Quasimodular forms from Betti numbers


View Calendar
April 6, 2021 8:00 am - 9:00 am
via Zoom Video Conferencing

Pierrick Bousseau - ETH

This talk will be about refined curve counting on local P^2, the noncompact Calabi-Yau 3-fold total space of the canonical line bundle of the projective plane. I will explain how to construct quasimodular forms starting from Betti numbers of moduli spaces of dimension 1 coherent sheaves on P^2. This gives a proof of some stringy predictions about the refined topological string theory of local P^2 in the Nekrasov-Shatashvili limit. Partly based on work with Honglu Fan, Shuai Guo, and Longting Wu.

Zoom: https://harvard.zoom.us/j/96709211410?pwd=SHJyUUc4NzU5Y1d0N2FKVzIwcmEzdz09