigenvector eikn. Meanwhile, the onsite terms a†

nan effectively annihilate and
then recreate the state |n〉, so return eikn unchanged and have eigenvalue 1. A slightly different
argument is required for the Fourier transform of the superconducting terms and will be omitted
here. Substituting these eigenvalues allows the BdG Hamiltonian to be rewritten with respect to
the Fourier basis |k〉 = 1√

N ∑N
n=1 e−ikn|n〉 as

H(k) = 〈k|
(
(−v cos k− u)σz + v sin k iσy

)
|k〉,

which in matrix form is

H(k) =
(
a†

k ak
) (−v cos k− u iv sin k

−iv sin k v cos k + u

)(
ak
a†

k

)
.

This form of the Hamiltonian makes it relatively easy to diagonalize, revealing the spectrum to be

ε(k) = ±
√

u2 + v2 + 2uv cos k.

The Majorana Number

The boundary between phases lies along the parameter conditions that close the gap in the Hamil-
tonian. This happens in only two cases:

k = 0, u = −v =⇒ ε(0) =
√

u2 + v2 + 2uv = 0

k = π, u = v =⇒ ε(π) =
√

u2 + v2 − 2uv = 0.

Now |u| = |v| can be seen as a phase transition point, as was suggested earlier. The invariant that
keeps track of this change involves the Pfaffian, which is defined for skew-symmetric matrices A
and satisfies Pf(A)2 = det(A).

Definition 4.1.4. The Pfaffian of a 2N × 2N skew-symmetric matrix A is

Pf(A) :=
1

2N · N! ∑
σ∈S2N

sgn(σ)

(
N

∏
i=1

Aσ(2i−1),σ(2i)

)
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where S2N is the symmetric group on 2N letters.

Measuring the Pfaffian at the two points where H may be gapped, namely k = 0, π, determines
the phase. Specifically, the formula

M(H) = sign(Pf[iH(0)]Pf[iH(π)] )

determinesM(H) = 1 for H in the trivial phase andM(H) = −1 for H in the topological phase.
A rigorous justification for why this formula works more generally may be found in [19], but it is
clear in this case because the Pfaffians evaluate to

M(H) = sign(Pf[iH(0)]Pf[iH(π)] )

= sign((−v− u)(v− u))

= sign(u2 − v2).

This invariant determines whether the Hamiltonian lives in the trivial or nontrivial compo-
nent of R2 ' O, the infinite orthogonal group, which is the limit of O(n). Recall that the trivial
component is defined to be the component containing 1.

Remark 4.1.5. It is also justified in [19] that the invariant has the following property: if H1 and H2 are
Hamiltonians describing two different chains, and H1 ⊕ H2 is defined to be the Hamiltonian of the chains
concatenated with each other, thenM(H1 ⊕ H2) =M(H1)M(H2). This provides a Z2 group structure
for the invariant, which is technically more structure than is provided by π0 alone.

4.1.4 Quantum Computing and Experimental Realization

As discussed earlier, part of the allure of Majorana fermions for quantum computing comes from
their nonabelian exchange statistics. However, these Majorana fermions cannot move past each
other with only one degree of spatial freedom, so how can they be implemented in a wire? One
proposal is to use a wire network with T-junctions, which would allow the Majorana fermions to
be moved one at a time into a side chain and exchanged this way. A discussion of how this process
allows for the desired exchange statistics is in [2]. Experimentally, the most promising platforms
for the Majorana chain may be electron-doped InAs and InSb wires [1].

4.2 T-Invariant Superconductor

Time-reversal invariant superconductors possess time-reversal symmetry but particle number is
not conserved. The invariant of the system is the parity of the number of Kramers pairs, which
defines an element of π0(R2) = Z2. An even number of Kramers pairs corresponds to spin-singlet
pairing, while an odd number corresponds to spin-triplet pairing [27].

Models of a time-reversal invariant topological superconductor, or TRITOPS, can be found in
[32] and [12]. Materials promising for fabrication of TRITOPS include (TMTSF)2X, where TMTSF
stands for tetramethyltetraselenafulvalene and X is an inorganic anion like ClO4 or PF6 [18].
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4.3 T-Invariant Insulator

Time-reversal invariant insulators possess both time-reversal symmetry and particle-number con-
servation. Only a trivial phase exists in this case, since π0(R3) = π0(U(2n)/Sp(n)) = 0.
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Chapter 5

Two-Dimensional Systems

5.1 Integer Quantum Hall Effect

The integer quantum Hall effect is one of the most important areas of study within topological
materials, and it features a more concrete example of a K-theory invariant. The effect has a very
well-developed theory, but it was actually discovered experimentally and only subsequently ex-
plained.

5.1.1 The Classical Hall Effect

In the late 1870s, during his doctoral studies, Edwin Hall decided to investigate the effects of
magnetism on the distribution of charge in a conducting material with a current running through
it. Existing literature on the topic was contradictory on whether a magnetic field should act on
the current or not, and the electron had not yet been identified as a charge carrier. To resolve the
issue, Hall with the help of his advisor designed a remarkably precise experiment to measure the
charge distribution in a thin strip of metal. After several adjustments, Hall observed a potential
difference across one end of the metal strip, indicating that the magnetic field was exerting a force
on the current after all. This is the classical Hall effect. [13]

The Hall effect can be seen as a result of the Lorentz force law, which determines the force
experienced by a charge q moving at a velocity~v that experiences an electric field ~E and a magnetic
field ~B. This charge might be an electron, a hole, or an ion. The force is

~F = q(~E +~v× ~B).

FIGURE 5.1: The Hall effect is a voltage gradient across one end of a conducting
sample subjected to a transverse magnetic field.
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FIGURE 5.2: This data from [33] demonstrates the constant plateaus of the Hall volt-
age UH at each multiple of 1

ν . It also shows the voltage drop Upp between potential
probes. Each is plotted as a function of gate voltage vg.

In Hall’s setup, the magnetic field was transverse to the direction of current flow, meaning that
~v ⊥ ~B and the magnetic field was able to exert a force on the moving charges perpendicular to the
current and to the field. Due to the application of this force, the charges were deflected to one side
as the current flowed, resulting in an uneven distribution of charge at the end of the metal strip
and an observed voltage difference.

5.1.2 The Quantum Hall Effect

In the regime of low temperatures and strong magnetic fields, the Hall effect in effectively two-
dimensional materials exhibits an even more interesting behavior. In 1980, von Klitzing observed
in silicon MOSFETs1 prepared by Dorda and Pepper that the Hall resistivity, which is Hall voltage
divided by the current strength, was quantized as h

e2ν
. Here, h is Planck’s constant, e is the electron

charge, and ν, the filling factor, is an integer. Klitzing used these measurements to obtain a more
precise value of the fine-structure constant. [33]

This phenomenon is often called the integer quantum Hall effect to differentiate it from the
fractional quantum Hall effect, which only appears once electron interactions are taken into ac-
count. The quantum Hall effect has been observed in other MOSFETs, in GaAs heterostructures,
and in bilayer graphene. The integer quantum Hall effect can be understood theoretically by solv-
ing the one-particle Hamiltonian, and an intuitive derivation can be found in [34] §1.4 or [31] §2.6.

1MOSFET stands for “metal oxide semiconductor field effect transistor."
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5.1.3 In the Periodic Table

In the periodic table classification, the integer quantum Hall effect is an example of a d = 2 system
possessing Q symmetry but not T symmetry. The T symmetry is broken due to the applied mag-
netic field. The invariant produced is the Hall conductance filling factor ν, which is an integer in
Z = π0(C0).

Since Q symmetry holds, the Hamiltonians describing quantum Hall systems are described
by Hermitian matrices and classify complex K-theory. The invariant ν is calculated as the Chern
number, or first Chern class, of the vector bundle over the Brillouin zone, whose fibers describe
the ground state subspace of the Hamiltonian with a given momentum parameter. This calculation
is explained in the context of an example in the next section.

5.2 The Honeycomb Lattice Model

The honeycomb lattice model for graphene is an exactly solvable model that allows for a calcula-
tion of topological invariant similar to the Chern number. This model does not quite represent the
quantum Hall effect because Q-symmetry does not hold, and the edge modes that will be sym-
bolized by the topological invariant by the end of the calculation are real fermions, not complex
fermions. However, it is an instructive example of the meaning of the Chern number, so it will be
discussed in the terms of the quantum Hall effect.

Remark 5.2.1. Since it possesses neither Q nor T symmetry but has an integer invariant similar to that of
the quantum Hall effect, this model actually belongs to the “no symmetry” 2D case in the periodic table.

The model, as described in [17], constitutes a tight-binding model for graphene, which is a
material made up of sheets of carbon atoms arranged in a hexagonal lattice. It originally pos-
sesses time-reversal symmetry, before this is broken by a perturbation of the Hamiltonian. This
perturbation opens a spectral gap and allows for the topological invariant ν to achieve nonzero
values.

Remark 5.2.2. Graphene itself is actually notable for exhibiting the quantum Hall effect at room tempera-
tures. However, as mentioned previously, this occurs in bilayer graphene, not in the single layer described
by the honeycomb lattice model.

5.2.1 Unperturbed Hamiltonian

Lattice Setup

In graphene, each carbon atom makes one σ bond with each of its three neighbors, and the tight-
binding model for graphene assumes that only these nearest-neighbor interactions are relevant.
To write down the Hamiltonian that dictates these bonds, it is useful to break up the hexagonal
lattice into two triangular sublattices, which have different colors.

Now nearest-neighbor atoms alternate in lattice color, and the translational symmetries of the
lattice are more apparent. Two translation operators, s and t, can be defined that shift the lattice
into itself and that preserve each sublattice. In [17], these correspond to the vectors n1 and n2.
Since the Hamiltonian is assumed to be translation invariant, defining these translation operators
is useful for finding an appropriate unit cell and basis for writing down the Hamiltonian. The unit
cell should contain one site of each sublattice so that unit cells may tile the entire hexagonal lattice.
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FIGURE 5.3: The honeycomb lattice has two triangular sublattices and two lattice
translation vectors, s and t. The unit cell contains one site of each sublattice; say the

black site is site 1 and the white site is site 2. This figure is adapted from [17].

Remark 5.2.3. Note that shorter translation operators than s and t cannot be defined. In particular, shifting
the lattice by the length of one bond will not return it to its original position: shifting site 1 to site 2 will
shift all of the white sites into the middle of where the hexagons should be.

Group Ring

The motivation for Fourier transforming to solve this Hamiltonian is similar to that given for the
Majorana chain, but the algebraic object is slightly more complicated in two dimensions. Now
each unit cell contains two sites, each of which may host an electron with a probability amplitude
represented by some complex number. The Hilbert space the Hamiltonian acts on at a particular
unit cell is H ∼= C2, say with basis {h1, h2}, where each hi corresponds to one of the sites. Then,
then the Hilbert space over the unit cell adjacent via the lattice vector s can be expressed as sH,
with basis vectors {sh1, sh2} for the quantum states at that site. Similarly, a unit cell that is two s
vectors below and one t vector to the left of the central unit cell has a basis {s−2t h1, s−2t h2} for
the Hilbert space above it.

As in the previous chapter, the overall Hilbert space Htot is a module over the Laurent poly-
nomial ring C[s±1, t±1]. The polynomial ring is isomorphic to the ring C[Z2] but with chosen
generators s and t, and the module Htot is the Hilbert space completion of a free module of rank
2. It can be written

Htot = C[s±1, t±1]{h1, h2}.

A generic translation-invariant Hamiltonian defined over this group ring will be 2 × 2, since 2
is the dimension of the Hilbert space satbH at each site. The entries in the 2× 2 matrix will be
Laurent polynomials in s, t with complex coefficients.

Example 5.2.4. Consider the Hamiltonian
(

0 0
s t

)
. This matrix maps the basis vector satbh1 at the unit

cell (a, b) to sa+1tbh2, which is translated to the adjacent unit cell and switches sublattices. Meanwhile,
satbh2 is mapped to satb+1h2.



5.2. The Honeycomb Lattice Model 49

FIGURE 5.4: These plots show the spectrum ε(k) as a function of k. The Dirac cones
are found around where the positive and negative sheets touch and close the gap.

The Hamiltonian

To write down the particular Hamiltonian for graphene, consider an electron at site 1 in the unit
cell (a, b). It can hop to any of its nearest neighbors, who live on the other sublattice in site 2 of
each adjacent unit cell. One of these sites is on the same unit cell, right above, while one is on a site
displaced by s, and the last is on a site displaced by t. Hence the hopping coefficient is 1 + s + t
to account for each of these possibilities. Since the electron must switch sublattices when it hops,
this term is off diagonal. Meanwhile, electrons from adjacent sites can also jump on to the site 1 at
(a, b), corresponding to a coefficient 1 + s−1 + t−1 since the translation vectors are now pointing
in instead of out of the unit cell. This term goes in the other off-diagonal entry in the matrix. The
Hamiltonian is

H =

(
0 1 + s−1 + t−1

1 + s + t 0

)
.

Calculating the Spectrum

It is not obvious how to find the spectrum of this Hamiltonian because its entries are not numbers,
but Laurent polynomials. However, eigenspaces can be found by using the lattice translation
operators because the Hamiltonian again must share eigenspaces with them.

At a given point (a, b) in the lattice, the exponential eika will be an eigenvector of s because
when s is applied to it, the lattice position will change to (a + 1, b) and the vector becomes

seika = eik(a+1) = eik · eika.

The eigenvalue in this case is eik, where k is a momentum parameter. Such a vector is also an eigen-
vector for t, with teikb = eik(b+1) = eik · eikb. The eigenspace of each operator is two-dimensional,
spanned by {eik, e−ik}.

Remark 5.2.5. Formally, these eigenvectors are the characters of the group Z2. That is, they are maps
Z2 → U(1), by (a, b) 7→ ei(k1a+k2b), and passing to these eigenvectors constitutes a Fourier transform.
For a more explicit treatment of the Fourier transform, see the derivation in §4 of [17] assuming Jx = Jy =
Jz = 1.
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FIGURE 5.5: In this diagram from [17], the nearest-neighbor interactions are directed
solid lines, while the second-neighbor interactions are dashed lines.

In general, a vector ei(k1a+k2b) is an eigenvector of each of these operators and hence also of H.
Applied to this eigenvector, the Hamiltonian gives

H(ei(k1a+k2b)) = 2ei(k1a+k2b) + ei(k1(a+1)+k2b) + ei(k1a+k2(b+1)) + ei(k1(a−1)+k2b) + ei(k1a+k2(b−1))

= (2 + eik1 + eik2 + e−ik1 + e−ik2) ei(k1a+k2b)

= (2 + 2 cos k1 + 2 cos k2) ei(k1a+k2b).

Physically, the parameters k1 and k2 are interpreted as momenta because if the cosines in the
expression for energy above are expanded, cos ki ≈ 1 − k2

i /2, the quadratic term resembles a
kinetic energy 1

2 mv2, meaning that a linear term in ki resembles a momentum mv. Recall that
the momentum space of a lattice system is referred to as the Brillouin zone. In this case, the
parameters are periodically constrained, with k1, k2 ∈ [0, 2π) with endpoints identified, so (k1, k2)
can be viewed as living on the torus T2.

However, there is a problem with this spectrum—it is not gapped. That is, it has zero-energy
eigenvalues corresponding to (k1, k2) for which 1 + eik1 + eik2 = 0, as well as eigenvalues accumu-
lating around zero. Plotting the spectrum in Fig. 5.4, reveals the existence of Dirac cones at the
points that the spectrum hits zero, so-called because near these points, the Hamiltonian resembles
a Dirac operator. While Dirac cones are physically interesting, they need to be eliminated for an
invariant to be assigned.

5.2.2 T-Symmetry-Breaking Perturbation

One way to eliminate the accumulation of eigenvalues around zero is to perturb the Hamiltonian
by adding extra terms that break the time-reversal symmetry and open a gap. These terms are
meant to represent the action of a magnetic field. The perturbation needs to break T-symmetry
because the Dirac cones are actually protected by this symmetry; any perturbation that does not
break T-symmetry cannot open a gap, as shown in [17] §6.1.

However, to break time-reversal symmetry, it actually suffices to add diagonal terms to the
Hamiltonian. These diagonal terms represent interactions between neighboring sites on the same
sublattice, which ultimately constitute second-neighbor interactions, as depicted in Fig. 5.5. Phys-
ically, the reason that these new interactions break time-reversal symmetry is that they introduce
a chirality to the system: these interactions have a preferred cyclical direction that will reverse
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FIGURE 5.6: The extra terms added to the Hamiltonian have eliminated the Dirac
cones, gapping out the system.

under time reversal. In contrast, reversing the original nearest-neighbor interactions would leave
the system unchanged up to a lattice translation.

In a simple model in which the second-neighbor pairing is just a real number ∆, the perturbed
Hamiltonian is

H′ =
(

∆ 1 + s−1 + t−1

1 + s + t ∆

)
,

and its spectrum is
ε′(k) = 2 + ∆ + 2 cos k1 + 2 cos k2,

which is always positive, as demonstrated in Fig. 5.6. Now that the system is gapped, an invariant
can be calculated.

5.2.3 The Chern Invariant

Traditionally, the Chern number represents the Hall conductance. It is often referred to as the
TKNN invariant, after the authors of the famous 1982 paper that first proved that this conduc-
tance was quantized and thus offered a topological invariant. In the paper, Thouless, Kohmoto,
Nightingale, and den Nijs wrote the Hamiltonian for a particle in a periodic lattice potential and
used Bloch’s theorem to Fourier transform, then demonstrated the quantization of the Hall con-
ductance by rewriting the Kubo formula for two-dimensional conductors. [30]

There are several ways to interpret this formula. One is as the integral of a quantity called the
Berry curvature, which tracks the change in the phase of certain complex vectors as the momen-
tum varies over the Brillouin zone. This phase is alternately called the Berry phase, the geometric
phase, or the Pancharatnam phase. Another is as the first Chern class of a vector bundle associ-
ated to a Hamiltonian, which in turn is related to a spectral projection matrix. This second view
will be explained for the honeycomb lattice model, since it is more intuitive how K-theory classes
might arise this way and because it corresponds to the more general case with non-lattice systems
in which topological invariants are calculated as the indices of spectral projection operators.
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The Vector Bundle

The vector bundle defined over the Brillouin zone has fiber at the point k the ground state sub-
space of the Hamiltonian H(k). That is, it encodes how the eigenvectors of the Hamiltonian that
correspond to negative eigenvalues vary as the momentum of the system does. Assuming the
Hamiltonian acts on Cn and has an m-dimensional ground state, the vector bundle is thus deter-
mined by a map from the Brillouin zone to the space of m-dimensional subspaces in Cn. This map
acts as a projection of Cn onto the ground state subspace [20]. So, there is a classifying map

P : T2 → U(n)/(U(m)×U(n−m)),

where the target should be recognized as the classifying space C0. The first Chern class of the
vector bundle can be calculated using the pullback from the universal bundle over the classifying
space, but the invariant can also be calculated using the index theorem to give the appropriate
element in K̃(T2), which as shown in Ex. 1.2.29 is indeed Z. For the honeycomb lattice model,
n = 2 and m = 1, so the classifying space is

U(2)/(U(1)×U(1)) ' CP1 ' S2.

The Projection Map

How does one construct the projection map? Start with the spectrally flattened Hamiltonian H̃(k),
whose eigenvalues are all ±1. Now the eigenspaces of positive eigenvalue and the eigenspaces of
negative eigenvalue, respectively, are grouped together. The projection matrix is defined to be

P(k) :=
1
2
(1− H̃(k)),

so that the eigenvalue of P on a positive eigenvector of H is zero, but the eigenvalue of P on
a negative eigenvector of H is +1. This ensures that P projects onto the negative eigenvector
subspace of H. Now, the formula for the Chern number is

Ch(P) =
∫

T2

dk
2πi

Tr
(

P(k)
(

∂

∂k1

∂

∂k2
P(k)− ∂

∂k2

∂

∂k1
P(k)

))
.

The formula that TKNN calculated was tantamount to σH = e2

h Ch(P) [31, 34].
A full calculation can be found in [17] §6.3, but the Chern number for the honeycomb lattice

model actually reduces to Ch(P) = sgn(∆). Physically, this makes sense because a phase change
occurs when ∆ = 0, which is where T-symmetry re-emerges and the gap closes. In a more general
system, noncommutative geometry techniques could associate a Fredholm index to the projection
operator that would correspond to the Chern number in this lattice case.

In the context of the quantum Hall effect, this Chern number corresponds to the quantum
Hall conductance. In the honeycomb lattice model, the interpretation of the Chern number is
slightly different, because this model lacks Q-symmetry and is not exactly the quantum Hall effect.
Instead, the invariant determines the edge mode chirality, meaning which direction that edge
modes can travel around the sample [17]. This is, in turn, determined by the direction of the
magnetic field applied: up or down.
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Remark 5.2.6. The sphere S2 that is the target of the projection map is known as the Bloch sphere, and the
topological invariant calculated above can also be understood as the winding number of the torus around
the sphere according to P [34].

5.2.4 Non-Abelian Anyons

Like the Majorana chain, the honeycomb lattice model is exciting for its ability to host quasiparti-
cles with nonabelian exchange statistics. In this case, the quasiparticles take the form of vortices,
which are singularities around which the spin or phase angle of particles undergoes a rotation. In
the honeycomb lattice model, they can be detected using hexagonal operators as in [17].

Braiding of these quasiparticles is easier to implement than in the Majorana chain because
there are now two dimensions of spatial freedom, allowing particles to move around each other.
As shown in §8 of [17], these vortices have nonabelian statistics for any odd ν, and these statistics
only depend on ν mod 16.

5.3 Conclusion

This thesis explored the Kitaev’s proposed K-theoretic classification of matter, developing some
mathematical and physical background before reviewing some of the most significant examples
of topological materials in current literature: the Majorana chain and the integer quantum Hall
effect. The power of topological invariants applied to condensed matter systems stretches far be-
yond what this thesis could discuss and is still being developed by mathematicians and physicists.
Some directions that generalize the discussion in this thesis are classifying Hamiltonians in arbi-
trary dimension, as in [18], or using noncommutative geometry and a more general C∗-algebra
framework to treat non-lattice models [31, 24].

An important future direction for the classification of topological materials is to generalize
from free-fermion models to incorporate interactions. This will ensure that models are more phys-
ically realizable, as well as help to describe topological phenomena that only arise in the existence
of interactions, such as the fractional quantum Hall effect.
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