CMSA Quantum Matter in Mathematics and Physics: From SU(N) Seiberg-Witten Theory to Adjoint QCD


View Calendar
March 18, 2021 12:00 pm - 1:30 pm
via Zoom Video Conferencing

Thomas Dumitrescu - UCLA

Standard lore suggests that four-dimensional SU(N) gauge theory with 2 massless adjoint Weyl fermions ("adjoint QCD") flows to a phase with confinement and chiral symmetry breaking. In this two-part talk, we will test and present new evidence for this lore. Our strategy involves realizing adjoint QCD in the deep IR of an RG flow descending from SU(N) Seiberg-Witten theory, deformed by a soft supersymmetry (SUSY) breaking mass for its adjoint scalars. We review what is known about the simplest case N=2, before presenting results for higher values of N. A crucial role in the analysis is played by a dual Lagrangian that originates from the multi-monopole points of Seiberg-Witten theory, and which can be used to explore the phase diagram as a function of the SUSY-breaking mass. The semi-classical phases of this dual Lagrangian suggest that the softly broken SU(N) theory traverses a sequence of phases, separated by first-order transitions, that interpolate between the Coulomb phase of Seiberg-Witten theory and the confining, chiral symmetry breaking phase expected for adjoint QCD.