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Introduction

This work aims to provide a motivated introduction to the categorical concepts of
monads and their algebras, with sights on studying probability monads after outlining
the basic categorical theory. The aspiration is that such a target can stimulate what may
otherwise be viewed as an uninspired theory – perhaps more importantly, probability
monads are themselves compelling and worthy of study.

Motivation and historical context
The essential object in probability is that of a probability measure P on a space Ω.
For the moment, let us denote the collection of probability measures over Ω by Π(Ω),
so that P ∈ Π(Ω). The importance and ubiquity of probability measures naturally
gives rise to the notion of probability measures over probability measures. Such objects
admit interpretation as random variables whose laws are themselves random, as are
often encountered in Bayesian settings, and form elements of Π(Π(Ω)) = Π2(Ω) in our
above notation.

Consider the simplest non-degenerate case Ω = {heads, tails} [9]. A fair coin corre-
sponds to a probability distribution Pfair over Ω, with Pfair(heads) = Pfair(tails) = 0.5.
One might draw:

fair coin

heads tails

1/2 1/2 (0.0.1)

Suppose one also has a double-sided heads coin, likewise determining an element of
Π(Ω) via the measure Pheads with Pheads(heads) = 1, Pheads(tails) = 0. What if one were
to draw uniformly randomly from the coins, say from a pocket? The setup is depicted
as follows:

?

fair coin double heads

heads tails heads tails

1/2 1/2

1/2 1/2 1 0

(0.0.2)

As each coin determines a distribution over Ω, a random law for selecting coins de-
termines a distribution over distributions, i.e. an element of Π2(Ω). Abstractly, the
picture must admit compression – there exists a true probability p of this procedure
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resulting in a flip of heads, so it is equivalent to the tossing of a single coin which lands
heads with probability p.

More constructively, the above tree can be reduced to one of depth 1, an element
of Π(X), by multiplying through edge weights. A distribution with weight h on heads
which itself has weight w should contribute wh to the ultimate probability of heads, a
statement much like the law of total probability. Ultimately the tree compresses to:

?

heads tails

3/4 1/4 (0.0.3)

More generally, we have described a map E : Π2(Ω) → Π(Ω) which averages distribu-
tions over distributions to ordinary distributions. Though its use may not be evident
at the moment, there is also a natural map Ω → Π(Ω) which builds a measure from a
point ω by concentrating all mass at ω, i.e. by outputting the Dirac measure δω at ω.

δω(A) =

{
1 ω ∈ A
0 ω /∈ A

The categorical tool that treats such recursive constructions which, crucially, are
equipped with maps for ascending and descending levels (e.g. averaging to descend and
Dirac measure to ascend) is that of the monad. Outside of category theory, monads
have found use in such areas as computer science and probability. Those which carry
the interpretation of assigning to a space X a collection of probability measures over
X have come to be known as probability monads, and form a cornerstone of the field of
categorical probability.

Categorical probability has emerged as the effort to apply categorical techniques to
the study of probability, measure theory more generally, and mathematical statistics
[9]. Though currently less developed than the applications of category theory to such
fields as algebraic geometry and topology, categorical probability has witnessed increas-
ing attention in recent decades. In particular, the seeming incongruence between the
analytical and categorical viewpoints – which may explain the relative infancy of cate-
gorical probability – is precisely a source of inspiration for the subject, the hope being
that the translation of a problem from one field to the other can give rise to a useful
change in perspective.

The roots of categorical probability can be traced to Lawvere’s 1962 seminar notes
in which, among other things, he considers categories whose morphisms Ω → Ω′ act
by assigning distributions over Ω′ to elements of Ω [7]. Formally, however, probability
monads entered the picture in Giry’s seminal 1982 paper, by way of what later become
known as the Giry monad [3].

Though we do not assume familiariaty with monads – in fact, we assume unfamiliarity
– at a high level, the Giry monad and related probability monads take the following
form:

• An assignment T sending a space X to a collection of probability measures over
X. T is defined on a collection of spaces – be them mere sets, topological spaces,
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metric spaces obeying some conditions, or other – and is an endomorphism on
this collection. For instance, if X is a topological space, then TX need admit a
topology as well.

• An assignment T on maps so that a map of spaces f : X → Y extend to a
map of spaces of probability measures Tf : TX → TY .1 This should respect
identities and composition. Usually, this takes the form of a pushforward, i.e.
if P ∈ TX is a probability measure over X, then Tf ∈ TY is the measure on
Y with

Tf(A) = P (f−1(A))

Note the importance of pre-images respecting disjoint unions in ensuring that
Tf indeed be a measure.

• An evaluation map µ for passing from probability measures over probability
measures to mere probability measures. In other words, a map µ : T (T (−))→
T (−). Usually µ acts by averaging or integrating, as in the coins of (0.0.2).

• Lastly, a map η : (−) → T (−) for passing from a space X to probability
measures over X, usually by sending a point x to the Dirac measure over x.

One may note that, having been defined on objects and morphisms in a manner which
respects identities and compositions, T appears to be a functor. Similarly, µ resembles
a natural transformation T 2 ⇒ T and η a natural transformation 1 ⇒ T . Indeed, we
will see in 1.2 that the data of a monad consists of an endofunctor T equipped with
such natural transformations. All in due course.

Background and notation
Knowledge of category theory at the level of functors and natural transformations, along
with basic probability theory, suffices to understand the heart of the work. Familiarity
with adjoint functors, presented briefly in Chapter 3, is desirable but not necessary. As
is often the case in categorical texts, acquaintance with the basics of algebra (monoids,
groups, modules) and topology allows one to enjoy the examples presented but is by no
means vital.

With respect to notation, the usual f : X → Y or X f−→ Y is used to denote a
morphism with domain X and codomain Y . When X and Y are understood to reside
in a category C, we may write f ∈ HomC(X, Y ). As a special case, α : F ⇒ G denotes

1Though technically an abuse of notation, we will come to see that the roles played by T dovetail
naturally.
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a natural transformation from F to G. Sans Serif is used for categories, as in

Set sets and functions
Top topological spaces and continuous maps
ModR (left) R-modules and module homomorphisms
Vectk ModR for R = k a field
Grp groups and group homomorphisms
Ab abelian groups and group homomorphisms, or ModZ

End(C) endofunctors on C and natural transformations
A brief note on style: we take the view that listing 10 examples which leave all detail
to the reader is usually worse than providing a completed example along with a few of
the less detailed kind. More generally, we err on the side of the explicit, and strive to
accompany each new idea with at least one fully specified example. We take no offense
from those who would prefer to skip the more gory of details, but believe nevertheless
that it is usually worth doing once.

• In Chapter 1 we motivate the search for the monad, define it, and provide a
source of intuition.

• In Chapter 2 we consider algebras over monads and introduce the Eilenberg-
Moore and Kleisli categories associated to a monad.

• In Chapter 3 we study how adjunctions induce monads and all monads can be
shown to derive from adjunctions, drawing from [10].

• In Chapter 4 we study two probability monads: the Giry and Kantorovich
monads.
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1. Monads
Two roads lead to the promised land of monads: the first is short, stating the definition
with little context and hoping to pick up intuition with example, while muttering some-
thing or other about monoids. The second is not as short, making out the landscape
by proceeding from classical monoids to monoidal categories to monoid objects and,
finally, monads.

We believe that the second path is worth the trouble, and take an unhurried approach
to formally arriving at the monad. The hope is that it will appear a natural conclusion
to the search for generalization which began with the monoid.

• In 1.1, we innocently generalize the classical monoid of Set and diagnose our
shortfalls.

• In 1.2, we introduce the theory of tensor categories, which allows finally for a
formal definition of the monad.

• In 1.3, we provide intuition for monads as systems of extending spaces to include
generalized elements, and revisit examples from the previous section in a new
light.

1.1. As generalizations of monoids
An archetypal algebraic structure is that of the monoid, describing the structure en-
joyed by sets equipped with an associative and unital binary operation. Formally, one
encounters the following definition in an introductory algebra text:

Definition 1.1. A monoid consists of a set M equipped with a multiplication
µ : M ×M →M which admits a unit e ∈M such that for all a, b, c ∈M

(i) µ(a, µ(b, c)) = µ(µ(a, b), c)

(ii) µ(a, e) = µ(e, a) = a.

This uncomplicated understanding of monoids gives rise to a plurality of remarkably
rich theories – particularly those whose objects are, or contain, particularly well-behaved
monoids, such as groups, rings, and modules – but it clings tightly to its particular
context, that of the universe Set.

In particular, how can a topologist – differential or not – come to witness monoids
in their field of study, in which mere functions play no role? Perhaps the path to
generalization in this case is clear – one should demand that the monoid’s multiplication
be continuous rather than a meager map of sets – but the ad hoc solution postpones
the problem of generalizing and, more importantly, fails in the many abstract settings
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in which objects and their morphisms do not naturally resemble sets and functions with
additional structure.

The first step in the effort to translate the theory of monoids to arbitrary categories,
then, is to express a monoid’s data and properties using categorical language; that is,
via commutative diagrams. Let us examine each condition in turn:

• condition (i) in Definition 1.1 can be seen as corresponding to an equality be-
tween maps from M3 to M which factor through M2. One first multiplies the
leftmost pair of elements in a triple and then multiplies the remaining two ele-
ments, while the other begins by multiplying the rightmost pair of elements in
a triple. In symbols, with µ : M ×M → M an arbitrary map of sets as of yet
and 1M the identity on M , this amounts to:

M ×M ×M M ×M

M ×M M

1M×µ

µ×1M µ

µ

(1.1.1)

• condition (ii) corresponds to an equality between endomorphisms on M which
factor through M2. The first is defined by adjoining the identity to an element
on its left hand side and subsequently multiplying, while the second adjoins the
identity on the right hand side. In symbols, and letting η : 1 = {∗} →M denote
the map which picks out the identity e ∈M , we have:

M M ×M M

M

η×1M

1M
µ

1M×η

1M

(1.1.2)

The fruit of such efforts is the ability to transport the preceding two diagrams to
an arbitrary category, thereby demanding that µ and η obey the defining monoidal
properties while being appropriate morphisms in the chosen ambient category. In this
manner, one (tentatively) generalizes the monoid beyond its birthplace of Set. Note
that the generalization appended an additional datum to the definition – the element
e ∈ M , formerly a property of the monoid’s multiplication, has been substituted for
the more general notion of a map η : 1→ M . Our aspiration is that at the conclusion
of our efforts, it will not be sensible to speak of an ‘element’ of an arbitrary monoid.

Instantiating the definition in Set should recover the classic monoid of Definition
1.1. Indeed it does: a monoid satisfies (1.1.1) as a consequence of its associativity and
satisfies (1.1.2) with η : 1→ M the map which picks out the identity. Conversely, any
binary operation which obeys (1.1.1) thereby associates, and which furthermore obeys
(1.1.2) has η(∗) as its identity. By identical reasoning, the generalized monoids in any
concrete category are monoids in the classical sense (though the converse need not, and
in fact should not, hold).

Instantiating the definition in Top confirms the previous intuition that one need only
demand that µ be continuous. In particular, the map η which picks out the unit is
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automatically continuous in the way all functions out of the singleton are - the only
topology admitted by the point is the discrete one. Accordingly, the new theory defines
a topological monoid to be a space equipped with the structure of a classical monoid
whose multiplication is continuous.

Let us move the picture to an algebraic setting, such as ModR. The notion of a
monoid structure on a module M is then determined by a multiplication morphism out
of the product M ×M . This is a somewhat unnatural restriction - the direct product
of modules often takes a back seat to the tensor product, which is less restrictive in
allowing maps of sets to be homomorphisms.

In fact, the demand that monoids in arbitrary categories have multiplication defined
out of the categorical product is a groundless restriction. Tensor products of modules
make that much clear. Rather than preserving a peculiarity of Set – the role of products
– it would be more appropriate to utilize a general theory of suitably well-behaved binary
products between objects in a category. Based in part on the tensor products of ModR,
it is to this theory of tensor categories to which we now turn. This path to generalizing
monoids, with slightly more care, will take us to monads as a special case.

1.2. As monoid objects in tensor categories
The theory of tensor categories arises as the study of a more general binary operation on
the objects of a category than the categorical product. Informally, it concerns categories
whose objects are ‘almost’ endowed with the structure of a monoid. That the theory
centers around near-misses to classical monoids rather than (only) exact matches is a
consequence of the additional structure inherited by passing from the elements of a set
to the objects of a category.

In particular, elements of a set are either equal or distinct, whereas objects of a cat-
egory enjoy the notion of proximity or ‘essential sameness’ witnessed by isomorphisms.
As a result, it would be inappropriately restrictive to demand that the binary oper-
ation on objects have a unit or associate in the strict sense of Definition 1.1. In the
following definition, such properties are permitted to hold up only up to isomorphism.
The price one pays for generality, however, is the logical complexity of disciplining such
near-misses, witnessed, for instance, in the associahedron of (1.2.2).2

Definition 1.2. A tensor category, or monoidal category, is a category C equipped with
a bifunctor ⊗ : C × C → C, known as the tensor product or monoidal product, a unit
object I ∈ C, and the following natural isomorphisms

(i) A natural isomorphism α : (−⊗−)⊗− ⇒ −⊗ (−⊗−), the associator, which is
natural in its three arguments for all a, b, c ∈ C, i.e. αa,b,c : (a⊗b)⊗c→ a⊗(b⊗c)

2This complexity is effectively lethal to the direct study of weak n-categories for finite n ≥ 4, in which
near-misses are defined in terms of ‘higher’ near-misses. More explicitly, 1-morphisms associate up to
2-isomorphisms, where 2-morphisms likewise associate up to 3-morphisms, and so on. n-morphisms,
meanwhile, associate ‘on the nose’; there is nowhere else to go! To witness the effects of the combina-
torial explosion, see [14] for a 51-page definition of a tetracategory, or weak 4-category.
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(ii) Two natural isomorphisms λ : I ⊗ − ⇒ 1C and ρ : − ⊗ I ⇒ 1C, called the left
and right unitors, respectively.

Subject to the following coherence conditions for all a, b, c, d ∈ C

(a) Commutativity of the triangle

a⊗ b

(a⊗ I)⊗ b a⊗ (I ⊗ b)

1a⊗λb

αa,I,b

ρa⊗1b (1.2.1)

(b) The pentagonal associahedron

(a⊗ (b⊗ c))⊗ d

((a⊗ b)⊗ c)⊗ d

(a⊗ b)⊗ (c⊗ d) a⊗ (b⊗ (c⊗ d))

a⊗ ((b⊗ c)⊗ d)

αa,b,c⊗1d

αa⊗b,c,d

αa,b,c⊗d

1a⊗αb,c,d

αa,b⊗c,d

(1.2.2)

The picture has been made significantly less compact by weakening the conditions on
a monoidal category’s tensor product, relative to the classical monoid. In particular,
additional data in the form of an associator and two unitors was introduced, as well as
the property of explicitly demanding that 4-ary tensor products be defined up to unique
associator isomorphisms (tensored with identities, if necessary). The mere presence of
an associator isomorphism fails to ensure associativity of higher products owing to
the presence of several chains of isomorphisms connecting distinct parenthesizations,
which a priori need not coincide. Diagram (1.2.2) displays distinct paths between
each parenthesization – defined by traveling opposite sides of the pentagon – and is
mandatory in ensuring that distinct identifications between a pair of parenthesizations
coincide.

It is not at all obvious that the explicit handling of the 4-ary case suffices to ensure
that higher products be defined up to a unique chain of associator isomorphisms. That
it does is a result of MacLane, and a central theorem of monoidal categories [8].

Theorem 1.3 (MacLane coherence). Suppose a monoidal category C with tensor prod-
uct ⊗ and associator α satisfies associahedron (1.2.2). Then for any functors F ′, F :
Cn → C given by repeated application of ⊗, there exists a unique composition of prod-
ucts of associators, their inverses, and identities which serves as a natural isomorphism
F ∼= F ′.
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Example 1.4. For C a category, the category End(C) of endofunctors and their natural
transformations forms a monoidal category. The tensor product is given by composition
and the unit object by 1C. Its associator and unitors are identities.

Example 1.5. For R a commutative ring, the category ModR of R-modules is a
monoidal category with ⊗ = ⊗R and I = R.

Example 1.6. Any category with finite products is a monoidal category with unit ob-
ject the terminal object, termed a cartesian monoidal category. Dually, categories with
finite coproducts are monoidal with unit object the initial object, termed cocartesian
monoidal categories.

Example 1.4 is a first indication of the ubiquity of monoidal categories, and will
serve as the backdrop for the theory of monads. It is also the first example of a strict
monoidal category, in which the tensor product associates and has a unit object ‘on the
nose’, rather than up to isomorphism.

Definition 1.7. A monoidal category whose associator and unitor natural isomor-
phisms are identities is a strict monoidal category.

Remark 1.8. Some authors speak of a dictionary between categorical constructions and
classical algebraic objects, defined by passing from a category to isomorphism classes of
its objects [2]. It is in this manner that, for instance, a category is a categorification of
a set. As as consequence of the associators and unitors in Definition 1.2, this dictionary
associates monoids to monoidal categories. Note that in strict monoidal categories, one
need not pass to isomorphism classes of objects. Abelian categories, which lie beyond
the scope of our discussion, correspond to abelian groups in precisely this manner (along
with some massaging needed to introduce ‘virtual’ inverses).

We are now equipped to define the true generalization of a monoid to an arbitrary
tensor category.3 A key observation is that the monoidal structure on the ambient
category influences the data of the monoid. In particular, the multiplication µ ought to
be out of the tensor product – it is for this reason that we turned to the more general
products – and the unit map out of the unit object η : I → M . Just as categorical
structure permitted laxness with respect to the properties of the tensor product, we
should likewise only require that µ ‘essentially’ associate and be unital.

Definition 1.9. A monoid, or monoid object, in a monoidal category C consists of an
object M along with a multiplication map µ : M ⊗M →M and a unit η : I →M such
that the following diagrams commute.

3By Example 1.4, this is more ambitious than our first generalization to categories with finite products.
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(M ⊗M)⊗M

M ⊗M

M M ⊗M

M ⊗ (M ⊗M)

µ⊗1M

µ

µ

1M⊗µ

αM,M,M

(1.2.3)

I ⊗M M ⊗M M ⊗ I

M

η⊗1M

λM

µ

1M⊗η

ρM
(1.2.4)

As in Definition 1.2, the pentagon encodes the associativity condition, demanding
that multiplication in three entries be defined up to the associator between parenthe-
sizations of M⊗3. Note that the commutative square (1.1.1) encoding associativity in
the classical case would not have sufficed owing to the lax associativity of the tensor
product. In particular, the notion of a ‘triple’ of inputs4 does not extend in a well-
defined manner to the monoidal category – each parenthesization of M⊗3 demands its
own object.

The demands on the unit, however, are witnessed by maps out of a unique binary
product, allowing diagram (1.2.4) to closely resemble its analogue from the classical
case. Note the importance of the unit morphism η having been defined as a map out
of the unit object I.

Notation 1.10. The unit object I of a monoidal category and unit η : I → M of
a monoid (object) are often each referred to simply as units, creating potential for
ambiguity. We reserve the term unit for the unit η of a monoid, which will be more
central to our study.

In order to be a true generalization, monoid objects should witness classical monoids
as a special case. By Example 1.6, Set equipped with the categorical product is a
monoidal category with unit 1 = {∗}. It has associator ((a, b), c) 7→ (a, (b, c)), left
unitor (∗, a) → a, and right unitor (a, ∗) → a. To see that a classical monoid is
precisely a monoid object in Set, note that (1.2.3) amounts to (a · b) · c = a · (b · c) and
(1.2.4) to e · a = a = a · e. More explicitly,

4Of course, the theory of generalized monoids being developed extends far beyond the concrete cases
examined in 1.1, in that multiplication is a morphism which need not resemble a function. The
multiplication (and unit) of monads will be of this more abstract type.
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((a, b), c)

(a · b, c)

a · b · c (a, b · c)

(a, (b, c))

µ⊗1

µ

µ

1⊗µ

αM,M,M

(1.2.5)

(∗, a) (e, a) or (a, e) (a, ∗)

e · a = a = a · e

η⊗1M

λM
µ

1M⊗η

ρM
(1.2.6)

A consequence of the above is that monoid objects in concrete categories are classical
monoids.

Notation 1.11. Hereafter, we use monoid in the sense of Definition 1.9 – diagrams
(1.2.5) and (1.2.6) have earned us the right.

For the last time, we have confirmed the intuition that a monoid in Top is exactly
a classical monoid with continuous multiplication.5 To see intuition fail, consider a
monoid object M in the cartesian monoidal category Mon of classical monoids and
their homomorphisms. As an object of Mon,M is equipped with its own multiplication,
denoted a · b, which its product inherits coordinate-wise. By virtue of moreover being
a monoid object in the sense of 1.9, it has a multiplication µ : M ×M →M , which we
denote a× b. As µ is a morphism in the category of monoids, it follows that

µ(a, b) · µ(c, d) = µ((a, b) · (c, d))

(a× b) · (c× d) = µ(a · c, b · d)

(a× b) · (c× d) = (a · c)× (b · d)

M ’s multiplication - as an element of Mon - is unital by definition, while its multipli-
cation - as a monoid object - is unital under (1.2.6). Then by Eckmann-Hilton, the
multiplications coincide and furthermore are commutative. Thus, a monoid object in
Mon is a commutative monoid, and any commutative monoid becomes a monoid object
by ‘reusing’ its multiplication.

Remark 1.12. On the subject of classical monoids, a source of monoidal categories
arises as a converse to Remark 1.8. Just as a category being a categorification of a set
allows for one to travel from categories to sets (by considering isomorphism classes of
objects), one can pass from a set to a category by constructing the discrete category
5Recall that functions out of the terminal space are automatically continuous.
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on a set. Similarly, one can pass from a classical monoid (M, ·) to a (strict) monoidal
category by constructing the discrete category with a⊗ b := a · b.

Example 1.13. By Example 1.5, the category Ab of abelian groups, or Z-modules, is
a monoidal category when equipped with the tensor product over Z. A ring R is an
abelian group equipped with µ : R ⊗Z R → R and η : Z → R so that the following
commute.

R⊗Z R⊗Z R R⊗Z R

R⊗Z R R

1R⊗Zµ

µ⊗Z1R µ

µ

R R⊗Z R R

R

η⊗Z1R

1R
µ

1R⊗Zη

1R

Thus, rings are monoids in Ab. Note that the pentagon of (1.2.3) reduces to a
square because Ab is a strict monoidal category. Likewise, a k-algebra is an object
R ∈ Vectk such that the above diagrams commute, with tensor products taken over k.
Consequently, k-algebras are monoids in Vectk.

The stage has been set for a compact, if abstruse, definition of a monad.

Definition 1.14. A monad on C is a monoid in End(C).

Let us be slightly more explicit: the morphisms of End(C) are natural transformations
and its tensor product is composition of functors, so that the data of a monad T consists
of natural transformations µ : T 2 ⇒ T and η : 1C ⇒ T . The properties µ and η
are subject to are simplified by End(C) being a strict monoidal category, as functors
associate and have a unit ‘on the nose’. However, the action of End(C)’s tensor product
on morphisms is slightly convoluted. Let (α, β) : A × B → A′ × B′ be a morphism in
the product category End(C)×End(C), meaning α : A⇒ A′ and β : B ⇒ B′ are natural
transformations. In order to construct the components of a transformation AB ⇒ A′B
from α and β, one must pass through AB′. In particular, for c, d ∈ C and f : c → d
one has

ABc ABd

AB′c AB′d

A′B′c A′B′(d)

AB(f)

A(βc) A(βd)

AB′(f)

αB′c αB′d

A′B′(f)

(1.2.7)

The uppermost square commutes before application of A by naturality of β, so it
commutes by functoriality of A. The bottommost square commutes by naturality of α,
and we conclude that c 7→ αB′c ◦ A(βc) defines a natural transformation AB ⇒ A′B′.

Fortunately, we need only consider the images of (1T , µ) : (T, T 2) → (T, T ) and
(µ, 1T ) : (T 2, T )→ (T, T ) in order to understand the constraints on the multiplication
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of a monad. By the preceding, the components of the image of (1T , µ) take the form
c 7→ 1T (Tc) ◦ T (µc) = T (µc) (1.2.8)

while the components of the image of (µ, 1T ) take the form

c 7→ µTc ◦ T 2(1Tc) = µTc (1.2.9)
Thus, the pentagon (1.2.3) encoding the associativity of a monad reduces to a square

like that in (1.1.1) – there’s only one T 3 – of the form:

T 3 T 2

T 2 T

Tµ

µT µ

µ

(1.2.10)

with the notation Tµ and µT justified (and made precise) in (1.2.8) and (1.2.9). In
words, µ must extend uniquely to a natural transformation T 3 ⇒ T , either by applying
T to the components of µ or applying µ to the image of T .

The condition on the unit η : 1C ⇒ T is simpler to make sense of: as the unitors in
End(C) are identities, the upper corners of (1.2.4) can be identified with the monad.
One is left

T T 2 T

T

ηT

1T
µ

1T

Tη

=
T T 2

T 2 T

ηT

Tη µ

µ

(1.2.11)

We are now justified in presenting an equivalent, sometimes more popular, definition
for the monad.

Definition 1.15. A monad on a category C is an endofunctor T on C equipped with
natural transformations µ : T 2 ⇒ T and η : 1C ⇒ T such that diagrams (1.2.10) and
(1.2.11) commute.

The advantage of Definition 1.15 is accessibility, having avoided monoidal categories,
which bears the cost of opacity, having obscured the origins of the relevant diagrams.
With the basic theory of monoidal categories behind us, we make use of the more
elementary definition when verifying monads – which has the benefit of having flushed
out the consequences of End(C) being strictly monoidal and the particularities of the
action of its tensor product on morphisms – while always keeping the humble beginnings
of classical monoids in mind.

Example 1.16. The power set functor P ∈ End(Set) is a monad with unit sending
an element to the singleton containing it η : X → PX, x 7→ {x} and multiplication
which takes the union across a subset of subsets of X to form a subset of X, i.e. µ :
P2X → PX,S 7→

⋃
R∈S

⋃
r∈Rr. η is natural because the image Pf of f : X → Y acts
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on subsets by acting on each of their elements by f . In particular, Pf({x}) = {f(x)}.

X Y

PX PY

f

ηX ηY

Pf

!

x f(x)

{x} {f(x)}

Likewise for µ; PPf applies Pf to each of its elements – subsets of X – and Pf acts
element-wise by f . Naturality amounts to the fact that direct images commute with
unions.

P2X P2Y

PX PY

P2f

µ µ

Pf

!

{{x}, {y, z}} {{f(x)}, {f(y), f(z)}}

{x, y, z} {f(x), f(y), f(z)}

(1.2.12)

The associativity condition on µ amounts to the claim that an element of P3X can be
assembled into an element of PX by starting with either ‘layer’ of subsets.

P3 P2

P2 P

Pµ

µP µ

µ

(1.2.13)

For instance, S = {{{a, b}, {b, c}}, {{d, e}}} ∈ P3X sees two roads to PX:
(i) Take the union of each element of S, via Pµ, so as to arrive at {{a, b, c}, {d, e}},

and union once more to settle at {a, b, c, d, e}, or
(ii) Take the union across elements of S, via µP , so as to arrive at {{a, b}, {b, c}, {d, e}},

and union once more to settle at {a, b, c, d, e}.
That these methods coincide corresponds to commutativity of (1.2.13). Now let Y ∈
PX; naturality of η results from {Y } and {{y}|y ∈ Y } both being ‘unwrapped’ by µ
to Y .

P P2 P

P

ηP

1P
µ

1P

Pη

(1.2.14)

For instance, the path through µ starting at the top right acts as
{a, b, c} 7−→ {{a}, {b}, {c}} 7−→ {a, b, c}

and the path through µ starting at the top left acts as
{a, b, c} 7−→ {{a, b, c}} 7−→ {a, b, c}

thereby completing the example.

Demonstrating that an object of End(C) is a monad can be an involved task, worthy of
doing at least once. In what follows, we provide detail at a level slightly less gruesome,
all the while encouraging the interested – or skeptical – reader to iron out the details.
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Example 1.17. The discrete distribution monad D on Set sends a set X to the set
of finitely supported functions φ : X → [0, 1] such that

∑
φ(x) = 1, where the sum is

taken over the support of φ [6]. In words, DX consists of weights across X which sum
to 1 and for which cofinitely many weights are zero.

A useful notational tool is to identify φ ∈ DX with the expression
∑
φ(x)[x]. The

brackets in [x] serve as syntactic sugar which distinguishes an element of X from its
position in the description of φ ∈ DX. For instance, when X = {a, b, c}, the map
φ : a, b, c 7→ 1

3
encodes uniform weights on the elements of X, and has the syntactic

representation 1
3
[a]+ 1

3
[b]+ 1

3
[c] as an element of DX. D acts on morphisms by extending

them linearly, so that
D(f)(

∑
i

wi[xi]) =
∑
i

wi[f(xi)]

for f : X → Y . Note that supp(D(f)) is finite as a consequence of supp(f) being finite.
Multiplication µ : D2X → DX transforms weights on weights on X into weights on X
by averaging, while the unit η : X → DX concentrates full weight on its input, i.e.

η(x) = 1[x] µ(Ω)(x) =
∑

φ∈supp(Ω)

Ω(φ) · φ(x)

Naturality of µ is a consequence of the fact that relabeling elements and averaging
weights commute. Formally, consider the lower left path of the following:

D2X D2Y

DX DY

D2f

µ µ

Df

(1.2.15)

Ω ∈ D2X maps to µ(Ω) =
∑

xwx[x], where wx =
∑

φ Ω(φ)φ(x). Passing through Df
yields Df(µ(Ω)) =

∑
xwx[f(x)]. The upper right path sends Ω to D2f(Ω) defined by

D2f(Ω) = D2f(
∑
φ

Ω(φ)[φ]) =
∑
φ

Ω(φ)[Dg(φ)]

Passing through µ yields
∑

x

∑
φ Ω(φ)φ(x)[f(x)] =

∑
xwx[f(x)], as desired. Unitarity

of η corresponds to the fact that weights on X, say φ ∈ DX, can be extended to weights
on weights on X and averaged back to weights on X in two ways:

(i) Give φ itself weight one, so that Dη(φ) = 1[φ], and average to 1 · φ = φ, or

(ii) Give each x ∈ X weight 1 and weight such a distribution with φ(x), so that
ηD(φ) =

∑
x φ(x)[1[x]]. Average to

∑
x φ(x)[x] = φ.

That these coincide completes the example.

Having established the basic theory, we depart from formalism in the following section
in an effort to attach an intuition – or several – to monads, which will pay dividends
particularly as we steer a course toward probability monads. For the moment, we can
pride ourselves in being on the right side of the joke definition sometimes exchanged
between computer scientists [4]:
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“A monad is just a monoid in the category of endofunctors, what’s the
problem?”

That is, we are on the side of those who don’t laugh at all.

1.3. As spaces of generalized elements
An interpretation of monads which can lend intuition is to consider them as procedures
for extending spaces to include generalized elements and appropriately generalized func-
tions [9]. In particular, the data of a monad T is then seen as consisting of:

• The assignment on objects X 7→ TX, with TX thought of as an extension of X
inhabited by generalized elements

• For each ordinary map f : X → Y , an extended map Tf : TX → TY which
accepts input of the generalized kind and likewise returns generalized output.

In the case of the discrete distribution monad D, a discrete distribution on a set X can
be thought of as a generalized element which draws from several ordinary elements.

The multiplication map µ : TTX → TX of a monad simplifies or evaluates twice
generalized elements to once generalized elements. In the case of D, a distribution on
distributions can be reduced to an ordinary distribution by averaging, precisely as in
the coins of (0.0.3).

• Naturality of evaluation corresponds to the fact that generalized functions com-
mute with evaluation

• The diagrammatic constraint on µ states that three-time generalized elements
can be unambiguously evaluated to generalized elements, either by first using
generalized evaluation Tµ or first applying usual evaluation to generalized inputs
Tµ (and, in each case, applying ordinary evaluation µ afterward).

The unit η associated to a monad serves to witnesses original elements as (usually
degenerate) instances of generalized elements. In the case of D, the elements of a set
do not carry the structure of a distribution but do embed naturally as deterministic
distributions, i.e. as Dirac distributions with full weight on a single element. Moreoever,

• Naturality of η corresponds to the property that Tf must coincide with f on
‘original’ or ‘old’ elements:

X Y

TX TY

f

η η

Tf

(1.3.1)

In the case of D, this amounted to Tf(1[x]) = 1[f(x)] = η(f(x)).

• The diagram constraining η corresponds to the fact that a generalized element
made twice general – usually in a degenerate manner – will evaluate to itself.
In D, a distribution transformed into a distribution over distributions – either
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with a single deterministic ‘outer’ distribution or several deterministic ‘inner’
distributions – averages to itself.

An additional interpretation of monads is as a system of extending input to include a
class of formal expressions and maps between formal expressions. For instance, a mere
set S can be extended to FS, the set of formal sums over S with integral coefficients, so
that 2s+ r ∈ FX. Crucially, a sum carries little structure – 2s+ r cannot be simplified
further – but sums of sums admit an evaluation, so that (2s + r) + 3(r + t) reduce to
2s+ 4r+ 3t. Additionally, any element s ∈ S embeds as a degenerate formal expression
in FS, of the form 1s or simply s. Lastly, a map of sets S → R lifts to a map of formal
expressions FS → FR by extending linearly, so that

Tf(α1s1 + · · ·+ αnsn) = α1f(s1) + · · ·+ αnf(sn) ∈ FR
Indeed, we have described the free abelian group monad on Set, which sends a set S
to the set of finite formal Z-linear combinations over S. This is not unlike the discrete
distribution monad D, and the verifications of their monadicity closely resemble each
another. A second pass at the details – with a newfound interpretation of monads – is
worth the trouble.

• Naturality of the unit η : 1⇒ T ensures that the output of an original element
coincide with its output as a formal expression.

S R

TS TR

f

ηS ηR

Tf

!

s f(s)

1s 1f(s)

• Naturality of evaluation µ : T 2 ⇒ T – which, informally, collects like terms –
corresponds to its commuting with linear functions.

T 2S T 2R

TS TR

T 2f

µS µR

Tf

For instance, 3(2s+ r) + 1(2r) ∈ T 2X can first have its like terms collected and
subsequently have f : S → R applied to its constituent terms, as in

3(2s+ r) + 1(2r) 7−→ 6s+ 5r 7−→ 6f(s) + 5f(r)

or it can first have f : X → Y applied to the constituent terms of its constituent
terms and then have its terms collected, as in

3(2s+ r) + 1(2r) 7−→ 3(2f(s) + f(r)) + 1(2f(r)) 7−→ 6f(s) + 5f(r)

• Unitarity of η corresponds to the fact that a formal expression turned into a
two-layed formal expression – with an outer coefficient of 1 or several inner
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coefficients of 1 – will evalaute to itself.

T T 2

T 2 T

ηT

Tη µ

µ

!

2r + 3s 1(2r + 3s)

2(1r) + 3(1s) 2r + 3s

• Finally, associativity of µ expresses the fact that three-layered formal expressions
admit a single evaluation to formal expressions, i.e.

T 3 T 2

T 2 T

Tµ

µT µ

µ

!

((r + s) + (s+ t)) (r + s) + (s+ t)

(r + 2s+ t) r + 2s+ t

A formal expression can be considered a particular form of generalized expression, so
the second interpretation of monads may, strictly speaking, offer no more than the first.
Yet they have each their own flavors, and the flexibility to alternate between stories
can be a great tool.

In fact, the free abelian group monad belongs to a larger class of free R-module
monads which naturally admit interpretation as creating spaces of formal expressions.
Rather than assigning to a set X the collection of Z-linear combinations of its elements,
it assigns the R-linear combinations, for R a ring. The unit and multiplication are
defined using the structure of R, as above. As special cases, taking R = Z recovers the
free abelian group monad and R = k the free vector space monad.
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2. Algebras
We have seen how a monad T on a category C can be understood as returning gen-
eralized versions of its inputs, which witness an algebraic structure borne by the unit
and multiplication maps η and µ. As monads are endofunctors on a category, such
generalized spaces are in fact peers to the ‘original’ or ‘classical’ objects contrasted in
1.3.

In the spirit of generalization, it is natural to ask which objects of C are ‘already
generalized’, enjoying the interplay with µ and η provided to the image of T . Of
course, the image of T obeys these properties by design – in a sense, we search precisely
for a generalization of the image of T . In the case of the discrete distribution monad,
the question amounts to: which sets behave as though they were distributions over
sets? Stated slightly differently, which sets consist of elements which appear naturally
as weighted averages across a smaller set? Convexity may come to mind, and this turns
out to be on the mark.

• In 2.1 we generalize the niceties granted to the image of T and arrive at the
algebras of a monad. We confirm that this is a generalization by observing that
elements in the image of T are special cases referred to as free algebras.

• In 2.2 we consider the categories of algebras and free algebras associated to a
monad, which set the stage for central results in Chapter 3.

2.1. (Free) Algebras

We look to generalize the algebraic structure afforded to objects TX in the image of a
monad T by considering objects in the ambient category C which – in the language of
1.3 – carry their own analogue to ‘evaluation’. In order to ensure that the evaluation
have the appropriate structure, the most naive approach is to:

(i) Consider the diagram encoding TX’s interaction with T and µ, the structure
being generalized:

T 3X T 2X

T 2X TX

Tµ

µT µ

µ

(2.1.1)
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(ii) Strike out each appearance of TX, replacing it with a more general object A ∈ C,
so as to arrive at

T 2A TA

TA A

Tµ

µT µ

µ

(2.1.2)

Note that (2.1.2) is ill-posed in its current form; µ : TA→ A need not be defined.
In fact, none of the morphisms need align with their claimed (co)domains.

(iii) Replace each µ : TA → A with an analogue to the evaluation map which is
suited to A, denoted a : TA→ A.

T 2A TA

TA A

Tµ

µT a

a

(2.1.3)

(iv) Finally, replace Tµ with Ta – so that the map indeed be from T 2A to TA – and
replace µT with µ, again so that the map agree with its source and target.

T 2A TA

TA A

Ta

µ a

a

(2.1.4)

Note the interpretation: an object A equipped with a map a : TA → A satisfying
(2.1.4) is a space which behaves as if it were generalized, in that:

(i) Generalized elements over A (via T ), can be evaluated by a, as any object twice
generalized by T can be evaluated by µ

(ii) The evaluation a particular to A is compatible with µ in the only manner sensible
– evaluation T 2A→ A beginning with µ or with Ta coincide.

In order to mimic the algebraic structure afforded to the image of T , we should also
demand that A and its associated evaluation map a behave well with respect to η. Recall
the constraint on µ’s interaction with η, reproduced below, which had the interpretation
of once generalized elements evaluating to themselves after being made twice generalized
by the unit (either post- or pre-composed with T ).

TX T 2X TX

TX

ηT

1TX

µ
1TX

Tη

(2.1.5)

Replacing TX with A, as above, produces

A TA A

A

ηT

1A
µ

1A

Tη

(2.1.6)
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However, η gives rise to only one map from A to TA (that is, η itself applied to A
in the usual way). In shifting the setup of (2.1.5) down by an application of T – i.e.
‘undoing’ one instance of T by passing from TX to A – the choice in constructing a
map from T ⇒ T 2 using η has been eliminated. There is only one map A→ TA, given
by η itself. As above, a : TA → A takes the role of µ. We are left with a triangle,
rather than a pyramid, of the form

A TA

A

ηA

1A
a (2.1.7)

which captures the fact that ‘old’ elements of A evaluate to themselves after embedding
in TA.

Diagrams (2.1.4) and (2.1.7) are the fruit of an innocent effort aimed at classifying
the objects which, in addition to the image of T , enjoy an algebraic structure vis-à-vis
µ and η. Our simple-minded approach turns out to be the righteous one, landing us at
the definition of an algebra of T .
Definition 2.1. An algebra of a monad T on C, or T−algebra, consists of an object
A ∈ C and a map a : TA→ A such that (2.1.4) and (2.1.7) commute.

A common first task in the study of algebras over monads is to verify that elements
in the image of T are indeed algebras when equipped with the standard multiplication
µ, i.e. that (TX, µX) forms an algebra for any X ∈ C. In our treatment, however, this
arises as an immediate consequence of our path to defining an algebra – by starting with
the properties afforded to the image of T and weakening conditions using appropriate
substitutions. Nevertheless, such algebras deserve their own name.
Definition 2.2. A free algebra of T is an algebra of the form (TX, µX) for some X ∈ C.
Example 2.3. Free algebras of the discrete distribution monad D are discrete distribu-
tions over sets with the usual monadic multiplication of averaging. Commutativity of
(2.1.4) and (2.1.7) is immediate from monadicity of D. What of algebras over D which
are not free? Recall that an algebra A over D admits its own analogue to averaging
a : TA → A of distributions over itself which is compatible with D’s averaging µ and
with the embedding α → 1[α], α ∈ A. A first candidate for A is to suppose that such
expressions as 1

2
[α1] + 1

4
[α2] + 1

4
[α3] have a natural meaning ‘baked into’ A – in other

words, that A be convex. This turns out to be well-founded, and indeed to classify the
algebras of D; going any further requires a definition.
Definition 2.4. A convex set consists of a set X equipped with a ternary operation
〈−,−,−〉 : [0, 1]×X×X → X such that, for all x, y, z ∈ X, r ∈ [0, 1] and r+(1−r)s 6= 0,

(i) 〈r, x, x〉 = x
(ii) 〈0, x, y〉 = y
(iii) 〈r, x, y〉 = 〈1− r, y, x〉
(iv) 〈r, x, 〈s, y, z〉〉 = 〈r + (1− r)s, 〈 r

r+(1−r)s , x, y〉, z〉

Informally, 〈r, x, y〉 has the interpretation of returning the element of X with a pro-
portion r of weight on x and (1−r) of weight on y. That 〈r, x, y〉 specifies an element of
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X for all r ∈ [0, 1] recovers the interpretation of a convex set as containing the geodesics
between its pairs of points. Conditions (i) - (iii) are sanity checks and (iv) plays a role
not unlike associativity, ensuring that a triple of points (x, y, z) can be averaged either
by first averaging (y, z), as one of the left hand side, or by first averaging (x, y), as on
the right hand side. We are prepared to classify the algebras of D.

Proposition 2.5. The algebras of the discrete distribution monad D are exactly convex
sets [5].

Proof sketch. Given an algebra (A, a) over D, the ternary operation on A can be defined
using a, i.e.

〈r, x, y〉 = a(r[x] + (1− r)[y])

Making use of commutativity of (2.1.7), which amounts to a(1[x]) = x, we have
〈r, x, x〉 = a(r[x] + (1− r)[x])

= a(1[x])

= x

〈0, x, y〉 = a(0[x] + 1[y])

= y

〈r, x, y〉 = a(r[x] + (1− r)[y])

= a((1− r)[y] + r[x])

= 〈1− r, y, x〉
The proof of (iv) from 2.4 is more involved and makes use of commutativity of (2.1.4).
The more demanding direction is, given a convex set C, to extend its ternary operation
to an analogue c to averaging for arbitrary finite distributions. The idea is to proceed
inductively.

c(w1[x1] + · · ·+ wn[xn]) =

{
x1 w1 = 1

〈w1, x1, c(
w2

1−w1
[x2] + · · ·+ wn

1−w1
[xn])〉 w1 < 1

(2.1.8)

One then checks that c is well-defined with respect to re-ordering of the xi. Then c
satisfies (2.1.7) by design, i.e. c(1[x]) = x, and (2.1.4) with some work. That these
procedures are inverse to one another completes the proof. �

Remark 2.6. Roughly speaking, convex sets admit averaging of pairs of elements, while
algebras of D admit averaging of finite collections of elements – that they coincide is a
testament to the strength of the conditions imposed on convex sets. In particular, it was
crucial that the extension from pairs to finite sets witnessed in (2.1.8) be well-defined
and, moreoever, well-behaved.

Remark 2.7. How can the free algebras C over D be detected at the level of convex
sets? They are exactly those which admit a uniquely generating set, i.e. some G =
{gi} ⊆ C such that any element of C appears as c(

∑
wi[gi]) for unique wi, with c defined

as in (2.1.8). Any such C appears as TG and, conversely, any TX has generating set
X.
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Example 2.8. The generalization of free algebras to algebras is sometimes fruitless –
consider, for instance, the free vector space monad. It can be shown that its algebras
are vector spaces; as all vector spaces are free modules over a choice of basis, the only
algebras over the free vector space monad are the free algebras.

Where do algebras fit into the picture described in 1.3? They admit interpretation as
objects in which generalized elements (or formal expressions) can already be evaluated.
Convex sets admit their own averaging, without first passing to formal averages, and
vector spaces likewise admit evaluation of sums, rather than just sums of sums. If
monads are ways of encoding algebraic structure in objects, its algebras are those objects
which didn’t need the help.

2.2. The Eilenberg-Moore and Kleisli categories
Having formalized the theory of algebras, it is natural to ask what form structure-
preserving morphisms between such algebras should take. As the structure on an alge-
bra (A, a) is determined by its evaluation map a : TA → A, a morphism of algebras
f : A→ B should respect the evident evaluation maps.

Definition 2.9. A morphism f : (A, a)→ (B, b) of T -algebras is a map f : A→ B in
C so that the following diagram commutes.

TA TB

A B

Tf

a b

f

Endowing morphisms of T -algebras with the composition in C, and recalling that
rectangles commute when their constituent squares do, the category of T -algebras and
their morphisms takes shape.

Definition 2.10. The Eilenberg-Moore category CT of a monad T over C is the category
of T -algebras and morphisms of T -algebras.

Extending the work from 2.5 to morphisms yields the description of the Eilenberg-
Moore category for the discrete distribution monad.

Corollary 2.11. SetD is isomorphic to the category of convex sets and affine functions
f : X → Y satisfying f(〈r, x, y〉) = 〈r, f(x), f(y)〉 [5].

Though arriving at the Eilenberg-Moore category of a monad came as a natural con-
sequence of examining its algebras, the value of this discovery is postponed to Chapter
3, where the Eilenberg-Moore category – alongside the Kleisli category – plays a crucial
role in connecting monads to adjunctions.

Just as the study of algebras led to special consideration of – and a name for – free
algebras, we turn now to the category of free algebras over a monad, which earns its
own name.

Definition 2.12. The Kleisli category CT of a monad T over C is the full subcategory
of the Eilenberg-Moore category CT consisting of free algebras.
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The above definition of the Kleisli category, though compact, is somewhat unconven-
tional, often supplanted by the following definition as C with ‘T -shifted’ morphisms.

Definition 2.13. The Kleisli category CT of a monad T over C is the category with
• objects equal to those of C
• HomCT (A,B) = HomC(A, TB)

In order to disambiguate hom-sets, we denote f ∈ HomCT (A,B) as f : A B. Identi-
ties and composition make use of the structure of T :

• ηA : A A is the identity on A in CT
• The composition g ◦k f of f : A B, g : B  C is defined

A
f−→ TB

Tg−→ T 2C
µc−→ TC

That ηA serves as the identity in the Kleisli category is a consequence of its naturality
and unitarity. For g : Z  A and f : A B one has

ηA ◦k g = Z
g−→ TA

TηA−−→ T 2A
µA−→ TA

= Z
g−→ TA (unitarity of η)

and

f ◦ ηA = A
ηA−→ TA

Tf−→ T 2B
µB−→ TB

= A
f−→ TB

ηTB−−→ T 2B
µB−→ TB (naturality of η)

= A
f−→ TB (unitarity of η)

Associativity of composition is slightly more involved. For h : Y  G and f, g as in
the proof of unitarity, one has:

(f ◦k g) ◦k h = µB ◦ T (f ◦k g) ◦ h
= µB ◦ T (µB ◦ Tf ◦ g) ◦ h
= µB ◦ TµB ◦ T 2f ◦ Tg ◦ h
= µB ◦ µTB ◦ T 2f ◦ Tg ◦ h (associativity of µ)
= µB ◦ Tf ◦ µA ◦ Tg ◦ h (naturality of µ)
= µB ◦ Tf ◦ (g ◦k h)

= f ◦k (g ◦k h)

For the moment we cave to convention and adhere to the more involved Definition
2.13, turning to example in order to observe T -shifted morphisms and their composition.

Example 2.14. The Kleisli category SetP of the power set monad consists of sets
equipped with P-shifted maps X  Y represented by functions X → PY . In par-
ticular, a Kleisli morphism X  Y is exactly a binary relation between X and Y
under the identification between a function f : X → PY and (nearly) its graph
{(x, y) : x ∈ X, y ∈ f(x)}. Kleisli composition

g ◦k f = X
f−→ PY Tg−→ P2Z

µZ−→ PZ
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applies f to X, then g element-wise to the image of f , and takes unions over the
resulting collection of subsets of Z. In symbols,

(g ◦k f)(x) = {z ∈ Z : ∃y ∈ f(X), z ∈ f(y)}
This coincides with the category Rel of sets equipped with binary relations. In partic-
ular, a morphism in Rel from A to B is exactly a relation, i.e. a subset R of A × B.
Writing a ∼R b if (a, b) ∈ R, composition in Rel

A
R−→ B

S−→ C

is exactly transitivity of the relation, i.e. a ∼S◦R c ⇐⇒ a ∼R b ∧ b ∼S c for some
b ∈ B. Or, in set notation, (a, c) ∈ S ◦R exactly when (a, b) ∈ R and (b, c) ∈ S for some
b ∈ B. This coincides with Kleisli composition in SetP , completing the isomorphism.

It remains to show that Definitions 2.12 and 2.13 are equivalent, a claim which is
neither obvious nor intuitive. We approach it, and see the merits of CT and CT , in
Chapter 3.
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3. Adjunctions
Consider an opposing pair of functors F : C � D : G. The degree of structure satisfied
by F and G is determined by how strictly they ‘undo’ each other – as measured by
how closely the composites FG and GF resemble the evident identities. When F and
G exhibit the most structure, FG identically equals 1D and likewise GF = 1C, giving
rise to an isomorphism of categories. Yet this is an overly restrictive condition to ask
of F and G; its view of functors is too granular. When equality is relaxed to natural
isomorphism – FG ∼= 1D and GF ∼= 1C – one obtains an equivalence of categories, a
relationship of greater importance in category theory, which is nevertheless strong.6

Can the demands on F and G be further relaxed? Following the path from isomor-
phism to equivalence, one can require only the existence of natural transformations –
not necessarily natural isomorphisms – connecting the composites of F and G with the
appropriate identities. In symbols, that there be η : 1C ⇒ GF and ε : FG⇒ 1D. That
one transformation be out of the identity and the other into the identity is crucial in
order to introduce compatibility constraints between η and ε. In particular, one ought
demand that η and ε behave like inverses in some manner – their mere presence says
little about the relationship between F and G. Notably, this has the effect of, for the
first time, destroying the symmetry between F and G. When all is said and done, there
will be a handedness to the definition of an adjunction.

An obstruction to constraining η and ε is that they share neither source nor target;
this can be remedied by making use F or G, with some subtlety as to when. In
particular, Fη yields a transformation F ⇒ FGF , while εF - with (εF )c = εFc - yields
a transformation FGF ⇒ F . Likewise, one has ηG : G ⇒ GFG and Gε : GFG ⇒ G.
We are equipped to demand that η and ε behave like inverses, up to translation.

Definition 3.1. An oppposing pair of functors F : C � D : G assemble into an
adjunction when there exist natural transformations η : 1C ⇒ GF and ε : FG ⇒ 1D
such that the following triangle identities commute, in which case F is left adjoint to
G and G is right adjoint to F .

F FGF

F

Fη

1F
εF

G GFG

G

ηG

1G
Gε (3.0.1)

6Compare with the choice to demand that the tensor product in a monoidal category associate and be
unital up to isomorphism, rather than ‘on the nose’.
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In the above, η is denoted the unit of the adjunction and ε the counit. One writes
F a G to denote that F is left adjoint to G. In addition to Definition 3.1, adjunctions
admit an equivalent, and perhaps more concrete, characterization by way of Hom-sets.
Definition 3.2. A functor F : C → D is left adjoint to G : D → C if there exists an
isomorphism of sets

HomD(Fc, d) ∼= HomC(c,Gd)

for all c ∈ C and d ∈ D which is natural in both variables. That is, the isomorphisms as-
semble into natural transformations HomD(F−, d) ∼= HomC(−, Gd) and HomD(Fc,−) ∼=
HomC(c,G−).

Notably, one passes from Definition 3.2 to Definition 3.1 by applying the isomorphism
on Hom-sets to identities. In particular, the component of the unit η : 1C ⇒ GF at c is
defined to be the image – or the transpose – of the identity 1Fc under the isomorphism.
Similarly, the component of the counit ε : FG⇒ 1D at d is defined to be the transpose
of 1Gd. We will see that Definition 3.2 lends itself to detecting adjunctions in nature,
while 3.1 will be of great use when monads enter the picture.

A famous class of adjunctions is that of free a forgetful adjunctions. Forgetful functors
U : B → A usually send an object b ∈ B to the object a ∈ A which ‘underlies’ b and
enjoys less structure. Any left adjoint F to a forgetful functor earns the name ‘free’,
and it usually enriches an object a with additional structure in a choiceless manner.
Example 3.3. The forgetful functor U : Top→ Set sends a topological space X to the
set UX underlying it and a continuous map f : X → Y to the function Uf : UX → UY
underlying it. By Definition 3.2, the free functor F : Set → Top admits a natural
isomorphism

HomTop(FX, Y ) ∼= HomSet(X,UY )

meaning continuous maps out of FX correspond to functions out of X. This is achieved
by the discrete topology on X, for which functions out of X are automatically contin-
uous. We made use of this fact when noting that monoids in Top are exactly classical
monoids with continuous multiplication. So the free topological space on a set X is the
space X equipped with the discrete topology.

In this case, U admits a right adjoint G as well. Again making use of Definition 3.2,
we see that such a functor would assign a space GX to X so that functions into X
correspond naturally to continuous maps into GX. This is satisfied by the indiscrete
topology, as any function into an indiscrete space is obligated to be continuous.
Example 3.4. The forgetful functor U : Vectk →Set sends a vector space to its under-
lying set and a linear map to its underlying function. The free vector space on a set
X is the vector space with basis X, as a linear map out of such a space is exactly a
function out of X. More generally, the free R-module on a set X is FX = ⊕XR, as a
homomorphism out of ⊕XR can be identified with a function of X, and vice versa.

Consider the actions of the unit and counit in the previous example: ηX : X →
UF (X) is a function from X to the set of k-linear combinations on X. By the earlier
remark on extracting the (co)unit of an adjunction from the natural bijection between
Hom-sets,

HomVect(FX, V ) ∼= HomSet(X,UV )
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we have that ηX is the transpose of 1FX . Since our bijection sends a linear map to its
image on basis vectors, we have that ηX sends an element of X to itself, thought of as
a basis vector. On the other hand, εV : FU(V ) → V is the transpose of 1UV ; that is,
the linear function FU(V )→ V which sends basis vectors of FU(V ) (vectors in V ) to
themselves, as elements of V . Thus, on arbitrary vectors in FU(V ), which are k-linear
combinations of vectors in V , it has the effect of evaluation.

Thus, the unit embeds an element as a degenerate case of an element with more struc-
ture, and the counit evaluates formal k-linear combinations of vectors into vectors. This
smells of monads, and indeed it should – we have arrived at the free vector space monad.
In fact, the free vector space monad is precisely UF , and the unit of the adjuction co-
incides with the unit of the monad. The counit, as a linear map rather than (just) a
function, requires some massaging in order to serve as the monad’s multiplication, but
it captures the relevant notion of evaluation.

This is no coincidence. Taking R = Z, rather than R = k, in the free a forgetful
adjunction on ModR gives rise to the free abelian group monad. In fact, the relationship
between adjunctions and monads extends far beyond the free a forgetful adjunction and
forms the subject of this chapter.

• In 3.1 we show that all adjunctions give rise to monads, by post-composing the
right adjoint with the left.

• In 3.2 we use the Kleisli and Eilenberg-Moore categories to show, remarkably,
that all monads arise in this way. We also characterize the Kleisli and Eilenberg-
Moore categories as universal among the adjunctions giving rise to a given
monad.

3.1. From adjunctions to monads
The first step in examining the intimate relationship between monads and adjunctions
is to generalize the behavior of the free a forgetful adjunction in generating monads. In
particular, we have seen in U : ModR � Set : F with F a U that UF gave rise to the
free R-module monad, which sends a set X to the collection of finite formal R-linear
combinations over X and extends functions on X linearly to the free R-module over
X. The unit η : 1Set ⇒ UF from the adjunction dovetailed with the unit of the monad,
sending an element of X to itself as a degenerate R-linear. The multiplication µ of the
monad, however, which evaluates R-linear combinations over R-linear combinations
into R-linear combinations, did not coincide exactly with the counit ε : FU ⇒ 1ModR ,
which evaluates a formal sum of elements in an R-module to its true sum. Translating
ε using F and U , however, so as to arrive at UεF : UFUF ⇒ UF , yields the function
– not R-module homomorphism – which plays the role of monadic multiplication by
evaluating R-linear combinations of R-linear combinations.

Proposition 3.5 shows that this procedure is not an artifact of the free a forgetful
adjunction but rather a property of all adjuncions: post-composing a right adjoint with
its left always produces a monad.
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Proposition 3.5. An adjunction F a U with F : C � D : U and η : 1C ⇒ UF ,
ε : FU ⇒ 1D gives rise to a monad on C with:

• endofunctor T = UF

• unit η : 1C ⇒ UF

• multiplication µ = UεF : UFUF ⇒ UF

Proof. The unitarity and commutativity axioms on T take the form

UF UFUF UF

UF

ηUF

1UF
UεF

UFη

1UF

UFUFUF UFUF

UFUF UF

UFUεF

UεFUF UεF

UεF

(3.1.1)

The unitarity triangles commute by the triangle identities demanded of η and ε in
Definition 3.1 (and pre- or post-composition of F or U). The associativity square
commutes by naturality of Uε : UFU ⇒ F . In particular, setting UFU = X, Y = F ,
and εF = f , the square amounts to

UFU(X) UFU(Y )

U(X) U(Y )

UFU(f)

Uε(X) Uε(Y )

U(f)

which expresses precisely naturality of Uε at f : X → Y . �

Example 3.6. We are acquainted with the free R-module monad, which arises from
the adjunction U : ModR � Set : F and specializes to the free vector space monad
when R = k and the free abelian group monad when R = Z. Similarly, the free group
monad arises from the free a forgetful adjunction U : Grp� Set : F . It sends a set X
to the collection of finite words with letters in X and X−1 – the set of formal inverses
to elements in X – subject to identifications which, for instance, identify xx−1 with the
empty word.

Example 3.7. The maybe monad in computer science arises from the free a forgetful
adjunction between pointed sets and ordinary sets. The category Set∗ of pointed sets
consists of sets with a distinguished point and functions which preserve such points.
The forgetful functor U : Set∗ → Set sends a pointed set to its underlying set, forgetting
which element takes the role of the distinguished point, and sends functions between
pointed sets to their underlying functions between sets.

The free pointed set on an ordinary set X is FX = X ∪ {X}, also denoted X+,
the set X along with a new distinguished point {X}. A function f : X → Y between
ordinary sets extends to a function Ff : X+ → Y+ by sending the added basepoint to
the added basepoint. This defines an adjuction, as the natural bijection

HomSet∗(X+, P ) ∼= HomSet(X,UP )
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is defined by restricting a map of pointed sets X+ → P to a function X → UP , i.e. by
forgetting the action on the point {X}. Injectivity amounts to the statement that a
map of pointed sets out of X+ is determined by its action on X. The unit η : 1⇒ UF
is given by the inclusion X ↪−→ X+ and the monad’s multiplication µ : (X+)+ → X+

acts as the identity on X and sends both added points to the single added point in X+.
By Proposition 3.5 - or direct means - the following diagrams commute, confirming
monadicity of the maybe monad.

X+ (X+)+ X+

X+

ηX+

1X+

µX

(ηX)+

1X+

((X+)+)+ (X+)+

(X+)+ X+

(µX)+

µX+ µX

µX

(3.1.2)

3.2. From monads to adjunctions
We have seen in Proposition 3.5 that any adjunction is the source of a monad on its
left adjoint’s domain. It is natural to wonder whether one can travel in the opposite
direction, constructing an adjunction which witnesses a given monad. Remarkably, this
indeed the case, a fact which makes use of the Kleisli and Eilenberg-Moore categories
[10].

Proposition 3.8. Let T be a monad on C with unit η and multiplication µ. There is
an adjunction F T : C � CT : UT between C and the Eilenberg-Moore category of T
which witnesses T as its induced monad.

Proof. Recall that CT consists of algebras over T equipped with morphisms between
algebras which respect their evaluation maps, i.e.

TA TB

A B

Tf

a b

f

Then there is a forgetful functor CT → C which we take to be UT . In the other
direction, F T : C → CT sends an object A to its free algebra TA with evaluation map
µA : T 2A→ TA. Note that morphisms in C map to morphisms of T -algebras in CT by
naturality of µ.
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To see that F T is left adjoint to UT , we appeal to Definition 3.1. Since UTF T = T ,
we may take the monadic unit η : 1C ⇒ T to be the unit of the adjunction. The counit
ε : F TUT ⇒ 1CT is defined at an algebra of CT using its evaluation map. In particular,
the component ε(A,a) of the counit at the algebra (A, a) is precisely a : (TA, µA) →
(A, a). That this be a morphism of T -algebras is identically the content of axiom
(2.1.4) demanded of T -algebras.

T 2A TA

TA A

Ta

µA a

a

Since UT εF T (A) = UT ε(FTA,µA) = UTµA = µA, the monad induced by F T a UT is
precisely (T, η, µ). It remains only to show F T is indeed left adjoint to UT with η and
ε as above.

F T F TUTF T

F

FT η

1
FT

εFT

UT UTF TUT

UT

ηUT

1
UT

UT ε (3.2.1)

Composing the left diagram of (3.2.1) with UT , and recalling UTF T = T , yields

T T 2

T

Tη

1T
µ

which commutes by unitarity of η. Since UT is faithful, the original diagram commutes.
The right diagram of (3.2.1) can likewise be reduced to a unitarity condition on η
demanded by T . �

Note that the adjunction of Proposition 3.8 is simply a free a forgetful adjunction
between C, endowed with the monad T , and the category of T -algebras. An analogous
result furthermore holds for the Kleisli category CT associated to T , defined for the
moment as C with T -shifted morphisms, i.e. HomCT (A,B) = HomC(A, TB). We will
see shortly, however, that this definition coincides with that of the Kleisli category as
the full subcategory of CT consisting of free algebras.

Proposition 3.9. Let (T, η, µ) be a monad on C. There is an adjunction FT : C � CT :
UT between C and the Kleisli category of T which witnesses T as its induced monad.

Proof. Define FT to act as the identity on objects and send f : A → B in C to the
Kleisli morphism FTf : A B with

FTf = A
f−→ B

ηB−→ TB
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We saw in Definition 2.13 that ηA : A A is the identity on A in CT , so FT preserves
identities. To see that it respects composition, let g : A→ B and f : B → C.

FT (f) ◦k FT (g) = (ηC ◦ f) ◦k (ηB ◦ g)

= µC ◦ T (ηC ◦ f) ◦ (ηB ◦ g)

= µC ◦ TηC ◦ Tf ◦ ηB ◦ g
= µC ◦ TηC ◦ ηC ◦ f ◦ g (naturality of η)
= ηc ◦ f ◦ g (unitarity of η)
= FT (f ◦ g)

Now set UT to act as T on objects and to carry A B, represented by f : A→ TB in
C, to

UTf = TA
Tf−→ T 2B

µB−→ TB

Then UT carries ηA : A  A to µA ◦ TηA = 1TA. Let B  TC be represented by
g : B → TC in C and f as above.

UT (g ◦k f) = UT (µC ◦ Tg ◦ f)

= µC ◦ T (µC ◦ Tg ◦ f)

= µC ◦ TµC ◦ T 2g ◦ Tf
= µC ◦ µTC ◦ T 2g ◦ Tf (associativity of µ)
= µC ◦ Tg ◦ µB ◦ Tf (naturality of µ)
= UT (g) ◦ UT (f)

That FT be left adjoint to UT is an immediate consequence of the definition of hom-sets
in the Kleisli category. In particular,

HomCT (FTA,B) = HomCT (A,B) ∼= HomC(A, TB) = HomC(A,UTB)

The proof is completed by observing that UTFT = T . �

Remark 3.10. Propositions 3.8 and 3.9 justify a view of monads as byproducts of
adjunctions. Indeed some adopt such a view, characterizing the monad as the ‘trace’
of an adjunction or the ‘shadow’ cast by an adjunction on its left adjoint’s domain
[10, 11]. This seems somewhat like the characterization of limits as terminal objects –
recall that limits are terminal objects in the category of cones over a diagram and a
terminal object is a limit over the empty diagram. That is to say, it is a correct but
somewhat unnatural presentation. Just as it often feels stilted to describe a limit by
defining a suitably convoluted category and observing its terminal object, it is difficult
to imagine the discovery of most monads of interest by way of examining adjunctions.

Given two solutions to the problem of witnessing an adjunction which induces a given
monad, by Eilenberg-Moore and by Kleisli, it is natural to wonder in what manner, if
any, the solutions are related. As is often the case, resolution of this question demands
consideration of the greater landscape – it is to the world of adjunctions inducing a
given monad to which we now turn.
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Definition 3.11. For (T, η, µ) a monad on C, the category AdjT of adjunctions over T
has adjunctions F a U inducing (T, η, µ) as objects, i.e.

C DaF

G

A morphism between adjunctions is a functor between the domains of the right adjoints
which commutes with the right and left adjoints, i.e.

D D′

C

K

U

a

U ′

a

F

F ′

with KF = F ′ and U ′K = U .

Note that all adjunctions in AdjT share units – recall that the unit of an adjunction
and the monad it induces coincide – whereas counits may differ. Simple consequences
whose proofs we omit are that:

(i) morphisms of adjunctions commute with counits, i.e. Kε = ε′K, and

(ii) morphisms of adjunctions respect transpositions, i.e. the transpose of a mor-
phism f : c → Ud = U ′Kd in D′ is the image under K of its tranpose in
D.

We are equipped to characterize the Kleisli and Elienberg-Moore categories as extremal
objects in AdjT .

Proposition 3.12. Fix a monad (T, η, µ) on C. The Kleisli category CT of T is initial
in AdjT and the Eilenberg-Moore category CT is terminal. Diagrammatically, for any
adjunction F a U inducing T , there exist unique J : CT → D and K : D → CT such
that the following commutes.

CT D CT

C

∃! J

UT

a a U

∃! K

a

UT

F
FT

FT

Proof. We observe that J and K are uniquely (and functorially) defined by the above
constraints. Since JFT = F and FT acts as the identity on objects, J must coincide
with F on objects. And since J commutes with transposes, Jf is obligated to be the
transpose of f under F a U .

As UTKd = Ud, and UT is the identity on objects, Kd = Ud equipped with an
evaluation map as a T -algebra. By the proof of Proposition 3.8, the evaluation map
a of an algebra (A, a) is precisely the component of the counit of F T a UT at (A, a).
Thus a is the map (TA, µA)→ (A, a) which is the transpose of 1A = 1UT (A,a). Since K
commutes with transposes, we must then define Kd = (Ud, Uεd). On morphisms, K
acts simply as U , again a consequence of UTK = U .

We leave functoriality of J and K as an exercise. �
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Then, by the above, there exists a canonical functor from the Kleisli category of a
monad to the Eilenberg-Moore category which commutes with their respective free and
forgetful functors. Notably, it succeeds in identifying the working Definition 2.12 of
the Kleisli category with 2.13 – C with T -shifted morphisms is equivalent to the full
subcategory of CT whose objects are the free T -algebras.

Corollary 3.13. The canonical functor K : CT → CT in AdjT is fully faithful with
image consisting of free T -algebras.

Proof. By the proof of Proposition 3.12, Kc = (Tc, µC). In particular, Tc = UT c and
µc = UT ε

CT
c for εCT the counit of the Kleisli adjunction. To see that K is fully faithful,

recall that its action on hom-sets
HomCT (c, c′) −→ HomCT (Kc,Kc′) = CT ((Tc, µc), (Tc

′, µc′))

commutes with the isomorphisms which identify both sets with HomC(c, T c
′). �

Having developed the basic machinery of monads, we look to bring life to the subject
by way of categorical probability, a modern world in which probability monads take
center stage. It is in these spirits that we turn to Chapter 4.
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4. Probability Monads
Categorical probability has emerged as the effort to apply categorical techniques to the
study of probability, measure theory more generally, and mathematical statistics [9].
In the introduction, we considered the silhouette of a probability monad, that central
tool of categorical probability which assigns to a space X a collection of probability
measures over X.

Despite having become literate in the theory of monads in the time since, the picture
cannot be made much crisper – there is no formal definition for a probability monad.
Nevertheless, our background in monads merits a second pass at the framework:

• A probability monad T assigns toX ∈ C a collection TX of probability measures
over X. In those settings in which elements of C carry structure beyond that
of a set – say a topology or a metric – TX must thus be endowed with such
structure as well.

• T acts on morphisms, so that a map f : X → Y extend to a map Tf : TX →
TY , most often via the pushforward of measures.

• µ : T 2 ⇒ T serves to reduce measures over measures to mere measures, usually
via averaging. An archetypal example is the compression of (0.0.2) to (0.0.3),
in which a random choice of a fair coin and a double-sided heads coin was seen
to amount to a single coin with 3/4 weight on heads. Formally, µ customarily
takes the form of integration.

• η : 1 ⇒ T extracts a probability measure over a space X from each of its
elements x. The natural choice is the Dirac measure at x, which outputs 1 if a
measurable set contains x and 0 otherwise.

The profile may bring to mind a familiar figure, that of the discrete distribution monad
D on Set. Indeed it should; D is an elemental probability monad which has served as
an object of our study in slight disguise.

• In 4.1 we revisit the discrete distribution monad, casting it in a new light and
making use of tools from Chapters 2 and 3.

• In 4.2 we turn to the Giry monad, examine its Kleisli category, and briefly
introduce the Kantorovich monad.

4.1. An old friend
Recall the discrete distribution monad D on Set, defined in 1.17 so as to assign to X
the set of finitely supported functions f : X → [0, 1] with

∑
f(x) = 1. DX now admits

interpretation as a collection of probability measures on X endowed with the discrete
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σ-algebra, so that all its subsets be measurable. Formally, f ∈ DX gives rise to the
probability measure Pf on X with Pf (S) =

∑
f(s) for all S ⊆ X, the sum taken over

the elements of S which lie in the support of f .7
On morphisms D was defined so that for g : X → Y and f ∈ DX, one have

(Dg)f = f ◦ g−1.
X Y

[0, 1]

g

f
f◦g−1

Strictly speaking, f is – as in the definition of Pf – being extended to act on subsets
of X via intersection with supp(f) followed by pointwise sum. Intuitively, each x ∈ X
sends its weight, defined as f(x), to its image under g, so that the weight on a point
y ∈ Y come out to f ◦ g−1(y). This is an instance of the pushforward of measures
mentioned previously.

That D preserves identities amounts to f◦1−1
X = f ; that it commute with composition

is a consequence of the fact that the pre-image of a composition g ◦ h may be taken all
at once or in two steps (by pre-imaging under h and then under g). Diagrammatically,
the dashed arrows below commute.

X Y Z

[0, 1]

g

f

h

f◦g−1

f◦(h◦g)−1

h−1

µ : D2 ⇒ D is defined to average a probability distribution over probability distri-
butions, as in the fair and two-headed coins. Formally, for Q ∈ D2X a probability
measure over DX equipped with the discrete σ-algebra, one has:

µ(Q)(S) =
∑

P∈supp(Q)

Q(P ) · P (S)

Here supp(Q) refers to those finitely many distributions in DX to which Q assigns non-
zero probability. In words, µ(QX) is defined – as a probability measure on X – to assign
to S ⊆ X a weight according to the following rule: a distribution P in DX assigns a
weight of P (S) to S, and is itself scaled by Q(P ) so as so ultimately contribute a weight
of Q(P ) · P (S) to S. Note the similarity to the process of multiplying through edge
weights in (0.0.2), an instance of µ being applied to an element of D2({heads, tails}).

The Dirac measure defines the unit η : 1Set ⇒ D, with x ∈ X mapped to δx and, for
S ⊆ X:

δx(S) =

{
1 x ∈ S
0 x /∈ S

.

7Restricting the sum is necessary in the event that S be uncountably infinite. If S is countable, then
finiteness of the support of f assures convergence of the sum; alternatively, monotone converge suffices,
as the sum is bounded by 1.
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Naturality of η amounts to δx ◦ f−1 = δf(x).

X Y

DX DY

f

η η

Df

!

x f(x)

δx δf(x)

In words, a set’s pre-image under f contains x exactly when the set contains f(x).8
Unitarity of η corresponds to the fact that a distribution P ∈ Π(X) can be made an
element of Π2(X) by two means, each of which average back to P under µ:

• Via Dη: apply η to each element x ∈ X, and assign a weight of P (x) to the
resulting distribution δx.

• Via ηD: Apply η to P itself, resulting in the element of Π2(X) which places full
weight on P .

Formally, for x ∈ X,
µ(DηP )(x) = (DηP )(δx) · δx(x) = P (x) · 1

and
µ(ηDP )(x) = (ηDP )(P ) · P (x) = 1 · P (x).

In the case Ω = {heads, tails}, one has:

DΩ D2Ω

D2Ω DΩ

ηD

Dη µ

µ

!

1
2
heads + 1

2
tails δ 1

2
heads+ 1

2
tails

1
2
δheads + 1

2
δtails

1
2
heads + 1

2
tails

Lastly, associativity of µ amounts to the fact that an element of D3(X) – a distribution
over distributions over distributions – can be averaged beginning with the outermost
two dinner distributions or the innermost distributions. Averaging the resulting element
of D2(X) yields the same distribution over Ω in either case.

Our vocabulary has expanded since our last pass at D. In particular, we may inquire
as to the structure of the Kleisli category SetD associated to D. It is the category in
which:

• Objects are sets X

• Morphisms X  Y are functions X → DY assigning to each element of X a
distribution over Y

• The identity X  X assigns the Dirac measure δx to each x ∈ X
• Composition of f : X  Y and g : Y  Z is given by

g ◦k f = µ ◦ Dg ◦ f.

8This heuristic made use of a correspondence between the Dirac measure δx and the characteristic
function χx, a sometimes useful trick.
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Intuitively, morphisms in SetD play the role of transition probabilities. The output
of x ∈ X under a map X  Y records the random law describing where one ‘lands’
in Y after leaving x. Kleisli composition then acts as usual composition of transition
probabilities. For X  Y  Z, the composition X  Z records the probability of
landing in z ∈ Z when beginning in x ∈ X – given by the sum across y ∈ Y of the
probability of landing in y after x times the probability of landing in z after y.

We saw in 2.11, meanwhile, that the Eilenberg-Moore category SetD is isomorphic to
the category of convex sets and affine functions. Though this may appear to lack the
natural probabilistic interpretation of the Kleisli category and its stochastic maps, it is
in fact the first sign of a profound relationship in categorical probability. That is, the
algebras of probability monads tend to look convex, and convex spaces are those which
- roughly speaking - admit weighted sums of their elements with coefficients which sum
to 1, as witnessed in the proof of Proposition 2.5.

The conclusion is that the algebras of probability monads tend to be those spaces
which permit a notion of expected value, arguably the most important operation in
probability. It suggests that expectation is the ultimate well-behaved rule for evaluating
a distribution over a space into an element of the space, an affirming and far-reaching
result. As we proceed in the study of probability monads, we should be watchful for
this relationship, one of the key discoveries of categorical probability.

4.2. The Giry and Kantorovich monads
The probability monad of greatest historical importance is unambiguously that of the
Giry monad, introduced by Giry in 1982 as a pair of related monads [3]. We focus on
the monad defined on Mes, the category of measurable spaces, rather than the monad
on Pol, the category of Polish spaces. In each case, the monads act nearly identically,
and the monad on Mes is arguably more fundamental, while capturing the essential
idea.

As a brief reminder, the category Mes is inhabited by measurable spaces (Ω,FΩ),
i.e. a pair of a set Ω and an associated σ-algebra FΩ. We opt to suppress a mea-
surable space’s σ-algebra, so that Ω denote the set underlying a measurable space, its
σ-algebra understood to be FΩ. An element of FΩ is referred to as a measurable set,
and the morphisms in Mes are functions which reflect measurable sets. More explicitly,
a measurable function f : Ω→ Ω′ is a function such that f−1(B′) ∈ FΩ for all B′ ∈ FΩ′ .

Definition 4.1. The Giry monad (Π, η, µ) on Mes is defined as follows:

• On objects, Π assigns to Ω the set Π(Ω) of all probability measures on Ω. It is
equipped with the coarsest σ-algebra such that the following evaluation maps
are measurable for all B ∈ FΩ

Π(Ω) −→ [0, 1]

P 7−→ P (B)
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• On morphisms, Π acts to pushforward measures, i.e. for f : Ω→ Ω′, one has
Π(f) : Π(Ω) −→ Π(Ω′)

P 7−→ P ◦ f−1

Note that P (f−1(B)) is defined for B ∈ FΩ′ precisely because f−1(B) ∈ FΩ, by
measurability of f .9

• The unit η : 1Mes ⇒ Π assigns to ω ∈ Ω the Dirac measure δω
• The multiplication µ : Π2 ⇒ Π acts by integration; for Q ∈ Π2(Ω) and B ∈ FΩ,
µ(Q) assigns measure to B by

µ(Q)(B) =

∫
P∈Π(X)

P (B)dQ

The integral is defined because evaluation maps are measurable out of Π(Ω).

This is likely a case in which a disciplined examination of the details of Π’s monadicity
is not worth the trouble, especially after two passes at the discrete distribution monad.
Naturality and associativity of µ are the only non-trivial arguments, and follow without
much difficulty from the following lemma [3].

Lemma 4.2. The following hold for f : Ω → Ω′, P ∈ Π(Ω), Q ∈ Π2(Ω), and bounded
θ′ : Ω′ → R.

(i)
∫
θ′dΠ(f)(P ) =

∫
θ′ ◦ fdP

(ii) ξ′θ : Π(Ω′)→ R defined by ξθ(P ) =
∫
θ′dP is measurable

(iii)
∫
θdµ(Q) =

∫
ξθdQ

Proof. When θ is a characteristic function χB, the result holds by definition. By lin-
earity of integration, it thus holds for simple functions (i.e. R-linear combinations of
characteristic functions). By monotone convergence, it finally holds for arbitrary θ,
which can be witnessed as the limit of a monotone sequence of simple functions. �

Thus, the discrete distribution monad admits an extreme generalization to the Giry
monad, which places no restrictions whatsoever on the probability measures in Π(Ω).
It is somewhat remarkable that such an assignment indeed forms a monad. What of
the Kleisli and Eilenberg-Moore categories associated to Π? As with the discrete distri-
bution monad, the Kleisli category of Π has transition probabilities as morphisms, this
time without restriction on σ-algebra or support. In particular, a transition probability
from Ω to Ω′ is defined formally as a function t : Ω×FΩ′ → [0, 1] such that:

(i) t(ω,−) is a probability measure on Ω′ for all ω ∈ Ω

9In our mind, this is the raison d’être for the definition of measurable function: one would like for
a morphism between measurable spaces to extend to a transfer of measures (either from domain to
codomain or vice versa). The natural options are pushforward or pullback - the pullback is hopeless,
because direct images almost never commute with disjoint unions. In order for the pushforward to
work, the map on underlying sets must have reflected measurable subsets, and one arrives at the
definition.
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(ii) t(−, B′) is measurable for all B′ ∈ FΩ′

where t(ω,B′) is interpreted as recording the probability that one will land in B′, having
departed from ω. A morphism f : Ω Ω′ in MesΠ determines a transition probability
from Ω to Ω′ by defining tf (ω,B′) := f(ω)(B′). Then

(i) tf (ω,−) = f(x)(−) is a probability measure on Ω′ precisely because f : Ω Ω′

corresponds to a morphism Ω→ Π(Ω′)

(ii) tf (−, B′) = f(−)(B′) is measurable because it is the composition of f with the
function Π(Ω′) → [0, 1] which evaluates a measure at B′; f is measurable by
assumption and the evaluation map by design of the σ-algebra on Π(Ω′)

In fact, the Kleisli morphisms of MesΠ attain all transition probabilities in this man-
ner, and the compositions in each setting coincide. An immediate consequence of as-
sociativity of composition in Kleisli categories is thus that composition of transition
probabilities associates, a result which would otherwise be non-trivial [3].

The Eilenberg-Moore category MesΠ, however, is more difficult to study, as it involves
the task of classifying the Giry monad’s algebras. A recent paper claimed to have
demonstrated an equivalence between MesΠ and the category of convex measurable
spaces but has since been proven incorrect [12, 1]. As of yet, such a result escapes
categorical probabilists. Nevertheless, the Giry monad has been the subject of active
mathematical research and, furthermore, found application in such areas as theoretical
machine learning and functional programming [13].

The Kantorovich monad belongs to the younger generation of probability monads
and, though less approachable than the Giry monad, offers an example of a probability
monad on a category endowed with more structure than Mes [9]. In particular, the
Kantorovich monad acts on CMet, the category of complete metric spaces and short,
or 1-Lipschitz, maps.

Definition 4.3. The Kantorovich monad P on CMet is as follows:
• For X ∈ CMet, PX is a subset of probability measures on X made a complete
metric space under the Wasserstein or earth mover’s distance, i.e.

dPX(p, q) := inf
r∈Γ(p,q)

∫
X×X

dX(x, y)dr(x, y)

where Γ(p, q) denotes probability measures on X ×X with marginals p and q

• On morphisms, P acts via the pushforward

• The Dirac embedding serves as the unit η, and taking the expected distribution
of a distribution over distributions serves as the multiplication µ, as in the Giry
monad.

For the sake of simplicity, we suppress the conditions imposed on the measures in
PX; roughly speaking, the measures are required to be well-behaved with respect to
the metric on X and to have expected values with respect to Lipschitz functions. The
restriction to short maps in CMet, meanwhile, ensures that the measures of PX have
finite distance between one another.
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Consider now the Wasserstein or earth mover’s distance, used to endow PX with
the structure of a metric space. For p, q ∈ PX, their distance carries the interpretation
of the work needed to move the mass of one distribution to that of the other. In the
integrand, dr(x, y) can be seen to measure the amount of mass being interchanged
between p and q, and dX(x, y) the distance it must travel. Perhaps more intuitively,
for p and q thought of as piles of sand over X, the earth mover’s distance records the
work needed to exchange the grains constituting each pile, explaining its name.

Critically, the earth mover’s distance makes use of the metric on X, thereby recording
information as to its topology when evaluated on measures over X. Contrast with, for
instance, the total variation distance of probability measures

δ(p, q) = sup
B∈FX

|p(B)− q(B)|

which disregards the topology on X. We conclude with two remarks on the Kantorovich
monad:

(i) It admits a purely formal characterization of its multiplication, allowing one to
make use of integration without integrating. This presents advantages primarily
in infinite-dimensional settings.

(ii) It enjoys a classification of its algebras as closed convex subsets of Banach spaces.
In particular, the relationship between the algebras of a probability monad and
expectation is once again witnessed, by way of convexity.
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