# On the proportion of transverse-free curves

HARVARD-MIT ALGEBRAIC GEOMETRY

##### Speaker:

Shamil Asgarli

Given a smooth plane curve C defined over an arbitrary field k, we say that C is transverse-free if it has no transverse lines defined over k. If k is an infinite field, then Bertini's theorem guarantees the existence of a transverse line defined over k, and so the transverse-free condition is interesting only in the case when k is a finite field F_q. After fixing a finite field F_q, we can ask the following question: For each degree d, what is the fraction of degree d transverse-free curves among all the degree d curves? In this talk, we will investigate an asymptotic answer to the question as d tends to infinity. This is joint work with Brian Freidin.

Zoom: https://harvard.zoom.us/j/91794282895?pwd=VFZxRWdDQ0VNT0hsVTllR0JCQytoZz09