(1) Rudin, Chapter 3, Problems 3, 6 (a)-(c), 7

(2) Suppose that \(\{a_n\} \) is a sequence of points in a metric space \((X, d)\), such that
\[
d(a_n, a_{n+1}) < c^2 d(a_n, a_{n-1}).
\]
for some \(c \in (0, 1) \). Show that \(\{a_n\} \) is a Cauchy sequence. (Fun Fact: This little problem is a key step in the proof of the implicit function theorem).

(3) Let \(\{a_n\} \) and \(\{b_n\} \) be two Cauchy sequences in \((X, d)\). Show that \(d(a_n, b_n) \) is a Cauchy sequence in \(\mathbb{R} \). (Fun Fact: This little problem is used in one method for constructing the real numbers).

(4) Suppose that \(\{a_n\} \) is a Cauchy sequence in \((X, d)\), and suppose that some subsequence \(\{a_{n_k}\} \) converges to a point \(p \in X \). Show that \(\{a_n\} \) converges to \(p \).