
Tangent Lines to Curves Arising from Automorphic Distributions

Ian Le

April 4, 2005

Abstract

Automorphic distributions arise in connection with boundary values of modular forms and
Maass forms. In most cases, these distributions have antiderivatives that are continuous func-
tions. We shall look at the result of graphing the real vs. imaginary parts of these functions.
Because of the automorphic properties of the distributions we consider, the graphs of their an-
tiderivatives are curves which exhibit fractal-like self-similar behavior, as is illustrated in figures
3, 7 and 10. We show that at irrational points of these curves, this behavior is wild enough to
prevent the existence of tangent lines to these curves. At rational points, these curves occasion-
ally admit tangent lines, and we shall give a complete answer as to where these tangent lines
occur.

1 Introduction

According to Weierstrass, Riemann presented

∞∑

n=1

1
n2

sinn2x

as an example of a function which was everywhere continuous, but nowhere differentiable. It is not
known, however, whether Riemann ever gave a proof of the non-differentiability of this function,
or whether he even considered it in the first place. Weierstrass attempted to prove Riemann’s
statement, but was unsuccessful. Instead, he offered functions of the form

∑
an cos bnπx

as examples of everywhere continuous but nowhere differentiable functions.
In 1916, Hardy [4] was able to show that Weierstrass’s function was not differentiable at any

point x where

• x is irrational;

• x is a rational number of the form 2A/(4B + 1) where A and B are integers;

• x is a rational number of the form (2A + 1)/2(2B + 1) where A and B are integers.

In fact, Hardy also proved that the functions

∞∑

n=1

1
nα

sinn2πx,
∞∑

n=1

1
nα

cosn2πx
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are not differentiable at irrational points for α < 5
2 and on a dense set of rational numbers for

2 < α < 5
2 . Hardy also offers some insight as to why showing the non-differentiability of Riemann’s

function eluded Weierstrass: “The question is a much more difficult one than those connected with
Weierstrass’s function, owing to the comparatively slow increase of the sequence n2” [4].

In 1970, Gerver [2] showed non-differentiability at points of the form (2A+1)/2n, thus extending
Hardy’s result. But more importantly, he showed that there were in fact points where the function

∞∑

n=1

1
n2

sinn2πx

was differentiable–contrary to the belief of Weierstrass and Riemann. Specifically, he showed that
at points p/q with p and q both odd, the derivative was −π/2. In 1971, Gerver went on further
to show that these were the only points at which derivatives exist. His proof was elementary, but
quite long and complicated. Several shorter proofs were given by Smith, Queffelec, Mohr, Itatsu,
Luther, Holschneider and Tchamitchian. References can be found in [1].

In 1991, Duistermaat [1] further analyzed the local properties of Riemann’s function, finding
the pointwise Hölder exponent at rational points. He also found the pointwise Hölder exponent
at a large (in a measure-theoretic sense) class of irrational points by showing that the function is
sufficiently wild at these points. His insight was that the function

∞∑

n=1

1
πn2

sin 2πn2x

should be analyzed alongside the function

∞∑

n=1

1
πn2

cos 2πn2x,

and that they were the real and imaginary parts, respectively, of the function

φ(x) =
∑

n 6=0

1
2πın2

e2πın2x.

This function can be viewed as the “antiderivative” of the classical theta-function

θ(z) =
∑

n∈Z
e2πın2z

in the following sense: the classical theta-function is a holomorphic function on the upper half plane
H, and its limit as z approaches the real line is not a function in the usual sense (the limit at some
real points is infinite or undefined) but a distribution, or a generalized function; this distribution is
in turn the derivative of the Weierstrass function. The theta-function is a modular form of weight
1/2, and has long been an object of study. It has particular interest for number theorists, and can
be used to evaluate Gauss sums like

q−1∑

k=0

e
2πı k2

q .

2



One of the most fundamental properties of the theta-function is automorphy, which relates the
theta-function its transformation under certain group actions. For example, the values of the
theta-function at z and −1

2z are related by the identity

θ(z) = θ
(−1

2z

) e
πı
4√
2z

,

which was known in various forms to Gauss (1808), Cauchy (1817) and Poisson (1823). This
identity yields useful identities such as

∑

n∈Z
e−πn2z =

1√
z

∑

n∈Z
e−πn2/z.

Automorphy also describes the self-similar fractal behavior of the function φ(x), which can be seen
in figures 8-10 of section 6.

In a paper from 2004 [7], Miller and Schmid examine the local behavior of not only the function

∞∑

n=1

1
n2

sinn2πx,

but of antiderivatives of general automorphic distributions coming from the group SL(2,R). This
is a much larger class of functions that includes the antiderivatives of boundary distributions of
Maass forms and modular forms of weight 1 and 1/2 associated to subgroups of SL(2,Z) of finite
order. An earlier paper by Schmid [8] gave the Hölder exponent of these functions, in particular,
showing that both the real and imaginary parts of these functions are continuous. Miller and
Schmid examine the question of where these continuous functions are differentiable, and obtain a
complete answer as to where derivatives of the real and imaginary parts of these functions exist:
they are non-differentiable almost everywhere. The result is to exhibit a large class of functions
that are everywhere continuous, but (almost) nowhere differentiable. There are of course many
such functions known, like Weierstrass’s family

∑
an cos bnπx.

However, most known examples are fairly contrived, while the antiderivatives of Maass forms and
modular forms arise naturally, and are of great interest to number theorists.

As Duistermaat showed, it is natural to look at the real and imaginary parts of these functions
together, not only separately. With this in mind, we shall look at the graph parameterized by the
real and imaginary parts of these functions. More precisely, given an automorphic distribution τ
with continuous antiderivative φτ , we shall look at the graph of the curve parameterized by

x(t) = Re φτ (t)
y(t) = Im φτ (t).

If we view φτ as a map R → C, then φτ traces out a path in the complex plane, and the graph
we obtain by the above parameterization is just the image of R under φτ . Note that automorphic
properties force φτ to be periodic, so that the graph is a closed curve in the plane.

We shall examine the question of where tangents to these graphs exist. Wilfried Schmid tells
me that Curt McMullen first raised this question to him in relation to the Weierstrass function.
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Figure 1: The real part of the antiderivative of the boundary distribution associated to the Maass
form for SL2(Z) with λ ≈ 27.56ı

This question is in some ways analogous to the question of where derivatives exist for the real and
imaginary parts of these functions. The existence of a derivative for Re φτ (t) at some point is the
same as the question of whether a tangent line exists to the graph of t vs. Re φτ (t), whereas we are
interested in the existence of tangent lines to the graph of Re φτ (t) vs. Im φτ (t). Figures 1, 2, and
3 are graphs of the real part, imaginary part and real part vs. imaginary part of the curve arising
from the Maass form associated to SL2(Z) for λ ≈ 27.56ı. These graphs were created from Fourier
coefficients calculated by Michael Rubinstein, and transmitted through Stephen Miller. The first
of these graphs also appears in [7]. The third graph pictured shows that the curve parameterized
by the real and imaginary parts of the antiderivative of the boundary of the Maass form has no
tangent lines. From these graphs, we can also see that the real and imaginary parts may behave in
very different ways, and the graph obtained by graphing the real part vs. imaginary part is of an
entirely different nature than the graphs of either part alone.

Moreover, though the existence of derivatives for Re φτ (t) and Im φτ (t) is related to the exis-
tence of tangent lines, these questions are logically independent. A differentiable curve can fail to
have tangents, and a curve with tangents can fail to be differentiable. For example, the curve

(t2, 0) for t > 0
(0, t2) for t < 0

has derivatives, even continuous derivatives near t = 0 in both its co-ordinates. However, at t = 0,
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Figure 2: The imaginary part of the antiderivative of the boundary distribution associated to the
Maass form for SL2(Z) with λ ≈ 27.56ı
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Figure 3: The real part vs. imaginary part of the antiderivative of the boundary distribution
associated to the Maass form for SL2(Z) with λ ≈ 27.56ı
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it does not have a tangent, because even though the derivatives of both coordinates exist and are
continuous, they vanish at t = 0, so that the curve comes to a corner there.

On the other hand, if we take a curve with tangents and re-parameterize it by a continuous
non-differentiable function, it may fail to be differentiable. A simple example can be constructed
by taking a continuous non-differentiable function f . Then the curve (f(t), f(t)) has no derivative,
but it has a tangent line for every t. In fact, there exist Maass forms that behave in precisely this
manner.

More interesting, however, are the curves like the one associated to the modular form of weight
1 pictured in figures 5-7. From our result we obtain a large class of curves that, like this one, are
continuous but have tangents nowhere. Examples of such curves are not difficult to come by, but
they do not often arise from such fundamental objects as modular forms and Maass forms.

We should note here that the graphs of the real vs. imaginary parts of antiderivatives of
automorphic distributions that we include in this paper were done in Mathematica with very high
resolution, while the remaining graphs, figures 1, 2, 5, 6, 8 and 9, were done at lower resolution,
and exhibit minor irregularities, as helpfully pointed out by Stephen Miller.

In this paper, we shall show that tangents to the graphs of curves parameterized by the real
and imaginary parts of antiderivatives of automorphic distributions only exist for a small class of
these distributions, and even in that case only at certain rational points. Specifically, if φτ is the
antiderivative of an automorphic distribution τ ,

1. if φτ is a constant multiple of a real function, then tangents exist at every point, for trivial
reasons;

2. if φτ is the antiderivative of a non-cuspidal Maass form of eigenvalue less than 1/4, tangents
may exist at rational points in the direction of cγτ,0 or cτ,0; here cγτ,0 and cτ,0 are constants
that measure the cuspidality of the distribution τ at various cusps;

3. otherwise, tangent lines do not exist.

We shall see that the Weierstrass function behaves somewhat like the Maass forms in the second
case, so that tangent lines exist at some rational points, but not at any irrational points.

In section 2, we will give some basic definitions of modular forms, Maass forms and automorphic
distributions, and outline the relationships among them. In section 3, we introduce the tools used
in our proofs. In section 4, we deal with the existence of tangent lines at rational points, and
in section 5 with the more complicated case of irrational points. Our proofs will rely heavily on
automorphy, which, as has been shown in [1], [8] and [7], becomes a powerful tool for examining the
local properties of automorphic distributions. We conclude with a discussion of how these proofs
can be extended to the case of the Weierstrass function and other curves associated to modular
forms of weight 1/2. The case of the Weierstrass function will contain some subtleties which do
not arise in other cases, and we shall examine it in detail.

2 Modular Forms, Maass Forms and Automorphic Distributions

In this section, we will define modular forms and Maass forms and explain how automorphic
distributions arise in connection with them. We will follow [3], [7], [8], [9], [10] in our exposition.
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The group SL2(R) acts on the upper half plane by fractional linear transformations. For
a, b, c, d ∈ R and ad− bc = 1, (

a b
c d

)
: z → az + b

cz + d
.

The subgroup SL2(Z) ⊂ SL2(R) is a discrete subgroup which arises naturally in the study of
the discrete modules, i.e. lattices, in the complex plane. A discrete module M (over Z) is a discrete,
additive subgroup of the complex numbers.

A discrete module can be either zero alone, the set of integer multiples nω of a complex number
ω or the set of integer linear combinations of two complex numbers n1ω1 + n2ω2 where ω1, ω2 are
complex numbers such that ω1/ω2 is non-real. We shall concern ourselves with the last of these
cases–lattices of rank 2.

We wish to identify lattices which differ by a constant, so that λω1, λω2 generate a lattice
equivalent to the one generated by ω1, ω2. Thus a rank two lattice is completely determined by
z = ω1/ω2. By interchanging ω1 and ω2 if necessary, we can require z to lie in the upper half plane

H = {z = x + iy : x ∈ R, y ∈ R+}.

Additionally, ω1, ω2 and ω′1, ω
′
2 determine the same lattice if

ω′1 = aω1 + bω2

ω′2 = cω1 + dω2

where a, b, c, d ∈ Z and ad − bc = 1. We need that ad − bc = 1 because ω1, ω2 must also be

expressible as an integral linear combination of ω1, ω2, so that
(

a b
c d

)
must be invertible in order

for ω1, ω2 and ω′1, ω
′
2 to determine the same lattice. Such a matrix with entries a, b, c, d is called

a unimodular transformation. Then the action of unimodular transformations on lattices Λ =
ω1Z+ ω2Z corresponds to the action of the modular group

SL2(Z) =
{(

a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}

on H by linear fractional transformations

γz =
az + b

cz + d
for γ =

(
a b
c d

)
.

Let us find a fundamental domain of the action of the modular group on the upper half plane.
First observe that for any z ∈ H, there are only finitely many pairs of integers (c, d) such that

|cz + d| ≤ 1.

The reason is that as c, d range over the integers, the numbers cz +d form a discrete lattice, so that
only finitely many points lie in any bounded neighborhood of 0. Now, if z = x + ıy, call y = Im z
the “height” of z. For any γ ∈ SL2(Z), we have that

γz =
az + b

cz + d
=

az + b

cz + d

az + b

cz + d
=

Real + i(ad− bc)Im z

|cz + d|2 ,
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so that for all z ∈ H,

Im γz =
Im z

|cz + d|2 . (1)

Then given a complex number z, there are only finitely many (c, d) such that there exists a

γ =
(∗ ∗

c d

)
with the height of γz greater than the height of z. For a fixed pair (c, d) all such γz

differ from one another by a transformation of the form Tn : z → z + n, where T : z → z + 1

corresponds to the matrix
(

1 1
0 1

)
. Thus among all the images of z under SL2(Z), we may choose

one of maximum height, i.e., such that |cz + d| ≥ 1 for all c, d ∈ Z, and such that |Re z| ≤ 1/2. We
then claim that

D = {z ∈ H||Re z| ≤ 1
2
, |z| > 1}

is a fundamental domain (every point z has an image in the closure of D).
First we show that the set

D1 = {z ∈ H||Re z| ≤ 1/2, |cz + d| > 1,∀c, d ∈ Z, (c, d) 6= (0, 0), (0, 1)}
is the same set as D. Taking c = 1, d = 0 in the definition of D1, we see that D1 ⊆ D. On the
other hand, if z ∈ D, then

|cz + d|2 = c2(x2 + y2) + 2cdx + d2 > c2 − |cd|+ d2 ≥ 1, (2)

so that D ⊆ D1. Thus every point has an image in the closure of D by (1) and the preceding
paragraph. We have that the points on the boundary are identified by reflection across the line
x = 0 by the transformations T : z → z + 1 and S : z → −1

z . If two points in the closure of D are

equivalent, then we must have that they are related by γ =
(

a b
c d

)
where |cz+d| = 1. This implies

that the inequalities in (2) are in fact equalities, and that either c = 0, d = ±1 or c = ±1, d = 0. In
the first instance, the two points are related by γ = T , in the second they are related by γ = S, as
defined above. See figure 4.

From this point forward, let Γ ⊆ SL2(Z) be a subgroup of finite index in the modular group.
Then the fundamental domain of Γ is a union of a finite number of copies of D, each one corre-
sponding to a right coset of Γ.

An “unrestricted modular form of weight k” associated to the the group Γ is a meromorphic
function f such that for all γ ∈ Γ,

f(γz) = (cz + d)kf(z). (3)

We wish to restrict our attention to holomorphic functions, which are, moreover, “holomorphic at
∞” and holomorphic at all the parabolic points (cusps) of Γ, in a sense which we will soon define.
Note that because Γ has finite index in SL2(Z), there is some smallest N ∈ N for which TN ∈ Γ,
so that f has period N . When we require f to be “holomorphic at ∞,” we mean the following: if
we map the strip 0 ≤ Re z ≤ N of H to the disc |z| < 1 taking ı∞ to 0 by the map ζ = e2πız/N ,
and let f̂(ζ) = f(z), then f̂ is holomorphic at 0, i.e.

f̂ =
∞∑

m=0

amζm.

9
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Figure 4: The fundamental region D for the action of SL2(Z) on the upper half plane H.
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This in turn induces a Fourier expansion of f :

f =
∞∑

m=0

ame(mz/N),

where e(mz/N) = e2πımz/N . At other parabolic points a/c, we can choose

γ =
(

d −b
−c a

)
∈ SL2(Z)

such that γ(a/c) = ∞, and require f to be holomorphic at a/c by requiring that the translate of f
by γ−1 is holomorphic at infinity, i.e. that

(cz + d)kf(γ−1z)

has a Fourier expansion f =
∑∞

m=0 ame(mz/N), with am = 0 for m < 0.

Definition 1 A modular form of weight k for the subgroup Γ is a holomorphic function f satisfying
f(γz) = (cz + d)kf(z) for all γ ∈ Γ, which is moreover holomorphic at ∞ and at all the parabolic
points of Γ.

We can also give a definition for Maass forms:

Definition 2 A Maass form F on H is a Γ-invariant eigenfunction of the hyperbolic Laplace
operator y2( ∂2

∂x2 + ∂2

∂y2 ) with eigenvalue 1
4(λ2 − 1). We require that λ is purely imaginary or that

−1 < λ < 1. Moreover, we require that F has finite L2 norm:

y2(
∂2

∂x2
+

∂2

∂y2
)F (x, y) =

1
4
(λ2 − 1)F (x, y) (4)

∫

Γ\H
|F (x, y)|2 dxdy

y2
< ∞.

We now proceed to define automorphic distributions for SL2(R).
Let C−∞(R) denote the space of complex-valued distributions on the real line, or the dual of

C∞
c (R), the space of compactly supported complex-valued C∞ functions on R. For λ ∈ C and

δ ∈ Z/2Z, we let V −∞
λ,δ denote vector space of pairs (τ, τ̃) ∈ C−∞(R)× C−∞(R) such that

τ̃(x) = (sgn x)δ|x|λ−1τ
(−1

x

)
(5)

for x 6= 0. Thus τ and τ̃ determine each other except at 0. Roughly speaking, τ̃ is needed so that
we can define τ “at ∞.” We will want to be able to make sense of τ̃ even at 0, and we will soon
impose a condition on τ so that this will be possible.

For g−1 =
(

a b
c d

)
∈ SL2(R), we define an action πλ,δ on V −∞

λ,δ as follows:

(πλ,δ(g)τ)(x) = (sgn(cx + d))δ||cx + d|λ−1τ(
ax + b

cx + d
). (6)
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This identity makes sense for cx+d 6= 0. We can make sense of this equation at cx+d = 0 by using
equation (5) to express τ at ∞ in terms of τ̃ at 0. Note that for a = d = 0, b = −c = −1, πλ,δ(g−1)
switches τ and τ̃ . From this we can define the corresponding action π̃λ,δ by π̃λ,δ(g) = πλ,δ(SgS−1),
so that

(π̃λ,δ(g)τ̃)(x) = (sgn(a− bx))δ||a− bx|λ−1τ̃(
dx− c

a− bx
),

and the pair (πλ,δ(g)τ, π̃λ,δ(g)τ̃) is also in V −∞
λ,δ . One can check that the action πλ,δ gives a repre-

sentation of SL2(R) on pairs (τ, τ̃) ∈ V −∞
λ,δ .

We let (V −∞
λ,δ )Γ be the subspace of Γ-invariant vectors. Since Γ has finite index in SL2(Z), there

exists a smallest positive integer N such that
(

1 N
0 1

)
∈ Γ. Then because of Γ-invariance, we have

that τ(x) is periodic with period N . Thus we have a Fourier expansion for τ(x):

τ(x) = c0 +
∑

n 6=0

cne2πınx/N . (7)

In order for τ to determine τ̃ , we need to be able to extend the distribution

c0(sgn x)δ|x|λ−1 + (sgn x)δ|x|λ−1
∑

n6=0

cne2πın/Nx

across x = 0. The first summand can be extended across zero by analytic continuation in the
variable λ unless λ ∈ (2Z + δ) ∩ Z≤0, while the second summand can be extended across 0 by
integration by parts. In order to ensure that the first summand can be extended, we require that

c0 = 0 unless Re λ > 0. (8)

When the two summands have been extended in this manner, we obtain a natural extension of τ̃
across x = 0, or a natural extension of τ across ∞, and we say that “τ agrees with its natural
extension across ∞.” This condition guarantees that τ is completely determined by its Fourier
expansion (7) both as a distribution and as an element of (V −∞

λ,δ )Γ. Because we will be working
with all the SL2(Z)-translates of τ , we shall suppose that (8) holds for the SL2(Z)-translates of
τ , and that all of the SL2(Z)-translates of τ agree with their natural extension across ∞. Under
these conditions, τ and τ̃ determine each other completely, so we now identify the distributions
(τ, τ̃) by the first member of the pair. Finally, we shall exclude the space of constants from the
space (V −∞

1,0 )Γ to avoid having to treat this simple case separately. We shall take these conditions
to be part of the definition of an automorphic distribution for our purposes:

Definition 3 An automorphic distribution τ ∈ (V −∞
λ,δ )Γ associated to the subgroup Γ is a distribu-

tion with all its SL2(Z)-translates satisfying (2) and agreeing with their natural extensions across
∞, which additionally satisfies

τ(x) = (πλ,δ(g)τ)(x) = (sgn(cx + d))δ|cx + d|λ−1τ(
ax + b

cx + d
)

for all g ∈ Γ. We shall exclude the space of constants from (V −∞
1,0 )Γ.

We give one more definition:

12



Definition 4 We say that an automorphic distribution τ ∈ (V −∞
λ,δ )Γ is cuspidal at ∞ if c0 = 0.

We shall say that τ is cuspidal if all its SL2(Z)-translates are cuspidal at ∞.

We can now connect automorphic distributions to modular forms and Maass forms.

Theorem 5 ([7], [8]) The space (V −∞
λ,δ )Γ corresponds bijectively to the space of

1. cuspidal Maass forms for Γ with eigenvalue 1
4(1− λ2) ≥ 1

4 , when λ ∈ ıR and δ = 0;

2. cuspidal Maass forms for Γ with eigenvalue 1
4(1− λ2) < 1

4 , when −1 < λ < 0 and δ = 0;

3. square-integrable (not necessarily cuspidal) Maass forms for Γ with eigenvalue 1
4(1−λ2) < 1

4 ,
when 0 < λ < 1 and δ = 0;

4. cuspidal odd-weight Maass forms for Γ with eigenvalue 1
4(1 − λ2) > 1

4 , when λ ∈ ı(R − {0})
and δ = 1;

5. cuspidal holomorphic modular forms of weight k ≥ 1, when λ = 1− k and δ ≡ k (mod 2).

In order to see more explicitly this connection between automorphic distributions and modular
forms and Maass forms, we must give another description of these distributions. Automorphic
distributions associated to a discrete subgroup Γ ⊂ SL2(R) arise from representations of SL2(R).
The irreducible representations of SL2(R) come in five types [6], [9]:

1. Finite dimensional representations σn, n ∈ Z≥0, with weights −n,−n + 2, . . . , n− 2, n

2. Infinite dimensional representations π+
n , n ∈ Z>0, with weights n, n + 2, n + 4, . . .

3. Infinite dimensional representations π−n , n ∈ Z>0, with weights −n,−n− 2,−n− 4, . . .

4. Even weight infinite dimensional representations πs,even, s 6= 1(2), s ∈ C
5. Odd weight infinite dimensional representations πs,odd, s 6= 1(2), s ∈ C

Note that πs,even ' π−s,even and πs,odd ' πs,odd. Also, π2k+1,even contains π+
2k+2 and π−2k+2 as

subrepresentations and σ2k as a quotient, while π−2k−1,even contains σ2k as a subrepresentation and
π+

2k+2 and π−2k+2 as quotients. Similarly, π2k,odd contains π+
2k+1 and π−2k+1 as subrepresentations

and σ2k−1 while π−2k,odd contains σ2k−1 as a subrepresentation and π+
2k+1 and π−2k+1 as quotients.

We are interested only in irreducible unitary representations. Given this restriction, our list
becomes

1. The trivial representation

2. Infinite dimensional representations π+
n and π−n

3. Even weight representations πs,even, s 6= 1(2), s ∈ C
4. Odd weight representations πs,odd, s ∈ ıR\0
5. Even weight representations πs,even, −1 < s < 0 or 0 < s < 1
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The representations in 2. are known as discrete series representations; those in in 3. and 4.
are known as principal series representations; those in 5. are known as complementary series
representations [6], [9].

Given an irreducible unitary representation (π, V ) of SL2(R), we define V ∞ ⊂ V as the set of
vectors such that g → π(g)v is a C∞ function from SL2(R) to the Hilbert space V . Call this map
f . We refer to V ∞ as the space of C∞ vectors. V ∞ is dense inside V , and via the identification

V ∞ ' {f ∈ C∞(SL2(R), V )|f(g) = π(g)f(e)∀g ∈ SL2(R)}
where v ↔ f(e), V ∞ carries a natural Fréchet topology. There is an irreducible unitary represen-
tation (π′, V ′) dual to (π, V ). We can similarly define V ′∞, the space of C∞ vectors in V ′. The
space of continuous linear functionals on V ′∞ is the space V −∞ of distribution vectors. We have
V ∞ ⊂ V ⊂ V −∞ and, dually, V ′∞ ⊂ V ′ ⊂ V ′−∞. This is consistent with the convention that
distributions on a manifold are dual to compactly supported smooth measures. Thus distributions
include all continuous and all L2 functions.

Now let Γ ⊆ SL2(Z) as before, and K ' SO2(R) ⊂ SL2(R) be a maximal torus. Then SL2(R)
acts on the right via the right regular representation on the space of Γ-invariant functions on SL2(R),
denoted L2(Γ\SL2(R)). Then because this representation is unitary and because Γ\SL2(R)/K is
compact, we can decompose it as a direct sum of unitary representations. Suppose that (π, V )
occurs as a direct summand in L2(Γ\SL2(R)). Then because L2(Γ\SL2(R)) is self-dual, (π′, V ′)
also occurs as a direct summand. Then given any inclusion

i : V ′ ↪→ L2(Γ\SL2(R)),

we have that that the inclusion sends C∞ vectors to C∞ functions, so that we get a SL2(R)-invariant
map

i : V ′∞ ↪→ C∞(Γ\SL2(R)).

Define
〈τ, v′〉 = i(v′)(e),

for all v′ ∈ V ′∞ so that τ is a linear functional on V ′∞, i.e., τ ∈ V −∞. Because v ∈ V ′∞ is
Γ-invariant, composition with i and evaluation at the identity determines a Γ-invariant distribution
vector, so that in fact

τ ∈ (V −∞)Γ.

Note that we use the convention that the action π′(g) of SL2(R) on V ′ is compatible with right
translation r(g) of functions on L2(Γ\SL2(R)), while the action π(g−1) of SL2(R) on V is com-
patible with left translation l(g) of functions on L2(Γ\SL2(R)). Also τ completely determines the
embedding i: for v′ ∈ V ′∞ and g ∈ SL2(R), i(v′)(g) = r(g)i(v′)(e) = i(π(g)v′)(e) = 〈τ, π(g)v′〉.
Thus τ determines the embedding of V ′∞ in L2(Γ\SL2(R)), and because V ′∞ is dense V ′, τ
completely determines the embedding. The space (V −∞)Γ corresponds bijectively to the space of
SL2(R)-invariant homomorphisms of (V ′)∞ into C∞(Γ\SL2(R)) [8].

We are now ready to describe the connection between automorphic distributions and modular
forms and Maass forms. Given an embedding of a discrete series representation

i : V−k ↪→ L2(Γ\SL2(R))

take the highest SO2-weight vector v0.
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
∈ SO2
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acts on v0 by e−ikθ. Then i(v0)(gk) = e−ikθi(v0)(g) for any k ∈ SO2, and i(v0)(γg) = i(v0)(g) for
any γ ∈ Γ. If we let F (g) = i(v0)(g)(g′(ı))−k/2, where g′(ı) is the derivative of the transformation
g at ı, we find that

F (gk) = i(v0)(gk)(((gk)′)(ı))−k/2 = e−ikθi(v0)(g)(g′(kı))−k/2k′(ı)−k/2 =

e−ikθi(v0)(g)(g′(ı))−k/2eikθ = F (g),

and for γ =
(

a b
c d

)
,

F (γg) = i(v0)(γg)((γg′)(ı))−k/2 = i(v0)(g)(g′(ı))−k/2γ′(gı) = F (g)(cgı + d)k.

Now, the stabilizer of ı under the action of the group SL2(R) on the upper half plane H is SO2(R),
so that SL2(R)/SO2(R) ' H. Thus F can be viewed as a function of gı, so that F ∈ L2(\H). By
(9), F (z) satisfies the transformation rule (3) for elements of Γ, and F (z) is a cuspidal modular
form of weight k on H. There is a natural bijection between non-zero cuspidal modular forms
of weight k and embeddings of Vk in L2(Γ\SL2(R)), both spaces isomorphic to the vector space
(V ′−∞
−k )Γ ' (V −∞

k )Γ, because V ′
−k = Vk [8].

If we allow
τ(x) = lim

y→0+
F (x + ıy),

then the distribution τ is a concrete realization of the distribution vector corresponding to the
embedding

Vk ↪→ L2(Γ\SL2(R)).

The distribution τ(x) completely determines F (z) and vice-versa. τ inherits this automorphy from
F , so that

τ(x) =
1

(cx + d)k
τ(γx). (9)

Thus τ is invariant under the action of Γ described in equation (6). The space (V −∞
k )Γ is precisely

the space (V −∞
k,δ )Γ, δ ≡ k mod 2 defined previously, covering case 5 of Theorem 5.

Now suppose that we have an embedding of an even principal series or complementary series
representation

i : V−λ,+1 ↪→ L2(Γ\SL2(R)),

where the +1 refers to the even parity condition. Then there is a unique (up to scalars) SO2-
invariant vector v0 ∈ Vλ,+1 (v0 has weight 0). Then let F (g) = i(v0). Because v0 is invariant under
the action of SO2, F is invariant under the action of SO2 on the right. Thus

F (g) ∈ L2(Γ\SL2(R)/SO2(R)).

We find that F ∈ L2(Γ\H), so that F (x, y) is an Γ-invariant function on the upper-half plane.
In fact, F is a Maass form with eigenvalue λ, and satisfies equation (14), so that the space of
square-integrable Maass forms corresponds bijectively to embeddings V−λ,+1 ↪→ L2(Γ\SL2(R)),
both spaces isomorphic to (V −∞

λ,+1)
Γ [8].

The Maass form F has an asymptotic expansion near the real axis:

F (x, y) ∼ y
1−λ

2

∑

n≥0

τ̃λ,n(x)yn + y
1+λ

2

∑

n≥0

τ̃−λ,n(x)yn.
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The distribution τ̃λ,0 completely determines the Maass form F (x, y) and vice-versa, so the distri-
bution τ̃λ,0 is a concrete realization of the space (V −∞

λ,+1)
Γ of Γ-invariant distributions on SL2(R)

arising from embeddings of V−λ,+1 in 2(Γ\SL2(R)). This concrete realization of the space (V −∞
λ,+1)

Γ

corresponds precisely to the space of distributions on the real line which we also called (V −∞
λ,+1)

Γ.

Note that y
1−λ

2 τ̃λ,0(x) is Γ invariant, so that τ(x) = τ̃λ,0(x) carries the automorphy property

τ(x) = |cx + d|λ−1τ(
ax + b

cx + d
). (10)

This covers cases 1, 2 and 3 of Theorem 5. Odd-weight Maass forms arise in a similar, but slightly
more complicated, way from odd-weight representations [8].

Because the discrete series representation V−k occurs as part of the principal series represen-
tation Vλ,δ for λ = k − 1 and δ of the appropriate parity, 1 − k and λ play analogous roles in the
definition of automorphic distributions corresponding to modular forms and Maass forms, as we
can see from the equations of automorphy in (9) and (10).

3 Preliminaries

We now recall some results from [8] and [7]. A function f ∈ C(R) is Hölder continuous of index α,
0 < α ≤ 1 if

|f(x)− f(y)| < C|x− y|α

for all x, y ∈ R, where C > 0 can be chosen locally uniformly in x, y. We define Cα(R) ⊂ C∞(R)
for 0 < α < 1 to be the set of Hölder continuous functions of index α, and C0(R) to be the space
of continuous functions. We extend this definition to all real α and to distributions as well as
functions by the equation

Cα(R) =
d

dx
Cα+1(R).

Then Ck(R) for k ∈ N coincides with its usual definition, and C−k(R) is the space of distributions
expressible as the k-th derivative of a continuous function. We shall also define

C<α(R) =
⋂

β<α

Cβ(R),

C>α(R) =
⋃

β>α

Cβ(R),

so that for α < β < γ,

Cγ(R) ⊂ C>β(R) ⊂ Cβ(R) ⊂ C<β(R) ⊂ Cα(R).

Theorem 6 ([8]) For an automorphic distribution τ ∈ (V −∞
λ,δ )Γ,

1. τ ∈ Cλ−1(R) if τ is noncuspidal;

2. τ ∈ C
Re λ−1

2 (R) if τ is cuspidal, λ not an odd integer;

3. τ ∈ C< λ−1
2 (R) if τ is cuspidal, λ an odd integer.
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From this we conclude that only automorphic distributions corresponding to modular forms
of weight 1 or Maass forms have continuous antiderivatives. From now on we only consider such
distributions, so that λ ∈ ıR or −1 < λ < 1. For an automorphic distribution τ which can be
expressed as the antiderivative of a continuous function, we can choose a unique antiderivative φτ

such that

φτ ∈ C0(R/NZ),
∫ N

0
φτ (x)dx = 0. (11)

In other words, we choose φτ so that its Fourier series has no constant term.
Then

τ(x) = cτ,0 + φ′τ (x),

and for any γ ∈ SL(2,Z), we can analogously define φγτ (x) by

πγ,δ(γ)τ(x) = cγτ,0 + φ′γτ (x),

where φγτ (x) is chosen as in (11). For k ≥ 1, we denote the k-th antiderivative of φγτ by φ
(−k)
γτ ∈

Ck(R/NR), again with the antiderivatives chosen so that they have no constant term.
Fix a rational number p/q, with p and q relatively prime. We can choose r, s ∈ Z so that

pr − qs = 1. Then we let

γ =
(

r −s
−q p

)
∈ SL(2,Z).

Note that γ maps the point p/q to ∞. Then for such a γ, we have the following equation:

φτ (x)− φτ (p/q) =
cτ,0

q
(p− qx)− cγτ,0

λq
(sgn(p− qx))δ+1|p− qx|λ+ (12)

+
n∑

k=0

qk(sgn(p− qx))δ+k(
∏

1≤j≤k

(λ + j))φ−k
γτ (γx)|p− qx|λ+k+1−

−qn+1(sgn(p− qx))δ+n(
∏

1≤j≤n

(λ + j + 1))×

×
∫ +∞

sgn(p−qx)γx
(qt + rsgn(p− qx))−λ−n−2φ(−n)

γτ (sgn(p− qx)t)dt

Note that

γx = −r

q
+

1
q(p− qx)

, (13)

so that as t ranges from sgn(p − qx)γx to ∞, qt + rsgn(p − qx) ranges from 1
|p−qx| to ∞, and the

integral in the final term converges.
The above equation is really just an integrated version of the equation

τ(x) = (sgn(p− qx))δ|p− qx|λ−1(πλ,δ(γ))τ(γx).
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Thus to see that our equation holds, we must check that both sides agree at x = p/q, which is
clear, and then take derivatives. The derivative of the left hand side is φ′τ (x). The derivative of the
right-hand side is

−cτ,0 + cγτ,0(sgn(p− qx))δ|p− qx|λ−1+

+
n∑

k=0

qk+1(sgn(p− qx))δ+k+1(
∏

1≤j≤k+1

(λ + j))φ−k
γτ (γx)|p− qx|λ+k+

+
n∑

k=0

qk(sgn(p− qx))δ+k(
∏

1≤j≤k

(λ + j))φ−k+1
γτ (γx)|p− qx|λ+k−1−

−qn+1sgn(p− qx)δ+n(
∏

1≤j≤n

(λ + j + 1))×

×|p− qx|−2|p− qx|λ+n+2φ(−n)
γτ (γx),

which simplifies to

−cτ,0 + cγτ,0(sgn(p− qx))δ|p− qx|λ−1 + (sgn(p− qx))δ|p− qx|λ−1φ′γτ (γx),

so that taking derivatives of both sides leaves

τ(x) = (sgn(p− qx))δ|p− qx|λ−1(πλ,δ(γ))τ(γx),

which is an identity, as we can see by using equation (6).
Because φγτ can be written as a Fourier series without a constant term, we find that the integral

in (12) is O(|p− qx|Re λ+n+2). More precisely, we have that by integration by parts
∫ +∞

sgn(p−qx)γx
(qt + rsgn(p− qx))−λ−n−2e(nx/n)dt =

− N

2πın
e(nsgn(p− qx)γx/N)(qt + rsgn(p− qx))−λ−n−2+

+q(λ + n + 2)
N

2πın

∫ +∞

sgn(p−qx)γx
(qt + rsgn(p− qx))−λ−n−3e(nx/N)dt.

The second term is bounded by

∣∣∣q(λ + n + 2)
N

2πn

∫ +∞

sgn(p−qx)γx
(qt + rsgn(p− qx))−λ−n−3

∣∣∣ ≤ (λ + n + 2)
N

2πn
|p− qx|Re λ+n+2.

Thus, we have

|φτ (x)− φτ (p/q)− cτ,0

q
(p− qx) +

cγτ,0

λq
(sgn(p− qx))δ+1|p− qx|λ (14)

−
n∑

k=0

qk(
∏

1≤j≤k

(λ + j))φ−k
γτ (γx)|p− qx|λ+k+1| ≤ Cqn+1|p− qx|Re λ+n+2,

18



where C depends on N , n, λ and the maximum absolute value of the φ
(−n)
γτ as γ ranges over

SL(2,Z), but not otherwise on τ , Γ, p or q. This equation is expresses an asympotic expansion for
φτ (x) as x → p/q. For n = 0, we have

∣∣∣φτ (x)− φτ (p/q)− cτ,0

q
(p− qx) +

cγτ,0

λq
(sgn(p− qx))δ+1|p− qx|λ − |p− qx|λ+1φγτ (γx)

∣∣∣

≤ Cq|p− qx|Re λ+2. (15)

We shall use this formula to determine the points where the graph of φτ (x) has tangent lines.

4 Rational points

We now state our main result:

Theorem 7 In the notation of (3), a tangent line exists at the rational point p/q only in the
following cases:

1. cγτ,0 6= 0

2. cγτ,0 = 0, but cτ,0 6= 0

3. φτ is a constant multiple of a real function

In the first case, the tangent will be in the direction of the complex number cγτ,0; in the second in
the direction of cτ,0. When Re λ ≤ 0, we are in the cuspidal case, so that cγτ,0 = cτ,0 = 0, and
tangent lines do not exist. There are no tangent lines at irrational points.

We will first consider the question of whether tangents exist at rational points and separate our
analysis into the case when Re λ ≤ 0 and two cases when λ > 0.
Case 1: Re λ ≤ 0

In this case, τ is cuspidal, so we have cτ,0 = 0 and cγτ,0 = 0. Thus our asymptotic equation
becomes

|φτ (x)− φτ (p/q)− |p− qx|λ+1φγτ (γx)| ≤ Cq|p− qx|Re λ+2.

We wish to determine whether the limit

lim
x→p/q

Im φτ (x)− φτ (p/q)
Re φτ (x)− φτ (p/q)

exists and the value of the limit when it does.
It is clear that as x → p/q, the error term Cq|p− qx|−λ+2 becomes negligible. Thus, the limit

we seek is

lim
x→p/q

Im |p− qx|λ+1φγτ (γx)
Re |p− qx|λ+1φγτ (γx)

.

When λ ∈ R, this simply becomes

lim
x→p/q

Im φγτ (γx)
Re φγτ (γx)

.

19



In this case, note that because φγτ (x) is periodic with period N and γx = − r
q + 1

q(p−qx) (from (13)),
so as x → p/q, φγτ (γx) assumes all values of φγτ (x) infinitely often. Thus, unless φγτ (x) moves
along a line, i.e., unless it is a constant multiple of a real function, a tangent does not exist to the
graph of φτ (x) at the point φτ (p/q). Note that φγτ (x) is a constant multiple of a real function if
and only if the same is true of φτ (x). For λ = 0 and δ = 1–the case of the boundary distribution
of a modular form of weight 1–there are no τ with φτ (x) a constant multiple of a real function, so
that there is no tangent line at any rational point.

When λ is imaginary, we have that φγτ (γx) assumes all values of φγτ with approximate spacing
N(p− qx)2, while |p− qx|λ+1 goes through an entire phase over intervals of length on the order of
2π|x− p/q|(Im λ)−1. Thus as x → p/q,

Im |p− qx|λ+1φγτ (γx)
Re |p− qx|λ+1φγτ (γx)

takes on all possible values, definitely ruling out the possibility of a tangent line at p/q.
Case 2: λ ≥ 0

Here we have that

lim
x→p/q

Im φτ (x)− φτ (p/q)
Re φτ (x)− φτ (p/q)

=

= lim
x→p/q

Re cτ,0

q (p− qx) + cγτ,0

λq (sgn(p− qx))δ+1|p− qx|λ − |p− qx|λ+1φγτ (γx)

Im cτ,0

q (p− qx) + cγτ,0

λq (sgn(p− qx))δ+1|p− qx|λ − |p− qx|λ+1φγτ (γx)
.

If cγτ,0 6= 0, then the |p− qx|λ term dominates as x → p/q, so that the limit quotient becomes

lim
x→p/q

Im cγτ,0

λq |p− qx|λ
Re cγτ,0

λq |p− qx|λ .

λ is real, so this limit exists and is just Im cγτ,0

Re cγτ,0
.

If cγτ,0 = 0, but cτ,0 6= 0, then the quotient becomes limx→p/q
Im

cτ,0
q

(p−qx)

Re
cτ,0

q
(p−qx)

, because the (p− qx)

term dominates. Thus in this case, too, the limit exists, and is equal to Im cγτ,0

Re cγτ,0
. Finally, if

cγτ,0 = cτ,0 = 0, then we are in a situation analogous to λ ≤ 0: there exists a tangent if and only if
φτ equals some constant times a real function.

To summarize, we have that a tangent line exists at the point p/q only in the following condi-
tions:

1. cγτ,0 6= 0

2. cγτ,0 = 0, but cτ,0 6= 0

3. φτ is a constant multiple of a real function

The first two conditions occur only when λ ≥ 0. The final one cannot occur for boundary
distributions of modular forms of weight 1. Thus we see that tangent lines do not exist for curves
which graph the antiderivatives of modular forms of weight 1. Figures 5, 6, and 7, show graphs
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Figure 5: The real part of the antiderivative of the boundary distribution of a modular form of
weight 1

of the real part, imaginary part and real part vs. imaginary part for φτ arising from the modular
form

F (z) =
1
2

∑

(m,n)∈Z2

(
e((m2 + mn + 6n2)z)− e((2m2 + mn + 3n2)z)

)
.

This is a cuspidal modular form of weight 1 associated to the group usually denoted Γ0(23).

5 Irrational points

We shall see that at irrational points tangents to the graph of φτ do not exist unless φτ is a
constant multiple of a real function. This does not happen unless λ is real. Even then, if λ = 0
and δ = 1, then we are in the case of boundary distributions of modular forms of weight 1, whose
antiderivatives are never a constant multiple of a real function.

Given an irrational x1, we shall show that unless φτ is real,

lim
x→x1

Im φτ (x)− φτ (x1)
Re φτ (x)− φτ (x1)

6= 0.

This is sufficient to show that no tangent exists to φτ at x1, because if one does exist, we may
multiply φτ by a constant to make the tangent horizontal.
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Figure 6: The imaginary part of the antiderivative of the boundary distribution of a modular form
of weight 1
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Figure 7: The real part vs. imaginary part of the antiderivative of the boundary distribution of a
modular form of weight 1
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Using the continued fraction expansion of x, we can find a sequence of rational numbers p/q
such that

|p− qx1| < q−1.

We take such an approximating sequence. Because the rational numbers in this sequence are
alternately greater than and less than x, we may take a sequence such that

p/q > x1

for all rational numbers p/q in our approximating sequence. The argument is identical for p/q < x1,
so that our argument shows that

lim
x→x1

Im φτ (x)− φτ (x1)
Re φτ (x)− φτ (x1)

does not have a right-sided or left-sided limit unless φτ is a constant multiple of a real function.
Our approach will be to show that there exists some constant M , such that for rational numbers

p/q close enough to x in an approximating sequence, there is an x, x1 < x ≤ p/q, with
∣∣∣∣∣
Im φτ (x)− φτ (x1)
Re φτ (x)− φτ (x1)

∣∣∣∣∣ > M,

unless φτ is real. Usually, we will choose x “close” (in a sense which will become clear later on) to
p/q, although in the last case we consider, we will need to choose x close to x1.
Case 1: Re λ ≤ 0.

Taking p/q > x1, we define xη, 0 ≤ η ≤ 1 by

p− qxη = η(p− qx).

Then for any xη, x1 ≤ xη ≤ p/q, by (15),

φτ (xη)− φτ (p/q) = φγτ (γxη)|p− qx1|λ+1ηλ+1 + O(q|p− qx1|Re λ+2)ηRe λ+2 (16)

where the implied constant in the last term is fixed as p/q ranges through the approximating
sequence. Now for all xη, 0 ≤ η ≤ 1 we have that

Re φτ (xη)− φτ (x1) < B|p− qx|λ+1, (17)

for some B not depending on p, q. However, we may choose a range for η, say a < η < b in which

φγτ (γxη)|p− qx1|λ+1ηλ+1 À q|p− qx1|Re λ+2ηRe λ+2. (18)

Assume for now that φγτ is not a multiple of a real function, otherwise we would be in a trivial
case. Then for any θ, 0 ≤ θ ≤ 1, we have that e(θ)φγτ (x) has some point x where its imaginary
part achieves some maximal positive value Aθ > 0 (we can always make the imaginary part positive
because the integral of φγτ (x) over one cycle is 0, and φγτ (x) is not a multiple of a real function
by assumption). Let A′ = minθ Aθ > 0, which is positive by compactness. Thus for any θ, there
exists some xθ such that Im e(θ)φγτ (xθ) > A′. Moreover, because of the boundedness of the curve
given by φγτ (x), there is some ε such that if |θ′ − θ| < ε, then Im e(θ′)φγτ (xθ) > A for a possibly
smaller, but still positive, A. Because there are finitely many translates φγτ (x), we may assume
that this A suffices for all the φγτ (x) as γ ranges over SL2(Z).
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Then if Im λ 6= 0, we may choose a, b, so that a/b is small and (b − a)/ab is large. This will
require that a, b ¿ 1. We have that

γxa − γxb =
b− a

ab(p− qx)q
≥ b− a

ab
.

Thus, by making (b − a)/ab large enough, we can force φγτ (γxη) to undergo several cycles, while
the argument of |p− qx1|λ+1ηλ+1 varies little (say, less than ε), if we keep

λ

2π
log

a

b
< ε.

Then in the range a ≤ η ≤ b, we have some η for which

Im φγτ (γxη)|p− qx1|λ+1ηλ+1 ≥ A|p− qx1|Re λ+1aRe λ+1.

Adjusting for the O(q|p− qx1|Re λ+2) term using (18), we get

|Im φτ (xη)− φτ (p/q)| > 1
2
A|p− qx1|Re λ+1aRe λ+1.

But

|Re φτ (xη)− φτ (x1)| < B|p− qx1|Re λ+1,

|Re φτ (p/q)− φτ (x1)| < B|p− qx1|Re λ+1.

Thus for either x = p/q or x = xη, we have that
∣∣∣∣∣
Im φτ (x)− φτ (x1)
Re φτ (x)− φτ (x1)

∣∣∣∣∣ >
AaRe λ+1

4B
. (19)

This is true for all p/q in our approximating sequence, so there are infinitely many values of x
approaching x1 that prevent φτ from having a horizontal tangent at φτ (x1). Because a, b ¿ 1,
xη is “close” to p/q. The argument in the case where Im λ = 0 is even simpler: we merely take
A = minγ maxx Im φγτ (x), and choose a, b so that between xη passes through at least one cycle of
φγτ (x).

Now we turn to the case λ > 0. Here we have that cτ,0, cγτ,0 may not be zero. By going to a
subsequence of rationals p/q we can arrange that either

1. for all the cγτ,0, we have Im cγτ,0 > I or

2. all the cγτ,0 are real (where we allow cγτ,0 = 0 as well).

This is possible because there are only finitely many values for the cγτ,0. We shall now examine
these two cases in turn.
Case 2: λ > 0 and in the approximating sequence for x1, we have that for all the cγτ,0, Im cγτ,0 > I.

This case can be dealt with in a manner similar to the first case. Define xη as before. Using

φτ (xη)− φτ (p/q) =
cτ,0

q
(p− qx1)η − cγτ,0

λq
|p− qx1|ληλ+ (20)

+φγτ (γx)|p− qx1|λ+1ηλ+1 + O(q|p− qx1|λ+2)ηλ
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we see that for all 0 ≤ η ≤ 1, we have that

|Re φτ (xη)− φτ (x1)| ≤ Bq−1|p− qx|λ.

However, for η small enough, we can force

Im
cγτ,0

λq
|p− qx1|ληλ > 2(|cτ,0

q
(p− qx1)η|+ |φγτ (γx)|p− qx1|λ+1ηλ+1|+ Cq|p− qx1|λ+2)ηλ), (21)

because Im cγτ,0 > I for all γ as p/q → x in our sequence. Combining (21) and (22), the result is
that

Im φτ (xη)− φτ (p/q) >
I

2λq
|p− qx1|ληλ.

Thus for either x = p/q or x = xη, we have in analogy to (19) that
∣∣∣∣∣
Im φτ (x)− φτ (x1)
Re φτ (x)− φτ (x1)

∣∣∣∣∣ >
IηRe λ

4Bλ
. (22)

Case 3: λ > 0 and all the cγτ,0 are real.
Again passing to a subsequence, we can arrange that either

1. p(q − px1) > D for some fixed constant D in the approximating sequence or

2. p(q − px1) approaches zero as p/q approaches x1.

The first case is simple to deal with. In this case, all the terms in (20) are bounded by some
multiple of |p−qx1|λ+1. By choosing η as before, we may arrange that the φγτ (γx)|p−qx1|λ+1ηλ+1

term dominates the O(q|p − qx1|λ+2)ηλ term. This, in addition to cγτ,0 all being real, will ensure
that |Im φτ (xη)−φτ (p/q)| is larger than some multiple of |p−qx1|λ+1, while the real part is bounded
by some multiple of |p − qx1|λ+1. Then we can again find a sequence values for x approaching x1

with Im φτ (x)−φτ (x1)
Re φτ (x)−φτ (x1) bounded away from 0 as in case 1.

In the later case, we take the equation

φτ (x)− φτ (p/q) =
cτ,0

q
(p− qx)− cγτ,0

λq
|p− qx|λ+

+φγτ (γx)|p− qx|λ+1 + O(q|p− qx1|λ+2)ηλ

and take the difference for the two values x1 and x. This yields

φτ (x)− φτ (x1) = cτ,0(x1 − x)− cγτ,0

λq
(|p− qx|λ − |p− qx1|λ)+ (23)

+φγτ (γx)|p− qx|λ+1 − φγτ (γx1)|p− qx1|λ+1 + O(q|p− qx1|λ+2).

Next, we will restrict x to a range over which φτ (γx) undergoes a complete cycle. If φτ has
period N , we take x′ such that

γx′ − γx1 =
1

q(p− qx′)
− 1

p− qx1
=

x′ − x1

(p− qx′)(p− qx1)
= N. (24)
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From the last inequality, we see that for x1 < x < x′, x−x1 < N(p− qx)2. Thus we can bound the
first term of (23) cτ,0(x1−x) by A(p−qx)2 for some constant A. The second term can be rewritten
as

cγτ,0

λq
(|p− qx|λ − |p− qx1|λ) = cγτ,0

∫ x

x1

(p− qt)λ−1dt ≤ C(p− qx1)λ+1,

for some C, because x − x1 < N(p − qx)2 and p − qt < p − qx1 on the integral of integration.
The final term O(q|p− qx1|λ+2) of (23) will be much smaller than (p− qx1)λ+1 for p/q close to x,
because, by assumption, q(p−qx1) → 0. Thus we bound the real part by a multiple of |p−qx1|λ+1.

Then we are left with the middle terms

φγτ (γx)|p− qx|λ+1 − φγτ (γx1)|p− qx1|λ+1.

Note that x−x1
p/q−x < Nq(p−qx) by the last equality in (24). Thus for p/q close to x, |p−qx|λ+1

|p−qx1|λ+1 can be
made arbitrarily close to 1. If φτ is not a multiple of a real function, by choosing x appropriately in
the interval [x1, x

′], we ensure that the imaginary part of φγτ (γx)|p−qx|λ+1−φγτ (γx1)|p−qx1|λ+1

is at least some multiple of (p− qx1)λ+1. Then we may proceed with the argument as in the other
cases. Note that this is the one case where we choose x “close” to x1.

6 Modular Forms of Weight 1
2 and the Weierstrass Function

Modular forms of weight 1
2 arise not from representations of the group G = SL2(R), but from

representations of its twofold covering group G̃ → G, also known as the metaplectic cover. The
principle series representations of G̃ are parameterized by pairs (λ, δ), where λ ∈ C, δ ∈ Z/4Z.
When δ = ±1, we get “genuine” representations of G̃, whereas for δ = 0, 2, we merely get liftings of
representations (λ, δ/2) of G. We can then consider the space of Γ̃-automorphic distribution vectors
(V −∞

λ,δ )Γ̃ for subgroups Γ̃ ∈ G̃ which project down to subgroups Γ of finite index in SL2(Z). This
space corresponds bijectively to the space of (not necessarily cuspidal) modular forms of weight 1

2
when (λ, δ) = (1

2 ,±1). The boundary value on the real line of these modular forms is a realization
of the automorphic distribution τ ∈ (V −∞

1
2
,±1

)Γ̃ as a distribution on the real line. τ , realized as a

distribution on the real line, inherits automorphy from its invariance as a vector in V −∞
λ,δ under Γ̃:

τ(x) = χ|cx + d|λ−1τ(
ax + b

cx + d
),

χ ∈ {±1,±ı} depending on λ, δ and sgn(cx + d). We again require that the SL2(R) translates of τ
agree with their natural extensions across ∞. The arguments of the previous two sections can be
adapted with little change to determine the points where tangents to the antiderivatives of these
distributions exist.

The eta function is constructed from the discriminant function,

∆(z) = g3
2 − 27g2

3,

where
g2 = 60G4 = 60

∑

(m,n)6=(0,0)

(mz + n)−4,

g3 = 140G6 = 140
∑

(m,n) 6=(0,0)

(mz + n)−6.
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g2(z) and g3(z) are the coefficients of the differential equation for the function ℘ associated to the
lattice generated by z and 1:

℘′(u)2 = 4℘(u)3 − g2℘(u)− g3,

℘(u) = u−2 +
∑

(m,n)6=(0,0)

(u− (mz + n))−2 − (mz + n)−2.

Then

∆ = (2π)12e(z)
∞∏

1

(1− e(nz))24

is a cuspidal modular form of weight 12 for the modular group. Since ∆ does not vanish on H, we
can define a holomorphic function

η(z) = (2π)−
1
2 ∆(z)

1
24 = e(z/24)

∞∏

1

(1− e(nz)).

Then for γ ∈ SL2(Z), we have that

η(γz) = θ(γ)(cz + d)1/2η(z)

for some multiplier system θ for SL2(Z). The function η was used by Hardy and Ramanujan to
establish the asymptotic formula

p(n) ∼ (4
√

3n)−1 expπ
√

2n/3

for the partition function p(n). Because η is cuspidal and not a multiple of a real function (it is
holomorphic), the graph of the curve described by the antiderivative of the boundary distribution
of η has tangents nowhere, because η is not a multiple of a real function.

The theta-function
θ(z) =

∑

n∈Z
e2πın2z

is a modular form of weight 1
2 for the group Γ̃0(4). It is invariant under the group Γ̃1(4) and

transforms under Γ̃0(4) according to the equation

θ(γz) = εd

( c

d

)
θ(z), γ =

(
a b
c d

)
∈ Γ0(4).

εd = 1 is d = 1 mod 4 and εd = ı is d = −1 mod 4.
(

c
d

)
is the Jacobi symbol for positive, odd d.

For negative d, we define ( c

d

)
=

c

|c|
( c

−d

)

and for c = 0, we define the Jacobi symbol to be 1 is d = ±1 and 0 otherwise. From these equations,
we can derive an asymptotic expansion for the antiderivative

φθ =
1

2πı

∑

n6=0

n−2e(n2x)

of θ − 1.
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Near points p/q where q is odd or 4|q, we have ([1])

φθ(x)− φθ(p/q) = −(x− p/q) +
2e

πı
4

m

q
(qx− p)1/2 + e

πı
4

m(qx− p)3/2φθ(γx) + O(q|p− qx|5/2).

Here m is an integer that depends on the rational number p/q, and, as before, γ sends p/q to ∞.
θ is not cuspidal, so we would expect θ to have tangents. However, because of the half-integer
exponents in the asymptotic expansion, the left and right limiting secants approach perpendicular
lines at p/q:

(x− r)1/2 = ı|x− r|1/2 if x < r.

In other words, near rational points p/q where q is odd or 4|q, the limits

lim
x→p/q+

Im φτ (x)− φτ (p/q)
Re φτ (x)− φτ (p/q)

,

lim
x→p/q−

Im φτ (x)− φτ (p/q)
Re φτ (x)− φτ (p/q)

both exist, but give slopes of tangent lines that are perpendicular to each other. This phenomenon
does not arise in any of the antiderivatives of distributions arising from SL2(R); in those cases, if
the either of the above left or right limits exist, they both exist and are equal. Duistermaat [1]
gives the following list of values for m at rational points p/q, q odd or divisible by 4. Thus for
m = 0, as x → p/q−, φθ(x) approaches φθ(p/q) from above, while for x → p/q+, φθ(x) approaches
φθ(p/q) from the right. For other values of m, the same local behavior is replicated, only rotated
by e

πı
4

m. By convention, we take q > 0:

• m = 0 mod 8 if q ∈ 4Z, p ∈ 4Z+ 3,
(

q
|p|

)
= 1

• m = 1 mod 8 if p ∈ Z, q ∈ 4Z+ 1,
(

p
q

)
= 1

• m = 2 mod 8 if q ∈ 4Z, p ∈ 4Z+ 1,
(

q
|p|

)
= 1

• m = 3 mod 8 if p ∈ Z, q ∈ 4Z+ 3,
(

p
q

)
= 1

• m = 4 mod 8 if q ∈ 4Z, p ∈ 4Z+ 3,
(

q
|p|

)
= −1

• m = 5 mod 8 if p ∈ Z, q ∈ 4Z+ 1,
(

p
q

)
= −1

• m = 6 mod 8 if q ∈ 4Z, p ∈ 4Z+ 1,
(

q
|p|

)
= −1

• m = 7 mod 8 if p ∈ Z, q ∈ 4Z+ 3,
(

p
q

)
= −1

For derivations of the asymptotic expansions around rational points p/q and the calculation of
the different values for m, see [1].

Near points p/2q where both p and q are odd, φτ has asymptotic expansion

φθ(x)− φθ(p/2q) = −(x− p/2q) + O(|p− 2qx|3/2)
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Figure 8: The real part of the antiderivative of the boundary distribution of the θ-function, also
known as the Weierstrass function

and derivative equal to −1, so that φτ has a horizontal tangent at such points. Thus we find that
the curve related to the Weierstrass function has tangents or one-sided tangents at rational points
and nowhere else. We close with diagrams of the real, imaginary, and real vs. imaginary parts of
the antiderivative of the boundary distribution of the θ-function. In Figure 10 the perpendicular
tangents that exist at some rational points come across vividly.
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Figure 9: The imaginary part of the antiderivative of the boundary distribution of the θ-function
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Figure 10: The real part vs. imaginary part of the antiderivative of the boundary distribution of
the θ-function
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