CMSA Interdisciplinary Science Seminar: Convex Integration and Fluid Turbulence


View Calendar
April 22, 2021 9:00 am - 10:00 am
via Zoom Video Conferencing

Matt Novack - Courant Institute of Mathematical Sciences, New York University / MSRI

The Navier-Stokes and Euler equations are the fundamental models for describing viscous and inviscid fluids, respectively. Based on ideas which date back to Kolmogorov and Onsager, solutions to these equations are expected to dissipate energy even in the vanishing viscosity limit, which in turn suggests that such solutions are somewhat rough and thus only weak solutions. At these low regularity levels, however, one may construct wild weak solutions using convex integration methods. These methods originated in the works of Nash and Gromov and were adapted to the context of fluid equations by De Lellis and Szekelyhidi Jr. In this talk, we will survey the history of both phenomenological theories of turbulence and convex integration. Finally, we discuss recent joint work with Tristan Buckmaster, Nader Masmoudi, and Vlad Vicol in which we construct wild solutions to the Euler equations which deviate from Kolmogorov’s predictions.


(Password: 419419)