CMSA Quantum Matter in Mathematics and Physics: Absolute anomalies in (2+1)D symmetry-enriched topological states and exact (3+1)D constructions


View Calendar
September 10, 2020 10:30 am - 12:00 pm
via Zoom Video Conferencing

Maissam Barkeshli - Maryland University

Certain patterns of symmetry fractionalization in (2+1)D topologically ordered phases of matter can be anomalous, which means that they possess an obstruction to being realized in purely (2+1)D. In this talk, I will explain our recent results showing how to compute the anomaly for symmetry-enriched topological (SET) states of bosons in complete generality. Given any unitary modular tensor category (UMTC) and symmetry fractionalization class for a global symmetry group G, I will show how to define a (3+1)D topologically invariant path integral in terms of a state sum for a G symmetry- protected topological (SPT) state. This also determines an exactly solvable Hamiltonian for the system which possesses a (2+1)D G symmetric surface termination that hosts deconfined anyon excitations described by the given UMTC and symmetry fractionalization class. This approach applies to general symmetry groups, including anyon-permuting and anti-unitary symmetries. In the case of unitary orientation-preserving symmetries, our results can also be viewed as providing a method to compute the H4(G,U(1)) obstruction that arises in the theory of G-crossed braided tensor categories, for which no general method has been presented to date. This is joint work with D. Bulmash, presented in arXiv:2003.11553