
ON PAINLEVÉ CONJECTURE

JINXIN XUE

Abstract. In this paper, we review the stream of ideas around the Painlevé
conjecture–the existence of noncollision singularities (or finite time blowup so-
lutions) in Newtonian N -body problem. We outline the main arguments in our
construction of noncollision singularities in four-body problem.
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1. Introduction

The Newtonian N -body problems studies the motion of N particles Qi ∈ R3 with
mass mi for , i = 1, . . . , n under the mutual gravitational forces

miQ̈i = −
∑
j 6=i

Gmimj
Qi −Qj
|Qi −Qj |3

, i = 1, . . . , N,

where G is the gravitational constant which will be normalized to be 1 in the paper.
The system of equations has a Hamiltonian structure. It can be written as the

Hamiltonian equations

{
Q̇i = ∂H

∂Pi

Ṗi = − ∂H
∂Qi

of the Hamiltonian

H(P,Q) =
N∑
i=1

|Pi|2

2mi
+ U(Q), U(Q) = −

∑
i 6=j

mimj

|Qi −Qj |
,

where P = (P1, . . . , PN ), Q = (Q1, . . . , QN ).

This is a remarkable nonlinear ODE system. It models the motion of the planets
in our solar system, therefore its long time dynamics is of particular importance
since the fate of our civilization is directly relevant. As an early triumph of the
Newtonian mechanics and the calculus, Newton solved the two-body problem hence
proved Kepler’s three laws. The success of Newton’s framework significantly shaped
people’s understanding of the universe. Newton also formulated the three-body
problem and realized that the three-body problem was very complicated. However,
in more than 200 years after Newton, people still believed that the three-body prob-
lem could be “solved” in a similar manner as integrating the two-body problem.
The belief was broken by Poincaré who discovered a mechanism (homoclinic tan-
gle) responsible for the nonintegrability and concluded that the Newtonian N -body
problem is in general chaotic for N > 2. Here chaos means that a small perturbation
of the initial condition may lead to drastically different behavior in the long time.
From Poincaré’s discovery, Smale introduced the horseshoe and symbolic dynamics
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hence gave birth to the modern theory of dynamical systems. So we see that the
Newtonian N -body problem, as an old problem of differential equations, played an
important role in the development of the field of dynamical systems, other fields
of mathematics and even our picture of the universe. However, our current under-
standing of the dynamics of the Newtonian N -body problem is still very limited.
There are a number of deep open problems that are far from being answered.

1.1. Global dynamics of Newtonian N-body problem. To fit our result into a
broad global picture, we first give an overview of the global dynamics of Newtonian
N -body problem. We adopt the perspective of dynamical systems that is to under-
stand the asymptotic behavior of all or generic solutions as time goes to infinity.
The problems and conjectures that we list below are chosen centered around the
main theme of the paper–noncollision singularity, hence is nonavoidably biased.

The wellposedness problem (existence and uniqueness of solutions, continuous
dependence on initial conditions) of the ODE system is understood, so the next main
problem to study is the maximal extendible time interval defining the solution. The
set of initial conditions (positions and velocities) in R6N can be divided into two
disjoint sets S and R, where R meaning regular is the set of initial conditions such
that the solution is defined on [0,∞) and S meaning singular is the complement of
R, that is the set of solutions that is defined only on a finite time interval. Without
loss of generality, we shall consider only positive times and negative times can be
treated by a time reversal. We can further classify S into two disjoint subsets CS and
NCS where CS meaning collision singularities, is the set of initial conditions leading
to a collision and NCS meaning noncollision singularities is the set of singularities
without collisions.

Here comes the first main conjecture concerning the global dynamics of the New-
tonian N -body problem.

Conjecture 1.1. The set S has zero Lebesgue measure.

This conjecture can be found in [40] as the first problem. It is known that CS
has zero Lebesgue measure for all N > 0 and NCS has zero Lebesgue measure for
N = 4 [39]. However, the general N > 4 case the conjecture is widely open. We will
elaborate on the subject of noncollision singularities in the main body of the paper
starting from Section 1.2. In general, this conjecture seems very hard. We can also
adopt a topological viewpoint and ask the following companion of Conjecture 1.1.

Conjecture 1.2. The set S is of Baire first category.

It was known to Saari that CS is of first category, so again the problem is to prove
that NCS is of first category.

It is nature to understand the singularities before measuring their measure or
perturbing them away. So we have
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Problem 1.3. Classify CS and NCS.

We will see in von Zeipel’s theorem (see Theorem 1.10) that the orbit of a noncol-
lision singularity will approach CS repeatedly as time approaches the singular time.
So the first step towards understanding the problem is to understand CS. When
approaching the total collapse of an N -body problem, as people usually do when
analyzing a singularity, we can perform a blowup procedure to obtain a limiting
dynamical system on a collision manifold. The blowup technique will be intro-
duced in Section 5. A special type of solution called central configurations appeared
naturally as equilibria of the limiting dynamics. Denoting Q = (Q1, . . . , Qn) the
position vector, U = −

∑
i 6=j

mimj

|Qi−Qj | the Newtonian potential, Qc =
∑
miQi the

mass center and M = diag{m1, . . . ,mn} the mass matrix, a central configuration is
an arrangement of the point masses satisfying

∇U(Q) = λM(Q−Qc)
for some λ, so central configurations are critical points of U restricted to the shape
sphereQTMQ = 1. For a central configuration, the Newtonian equation is simplified
into Q̈ = −λ(Q − C), hence central configurations can be used to construct self-
similar solutions. Thus the problem of classification of CS leads naturally to the
following conjecture by Smale.

Conjecture 1.4 (Smale [36]). For all mass ratios and all N ≥ 3, the set of central
configurations is finite.

The central configurations in the three-body problem were known to Euler and
Lagrange. There are only collinear (Euler) and equilateral configurations. The
problem is solved for the cases N = 4, 5 for generic masses, but remains open
for general N > 5 [4, 24, 23] etc. For more open problems concerning central
configuration, we refer to the problem list of [6]. However, the finiteness still does
not imply a classification and there are so many various central configurations that
a classification seems impossible. Note that the dynamics on the collision manifold
is gradient like (see Section 5). If we are interested in generic dynamics, it would
be meaningful to talk about stable central configurations that are robust under
perturbations of initial conditions on the collision manifold. In the N = 3 case the
Euler configurations correspond to a sink and source and the Lagrange configurations
are saddles. The only stable one is the sink. We call a central configuration stable if
it is a sink on the collision manifold. Then the following problem is more tractable.

Problem 1.5. Classify all the stable central configurations.

We next consider the dynamics of initial conditions in R which gives rise to global
solutions. One main theme in dynamical system is to understand the asymptotic
behavior as t → ∞, so one theme in understanding the dynamics of Newtonian
N -body problem is the following.
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Problem 1.6. Classify all the final motions for point x ∈ R for both t→∞.

A classification was given by Chazy for three-body problem, in which all com-
binations of hyperbolic (|Qk(t)| → ∞, |Q̇k(t)| → ck > 0), parabolic (|Qk(t)| →
∞, |Q̇k(t)| → 0), bounded (supt |Q(t)| < ∞) and oscillatory (lim sup |Q(t)| =
∞, lim inf |Q(t)| < ∞) in the past and future are shown to exist (c.f. Chapter
2.3.4 of [5] for details). There are many different special bounded motions such as
periodic orbits, quasi-periodic orbits, etc. Among others (c.f. for instance [9, 16]),
we refer to [10] for the remarkable figure-8 periodic orbit in three-body problem and
periodic orbits realizing all free homotopy classes in planar three-body problem by
Moeckel and Montgomery [29]. The bounded motions can even have positive mea-
sure for instance, quasi-periodic orbits in KAM theory. The application of the KAM
theory to the N -body problem was initiated in the work of Arnold [2], cultivated
by Herman, Fejoz [15] and completed in the work of Chierchia-Pinzari [11]. We see
that such a classification may be very complicated, even modulo a zero measure set.
The number of possibilities grows exponentially as the number of bodies grows.

So it is reasonable to ask what the predominant cases are in the classification of
final motions. For this purpose, instead of a measure theoretical viewpoint, we adopt
a topological viewpoint. That is, we are interested in the possible final motions for
generic initial conditions. Note that the KAM tori are only first category.

Recall that the notion of nonwandering point in topological dynamical systems.
Let f : X → X be a homeomorphism on a topological space X. A point x ∈ X is
called nonwandering if for every neighborhood U of x, any n0 there exists n such
that fn(U) ∩ U 6= ∅.
Conjecture 1.7 (Birkhoff-Kolmogorov). Fir all energy E, the non wandering set
of the Hamiltonian flow on the energy level set H−1(E) is nowhere dense.

This conjecture can be found in [21], where Herman attributed it to Birkhoff
and Kolmogorov and called it the oldest problem in Newtonian N -body problem.
The conjecture asserts the topological instability of the N -body problem and seems
extremely hard. Moreover, Herman in [21] also gives a more tractable version as-
suming that there is one large mass and all other particles have masses of order ε.
In a similar spirit, we make the following conjecture on the generic global dynamics
in Newtonian N -body problem. This conjecture can be considered as an analogue
of the soliton resolution conjecture in dispersive PDEs. Supporting evidences can
be found in the numerical studies [3, 42, 41, 22] etc.

Conjecture 1.8. For generic initial condition x ∈ R, the orbit as t → ∞, each
body approaches either a linear motion with constant velocity or a Kepler elliptic
motion around a center moving linearly with constant velocity.

One result in this direction can be found in [32], which states that for N -body
problem as t → ∞ there is a dichotomy: either the orbit is superhyperbolic, or
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the system decouples into several subsystems moving apart linearly and growing

at most like t2/3. An orbit is called superhyperbolic if we have

√
I(t)

t → ∞ as

t→∞, where we have I =
∑
mi|Qi|2. The existence of collisionless superhyperbolic

orbits is still an open problem, so are their measure 0 or first category properties.
Superhyperbolic orbits share many similarities with noncollision singularities and
can be considered as a slower version of noncollision singularities. So we expect that
our techniques developed in constructing noncollision singularities can also be used
to construct superhyperbolic orbits, and to exclude superhyperbolic orbits seems
to be a problem similar to Conjecture 1.1 and Conjecture 1.2. Growing like t2/3 is
a behavior similar to Kepler’s parabolic motions, so is expected to be nongeneric.
To summarize, Conjecture 1.8 seems to be extremely hard, but meaningful progress
will increase our understanding of the dynamics of the N -body problem.

1.2. Noncollision singularities in Newtonian N-body problem. The main
theme of the present paper is to elaborate on Conjecture 1.1. We have defined
noncollision singularities, but even their existence is a highly nontrivial fact.

Conjecture 1.9 (Painlevé, 1897). The set NCS is nonempty for N > 3.

The conjecture appeared first in the lecture notes of Painlevé in 1897 [34, 35],
which records the his lectures at the University of Stockholm invited by King Oscar
II of Sweden and Norway in 1895. In these lectures, Painlevé talked about the New-
tonian N -body problem with a particular stress on the role played by singularities.
He proved that in three-body problem the only singularities are collisions and made
the conjecture stated above. We will present Painlevé’s theorem in Appendix A.2.

The next important work after Painlevé is the following characterization of the
dynamical behavior of noncollision singularities by von Zeipel [48].

Theorem 1.10 (von Zeipel, 1908). If a noncollision singularity occurs at time t∗,
then we have

lim
t→t∗

min
i 6=j
|Qi(t)−Qj(t)| → 0, lim

t→t∗
max
i 6=j
|Qi(t)−Qj(t)| → ∞.

We also present the proof of this theorem in Appendix A.3. From von Zeipel’s
theorem, we see that a noncollision singularity is a nonlocal behavior, as opposed
to most known singularities, and highly counter-intuitive [30]. Such wild behavior
requires infinitely large velocities hence distinguishes the Newtonian mechanics from
special relativity.

The existence of noncollision singularities had been doubted for a long time until
the work of Mather-McGehee in 1975 [27]. They constructed a collinear four-body
problem in which there exist initial conditions whose solutions satisfy the above
characterization of von Zeipel. However, this work has a defect since it involves in-
finitely many double collisions before the finite singular time, which is not avoidable
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for a collinear problem, so it does not give a genuine noncollision singularity. Xia
in 1992 [47] constructed noncollision singularities in a spatial five-body problem.

While the works of Mather-McGehee and Xia rely essentially on triple collision
blowups, Gerver pioneered another approach exploiting self-similarity and Kepler
motions. Gerver proposed a model of five-body problem without detailed proofs
[20]. Later in 1991, he imposed symmetries to obtain a 3N -body problem for N
sufficiently large in which he proved the existence of noncollision singularities [18].

After the previous works, the last open case of the Painlevé conjecture is the
borderline case N = 4. In [46], we prove that noncollision singularities exist in
four-body problems, hence completes the program of Painlevé. It is a general belief
that a collision singularity in N -body problem easily gives rise to one for N + 1
body problem by adding an extra remote body. The previously known models all
require symmetry so adding a new body may break the symmetry. Our model does
not utilize symmetry, so we have to deal with the new difficulties created by the
asymmetry, and our techniques is more amenable for generalizing to N(> 4)-body
problem. Let us state the results as follows.

Figure 1. The configuration of the model II

We have two large bodies Q1 and Q2 of masses 1 and two small bodies Q3 and Q4

of masses µ � 1. The two large bodies Q1 and Q2 are set to be far away initially.
One small body, say Q3, is captured by Q2 and doing almost Kepler elliptic motion.
The other small body Q4 travels back and forth between Q1 and the pair Q2-Q3.
Each time when Q4 comes close to the pair, it has a close encounter with Q3 to
extract certain amount of angular momentum or energy. We will exhibit a rich
variety of singular solutions. Fix a small ε0. Let ω = {ωj}∞j=1 be a sequence of 3s
and 4s.

Definition 1.11. We say that (Qi(t), Q̇i(t)), i = 1, 2, 3, 4, is a singular solution
with symbolic sequence ω if there exists a positive increasing sequence {tj}∞j=0

such that

• t∗ = limj→∞ tj <∞.
• |Q3 −Q2|(tj) ≤ ε0, |Q4 −Q2|(tj) ≤ ε0.
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• For t ∈ [tj−1, tj ], |Q7−ωj − Q2|(t) ≤ ε0 and {Qωj (t)}t∈[tj−1,tj ] leaves the
ε0 neighborhood of Q2, winds around Q1 exactly once, then reenters the ε0

neighborhood of Q2.
• lim supt |Q̇i(t)|, lim supt |Qi(t)| → ∞ as t→ t∗, i = 1, 2, 3, 4.

During the time interval [tj−1, tj ] we refer to Qωj as the traveling particle and to
Q7−ωj as the captured particle. Thus ωj prescribes which particle is the traveler
during the jth trip.

We denote by Σω the set of initial conditions of singular orbits with symbolic
sequence ω.

Theorem 1.12. There exists µ∗ � 1 such that for µ < µ∗ the set Σω 6= ∅.
Moreover there is an open set U on the zero energy level and zeroth angular

momentum level, and a foliation of U by two-dimensional surfaces such that for any
leaf S of our foliation Σω ∩ S is a Cantor set.

In [13], we introduced a simplified model that we call two-center-two-body prob-
lem: We fix the two large bodies Q1 and Q2 and consider the motion of the two
small bodies Q3 and Q4 in the gravitational field generated by all the four bodies.
We prove that there exists orbit such that the velocities |Q̇3| and |Q̇4| are acceler-
ated to infinity within finite time avoiding all early collisions. The simplified model
captured most of the mathematical difficulties of the proof of Theorem 1.12. Note
that the Euler two-center problem, i.e. a particle moves in the gravitational field
generated by two fixed masses, is a classical integrable system. Our theorem in [13]
shows that adding one more particle to the two-center system creates drastically
different dynamical behaviors.

The paper is organized as follows. In Section 2, we introduce the classical results
on the two-body problem, including solving the two-body problem by quadrature,
Kepler’s three laws and the Delaunay coordinates. In Section 3, we explain Gerver’s
ideal model in [17] used in the proof of Theorem 1.12. In Section 4, we explain the
proof of Theorem 1.12. In Section 5, we include the total collapse blowup techniques
and apply it to several cases of three-body problems. Finally, in Appendix A, we
give the proofs of Painlevé’s theorem on the nonexistence of noncollision singularities
for three-body problem and von Zeipel’s Theorem 1.10.

We end the introduction by a conjecture and a problem relevant to the main
theme of the paper.

Conjecture 1.13. In special relativistic N -body problem with Coulumb potential,
all singularities are collisions.

Problem 1.14. In special relativistic N -body problem with Coulumb potential, con-
struct an orbit such that the velocity of one body goes to the speed of light as t→∞.
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2. Two-body problem

In this section we consider the two-body problem. We will solve the two-body
problem by quadrature and recover Kepler’s three laws from the solution. Moreover,
we will introduce the action-angle coordinates called Delaunay coordinates, which
will be used intensively later.

We suppose the mass center is the origin m1Q1 + m2Q2 = 0, which implies
P1 + P2 = m1Q̇1 + m2Q2 = 0. We can thus introduce x = Q2 −Q1 as the relative
position and y = P2 and we see that the symplectic form

dP1 ∧ dQ1 + dP2 ∧ dQ2 = dy ∧ dx+ d(P1 + P2) ∧ dQ1 = dy ∧ dx

is preserved. Therefore it is enough to consider the following Hamiltonian of the
form

(2.1) H(x, y) =
y2

2m
− k

|x|
, (x, y) ∈ R3 × R3.

Here we have m = m1m2
m1+m2

and k = m1m2. The equation of motion has the form

mẍ = −k x

|x|3
.

It is easy to verify that the angular momentum Θ = x×y is conserved. This implies
that the orbit lies on a plane perpendicular to the angular momentum vector. So in
the following we consider x, y ∈ R2.

It can be verified that the following transformation is symplectic.

(2.2)

{
x = (r cos θ, r sin θ),

y = (R cos θ − Θ
r sin θ,R sin θ + Θ

r cos θ).

It is clear that r has the geometric meaning of length and θ is the polar angle, R is
the radial momentum conjugate to r and Θ = x × y is the angular momentum. It
can be verified that the following symplectic form is preserved:

dy ∧ dx = dR ∧ dr + dΘ ∧ dθ.

The transformation is obtained as follows. First, we introduce polar coordinates
for the position x. For the momentum, it is known that a linear transform A :
Rn → Rn, A ∈ GLnR induces a symplectic transform (A, (AT )−1) on Rn × Rn. So
the above symplectic transform in the momentum space is obtained by taking the
transpose inverse of the derivative of the polar coordinate change in the position
space.

We substitute this polar coordinate change into the Hamiltonian to yield the
following

H(R, r,Θ, θ) =
1

2m

(
R2 +

Θ2

r2

)
− k

r
.
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Now the angular momentum Θ is constant. The Hamiltonian system has one degree
of freedom governing the motion of the radial component. We introduce the effective

potential Veff(r) = 1
2m

Θ2

r2
− k

r . When the total energy is negative, the radial length
has to be bounded and energy conservation gives that each orbit in the phase space
is closed and is given by the graph of the function

r 7→ ṙ = R(r)/m = ±
√

2m−1(E − Veff(r)).

We also have θ̇ = Θ
mr2

. Therefore we get

dθ

dr
=

Θ/r2√
2m(E − Veff(r))

,

θ =

∫
Θ/r2 dr√

2m(E − Veff(r))
.

The integral can be evaluated explicitly as

θ = arccos
Θ
r −

mk
Θ√

2mE + m2k2

Θ2

.

Denoting by e =
√

1 + 2EΘ2

mk2
the eccentricity, we obtain from the above equation

that

(2.3) r =
Θ2/(mk)

1 + e cos θ
.

This is the equation for a conic section. Depending on the signs of E, the equation
represents an ellipse (E < 0), parabola (E = 0) and hyperbola (E > 0).

From this, we can derive Kepler’s three laws.

First, denoting by a the semimajor and b the semiminor of the ellipse. Then we
get

2a =
Θ2/(mk)

1 + e
+

Θ2/(mk)

1− e
=

2Θ2/(mk)

1− e2
=

k

|E|
.

So we get a = k
2|E| . The semiminor is

b = a
√

1− e2 =
k

2|E|

√
2|E|Θ2

mk2
=

Θ√
2m|E|

.

In polar coordinates, the angular momentum can be written as

Θ/m = r× ṙ = r× (ṙer + rθ̇eθ) = r2θ̇er × eθ.

Kepler’s second law says that the rate of change of the area S(t) swept out by the
radius vector is a constant. On the infinitesimal level, we see that this area of the
infinitesimal triangle is given by ∆S = 1

2r
2 sin(∆θ) = 1

2r
2θ̇∆t. This gives Ṡ = 1

2mΘ.
So Kepler’s second law is really the angular momentum conservation.
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Suppose the period is T , so the total area of the ellipse is T Θ
2m = πab. Then we

obtain

T = π
mk

|E|
Θ√

2m|E|
/Θ =

kπ

|E|
√

2m|E|
=

2πa3/2

(k/m)1/2
.

This is Kepler’s third law.

There is another remarkable coordinate system called Delaunay coordinates, which
is the action-angle coordinates for the Kepler problem. This coordinate system con-
denses the above information from Kepler’s laws in a simple way. The coordinates
are denoted by (L, `,G, g) with the following physical meanings.

• L is the symplectic area enclosed by the graph (R, r) on the energy level
E < 0;
• ` is the area swept out by the particle, called mean anomaly;
• G = Θ is the angular momentum;
• g measures the angle of perigee.

In Delaunay coordinates, the Hamiltonian has the form

H(L, `,G, g) = −mk
2

2L2
.

The only nontrivial Hamiltonian equation is ˙̀ = mk2

L3 which is exactly Kepler’s
second and third laws.

Comparing the above formulas for the semimajor a and semiminor b, we obtain
further geometric meanings for the Delaunay variables

(2.4) a =
L2

mk
, b =

L|G|
mk

, e =
√

1−G2/L2,

where e is the eccentricity. The mean anomaly ` can be related to the polar angle
ψ through the equations

tan
ψ

2
=

√
1 + e

1− e
· tan

u

2
, u− e sinu = `.

Denoting the particle’s position by Q = (q1, q2) and its momentum by P = (p1, p2)
we have the following formulas in the case g = 0

(2.5)
q1 =

L2

mk
(cosu− e) , q2 =

LG

mk
sinu,

p1 = −mk
L

sinu

1− e cosu
, p2 =

mk

L2

G cosu

1− e cosu
,

Here g does not appear because the argument of apapsis is chosen to be zero.
In the general case, we need to rotate the (q1, q2) and (p1, p2) using the matrix[

cos g − sin g
sin g cos g

]
.
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It is remarkable that the Delaunay coordinates, defined for elliptic Kepler motions,
are also defined for hyperbolic Kepler motions after small changes.

(2.6)
q1 =

L2

mk
(coshu− e) , q2 =

LG

mk
sinhu,

p1 = −mk
L

sinhu

1− e coshu
, p2 = −mk

L2

G coshu

1− e coshu
.

where u and ` are related by

(2.7) u− e sinhu = `, where e =

√
1 +

(
G

L

)2

is the eccentricity. In the hyperbolic Delaunay coordinates (L, `,G, g), the Hamil-
tonian for the Kepler hyperbolic motion can be written as

H =
mk2

2L2
.

3. Gerver’s ideal model

In [17], Gerver proposed an ideal model for the construction of noncollision sin-
gularities in four-body problem, which lies in the heart of the proof of Theorem 1.12
of [46]. The model is very interesting and elementary, so in this section we explain
it in details.

We need three parameters to determine an ellipse: the semimajor, semiminor and
the angle of the periapsis and similar for a hyperbola. In Delaunay variables, these
parameters are equivalent to L,G, g. The mean anomaly ` indicates the position of
the particle on the ellipse or hyperbola. Gerver’s model considers the dynamics of
the subsystem Q2, Q3, Q4 in the limit case µ = m3 = m4 = 0 with Q1 ignored. We
assume that

• Q3 has elliptic motion and Q4 has hyperbolic motion with focus Q2;
• Q3 and Q4 arrive at the correct intersection point of their orbits simultane-

ously (see Figure 1 and 2);
• Q3 and Q4 do not interact unless they have an exact collision, and the

collision is treated as elastic collision (energy and momentum are preserved).

The main conclusion is that

• the major axis of the elliptic motion is always kept vertical;
• the incoming and outgoing asymptotes of the hyperbolic motion are always

horizontal;
• after two steps of the collision procedure, the ellipse has the same eccentricity

as the ellipse before the first collision, but has a smaller semi-major axis (see
Figure 1 and 2).
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The interaction of Q3 and Q4 is desribed by the elastic collision, i.e. the energy
conservation and momentum conservation laws are obeyed and there is no mutual
forces. Suppose two particles Q3 and Q4 collides at 0 with velocities v−3 and v−4
respectively. Suppose the velocities after the collision are v+

3 and v+
4 respectively.

By energy conservation and momentum conservation we have

|v+
3 |

2 + |v+
4 |

2 = |v−3 |
2 + |v−3 |

2, v+
3 + v+

4 = v−3 + v−4 .

These provide three equations and we want to solve for four variables (v+
3 , v

+
4 ) ∈

R2×R2 for given initial velocities (v−3 , v
−
4 ) ∈ R2×R2, The solution can be expressed

explicitly as

(3.1) v+
3 =

v−3 + v−4
2

+

∣∣∣∣v−3 − v−42

∣∣∣∣n(α), v+
4 =

v−3 + v−4
2

−
∣∣∣∣v−3 − v−42

∣∣∣∣n(α),

where n(α) is a unit vector making angle α with v−3 − v
−
4 . Here α ∈ [0, 2π) is a free

parameter.

Figure 2. Angular momentum transfer

3.1. The first collision, angular momentum transfer. In this section, we de-
scribe the first step in Gerver’s construction (see Figure 3). Assuming Q3 and Q4 to
have zero mass so they have no gravitational interaction with each other, but both
are attracted by Q2. Suppose m2 = 1, then the Hamiltonians governing the motion
of Q3 and Q4 are both (2.1) with m = k = 1 (We may set in (2.1) m2 = 1,m1 = µ,
k = m1m2 = µ,m = m1m2

m1+m2
= µ + O(µ) and y = µv, then divide the Hamiltonian

by µ and let µ→ 0).
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Figure 3. Energy transfer

Let ε0 ∈ (0,
√

2/2) and ε1 =
√

1− ε2
0 ∈ (

√
2/2, 1). Suppose the initial ellipse of

Q3’s orbit is

x2

ε2
1

+ (y − ε0)2 = 1,

which is an ellipse with semimajor 1 and semiminor ε1 (hence eccentricity ε0) and
one focus at zero. We can use the geometric meanings of Delaunay coordinates (2.4)
to find the energy of the orbit is E = −1

2 and angular momentum is G = ε1 (we use
the convention that G is positive if Q3 moves counterclockwise on the ellipse).

By assumption, an elastic collision occurs where the Q3-ellipse and Q4-hyperbola
cross. The collision point is carefully chosen so that all the following construction
works. The first collision point is chosen at Z := (X,Y ) = (−ε0ε1, ε0 + ε1). The
final ellipses of Q3 after collision is

x2

ε2
0

+ (y − ε1)2 = 1,

which has semimajor 1 and semiminor ε0 (hence eccentricity ε1) and focused at 0.
Again by (2.4) to find the energy of the orbit is E = −1

2 and angular momentum is
G = −ε0.
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The velocities v− and v+ ofQ3 before and after the collision respectively are solved
from the equations of angular momentum conservation and energy conservation

(3.2)

Z × v− = ε1,
1

2
|v−|2 − 1

|Z|
= −1

2
,

Z × v+ = −ε0,
1

2
|v+|2 − 1

|Z|
= −1

2
.

The solutions are given by

v− =
1

1 + ε0ε1
(−ε2

1,−ε0), v+ =
1

1 + ε0ε1
(ε2

0, ε1).

We next find the hyperbolic orbits for Q4. By the energy conservation, both the
incoming and outgoing orbits of Q4 have energy 1/2 with the incoming asymptote
of the initial orbit and the outgoing asymptote of the final orbit both parallel to
the negative x-axis. They both intersect the ellipsis at Z. In geometric terms, both
hyperbolas have semimajors −1 focus at the origin and one asymptote y = −p for
some p ∈ R.

We consider a standard hyperbola ỹ2 − (x̃ tanψ)2 = 1 with ỹ > 0 and some ψ to
be determined later. This is a hyperbola opening up, symmetric along the ỹ-axis
and the asymptote forms an angle ψ with the x̃-axis. The coordinate of the focus
is (0, cscψ).

The hyperbola that we are looking for is related to this one by a rotation by angle
ψ (so that one asymptote is parallel to the x-axis) and a vertical shift by cscψ (so
that the focus is shifted to the origin).

We thus have the coordinate change

{
x̃ = x cosψ + y sinψ

ỹ = y cosψ − x sinψ + cscψ.
Substitut-

ing this to the (x̃, ỹ) equation and after some manipulations we arrive at the following
equation for (x, y)

y2(1− p−2)− 2xy/p+ 2yp− 2x+ 1 + p2 = 1

where p = cotψ and y = −p is exactly the asymptote parallel to the x-axis. We
arrive at

(p2 + yp− x− r)(p2 + yp− x+ r) = 0, r =
√
x2 + y2.

Each factor on the LHS represents one branch of the hyperbola and the first one is
the one that we are looking for so we have at the collision point Z = (X,Y )

p2 + Y p−X −R = 0, R =
√
X2 + Y 2 = 1 + ε0ε1.

We solve for p

p∓ =
−Y ∓

√
Y 2 + 4(X +R)

2
where y = −p− is the incoming asymptote and y = −p+ is the outgoing asymptote.
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We next work out the velocities u− and u+ of Q4 before and after collision at
Z. We again use the equations for angular momentum conservation and energy
conservation

(3.3)

Z × u− = p−,
1

2
|u−|2 − 1

|Z|
=

1

2
,

Z × u+ = p+,
1

2
|u+|2 − 1

|Z|
=

1

2
.

The solutions are given by

u− =

(
1− Y

Rp−
,

1

Rp−

)
, u+ =

(
−1 +

Y

Rp+
,− 1

Rp+

)
.

3.2. The second collision, energy transfer. In this section, we describe the
second step in Gerver’s construction (see Figure 3). The second collision transfers
energy from Q3 to Q4. We start with the Q3 ellipse after the first collision. The
second collision point is chosen at Z = (X,Y ) = (ε2

0, 0) and the equations for the
initial and final ellipses are respectively

(3.4)

x2

ε2
0

+ (y − ε1)2 = 1,

ε2
1

ε4
0

x2 +

(
ε2

1

ε2
0

y + ε0

)2

= 1.

The final ellipse has semimajor
ε20
ε21

and semiminor
ε20
ε1

(hence eccentricity ε0, the same

as the initial ellipse in step 1). Equation (2.4) implies that the energy of the final

Q3 orbit is −1
2
ε21
ε20

and the angular momentum is −ε0.

Again the angular momentum conservation and the energy conservation yield the
velocities v− and v+ before and after the collision

(3.5)

Z × v− = −ε0,
1

2
|v−|2 − 1

|Z|
= −1

2
,

Z × v+ = −ε0,
1

2
|v+|2 − 1

|Z|
= − ε2

1

2ε2
2

.

We next consider the Q4-hyperbola. Similarly, the incoming asymptote y = −p− of
Q4 is solved from the equation

p2 + Y p−X −R = 0, R = |Z| = ε2
0.

So p− =
√

2ε0 so that the incoming asymptote is y = −
√

2ε0.

The velocity u− = (1,
√

2/ε0) of Q4 before the collision can be solved from

X × u− = p,
1

2
|u−|2 − 1

R
= 1/2.
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After the collision, the energy of Q4 is ε2
1/(2ε

2
0) so that the semimajor of the hyper-

bola is ε2
0/ε

2
1. We perform a rescaling (x, y) 7→ (x̄, ȳ) = (x, y)ε2

1/ε
2
0 and apply our

p-equation to (x̄, ȳ). The outgoing asymptote is then solved as ȳ = −p+ where p+

solves the equation

p2 + Y pε2
1/ε

2
0 −Xε2

1/ε
2
0 −Rε2

1/ε
2
0 = 0.

Then we get p+ = −
√

2ε1 so the outgoing asymptote is y =
√

2ε2
0/ε1.

The velocity u+ = (
√

2/ε0, ε1/ε0) after the collision is solved from the equation

Z × u+ =
√
ε0,

1

2
|u+|2 − 1

R
=

ε2
1

2ε2
0

.

3.3. The polar coordinates representation. We summarize the above construc-
tion of Gerver into the following table and statement.

1st collision @(−ε0ε1, ε0 + ε1) 2nd collision @(ε20, 0)

Q3 Q4 Q3 Q4

energy −1
2

1
2 −1

2 → −
ε21
2ε20

1
2 →

ε21
2ε20

angular momentum ε1 → −ε0 −p− → −p+ −ε0

√
2ε0

eccentricity ε0 → ε1 ε1 → ε0

semimajor 1 −1 1→
(
ε0
ε1

)2
1→ ε21

ε20

semiminor ε1 → ε0 |p−| → |p+| ε0 →
ε20
ε1

√
2ε0 →

√
2ε1

We use the variables (e3, g3, E3) to describe the shape of the Q3-ellipse focused
at the origin, where (e3, g3, E3) are eccentricity, argument of periapsis and energy
respectively. For the Q4-hyperbola, we can use similarly (e4, g4, E4) to describe it.
However, we can eliminate E4 since we have energy conservation E4 = −E3 and
we can eliminate g4 since we assume one asymptote is horizontal. So e4 is enough
to determine the shape of the Q4-hyperbola and also the collision point that is the
intersection point of Q3-ellipse and Q4-hyperbola. Note also that we have a freedom
to choose either Q3 or Q4 to move on the elliptic orbit and the other hyperbolic
after each collision. We thus obtain a map Ge4,j,ω that we call Gerver’s map that
maps from the space of ellipses to itself, depending on parameter e4 the eccentricity
of Q4, j = 1, 2 the first or second collision and ω = 3, 4 the escaping body. For the
sake of definiteness we always choose ω = 4 in the following statement.

Lemma 3.1. Assume that the total energy of the Q2, Q3, Q4 system is zero, i.e.
E3 + E4 = 0, and fix the incoming and outgoing asymptotes of the hyperbola to be
horizontal.

(a) For E∗3 = −1
2 , g
∗
3 = π

2 and for any e∗3 ∈ (0,
√

2
2 ), there exist e∗4, e

∗∗
4 , λ0 > 1

such that

(e3, g3, E3)∗∗ = Ge∗4,1,4
(e3, g3, E3)∗ , (e3,−g3, λ0E3)∗ = Ge∗∗4 ,2,4 (e3, g3, E3)∗∗ ,
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where E∗∗3 = E∗3 = −1
2 , g

∗∗
3 = g∗3 = π

2 and e∗∗3 =
√

1− e∗23 .

(b) There is a constant δ̄ such that if (e3, g3, E3) lie in a δ̄ neighborhood of
(e∗3, g

∗
3, E

∗
3), then there exist smooth functions e′4(e3, g3), e′′4(e3, g3), and λ(e3, g3, E3)

such that

e′4(e∗3, g
∗
3) = e∗4, e′′4(e∗3, g

∗
3) = e∗∗4 , λ(e∗3, g

∗
3, E

∗
3) = λ0,

(ē3, ḡ3, Ē3) = Ge′4(e3,g3),1,4 (e3, g3, E3) ,

(e∗3,−g∗3, λ(e3, g3, E3)E∗3) = Ge′′4 (e3,g3),2,4

(
ē3, ḡ3, Ē3

)
.

Part (a) is the main content of [17], which gives a two-step procedure to decrease
the energy of the elliptic Kepler motion and maintain the self-similar structure (See
Figure 1 and 2). We call the collision points in part (a) the Gerver’s collision points.
Part (b) says that once the ellipse gets deformed slightly away from the standard
case in Figure 1 after the first collision, we can correct it by changing the phase of
Q3 slightly at the next collision to guarantee that the ellipse that we get after the
second collision is standard.

Gerver’s construction in Section 3.1 and 3.2 finds a special solution of the map
G. We next introduce a set of implicit equations written in polar coordinates in
order to solve the Gerver map G for general initial data.

Here we use the variable ψ for polar angle with the positive y axis as the axis
ψ = 0.

Recall the formula (2.3) r = G2

1−e cosψ for conic sections in which the periapsis lies

on the axis ψ = π. So we have the following two equations describing the Q3-ellipse
and Q4-hyperbola before (−) and after (+) the collision.

(3.6)


r±3 =

(G±3 )2

1− e±3 sin(ψ±3 + g±3 )
,

r±4 =
(G±4 )2

1− e±4 sin(ψ±4 − g
±
4 )
.

We have energy conservation and angular momentum conservation.

(3.7) E+
3 + E+

4 = E−3 + E−4 ,

(3.8) G+
3 +G+

4 = G−3 +G−4 ,

Momentum conservation gives the following equation in addition to the angular
momentum conservation (see the derivation below)

(3.9)
e+

3

G+
3

cos(ψ+
3 +g+

3 )+
e+

4

G+
4

cos(ψ−4 −g
−
4 ) =

e−3
G−3

cos(ψ−3 +g−3 )+
e−4
G−4

cos(ψ−4 −g
−
4 ),
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The fact that the four curves (Q3 ellipses and Q4 hyperbolas before and after the
collision) intersect at the same point give the following equations

(3.10)
(G+

3 )2

1− e+
3 sin(ψ+

3 + g+
3 )

=
(G−3 )2

1− e−3 sin(ψ−3 + g−3 )
,

(3.11)
(G+

3 )2

1− e+
3 sin(ψ+

3 + g+
3 )

=
(G+

4 )2

1− e+
4 sin(ψ+

4 − g
+
4 )
,

(3.12)
(G−3 )2

1− e−3 sin(ψ−3 + g−3 )
=

(G−4 )2

1− e−4 sin(ψ−4 − g
−
4 )
,

(3.13) ψ+
3 = ψ−3 , ψ−4 = ψ−3 , ψ+

4 = ψ+
3 .

(3.9) follows from the conservation of momentum as follows. Represent the position

vector as r = rer. Then the velocity is ~̇r = ṙer + rψ̇eψ. Conservation of momentum
gives (ṙ3)− + (ṙ4)− = (ṙ3)+ + (ṙ4)+. Taking the radial component and using the

polar representation of the ellipse r = G2

1−e sin(ψ+g) , we get

ṙ =
G2

(1− e sin(ψ + g))2
e cos(ψ + g)ψ̇ =

r2

G2
e cos(ψ + g)

G

r2
=

e

G
cos(ψ + g).

We determine g±4 = ± arctan
G±4
L±4

by the condition of horizontal asymptotes. Then

Gerver’s map can be solved from the above set of equations implicitly.

4. Four-body problem, model I

In this section, we explain the proof of Theorem 1.12. We first show heuristically
how Gerver’s construction may give a noncollision singularity. We have learned in
the previous section that Gerver’s construction gives a smaller Q3-ellipse with the
same eccentricity after a two-step procedure. We can then zoom in the picture to
unit size and repeat the procedure. For Kepler elliptic motion, energy E3 is related
to the semimajor a through the relation E3 = − 1

2a . Suppose we can iterate the
procedure for infinitely many steps, we get that the energy of Q3 grows to −∞ like
E3 ∼ −λn, where λ > 1 is the ratio of the semimajors of the initial and final ellipses.
Energy conservation implies that the energy of Q4 grows to ∞ like E4 ∼ λn. For
most of the time Q4 is far from the two large bodies so that most of its energy is
kinetic energy and the speed of Q4 grows exponentially like |Q̇4| ∼ λn/2. Suppose
the masses of Q4 and Q3 are µ� 1, the masses of Q1 and Q2 are 1 and the initial
distance of Q1 and Q2 is χ. Then when Q4 turns around Q1, its velocity changes
direction by almost π, then momentum conservation gives that |Q̇1| ' µ|Q̇4|, hence
a fixed proportion of energy is transferred to Q1. Under iteration, the speed of Q1

grows like |Q̇1| ' µλn/2, which is still much slower than |Q̇4| ' (1 − µ)λn/2. So
during the n-th iteration, the particle Q4 can still complete a return within time
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χ(λ− cµ)−n/2 for some constant c. for some constant c. Note that the return time
decays exponentially fast so infinitely many returns can be completed in finite time
and a non collision singularity can be constructed.

The remaining part of this section is organized as follows. In Section 4.1, we
give the heuristics of the two strongly expanding directions. In Section 4.2, we give
our hyperbolicity framework, assuming which we prove the main Theorem 1.12. In
Section 4.3, we show the hyperbolicity of the tangent dynamics by some simple but
essential arguments. In Section 4.4 we discuss some further issues such as excluding
collisions etc.

4.1. Two sources of hyperbolicity. To carry out Gerver’s strategy for infinitely
many steps in the µ > 0, χ < ∞ case, we need to utilize the hyperbolicity of the
tangent dynamics. We notice that there are two sources of strong expansion.

4.1.1. The first expanding direction, prescribing angular momentum. The first ex-
panding direction comes from the hyperbolicity of the hyperbolic Kepler motion.
Namely, if we shoot a bunch of orbits of Q4 towards Q1 with the same initial ve-
locities and slightly different y components of the initial positions, then the bunch
of orbits will diverge after turning around Q1 (see Figure 4(A)). This actually en-
ables us to change the vertical component of Q4 arbitrarily when Q4 comes to a
neighborhood of the pair Q2-Q3.

Figure 4. Two expanding directions

4.1.2. The second expanding direction, phase stretching and synchronization. The
second expanding direction is a bit subtler. Let us use ψ ∈ [0, 2π) to denote the
phase Q3 on its ellipse when colliding with Q4. Let us look at Figure 4(B). Imagine
that Q4 and Q3 collide at a point slightly different from Gerver’s collision point
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if the initial condition of Q4 is slightly perturbed. We require again the outgoing
asymptote of Q4 to be horizontal. We expect that the semi major a+ of the Q3

ellipse after collision is slightly different from that of Gerver’s case, i.e.

(4.1)
∂a+

3

∂ψ
6= 0.

Kepler’s law a3

T 2 = 1
(2π)2

implies that the two ellipses (red and black in Figure 4(B))

have different periods, hence during one period of Gerver’s standard elliptic orbit,
the particle Q3 on the other ellipse has a small phase difference. It takes long
time (of order χ) for Q4 to complete a return and come to the next collision with
Q3. During this long time, two different elliptic motions have accumulated a huge
phase difference. This is the second expanding direction along which a small phase
difference is stretched to a huge phase difference. The second expanding direction
allows us to synchronize Q3 and Q4. Namely, by adjusting the phase of collision in
the present step slightly, we can arrange that Q3 and Q4 come to the same point
at the same time in the next step. We also note that if we adjust the phase in the
present step slightly further, Q3 and Q4 may miss each other in the next step, but
if we continue to adjust the phase in the present step furthermore, it is possible to
control Q3 and Q4 to come to close encounter again in the next step, but differ from
the previous encounter by 2π in phase. All these adjustments are done in a very
small interval (of order 1/χ) of the phase variable since the phase stretching rate is
huge, as we will see in the next section. This is the reason why we get a Cantor set
as initial conditions.

4.2. Proof of Theorem 1.12, the Cantor set construction. In this section,
we sketch the proof of the main theorem based on two technical lemmas. Our
idea is to compute the derivative of the Poincaré map and show that there is a two
dimensional invariant subspace that is strongly expanding under the map. These two
strongly expanding directions are described in the last subsection. The phase space
is obtained by reducing the translation invariance, fixing the zeroth energy level
and picking the Poincaré section {x = −2}. We will introduce coordinates later in
Section 4.3 to parametrize the phase space of the four-body problem as T ∗(T3×R2).
We will not consider all the points in the section {x = −2} as initial condition.
Instead, we pick a small number δ and define U1(δ), U2(δ) as δ neighborhoods of
Gerver’s first and second collision points respectively, traced back to the section
{x = −2} along the flow. We define two maps G and L called the global map
and local map respectively. The Poincaré section {x = −2} cuts the orbit into
two different pieces. The right piece is defined as the local map L and the left
piece is defined as the global map G. The Poincaré return map is defined as the
composition P = G ◦ L whose domain is contained in Uj(δ), j = 1, 2. We also
define a renormalization map R to zoom in the position space by λ and slow down
the velocity by dividing by

√
λ, where λ is the energy of the Q3 after two steps of

interactions in Gerver’s construction.
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4.2.1. C1 control: the derivatives of local and global maps.

Lemma 4.1 (Lemma 3.1 of [46]). If the incoming asymptote θ− and the outgoing
asymptotes θ+ satisfy |θ−| ≤ Cµ and |θ+ − π| ≤ Cµ for some constant C, then for
x ∈ Uj , j = 1, 2 being a initial point on the section {x = −2}, there exist linear
functionals l(x), a vector fields u(x) and matrices B(x) which are uniformly bounded
such that

(4.2) dL(x) =
1

µ
u(x)⊗ l(x) +B(x) + o(1), 1/χ� µ→ 0.

Lemma 4.2 (Lemma 3.2 of [46]). If the y coordinates of the initial and final posi-
tions of Q4 are bounded when applying G, Then there exist linear functionals l̄(x)

and ¯̄l(x) and vectorfields ū(y) and ¯̄u(y) such that

(4.3) dG(x) = χū(y)⊗ l̄(x) + χ2 ¯̄u(y)⊗ ¯̄l(x) +O(µχ), 1/χ� µ→ 0,

where we denote x the initial point and y = G(x) the final point.

Let us ignore the o(1), O(µχ) perturbations in dL, dG respectively for a moment.
After application of dG we get a plane span{ū, ¯̄u}. We next apply dL to get a
plane span{u, BY } where Y ∈ (Kerl) ∩ span{ū, ¯̄u}. To apply dG again, we want
to guarantee that the plane span{u, BY } is not collapsed into a line or a point so
that we need the following transversality condition

(4.4) (Ker̄l ∩Ker̄̄l) t span{u, BY }.

This condition is equivalent to det

(
l̄u l̄BY
¯̄lu ¯̄lBY

)
6= 0, which can be verified by

working out the vectors and matrices explicitly.

4.2.2. The Cantor set construction. With the above lemmas on dG, dL and the
transversality condition, we establish the strong expansion of the Poincaré map.

Lemma 4.3 (Lemma 2.5 of [46]). There are cone families K1 on Tx(T ∗(T3 ×
R2)), x ∈ U1(δ) and K2 on Tx(T ∗(T3 × R2)), x ∈ U2(δ), each of which contains
a two dimensional plane, such that

• Invariance: dP(K1) ⊂ K2, d(R ◦ P)(K2) ⊂ K1.
• Expansion: If v ∈ K1, then ‖dP(v)‖ ≥ cχ‖v‖. If v ∈ K2, then ‖d(R ◦
P)(v)‖ ≥ cχ‖v‖.

The cone can be defined as the set of vectors forming some small angle η with
the plane span{ū, ¯̄u}. It is used to handle the error terms in Lemma 4.1 and 4.2.

Definition 4.4. We call a C1 surface S1 ⊂ U1(δ) (respectively S2 ⊂ U2(δ)) admis-
sible if TS1 ⊂ K1 (respectively TS2 ⊂ K2).
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Lemma 4.3 shows that admissible surfaces are always mapped to admissible sur-
faces and are strongly expanded. To see the idea clearer, we consider the following
toy model. Let Eλ : T→ T, x 7→ λx mod 1, λ ∈ N is a large number. For any fixed
interval [a, b] ( T, the set of points p such that Enλp ∈ [a, b] for all n ∈ N is a Cantor
set, since it can be constructed by a process of open interval deletion for infinitely
many steps. With these preparations, we can now construct the Cantor set in The-
orem 1.12. We can control the orbit of Q3 such that it always stays close to that
in Gerver’s model. Take a piece of admissible surface S1 and look at the pre-image
(RP2)−1S1, which consists of many copies of tiny (due to expansion in Lemma 4.3)
pieces of admissible (due to invariance in Lemma 4.3) surfaces. The reason why we
have many copies is because one of the expanding direction, the phase variable ψ,
is defined up to 2π. Finally, our Cantor set is constructed as limj(RP2)−jSj, where
Sj is a piece of admissible surface at the 2j-th step.

4.3. The tangent dynamics. In this section, we explain the Lemma 4.1 and 4.2
on the derivatives of local and global map under various simplifying assumptions.
These simple derivations lie in the heart of our lengthy calculations in [46].

4.3.1. The coordinates. The proof of the technical Lemma 4.1 and 4.2 involves es-
timating the fundamental solution to the variational equations of the Hamiltonian
equations in certain suitable coordinates. We explain in this section our choice of
coordinates.

Figure 5. The Jacobi coordinates
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We introduce two sets of Jacobi coordinates to eliminate the translation invariance
of the Hamiltonian system. When Q4 is closer to Q2 than Q1 (see the upper figure in
Figure 5), we denote x3 = Q3−Q2, define x4 to be the distance from Q4 to the mass
center of Q3 and Q2 and define x1 to be the distance from Q1 to the mass center of
Q4, Q3, Q2. There is a corresponding linear change of coordinates on the momentum
side v1, v3, v4 to make the new set of coordinates symplectic in the reduced phase
space. Similarly, we construct coordinates when Q4 is closer to Q1 (see the lower
figure of Figure 5) by defining x3 = Q3−Q2, x4 = Q4−Q1 and x1 to be the distance
from the mass center of Q1-Q4 to the mass center of Q2-Q3. We do not give explicit
formula for the coordinate change in this paper. Interested readers can refer to [46]
for details. The advantage of the coordinates is that they reduce the Hamiltonian
system into three Kepler motions with “controllable” perturbations. To see the
meaning of “controllable”, we show one example. There is a term µ/|Q3−Q4| in the
potential. When we integrate over time t assuming Q4 moves away from Q3 linearly
in t, the integral blows up like ln t as t→∞. However, in the new coordinates, the
interaction between x3, x4 is given by a term of the form µ〈x3, x4〉/|x4|3 whose t
integral is now convergent as t→∞ knowing that x3 is bounded and x4 is linear in
t.

Now we have perturbed Kepler motions for (x, v)3,1,4. We next introduce the
classical Delaunay coordinates (L4, `4, G4, g4) for the hyperbolic motion (x4, v4)
and (L3, `3, G3, g3) for the elliptic motion (x3, v3). By fixing an energy level, for
instance 0, and picking Poincaré sections, we can eliminate L4, `4 from our list of
variables by solving L4 as a function of other variables and treating `4 as the new
time. Moreover, we stick to x1, v1 without reducing the rotational invariance, so we
get totally ten variables (x1, v1, L3, `3, G3, g3, G4, g4) to describe the dynamics.

4.3.2. The Rutherford Scattering. In this section, we explain the proof of Lemma
4.1. One of Gerver’s assumption is to model the interaction of Q3 and Q4 as elastic
collision. When we turn on the Newtonian interaction between the two particles,
we get hyperbolic Kepler motions to shadow the elastic collision picture (see the
lower two figures in Figure 6). The momentum and energy are still conserved, so
we still have (3.1). The rotation angle α, now measured as the angle formed by two
asymptotes of the hyperbolas, is no longer a free variable but determined by the
initial conditions. To determine the rotation angle α, we introduce the Rutherford’s
scattering formula that is well known in physical literature. We consider two par-
ticles of masses m3, m4 interacting via the Newtonian potential −k/|Q−| , where
Q− = Q3 − Q4 is the relative position. The relative motion is governed by the
Hamiltonian (2.1) with m = m3m4

m3+m4
= µ

2 and k = µ2. Denoting by P− = µv−
the relative momentum where v− = v3 − v4 the relative velocity, we can write the

Hamiltonian explicitly as H =
P 2
−
µ −

µ2

|Q−| = µv2
− −

µ2

|Q−| . We then divide the Hamil-

tonian by µ, to obtain H/µ = v2
− −

µ
|Q−| . Noting that the Poincaré-Cartan form
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Figure 6. Shadowing elastic collision by Kepler hyperbolic motions

v−dQ− − H/µdt = 1
µ(P−dQ− − Hdt), so we can treat H/µ as a Hamiltonian and

(v−, Q−) as the canonical variables. We next convert (v−, Q−) to Delaunay vari-

ables (L, `,G, g). We get H/µ = − µ2

4L2 and the angular momentum G = v− × Q−.
For convenience, we introduce L = L/µ. The rotation angle formed by the two
asymptotes of the hyperbola is given by

(4.5) α = 2 arctan
b

a
= 2 arctan

G

µL
.

From the Hamiltonian we have |v−|2 = O(1) hence L = O(1) as µ → 0. Thus
we get also G = O(µ) since the rotation angle α is bounded away from 0, π. The
variable G is the most important quantity in the scattering theory called the impact
parameter, which is a measurement of the closest distance between the two particles
during the scattering process. When we compute how the outgoing velocities v+

3 , v
+
4

depend on incoming velocities v−3 , v
−
4 , we substitute the expression α (4.5) into

(3.1). We notice that v+
3 , v

+
4 has implicit dependence on v−3 , v

−
4 through G and also

dependence through L and explicit dependence. So we compute the derivative as
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follows
∂α

∂G
=

2

µ

1/L
1 + (G/(µL)2)

= O(µ−1)

∂α

∂L
=

2G

µ

−1/L2

1 + (G/(µL)2)
= O(1)

∂(v3, v4)+

∂(v3, v4)−
= O

(
1

µ

)
∂(v3, v4)+

∂α
⊗ ∂G

∂(v3, v4)−

+ (derivative not through G).

This calculation shows that the most effective way to change (v+
3 , v

+
4 ) significantly

is to change the impact parameter G. This simple derivation explains the structure
of the derivative of the local map in Lemma 4.1. Moreover, both the tensor part
and the B part in dL can be computed explicitly.

4.3.3. The O(χ) term in dG, the shears. The O(χ) term in dG involves mainly the
motion of Q3. We forget about the perturbation coming from Q4 for simplicity to
see the ideas. The Hamiltonian for elliptic Kepler motion in Delaunay coordinates
H3 = −1

2L2
3

. We integrate the Hamiltonian equations from time 0 to time T to get
L̇3 = 0,
˙̀
3 = 1

L3
3
,

Ġ3 = 0,

ġ3 = 0,

=⇒


L3(T ) = L3(0),

`3(T ) = `3(0) + T
L3
3(0)

,

G3(T ) = G3(0),

g3(T ) = g3(0).

The derivative matrix has the following decomposition
(4.6)

∂(L, `,G, g)3(T )

∂(L, `,G, g)3(0)
=


1 0 0 0

− 3T
L4
3(0)

1 0 0

0 0 1 0
0 0 0 1

 = − 3T

L4
3(0)


0
1
0
0

⊗ (1, 0, 0, 0) +O(1),

if we choose T = Oχ→∞(χ) as the time for Q4 to complete a return. This gives the

χ¯̄u ⊗ ¯̄l part of the dG. We see that the vectors ¯̄u and ¯̄l can be obtained explicitly.

It turns out that in the limit 1/χ� µ→ 0, we have ¯̄u→ ∂
∂`3

and ¯̄l→ dL3.

Notice the above matrix (4.6) is only a shear, which has no hyperbolicity. Under
iteration, it grows only linearly but not exponentially. There is a mechanism called
shear-induced chaos, namely, hyperbolicity can be created by a shear combined with
a kick. To see why, we multiply another matrix (kick) to a shear matrix to get

(4.7)

(
1 0
χ 1

)(
1 1
0 1

)
=

(
1 1
χ χ+ 1

)
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The resulting matrix has two eigenvalues, O(χ) and O(1/χ). Actually, to get an
eigenvalue of order χ, we only need to require that in the above second matrix
the bold 1 entry is nonzero and independent of χ, while the other entries can be
arbitrary. In our case, dG gives us a shear matrix and dL gives us a kick so that the
composition of local and global map give rise to an expansion with rate χ. We have

a transversality condition (4), which is essentially
∂a+3
∂ψ 6= 0 in (4.1) (see the proof

of the transversality condition in Section 3.4 of [46]). This requirement amounts to
requiring the bold 1 entry is nonzero in (4.7).

4.3.4. The O(χ2) term in dG, the scattering. In this section, we explain the O(χ2)
term in dG. The χ2 term in dG comes mainly from the motion of Q4 as described
in Section 4.1.1.

We pick two more Poincaré sections {x = −χ/2} to cut the orbit of the global
map into three pieces denoted by (I), (III), (V ). The (I), (V ) pieces of orbits are
considered as a perturbed hyperbolic Kepler motion focused at the mass center of
Q2 and Q3, while the (III) piece of orbit is treated as a perturbed hyperbolic Kepler
motion focused at Q1. We need two coordinates changes when the orbit crosses the
sections denoted by (II), (IV ). Since L, ` are reduced by fixing an energy level and
picking a Poincaré section, we have only Delaunay variables G, g to characterize
the motion of Q4, whose meanings are respectively the angular momentum and the
argument of periapsis (direction) of the hyperbolic motion. We define the angle of
asymptotes of the hyperbola as

(4.8) θ = g ± arctanG/L,

since g is the direction of the symmetric axis of the hyperbola and 2 arctan b/a =
2 arctanG/L is the angle formed by the two asymptotes. We make the following
simplifying assumptions.

• Assume L is a constant, say, 1.
• Assume v4 = (±1, θ).
• Assume the two hyperbolas to the left and right of the section {x = −χ/2}

share the same asymptote angle θ.

Let us now look at Figure 7. When we change coordinates from (I) to (III),
we are changing the focus of the hyperbolic motion of Q4. During this coordinate
change, the two different hyperbolic motions share nearly the same asymptotes,
which we identify. So we first convert (G, g) in the right to variables (G, θ) in the
right, then we convert (G, θ) in the right to (G, θ) in the left, and the last step is
to convert (G, θ) back to (G, g) in the left. We summarize the steps as follows. The
coordinates changes (II) from the right (subscript R) to the left (subscript L) is the
composition of

(G, g)R
(i)−→ (G, θ)R

(ii)−−→ (G, θ)L
(iii)−−→ (G, g)L,
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Figure 7. The Poincaé sections

where the maps (i), (ii), (iii) are given explicitly as follows:

(i) :

{
GR = GR

θR = gR − arctanGR
,

(ii) :

{
GL = GR + χθ

θR = θL
,

(iii) :

{
GL = GL

gL = θL − arctanGL
.

The g and θ relations are obtained from (9), while GL = GR + χθ comes from the
definition of angular momentum since we move the origin from (0, 0) toQ1 = (−χ, 0),

GL = vL × xL = vR × (xR − (χ, 0)) = GR − vR × (χ, 0) = GR + χθ.

The derivatives for (II) = (iii)(ii)(i) is

D[(iii)(ii)(i)] =

(
1 0
] 1

)(
1 χ
0 1

)(
1 0
] 1

)
,

where we use ] to denote some constants that can be computed explicitly. Similarly,
for matrix (IV ) going from the left to the right, we get

D[(iii′)(ii′)(i′)] =

(
1 0
] 1

)(
1 −χ
0 1

)(
1 0
] 1

)
,

Next we look at the derivative of the composition (IV )(III)(II) assuming D(III) =
id, since G, g are constants of motion for the Kepler problem (Unfortunately, this
assumption is wrong. It turns out that the perturbation from the pair Q2, Q3 has a
nontrivial contribution to D(III). We can get an explicit expression for G, g part
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of D(III), which is not id but does not cause any trouble).

D[(IV )(III)(II)]

=

(
1 0
] 1

)(
1 −χ
0 1

)(
1 0
] 1

)
·
(

1 0
] 1

)(
1 χ
0 1

)(
1 0
] 1

)
=

(
1 0
] 1

)(
1 + ]χ −]χ2

] −]χ+ 1

)(
1 0
] 1

)
= ]

(
1 0
] 1

)(
χ2

(
1

1/χ

)
⊗ (1/χ, 1) +O(1)

)(
1 0
] 1

)
.

This calculation shows the χ2 part of dG. We see that the ū, l̄ can again be cal-
culated explicitly. It turns out that in the limit 1/χ � µ → 0, we have l̄ → dθ+

4 ,
where θ+

4 is the outgoing asymptote of the Q4 hyperbola after close encounter with

Q3, and ū →
(

01×8; 1,− L4

L2
4+G2

4

)
, which shows that after the application of the

global map there is a linear relation between G4 and g4 forced by the fact that the
asymptote of Q4 must be close to horizontal when Q4 comes close to Q2.

4.4. Further issues.

4.4.1. Collision exclusion and the existence of returning orbit. We need to exclude
the possibility of the collisions between the pair Q3-Q4 and the pair Q1-Q4. The
pair Q3-Q4 is easily done using the formula (4.5) since the rotation angle α is not
close to π in Gerver’s construction so that b/µ is bounded away from zero using (6).
Next, we explain how to exclude the Q1-Q4 collision. Recall that in the two-body
problem, if two bodies collide they will bounce back. Suppose we have a collision
of Q1 and Q4, then we reverse the time for the piece of orbit coming to collision
and compare it with the bouncing back orbit. We work in Delaunay coordinates
so that the collisional singularity is resolved. We can measure the difference of the
two orbits by integrating the variational equations (derivative of the Hamiltonian
equations). It turns out that the deviation of the two orbits is at most O(µ) when we
trace the orbit to the section {x = −2}. However, the returning orbit that we want
should stay close to Gerver’s model and the y coordinates of Q4 for two consecutive
visits to the section {x = −2} differ by a O(1) number. So we conclude that there
is no collision between Q1 and Q4.

4.4.2. How to control the shape of Q3 ellipse. In order to control the phase space
dynamics such that the image of the admissible surface always visits the fixed neigh-
borhood U(δ), we look at our list of variables (L3, `3, G3, g3;x1, v1;G4, g4). First L3

is always rescaled to the unit size by the renormalization and x1, v1 can be control
by the angular momentum. Indeed, the total angular momentum is assumed to be
zero. The renormalization always rescales G3 and G4 to order 1 so G1 = x1 × v1

has also order 1 by G1 + G3 + G4 = 0. The magnitude |x1| can be estimated as
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O(χ) which grows exponentially since each renormalization introduces a λ factor,
and |v1| = O(1) so we get the angle ∠(x1, v1) = O(1/χ) → 0 in order to have
G1 = O(1). Next the variables `3, G4, which can be used to parametrized the ad-
missible surface, can be chosen arbitrarily due to the strong expansion, and g4 is
also determiend since the asymptote of Q4 is almost horizontal. The only remaining
variables are G3, g3, which we want to control such that they stay close to Gerver’s
values. We notice that the Q3 ellipse may deviate from Gerver’s standard case and
lose self-similarity. The problem was noticed by Gerver and solved in [18]. Consider
again Gerver’s ideal model. We have four variables L, `,G, g to characterize the
elliptic motion. The variable ` is almost the same as the phase ψ which can be
controlled by the strong hyperbolicity and L is related to the semi major which can
always be rescaled to one applying the renormalization R. It remains to control
G and g such that they do not deviate too far. The observation of Gerver is that
during each collision, there is a phase of the collision point of Q3 and Q4 that can
be adjusted. So after the two steps in Gerver’s model, we get two phases ψ1, ψ2

on which the final orbit parameters G−, g− depend smoothly. One only need to

verify that the Jacobian ∂(G−,g−)
∂(ψ1,ψ2) 6= 0 in order to control G−, g− through adjusting

the phases ψ1, ψ2. This can be verified using our polar coordinate representation in
Section 3.3.

4.4.3. How to switch the roles of Q3 and Q4. We see from Figure 6 that there are
two hyperbolic motions shadowing the same elastic collision picture. This implies
that by choosing the rotation angle α correctly, one can switch the roles of the
messenger and the captured particle after each Q3 and Q4 close interaction. For
this reason, for any given symbolic sequence ω, a Cantor set Σω of non collision
singularities can be constructed.

4.4.4. The measure and Hausdorff dimension of the Cantor set. We notice that each
time when we apply the renormalization R by zooming in the configuration space
by λ, the distance between Q1 and Q2 get multiplied by λ, hence χ in Lemma
4.2, as a measurement of the distance between Q1 and Q2, grows exponentially to
infinity. Since χ is the expansion rate in Lemma 4.3. In each step of the Cantor set
construction, we preserves only 1/χ2 of the total measure on the initial admissible
surface. Since 1/χ2 decays exponentially to zero, we conclude that the Hausdorff
dimension of the Cantor set restricted to each two dimensional admissible surface
is 0. Hence our Cantor set of non collision singularities is a zero measure set of
codimension 2 in the zero angular momentum level set.

5. Triple collision blowup

Another stream of ideas of constructing noncollision singularities arise from ex-
tracting energy from the triple collision. McGehee [26] developed the technique of
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triple collision blowup. In the following sections of the paper, we will encounter
several different versions of triple collision blowups. So we now first give a general
formulation for N -body total collapse.

5.1. The general formalism of the total collision blowup. The general idea
is as follows. Recall the Lagrange-Jacobi identity from Section A.1. We denote
r2 = I =

∑
mi|xi|2. Then we get 2rṙ = İ = J and J̇ = K +H.

We introduce the inner product 〈·, ·〉 on R3n defined by

〈u, v〉 =
∑

miuivi, ‖u‖ := 〈u, u〉1/2, ∀u, v ∈ R3n.

We then introduce the normalized configuration s = r−1x = r−1(x1, . . . , xn), hence
we have that ‖s‖ = 1. Then we introduce the normalized velocity v =

√
rẋ.

v = 〈s, v〉 = r−1/2〈x, ẋ〉 = r−1/2J.

We next split the normalized velocity v into the radial component vs with v =
〈v, s〉 and the component w tangent to the shape sphere E = {‖s‖ = 1}

v = vs + w, 〈s,w〉 = 0.

Then we obtain the following set of equations of motion where ′ means the derivative
d
dτ with the time rescaling dt = r3/2dτ

(5.1)


r′ = vr,

v′ = 1
2v

2 + ‖w‖2 + U(s),

s′ = w,

v′ = −M−1∇U(s)− U(s)s− 1
2vw − ‖w‖

2s,

where U(s) = rU(x) and ∇U(s) = r2∇U(x). We can also introduce the equation
w′ = v′− (v′s+vs′) instead of the v′ equation above to form a closed set of equations
for the variables (r, v, s,w).

This is the general equations of motion for the N -body problem in the blowup
coordinates. The total energy has the form

rH =
1

2
v2 +

1

2
‖w‖2 + U(s).

In the limit r = 0 corresponding to the total collapse, we get that the r equation
becomes trivial. We then call the resulting phase space for the variables (v, s,w) the
collision manifold when r = 0. Since we have rH → 0 when r → 0, we get

v′ =
1

2
‖w‖2 + rH → 1

2
‖w‖2 ≥ 0,

which follows essentially from the fact that J̇ = K + H ≥ 0 when H ≥ 0. This
implies that v provides us a Lyapunov function. At fixed points of the ODE system,
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we have

r = 0, w = 0, v2 + 2U(s) = 0, −M−1∇U(s)− U(s)s = 0,

where the last equation implies that the fixed points are normalized central config-
urations, which are critical points of U restricted to the sphere E .

In practice we may need to understand better the dynamics of s,w. The general
strategy is to introduce angular coordinates or spherical coordinates on E for s, dual
to which, the variable w is represented by normalized (by r−1/2) angular momentum
dual to the spherical variables respectively.

5.2. The isosceles three-body problem. To illustrate the above general formal-
ism, we implement it in a special three-body problem called isosceles three-body
problem studied first by Devaney [12].

v

ψ

w

Figure 8. The collision manifold

Consider the three-body problem as follows. Let Q1 and Q2 be two equal mass
particles parallel to the x-axis with masses normalized to 1 and let Q3 be a particle
on the y-axis with mass m. The three particles form an isosceles triangle in the
configuration space and remains to be isosceles for all time.

The main result of [12] is a classification of the final motions of the system for
orbits approaching the triple collision. There are two types of final motions, one of
which is that the binary moves to infinity parallel to the x-axis towards opposite
directions and Q3 oscillates on the y-axis, and the other is that Q3 and the mass
center of the pair move to infinity along the y-axis with opposite directions with



ON PAINLEVÉ CONJECTURE 33

arbitrarily large velocities and the pair undergoes infinitely many double collisions.
This result was proved by blowing up the triple collision and analyzing the dynam-
ics on the collision manifold. We next perform the blow up procedure. We first
introduce the Jacobi coordinates as in (A.2), under which the Hamiltonian has the
following form

H∴ =
p2

1

2M1
+

p2
0

2M0
+ V (x0, x1), V (x0, x1) = − m

|x1 − x0
2 |
− m

|x1 + x0
2 |
− 1

|x0|
,

where the reduced masses are M0 = 1
2 , M1 = 2m

m+2 . The system has two degrees
of freedom. To study the triple collision, we carry out the above general blowup
scheme as follows.

Introducing M = diag{M0,M1}, we denote x = (x0, x1) ∈ R2, v = r1/2ẋ, s =
x/r ∈ S1, v = 〈s, v〉 and w = v − vs. The equations of motion are

(5.2)


r′ = rv,

s′ = w,

v′ = ‖w‖2 + 1
2v

2 + V̄ (s),

w′ = −1
2vw − ‖w‖

2s−M−1∇V̄ (s)− V̄ (s)s.

Here V̄ (s) = rV (x), ∇V̄ (s) = r2∇V (x). We also have the energy relation

rE =
1

2
‖w‖2 +

1

2
v2 + V̄ (s).

Instead of the vector valued variables s and w, we further introduce ψ = arctan
√
M1x1√
M0x0

in place of s = M−1/2(cosψ, sinψ) and w = r1/2〈v, ew〉 in place of w where ew =
(− sinψ(0, 1), cosψ(1, 0)).

Then in the variables (r, ψ, v, w), we obtain the following equations of motion

(5.3)


r′ = rv

v′ = w2 + 1
2v

2 + V̄ (ψ),

ψ′ = w,

w′ = −1
2vw − V̄

′(ψ).

where V̄ (ψ) = −
√

2
cosψ −

4m1√
1
2

cos2 ψ+
8m1
m1+2

sin2 ψ
.

The potential V̄ blows up when ψ = ±π/2 corresponding to the double collision.
It is standard to regularize the double collision after Sundman. Let us introduce
ŵ = cosψw as well as a new change of time dτ

dτ̂ = cosψ. The equations of motion
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becomes

(5.4)


dr
dτ̂ = rv cosψ,
dv
dτ̂ =

(
2rE − 1

2v
2 − V̄ (ψ))

)
cosψ

dψ
dτ̂ = ŵ
dŵ
dτ̂ = −1

2vŵ cosψ − V̄ ′(ψ) cos2 ψ − ŵ sinψ,

with the energy relation

rE =
ŵ2

2 cos2 ψ
+

1

2
v2 + V̄ (ψ).

In this new coordinates, the system is an analytic vector field defined on [0,∞) ×
R× [−π/2, π/2]×R and the double collision becomes an elastic collision so that the
singularity is regularized.

We state the main result of Devaney as follows.

Theorem 5.1 ([12]). (1) The collision M0 is a topological 2-sphere with four
punctures (called arms) with each puncture corresponding to ψ = ±π/2, i.e.
the binary is infinitely far away from Q1. The manifold M0 is symmetric
with respect to ψ 7→ −ψ or w 7→ −w.

(2) There are six fixed points on M0: the two with (v, ψ, w) = (±v?, 0, 0) corre-
spond to Euler central configuration and the four with (v, ψ, w) = (±v∗,±ψ∗, 0)
correspond to Lagrangian central configurations.

(3) The Euler fixed point with v > 0 is a sink and with v < 0 is a source.
For some masses, the eigenvalues are real and complex for the others. The
Lagrangian fixed points are saddles.

(4) v is a Lyapunov function in the sense that v′ ≥ 0 along the flow on M0 and
v′ = 0 iff at the fixed points.

Consider the situation that the pair come from the left to have near triple collision
with Q2. We hope that after the near triple collision the pair moves to the left and
Q2 moves to the right. In this case the relative position x1 from the mass center of
the pair to Q2 has a negative sign before and after the near triple collision, therefore
the variable ψ determined from s = M−1/2(cosψ, sinψ) and x = (x0, x1) = rs should
also carry a negative sign before and after the near triple collision. Thus we need
the left lower Lagrangian fixed point to have a stable manifold coming from the left
lower arm and an unstable manifold escaping from the left upper arm. The case
of the near triple collision of Q1-Q3-Q4 is similar. This time the pair comes from
the right towards Q1 so that we will need the lower right Lagrangian fixed point to
have a stable manifold coming from the right lower arm and an unstable manifold
escaping from the right upper arm. The latter case follows from the former case
by symmetry. So we focus only on the former case. The existence of the stable
manifold coming from the left lower arm follows directly from the fact that v is a
Lyapunov function. However, the existence of an unstable manifold escaping from
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the left upper arm is nontrivial, which depends on the mass ratio m2/m3 = m2.
This was studied by [37, 44]. Here we only cite the relevant statements.

Theorem 5.2. Assume m2 < 55/4 in which case the Euler fixed points are sink
and source with complex eigenvalues. Then there exists ε1 ' 0.379 and ε2 ' 2.662
such that the following holds for the left lower Lagrangian fixed point:

(1) when ε1 < m2 < ε2, the two unstable manifolds escape from the two upper
arms respectively;

(2) when m2 > ε2, one of the unstable manifold escapes from the left upper arm
and the other dies at the upper Euler fixed point.

Note that the above two cases include the equal mass case m2 = 1.

Devaney’s classification of the final motions for the isosceles three-body problem
mentioned at the beginning of this subsection can be seen as follows. For each
orbit getting close to the near triple collision, its projection to the collision manifold
corresponds to an orbit which either escapes along one of the two upper arms or
dies in the sink. The sink lies in the upper half space and corresponds to an Euler
central configuration. For an orbit dying in the sink, we have that v > 0 hence
r = r(0)e

∫
v grows exponentially. Therefore we get the first type of final motion.

For an orbit escaping along an upper arm, we will have r0/r1 → 0 therefore the
pair moves away from the third body experiencing infinitely many double collisions
corresponding to ψ = ±π/2.

5.3. The collinear three-body problem. In this section, we consider the triple
collision blowup for a collinear three-body problem studied by [26]. Suppose on
R there are three bodies ordered from left to right as Q1, Q2, Q3 with masses
m1,m2,m3 respectively. We fix the mass center at the origin so that we have∑
miQi = 0. Therefore the set E = {‖s‖ = 1} is a circle. The general formalism

in Section 5.1 applies to yield the blowup coordinates and the equations of motion
formally similar to (5.3). We skip the details and refer readers to [26]. Here we
only describe the dynamics on the collision manifold. As in the case of isosceles
three-body problem, the Hamiltonian system of the collinear three-body problem
has two degrees of freedom. Hence the collision manifold has two dimensions after
imposing the energy relation and letting r → 0. It is a sphere with four punctures
corresponding to double collisions of the binaries Q1-Q2 or Q2-Q3, symmetric under
the reflections as in Theorem 5.1. There are two critical points, each corresponds
to an Euler central configuration and both are saddles. There are masses such that
the unstable manifold of the lower critical point coincides with the stable manifold
of the upper critical point, which is called the totally degenerate case. If this case
does not happen, then the stable manifolds of the lower critical point come in from
the lower arms and the unstable manifolds escape from the upper arms.
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5.4. The Sitnikov-Alekseev model. The Sitnikov-Alekseev model is a name for
the spatial isosceles three-body problem.

5.4.1. Triple collision blowup for the spatial isosceles three-body problem. In this
section, we consider the triple collision blowup for a spatial isosceles three-body
problem studied by [47].

Consider three particles Q1, Q2, Q3 with coordinates Q1 = (x, y, z) then Q2 =
(−x,−y, z) and Q3 = (0, 0, z3) with 2mz + m3z3 = 0. The three bodies form an
isosceles configuration. Let M = diag{2m, 2m, 2m(1+2α)}, where α = m/m3 is the
mass ratio. Using the formalism in Section 5.1, we introduce blowup coordinates

x = (x, y, z), r = ‖x‖, s = r−1x, v = r1/2ẋ, v = 〈v, s〉, w = v − vs,

and rescale time dt = r3/2dτ . We use ′ to denote the time derivative with respect to
τ . We first obtain the equations of motion for (r, s, v,w) by adapting (5.1). We next
introduce spherical coordinates (θ ∈ [−π/2, π/2] and ψ ∈ [0, 2π)) for s and denote

(5.5)

u1 = s = M−1/2(cosψ cos θ, sinψ cos θ, sin θ),

u2 = ∂ψs = M−1/2(− sinψ cos θ, cosψ cos θ, 0),

u3 = ∂θs = M−1/2(− cosψ sin θ,− sinψ sin θ, cos θ).

The three vectors for orthogonal basis for R3 except for θ 6= ±π/2. We introduce
variables v, w2, w3 as the coefficients of the decomposition of v in this basis with
respect to the inner product 〈·, ·〉, i.e. v = vs + w2u2 + w3u3. We thus obtain the
equations of motion for the variables (r, v, θ, ψ, w2, w3) as follows.

r′ = vr,

v′ = 1
2v

2 + w2
2 cos2 θ + w2

3 + U(θ),

θ′ = w3,

φ′ = w2,

w′2 = −1
2vw2 + 2w2w3 tan θ

w′3 = −U ′(θ)− 1
2vw3 − w2

2 cos2 θ tan θ.

with U(θ) = − 1√
2
m3/2m3[αsecθ + 4(1 + 2α sin2 θ)−1/2]. The system admits singu-

larities at θ = ±π/2 corresponding to double collisions of Q1 and Q2. The RHS
of the system is independent of ψ, reflecting the angular momentum conservation
of the pair Q1-Q2. We resolve this singularity by introducing ŵ = w3 cos θ and
u = w2 cos2 θ and a time change dτ̂ = cos θdτ . In the new coordinates, we obtain
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the equations of motion as follows

(5.6)



d
dτ̂ r = vr cos θ
d
dτ̂ v = (2rh− 1

2v
2 − U(θ)) cos θ

d
dτ̂ θ = ŵ
d
dτ̂ ŵ = −U ′(θ) cos2 θ − 1

2vŵ cosψ − ŵ sinψ − u sin θ cos θ
d
dτ̂ u = −1

2vu cos θ

with the energy relation

1

2
(v2 cos2 θ + w2 + u2) + U(θ) cos2 θ = rh cos2 θ,

where we skip the ψ-equation.

The dynamics on the collision manifold is obtained by setting r = 0 in the above
equations. The resulting collision manifold is a three dimensional sphere with four
punctures, each of which corresponds to the double collision between the pair Q1-Q2.
When u = 0, the du

dτ̂ equation also disappears. The variable u can be considered as
a variant of the angular momentum of the pair Q1-Q2, so the vanishing of u means
that the two bodies Q1 and Q2 move on a line. Therefore the case u = 0 corresponds
to the planar isosceles three-body problem that we have studied above. So we may
understand the collision manifold of the spatial isosceles three-body problem as a
fattening of the collision manifold of the planar isosceles three-body problem with
the extra dimension parametrized by u. The equations of motion (5.6) is reduced to
(5.4) by setting u = 0. In the planar case, we have been focusing on the Lagrangian
fixed points in the lower half space, so the v-value is negative and θ 6= ±π/2. From
the u-equation, we see that if we stay close to the lower Lagrangian fixed points for
a long time, the value of the u-variable will grow exponentially.

5.4.2. The oscillatory motion in Sitnikov-Alekseev model. As a digression, we men-
tion that this spatial isosceles three-body problem exhibits another interesting dy-
namics called oscillatory motion in the classification of Chazy (see Section 1.1). In
other words, there exists an orbits Q(t) in the configuration space such that

lim sup
t→∞

|Q(t)| =∞, lim inf
t→∞

|Q(t)| < C.

Such motion was first discovered by Sitnikov in the following model: a pair of equal
masses Q1 andQ2 moving on the x-y plane along Kepler elliptic orbits and a massless
particle moving on the z-axis attracted by the pair. Alekseev then showed that the
same phenomenon occurs in the spatial isosceles three-body problem without the
massless assumption. The mechanism of having the oscillatory motion is to treat
the Kepler parabolic orbit as a homoclinic orbit to the (degenerate) hyperbolic fixed
point at infinity. Then a small perturbation will cause separatrix splitting known
to Poincaré. To elaborate, let us consider the Kepler two-body problem written in
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polar coordinates

H(r,R, θ,Θ) =
1

2
R2 − 1

r
+

Θ2

2r2

with equations of motion

{
ṙ = R

Ṙ = − 1
r2

+ Θ2

r3
.

We next introduce the McGehee trans-

form r = u−2 so that r = ∞ corresponds to u = 0. In terms of u and R

we have the following equations of motion

{
u̇ = −1

2u
3R

Ṙ = −u4 + Θ2u6
. If we make a

time rescaling dτ = u3dt, then we get

{
du
dτ = −1

2R
dR
dτ = −u+ Θ2u3.

. Therefore the point

(u,R) = (0, 0) is a hyperbolic fixed point. The existence of oscillatory motion is
then proved by evaluating the Melnikov function along the parabolic Kepler orbit

Graph

{
R(r) = ±

√
2
r −

Θ2

r2

}
. We refer readers to [5, 33] for more details.

Appendix A. Painlevé and von Zeipel’s theorems

In this section, we present the proof of two early results of Painlevé and von
Zeipel on the nonexistence of noncollision singularities in three-body problem.The
proofs of the two theorems contains some deep insights about the global aspects of
the set of noncollision singularities. The proofs are not easily available elsewhere so
we include all the details.

A.1. Preliminary: Jacobi coordinates and moment of inertia. We introduce
the following important quantity called momentum of inertia

I =
∑

mi|Qi|2 =
1∑
mi

∑
i,j

mimj |Qi −Qj |2.

The time derivative of İ is as follows

J := İ/2 =
∑

miQi · Q̇i.

J̇ =
∑

mi|Q̇i|2 +miQi · Q̈i =
∑

mi|Q̇i|2 +Qi · (−∇iU) =
∑

mi|Q̇i|2 + U

by Euler identity since U is (−1)-homogeneous. We thus have the important
Lagrange-Jacobi identity

(A.1) J̇ = Ï/2 = 2K + U = K +H.

When H ≥ 0, we get that J̇ ≥ 0 so J is a nondecreasing Lyapunov function.

For N -body problem, due to the translation invariance, we can fix the mass
center of the N bodies at zero, i.e.

∑
miQi = 0. This implies the total momentum

conservation
∑
Pi = 0 by taking time derivative. Therefore we can remove (Qi, Pi)
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for some i to reduce the dimension of the phase space. There is a classical way to
introduce a new set of coordinates maintaining the diagonal quadratic form of the
kinetic energy part and effectively removing one redundant body. Now we introduce
the Jacobi coordinates for three-body problem.

(A.2)

{
x0 = Q1 −Q2

x1 = Q3 − m1Q1+m2Q2

m1+m2

,

{
y0 = P2 − m1

m1+m2
P3

y1 = P3
.

The physical meaning is as follows. We first take the relative position of Q1 and
Q2 as one position vector x0 and then take the second position vector x1 to be the
distance fo Q3 to the mass center of the Q1 and Q2. The momentum vectors y0 and
y1 are chosen to make the symplectic form invariant (using the fact

∑
Pi = 0)

dx0 ∧ dy0 + dx1 ∧ dy1 =
∑

dQi ∧ dPi.

Moreover, when introducing the reduced masses M0 = m1m2
m1+m2

,M1 = m3(m1+m2)
m1+m2+m3

, we
have that the moment of inertia is invariant

I =
∑

mi|Qi| = M0|x0|2 +M1|x1|2.

In this coordinate system the Hamiltonian has the form

(A.3)

H =
3∑
i=1

P 2
i

2mi
−
∑
i 6=j

mimj

|Qi −Qj |

=
y2

0

2M0
+

y2
1

2M1
− m1m2

|x0|
− m1m3

|x1 − α1x0|
− m2m3

|x1 + α0x0|
where α0 = m1

m1+m2
, α1 = m2

m1+m2
.

A.2. Painlevé’s theorem.

Theorem A.1 (Painlevé). For N = 3, there is no noncollision singularity.

Proof. We first state a lemma

Lemma A.2. In the N -body problem with N > 2, suppose a singularity occurs as
t→ t∗, then we have

lim
t→t∗

min
i 6=j
|Qi(t)−Qj(t)| = 0.

With this lemma, we prove Painlevé’s theorem. If we also had limt→t∗ maxi 6=j |Qi(t)−
Qj(t)| = 0, then this implies that the singularity is a triple collision. So we have
proved the statement. We now assume

(A.4) lim sup
t→t∗

max
i 6=j
|Qi(t)−Qj(t)| > 0.

Let a be a positive number less than this limsup.
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Without loss of generality, we assume that is a sequence of time tn → t∗ such that
limtn→t∗ |Q1(tn)−Q2(tn)| = 0 by Lemma A.2. For all ε small enough, there exists
n0 such that when n > n0, we have |Q1(tn)−Q2(tn)| < ε. By assumption we get

|Q1(tn)−Q3(tn)| > a, |Q2(tn)−Q3(tn)| > a.

We next introduce a rescaling Xi = xi/ε, Yi =
√
εyi. We also rescale time τ = ε−3/2t

and multiply the Hamiltonian by ε to arrive at the following Hamiltonian system.

H̄ =
Y 2

0

2M0
+

Y 2
1

2M1
− m1m2

|X0|
+ U1

where U1 = − m1m3
|X1−α1X0| −

m2m3
|X1+α0X0| . In the new coordinates, we have H̄ = Hε,

|X0(τn)| < 1 and |X1(τn)| > a/ε.

Then there are two possibilities at the time t.

Case 1, E0(t) =
Y 2
0

2M0
− m1m2
|X0| ≥ 0. Then

Y 2
1

2M1
≤ H̄ − E0(t) +

m1m3

|X1 − α1X0|
+

m2m3

|X1 + α0X0|
≤ Hε+ 4εM2/a.

and

|Ẏ1| =
∣∣∣∣m1m3(X1 − α1X0)

|X1 − α1X0|3
+
m2m3(X1 + α0X0)

|X1 + α0X0|3

∣∣∣∣ ≤ 4M2ε2/a2.

So we get |Y1(t)| = O(ε1/2) and within time δε−3/2, the oscillation of Y1 is at most

O(δε1/2). So X1 can oscillate at most distance O(δε−1) � a/ε within time δε−3/2.
In this case, the only possible singularity is a double collision of Q1 and Q2 at time
t∗.

We are left with Case 2, E0(t) =
Y 2
0

2M0
− m1m2
|X0| < 0. In this case, the relative

motion of Q1 and Q2 is almost Kepler elliptic and Q3 is moving along almost Kepler
hyperbolic orbit. If Q3 moves away from the pair, then again the only possible
singularity is a double collision between Q1 and Q2. So Q3 moves towards the
pair with a large velocity. After the near triple collision, one of the bodies has to be
ejected by distance at least a from the other two by Lemma A.3 and our assumption
A.4. Suppose without loss of generality it is again Q3. Now Q3 has to move even
faster since there is less time until t∗, so E0 is more negative. This time Q3 moves
away from the pair along a nearly hyperbolic orbit so the limiting behavior as t→∞
is that Q3 →∞ approaching linear motion and the pair approaches a Kepler elliptic
motion (maybe double collision). This cannot be a noncollision singularity.

�

We next work on the proof of Lemma A.2, which needs the following lemma.



ON PAINLEVÉ CONJECTURE 41

Lemma A.3. In the N -body problem, suppose a singularity occurs as t→ t∗, then
we have

lim inf
t→t∗

min
i 6=j
|Qi(t)−Qj(t)| = 0.

Proof of Lemma A.2. From Lemma A.3, it is enough to prove that

lim sup
t→t∗

min
i 6=j
|Qi(t)−Qj(t)| = 0.

Suppose the limsup is greater than zero and we choose a number a > 0 less than the
limsup. Then for each δ, there exists t1 ∈ [t∗−δ, t∗) such that |Qi(t1)−Qj(t1)| > 3/4a
for all i 6= j and there exists t2 ∈ (t1, t

∗) such that |Qi(t2) − Qj(t2)| < 1/4a for all
i 6= j. We choose t2 to be the least of such time so that in the interval [t1, t2] we
have |Qi(t) − Qj(t)| ≥ 1/4a for all i 6= j. This implies by the energy conservation
that in this time interval ∑

P 2
i /(2mi) ≤ E + 4N2M2/a.

hence each Q̇i = Pi/mi is bounded from above by a constant C depending only
on the masses, E, a,N . Within time δ, the oscillations of the positions Qi are
bounded by Cδ. For δ sufficiently small, this gives |Qi(t2) − Qj(t2)| ≥ 1/2a for all
i 6= j if we have |Qi(t1)−Qj(t1)| > 3/4a. This contradicts to the assumption that
|Qi(t2)−Qj(t2)| < 1/4a for all i 6= j. �

Proof of Lemma A.3. Suppose lim inf = a > 0 and choose 0 < b < a. Then there
exists δ > 0 sufficiently small such that |Qi(t) − Qj(t)| > b for all i 6= j and
t ∈ [t∗ − δ, t∗). From the Hamiltonian we obtain

1

2

∑
i

P 2
i /mi ≤ H +N2M2/b.

So each velocity has an upper bound. Moreover, from the equation Ṗi =
∑

i 6=j
mimj(Qj−Qi)
|Qj−Qi|3 ,

we obtain that |Ṗi| ≤ NM2/b2. Within time δ, the oscillation of Qi and Pi are then
both of order δ. This means limtQi(t), limt Pi(t) both exists as t→ t∗ and there is
no collision at all. This is a contradiction. �

A.3. von Zeipel’s theorem.

Theorem A.4 (von Zeipel). If a noncollision singularity occurs at t∗ then we have

lim
t→t∗

max
i 6=j
|Qi(t)−Qj(t)| =∞.

Proof. We again prove the statement by contradiction. Suppose we have an NCS
at time t∗ such that |Qi| < C for all i = 1, . . . , N . Let ∆∗ ⊂ R3N be the set of
accumulation points of Q(t) = (Q1, . . . , QN )(t) as t → t∗. Then we have for each
Q ∈ ∆∗, there is some i 6= j such that Qi = Qj .
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It is clear that ∆∗ is a nonempty compact set. Moreover, it cannot be a single
point which can only happen for a total collision.

The hierarchy decomposition with respect to a partition.

For each point p ∈ ∆∗, we introduce a partition ξ(p) of {1, . . . , N} as follows.
The label i and j are in the same element of ξ if Qi = Qj at p. It may happen that
an element of ξ(p) has only one label. Moreover, the partition may not be unique
for each point p. In that case, we choose a partition with minimal cardinality.

For a given partition ξ(p), we perform a decomposition of the moment of inertia
and the potential as follows. Let S ∈ ξ(p) be an element of the partition, then we
have

(A.5) I = Iξ + Iξ, Iξ =
∑
S∈ξ

IS ,

where IS =
∑

i∈Smi|Qi − cS |2 is the moment of inertia for S, where we have intro-

duced the mass center cS = 1
mS

∑
i∈SmiQi, mS =

∑
i∈Smi, and Iξ =

∑
S∈ξmS |cS |2

is the moment of inertia on the level of partition. We next introduce a similar de-
composition of the potential U = −

∑
i<j

mimj

|Qi−Qj |

U = U ξ +
∑
S∈ξ

US

where US = −
∑

i,j
mimj

|Qi−Qj | where the sum is taken over all i, j ∈ S with i < j and

U ξ = −
∑

i,j
mimj

|Qi−Qj | where the sum is taken over all i and j in different elements of

the partition ξ with i < j.

We next introduce an orthogonal decomposition of R3N into E0(ξ)⊕E−(ξ) with
respect to the metric 〈u, v〉 =

∑
miuivi, ∀ u, v ∈ R3N . For each Q = (Q1, . . . , QN ) ∈

R3N , we decompose it into Q = Q0 + Q− where Q0 = (cS) ∈ E0(ξ) collects the
mass centers for each element S ∈ ξ and Q− = ((Qi − cS)i∈S) ∈ E−(ξ) is the
collections of relative positions to the mass center cS for each element S. Note
that for each S, the vectors (Qi − cS)i∈S are note linearly independent unless we
remove one vector from them. We do so and still denote by Q− the resulting
vector. The above equation (A.5) is the Pythagorean law about the orthogonality
of E0(ξ) and E−(ξ). Now the transformation from Q 7→ (Q0, Q−) is linear and
we have a dual linear transformation for the momentum P 7→ (P0, P−) so that
dP ∧ dQ = dP0 ∧ dQ0 + dP− ∧ dQ−. This is actually the Jacobi coordinates for each
element S of the partition ξ. Note that in this decomposition US depends only on
vectors from Q− and U ξ depends on vectors from both Q0 and Q−.

Claim 1: At a noncollision singularity, the orbit shadows more than one partition
for points in ∆∗.
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Proof. Suppose there is only one such partition. Then using the above hierarchy
decomposition, we see that |U ξ| is bounded as t → t∗ since |Qi − Qj | is bounded
from below on the compact set ∆∗ for i, j not in the same element of the partition.
This also holds in a neighborhood of ∆∗. Then we get MS c̈S = −∇cSU ξ. The
boundedness of |∇cSU ξ| implies that within time δ, the oscillation of cS is of order
δ so that Q0(t) → Q0(t∗) as t → t∗. On the other hand, by definition we have
Q−(t) → 0 as t → t∗. This gives a total collapse for each element S ∈ ξ at time
t∗. �

Claim 2: If at a noncollision singularity we have limt→t∗ maxi 6=j |Qi(t)−Qj(t)| <
∞, then I(t) converges to I∗ <∞.

Proof. By Lagrange-Jacobi identity, we have Ï = K+H, since we have mini 6=j |Qi(t)−
Qj(t)| → 0, this implies K → ∞ so Ï > 0 for t close to t∗. So İ is either always
negative until t∗, or becomes positive and remains positive until t∗. In either case,
we have that I(t) is monotone when t is close to t∗ so it has a limit I∗, which by
assumption is bounded. �

Let ∆∗ξ := ∆∗ ∩E0(ξ), then Q(t) has accumulation points both in and not in the
set ∆∗ξ as t→ t∗.

Claim 3: If ξ is a minimal partition then the set ∆∗ξ is closed.

Proof. Let p be a an accumulation point of ∆∗ξ . Then there is a sequence pn ∈ ∆∗ξ
such that pn → p. By definition, each pn itself is an accumulation point of Q(t), t→
t∗. Taking a Cantor diagonal subsequence we see that p is also accumulated by
Q(t), t→ t∗. This implies that p ∈ ∆∗. It remains to prove that p has the partition
ξ. For each i, j ∈ S ∈ ξ, we get for Qi = Qj the point p since we have Qi = Qj for
all the points pn. This implies that the partition corresponding to the point p is the
same as ξ or coarser. Since we have chosen ξ to be minimal, the partition for p can
only be ξ. This implies that p ∈ E0(ξ) so we have p ∈ ∆∗ξ . �

By assumption ∆∗ is bounded so ∆∗ξ is compact. We choose a neighborhood V0

of ∆∗ in E0(ξ) such that both |U ξ| and |∇cSU ξ| are bounded. We next extend V0 to
a neighborhood of ∆∗ξ in R3n of the form V = V0 ×Bσ where Bσ is a ball of radius

σ centered at zero in the space E−(ξ). We choose σ small to achieve the following
two goals.

(1) By Claim 1, Q(t) has to enter and exit the neighborhood V infinitely often
as t→ t∗.

(2) ∂V0 × B̄σ does not intersect ∆∗ so that the orbit Q(t) does not intersect
∂V0 × B̄σ for t ∈ [t∗ − δ, t∗) for δ small enough. So the orbit can only visit
V through the boundary V0 × ∂Bσ
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The construction gives the following claim.

Claim 4: There exists infinitely time intervals [t1, t2] ⊂ [t∗ − δ, t∗) such that
|Iξ(t1)− Iξ(t2)| = σ/2.

Claim 5: Within each interval [t1, t2], the oscillation of Iξ is of order δ.

Proof. We have

Ïξ =
∑
S∈ξ

MS |ċS |2 + cS · ∇cSU
ξ, MS c̈S = −∇cSU

ξ.

Within a small neighborhood U of ∆∗, we have |U ξ| and |∇cSU ξ| are both bounded.
Integrating over time δ, this proves the claim. �

Now it is clear that Claim 2,4,5 give a contradiction by choosing δ sufficiently
small and σ fixed. �
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(d’après Herman). Ergodic Theory and Dynamical Systems 24.5 (2004): 1521-1582.

[16] Ferrario, Davide L., and Susanna Terracini. On the existence of collisionless equivariant
minimizers for the classical n-body problem. Inventiones mathematicae 155.2 (2004): 305-
362.

[17] Gerver, Joseph L. Noncollision Singularities: Do Four Bodies Suffice! Experimental Math-
ematics 12.2 (2003): 187-198.

[18] Gerver, Joseph L. Noncollision singularities in the n-body problem, in Dynamical systems.
Part I, 57–86, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2003.

[19] Gerver, Joseph L. The existence of pseudo-collisions in the plane, J. Differential Equations
89 (1991), 1-68.

[20] Gerver, Joseph L.A possible model for a singularity without collisions in the five-body prob-
lem, J. Differential Equations 52 (1984), 76-90.

[21] Herman, Michael. Some open problems in dynamical systems. Proceedings of the Interna-
tional Congress of Mathematicians. Vol. 2. 1998.

[22] Hut, P., Bahcall, J. N. Binary-single star scattering. I - numerical experiments for equal
masses. Astrophys. J. 268, 319-341 (1983).

[23] Hampton, Marshall, and Anders Jensen. Finiteness of spatial central configurations in the
five-body problem. Celestial Mechanics and Dynamical Astronomy 109.4 (2011): 321-332.

[24] Hampton, Marshall, and Richard Moeckel. Finiteness of relative equilibria of the four-body
problem. Inventiones mathematicae 163.2 (2006): 289-312.

[25] Meyer, K., Hall, G., & Offin, D. Introduction to Hamiltonian Dynamical Systems and the
N-Body Problem, 2009.

[26] McGehee, Richard. Triple collision in the collinear three-body problem. Inventiones mathe-
maticae 27.3 (1974): 191-227.

[27] Mather, McGehee, Solutions of the collinear four body problem which become unbounded in
finite time, Lecture Notes in Physics (J. Moser, ed.), vol. 38, pp. 575-597, Springer-Verlag,
Berlin/New York, 1975.

[28] Moeckel, Richard. Lectures on central configurations. Notes of the Centre de Recerca Matem-
atica, Barcelona (2014).

[29] Moeckel, Richard, and Richard Montgomery. Realizing all reduced syzygy sequences in the
planar three-body problem. Nonlinearity 28.6 (2015): 1919.

[30] Moser, Jürgen. Dynamical Systems, past and present. In Proc. Int. Congress of Math, vol.
1, pp. 381-402. 1998.

[31] Siegel, Carl L., and Jürgen K. Moser. Lectures on celestial mechanics. Springer Science &
Business Media, 2012.

[32] Marchal, Christian, and Donald G. Saari. On the final evolution of the n-body problem.
Journal of differential equations 20.1 (1976): 150-186.

[33] Moser, J. Stable and random motions in dynamical systems, volume 77 of Annals of Math-
ematics studies.” (1973).
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