The Wall Finiteness Obstruction (Lecture 2)

August 28, 2014

We begin with the following:

Question 1. Let M be a compact manifold. Does M have the homotopy type of a finite CW complex?

Of course, if M is triangulable, then it is actually *homeomorphic* to a finite simplicial complex. This provides an affirmative answer when M is smooth (since any smooth manifold can be triangulated).

For general topological manifolds, Question 1 is not so easy to answer. As a starting point, we note that any (paracompact) topological manifold M has the homotopy type of a (possibly infinite) CW complex X: this follows from the theory of absolute neighborhood retracts, which we will review in a subsequent lecture. Of course, we should not expect that X can be chosen finite in the case where M is noncompact (for a counterexample, consider the “surface of infinite genus”).

Let us fix a homotopy equivalence $f : M \to X$, where X is a CW complex. If M is compact, then $f(M)$ is contained in a finite subcomplex $X_0 \subseteq X$.

Exercise 2. Prove this.

Let g be a homotopy inverse to f. Then the composite map

$$X \xrightarrow{f g} X_0 \hookrightarrow X$$

is homotopic to the identity map from M to itself. This motivates the following:

Definition 3. Let X be a CW complex (or, more generally, a space with the homotopy type of a CW complex). We say that X is *finitely dominated* if it is a retract (in the homotopy category of CW complexes) of a finite CW complex Y. In other words, X is finitely dominated if there exists a finite CW complex Y and a pair of maps

$$i : X \to Y \quad r : Y \to X$$

such that $r \circ i$ is homotopic to the identity map from X to itself.

Of course, every finite CW complex X is finitely dominated: we can take $Y = X$ and the maps i and r to be the identity. More generally, if X is homotopy equivalent to a finite CW complex, then X is finitely dominated.

Question 4. Let X be a finitely dominated CW complex. Does X have the homotopy type of a finite CW complex?

We will see that the answer to Question 4 is “no” in general, but “yes” in many cases (for example, when X is simply connected). Moreover, the *topological* question of deciding whether or not X is finitely dominated will be reduced to an *algebraic* one (the vanishing of a certain K-theory class).

Remark 5. It is not true in general that every finitely dominated space X has the homotopy type of a finite CW complex. Nevertheless, it can be shown that every compact manifold has this property: that is, Question 1 has an affirmative answer, though we will not establish that in this lecture (a proof is given in Kirby-Siebenmann; if time permits, we’ll discuss a stronger result later in this course).
We begin by summarizing some of the finiteness properties enjoyed by finitely dominated spaces.

Lemma 6. Let X be a finitely dominated space. Then:

(a) The set $\pi_0 X$ is finite.

(b) For each base point $x \in X$, the group $\pi_1(X, x)$ is finitely presented.

(c) Let $x \in X$ and let $X^o \subseteq X$ be the path component of x. For each abelian group V with an action of the fundamental group $\pi_1(X, x)$, let $H^*(X^o; V)$ denote the cohomology of X^o with coefficients in the local system determined by V. Then the construction $V \mapsto H^*(X^o; V)$ commutes with filtered direct limits.

(d) For each $x \in X$ as above, there exists an integer n such that $H^*(X^o; V) \cong 0$ for $* > n$ and any representation V of $\pi_1(X, x)$.

Proof. Choose finite CW complex Y and a map $i : X \to Y$ which admits a left homotopy inverse r. Note that $\pi_0 Y$ is finite and that the map $\pi_0 X \to \pi_0 Y$ is injective (it has a left inverse given by r). This proves (a).

To prove (b), we note that for each $x \in X$ the induced map $i_* : \pi_1(X, x) \to \pi_1(Y, y)$ is split injective. Since Y is a finite complex, the group $\pi_1(Y, y)$ is finitely presented. It follows that the group $\pi_1(X, x)$ is finitely presented, which proves (b). Let Y^o be the path component of y. By composition with a left inverse to i_*, we see that representations V of $\pi_1(X, x)$ can be extended functorially to representations of $\pi_1(Y, y)$, which we can regard as local systems on Y^o. Using cellular cochains to compute $H^*(Y^o; V)$, we see immediately that the construction $V \mapsto H^*(Y^o; V)$ commutes with filtered direct limits. We can functorially identify $H^*(X^o; V)$ with a direct summand of $H^*(Y^o; V)$, so the construction $V \mapsto H^*(X^o; V)$ also commutes with filtered direct limits. This proves (c), and assertion (d) follows if we take $n = \dim(Y)$.

Remark 7. Lemma 6 actually characterizes finitely dominated spaces; we will give a proof at the end of this lecture.

We next show that conditions (a) through (c) guarantee that X behaves approximately like a finite-dimensional CW complex.

Proposition 8. Let X be a CW complex which satisfies conditions (a), (b), and (c) of Lemma 6. For each integer $n \geq 0$, there exists a finite CW complex Z of dimension $< n$ and an $(n-1)$-connected map $f : Z \to X$.

We will deduce Proposition 8 from the following more precise statement:

Lemma 9. Let X be a CW complex which satisfies conditions (a), (b), and (c) of Lemma 6. Suppose we are given an $(n-1)$-connected map $f : Z \to X$, where Z is a finite CW complex. Then there exists another finite CW complex Z', obtained from Z by attaching finitely many n-cells, and an n-connected map $f' : Z' \to X$ extending f. In particular, we have $\dim(Z') \leq \max\{n, \dim(Z)\}$.

For the remainder of this lecture, it will be convenient to always assume that the space X is connected (we can always handle disconnected spaces by considering each connected component separately). Fix a base point $x \in X$, let $G = \pi_1(X, x)$, and let \tilde{X} be a universal cover of X (so that G acts on \tilde{X} by deck transformations).

Proof of Lemma 9. If $n = 0$, then we can either take $Z' = Z$ (if Z is nonempty) or $Z' = *$ (if Z is empty).

We next consider the case $n = 1$. If Z is not connected, then we first enlarge Z by adding 1-cells connecting the different components of Z (the map f extends continuously over this enlargement by virtue of our assumption that X is connected). Without loss of generality, we may assume that there exists a 0-cell $z \in Z$ such that $f(z) = x$. We let Z' be obtained from Z by attaching several loops based at the point z, and we define f so that it carries these loops to generators of the group $G = \pi_1(X, x)$. Since G is finitely generated, this only requires finitely many 1-cells.
We now consider the case $n = 2$. Let $z \in Z$ be as above, and consider the group homomorphism \(\phi : \pi_1(Z, z) \to G \) induced by f. Since $\pi_1(Z, z)$ is finitely generated and G is finitely presented, the kernel \(\ker(\phi) \) is generated as a normal subgroup by finitely many elements of $\pi_1(Z, z)$. Each of these elements can be represented by a loop in the 1-skeleton of Z. We may therefore reduce to the case where ϕ is an isomorphism.

We can now treat all of the cases $n \geq 2$ in a uniform manner. For any abelian group V with an action of G, we let $H_*(X, Z; V)$ and $H^*(X, Z; V)$ denote the homology and cohomology of X relative to Z with coefficients in V. Since f is $(n-1)$-connected, the groups $H_*(X, Z; Z[G])$ vanish for $* < n$. It follows from the universal coefficient theorem that we have canonical isomorphisms

\[
H^n(X, Z; V) \simeq \text{Hom}_{Z[G]}(H_n(X, Z; Z[G]), V).
\]

Since X satisfies condition (c) of Lemma 6 and Z is finite CW complex, the construction $V \mapsto H^n(X, Z; V)$ commutes with filtered direct limits (exercise!)

It follows that the construction

\[
V \mapsto \text{Hom}_{Z[G]}(H_n(X, Z_n; Z[G]), V)
\]

also commutes with filtered direct limits. In particular, $H_n(X, Z; Z[G])$ is finitely generated as a module over $Z[G]$.

Set $\tilde{Z} = Z \times_X \tilde{X}$. Applying the relative Hurewicz theorem to the map $\tilde{Z} \to \tilde{X}$, we deduce that the Hurewicz map

\[
\pi_n(X, Z) \simeq \pi_n(\tilde{X}, \tilde{Z}) \to H_n(\tilde{X}, \tilde{Z}; Z) \simeq H_n(X, Z; Z[G])
\]

is an isomorphism. Consequently, the group $\pi_n(X, Z)$ is finitely generated as a $Z[G]$-module. Each element of $\pi_n(X, Z)$ supplies a recipe for attaching an n-cell to Z and extending the definition of f over that n-cell. Without loss of generality, we may assume that the relevant attaching maps factor through the $(n-1)$-skeleton of Z. Let Z' be the CW complex obtained from Z by attaching n-cells corresponding to a set of generators of $\pi_n(X, Z)$, so that f extends to an n-connected map $f' : Z' \to X$.

For any space X satisfying conditions (a), (b), and (c) of Lemma 6, Lemma 9 allows us to construct a sequence of better and better approximations to X. It is condition (d) that will allow us to stop this construction.

Definition 10. Let X be a CW complex and let $n \geq 2$ be an integer. We will say that X has homotopy dimension $\leq n$ if it satisfies condition (d) of Lemma 6: that is, if $H^*(X; \mathcal{L})$ vanishes for $* > n$ and any local system of abelian groups \mathcal{L} on X.

Remark 11. Definition 10 makes sense for any value of n, but is not really the right condition when $n = 0$ and $n = 1$: in those cases, one should also require vanishing for “nonabelian” cohomology.

Lemma 12. Let X be a CW complex satisfying the conditions of Lemma 6. Let Z be a finite CW complex of dimension $\leq n-1$ and let $f : Z \to X$ be an $(n-1)$-connected map. If X has homotopy dimension $\leq n$, then the homology group $H_n(X, Z; Z[G])$ is a finitely generated projective $Z[G]$-module.

Proof. Let V be any abelian group with an action of G, which determines local systems on X and Z which we will also denote by V. Since Z is $(n-1)$-dimensional, the local cohomology groups $H^n(Z; V)$ vanish for $* \geq n$. Using the exact sequence

\[
H^{n-1}(Z; V) \to H^n(X, Z; V) \to H^n(X; V),
\]

we see that the groups $H^n(X, Z; V)$ vanish for $* > n$. Any exact sequence of representations $0 \to V' \to V \to V'' \to 0$ gives rise to a long exact sequence

\[
H^n(X, Z; V') \to H^n(X, Z; V) \to H^n(X, Z; V'') \to H^{n+1}(X, Z; V') \simeq 0
\]
It follows that the construction

\[V \mapsto H^n(X, Z; V) \simeq \text{Hom}_{\mathbb{Z}[G]}(H_n(X, Z; \mathbb{Z}[G]); V) \]

is a right exact functor of \(V \), so that \(H_n(X, Z; \mathbb{Z}[G]) \) is a projective \(\mathbb{Z}[G] \)-module. As in the proof of Lemma 9, it is finitely generated because the construction \(V \mapsto H^n(X, Z; V) \) commutes with filtered direct limits.

\[\square \]

Remark 13. In the situation of Lemma 12, the relative homology groups \(H_*(X, Z; \mathbb{Z}[G]) \) vanish for \(* \neq n \). For \(* < n \), this follows from our connectivity assumption on the map \(f : Z \to X \). On the other hand, suppose there were some \(m > n \) for which \(H_m(X, Z; \mathbb{Z}[G]) \neq 0 \). Choose \(m \) as small as possible and set \(A = H_m(X, Z; \mathbb{Z}[G]) \). Using the projectivity of \(H_n(X, Z; \mathbb{Z}[G]) \), the universal coefficient formula gives

\[H^m(X, Z; A) = \text{Hom}_{\mathbb{Z}[G]}(H_m(X, Z; \mathbb{Z}[G]), A) = \text{Hom}_{\mathbb{Z}[G]}(A, A) \neq 0. \]

This is impossible, since \(H^m(X; A) \) and \(H^{m-1}(Z; A) \) both vanish.

Of course, the projective module \(P = H_n(X, Z; \mathbb{Z}[G]) \) depends on the choice of \((n-1) \)-connected map \(f : Z \to X \). For example, we could enlarge the CW complex \(Z \) by adjoining some several \((n-1) \)-spheres which map trivially to \(X \); this would have the effect of replacing \(P \) by a direct sum \(P \oplus \mathbb{Z}[G]^r \), where \(r \) is the number of additional spheres. This motivates the following:

Definition 14. Let \(R \) be a ring and let \(P \) be a finitely generated \(R \)-module. We say that \(P \) is stably free if \(P \oplus R^n \) is a free \(R \)-module for some \(a \geq 0 \).

Proposition 15. Let \(n \geq 3 \) and let \(X \) be a space which satisfies the conditions of Lemma 6 which is of homotopy dimension \(\leq n \). Choose a finite CW complex \(Z \) of dimension \(< n \) and an \((n-1) \)-connected map \(f : Z \to X \). Then the following conditions are equivalent:

(i) The space \(X \) is homotopy equivalent to a finite CW complex of dimension \(\leq n \).

(ii) The projective module \(P = H_n(X, Z; \mathbb{Z}[G]) \) is stably free.

Proof. Suppose first that \(P \) is stably free. As indicated above, we can then alter the definition of \(Z \) (attaching some extra spheres) to arrange that \(P \) is actually free. In this case, we repeat the construction of Lemma 9 but slightly more carefully: we choose a basis for \(H_n(X, Z; \mathbb{Z}[G]) \simeq \pi_n(X, Z) \) and attach only \(n \)-cells corresponding to those basis elements. This produces a map \(f' : Z' \to X \) which is an isomorphism on fundamental groups where the relative homology \(H_*(X, Z; \mathbb{Z}[G]) \simeq H_*(X, Z'; \mathbb{Z}) \) vanishes, so that \(f' \) is a homotopy equivalence by Whitehead’s theorem.

Conversely, suppose that \(X \) is homotopy equivalent to a finite CW complex of dimension \(n \). Without loss of generality we may assume that the map \(f \) is cellular, so that the relative homology \(H_n(X, Z; \mathbb{Z}[G]) \) can be computed by a cellular chain complex of finitely generated free \(\mathbb{Z}[G] \)-modules

\[0 \to \mathbb{Z}[G]^r_n \to \mathbb{Z}[G]^r_{n-1} \to \cdots \to \mathbb{Z}[G]^r_0 \to 0. \]

Since this complex is acyclic away from the top degree, it is split exact: that is, it has the form

\[0 \to Q_n \oplus Q_{n-1} \to Q_{n-1} \oplus Q_{n-2} \to \cdots \to Q_1 \oplus Q_0 \to Q_0 \to 0. \]

It follows by induction on \(i \) that each \(Q_i \) is stably free; in particular \(P = Q_n \) is stably free. \(\square \)

Remark 16. I believe it is an open question whether Proposition 15 is also valid for \(n = 2 \) (the proof given above certainly does not apply).

Corollary 17. Let \(X \) be a finitely dominated space which is simply connected. Then \(X \) has the homotopy type of a finite CW complex.
Proof. Every finitely generated projective \(\mathbf{Z} \)-module is free.

Proposition 15 allows us to quantify the failure of finitely dominated spaces to be homotopy equivalent to finite CW complexes.

Definition 18. Let \(R \) be a ring. We let \(K_0(R) \) denote the Grothendieck group of projective \(R \)-modules: that is, the free abelian group generated by symbols \([P]\), where \(P \) is a projective \(R \)-module, modulo the relations

\[[P] = [P'] + [P'']\]

when there exists an isomorphism \(P \cong P' \oplus P'' \).

The construction \(n \mapsto n[R] \) determines a group homomorphism \(\mathbf{Z} \to K_0(R) \). We let \(\widetilde{K}_0(R) \) denote the cokernel of this homomorphism. We refer to \(\widetilde{K}_0(R) \) as the reduced \(K \)-group of \(R \).

Proposition 19. Let \(X \) be a finitely dominated space of homotopy dimension \(\leq n \). Let \(Z \) be a finite CW complex of dimension \(< n \) and let \(f : Z \to X \) be an \((n-1)\)-connected map. Then the image of the class \([H_n(X, Z; \mathbf{Z}[G])]\) in the reduced \(K \)-group \(\widetilde{K}_0(\mathbf{Z}[G]) \) does not depend on the choice of \(Z \) or \(f \).

Proof. Let \(Z' \) be another finite CW complex of dimension \(< n \) equipped with an \((n-1)\)-connected map \(f' : Z' \to X \). We wish to show that \([H_n(X, Z; \mathbf{Z}[G])] = [H_n(X, Z'; \mathbf{Z}[G])]\) in the group \(\widetilde{K}_0(\mathbf{Z}[G]) \).

Starting with the map \(Z \rightarrow X \) and repeatedly applying Lemma 9, we obtain a homotopy commutative diagram

\[
\begin{array}{ccc}
Z & \xrightarrow{f} & Z'' \\
\downarrow g & & \downarrow f' \\
Z' & \xrightarrow{g''} & X
\end{array}
\]

It will therefore suffice to show that we have equalities

\([H_n(X, Z; \mathbf{Z}[G])] = [H_n(X, Z''; \mathbf{Z}[G])]\) \hspace{1cm} \([H_n(X, Z'; \mathbf{Z}[G])] = [H_n(X, Z'; \mathbf{Z}[G])]\).

In other words, we may replace \(Z' \) by \(Z'' \) and thereby reduce to the case where the map \(f \) factors as a composition

\(Z \xrightarrow{g} Z' \xrightarrow{f'} X \).

Note that the map \(g \) is automatically \((n-2)\)-connected. Using Lemma 9, we see that \(g \) factors as a composition

\(Z \xrightarrow{g''} Z^+ \xrightarrow{g'''} Z' \)

where \(g'' \) is \((n-1)\)-connected and \(Z^+ \) is obtained from \(Z \) by attaching finitely many \((n-1)\)-cells. Replacing \(g \) by \(g'' \) or \(g''' \), we are reduced to two special cases:

(a) The map \(g \) is \((n-1)\)-connected. In this case, we have a short exact sequence

\(0 \to H_n(Z', Z; \mathbf{Z}[G]) \to H_n(X, Z; \mathbf{Z}[G]) \to H_n(X, Z'; \mathbf{Z}[G]) \to 0 \)

(the exactness on the left follows from Remark 13). This sequence splits (since \(H_n(X, Z'; \mathbf{Z}[G]) \) is projective), so we have

\([H_n(X, Z; \mathbf{Z}[G])] = [H_n(X, Z'; \mathbf{Z}[G])] + [H_n(Z', Z; \mathbf{Z}[G])].\)

It will therefore suffice to show that the class \([H_n(Z', Z; \mathbf{Z}[G])]\) vanishes in \(\widetilde{K}_0(\mathbf{Z}[G]) \). This follows from Proposition 15, since \(Z \) is a finite CW complex.
Proposition 22. Let X be a finite CW complex. Choose an integer $n \geq 2$ such that X has homotopy dimension $\leq n$, a CW complex Z of dimension $< n$, and an $(n-1)$-connected map $f : Z \to X$. The Wall finiteness obstruction of X is the element

$$w(X) = (-1)^n[H_n(X, Z; \mathbb{Z}[G])] \in \widetilde{K}_0(\mathbb{Z}[G]).$$

Definition 20. Let X be a finitely dominated space. Choose an integer $n \geq 2$ such that X has homotopy dimension $\leq n$, a CW complex Z of dimension $< n$, and an $(n-1)$-connected map $f : Z \to X$. The Wall finiteness obstruction $w(X)$ is well-defined.

Proof. We have already seen that $w(X)$ does not depend on the map $f : Z \to X$. We now check that it is independent of n. Let us temporarily denote $w(X)$ by $w_n(X)$ to emphasize its hypothetical dependence on n. Choose any integer $n \geq 2$ such that X has homotopy dimension $\leq n$; we will show that $w_n(X) = w_{n+1}(X)$. To prove this, choose a CW complex Z of dimension $< n$ and an $(n-1)$-connected map $f : Z \to X$. Using Lemma 9, we can extend f to an n-connected map $f' : Z' \to X$ where Z' is obtained from Z by attaching finitely many n-cells. We then have a (split) short exact sequence

$$0 \to H_{n+1}(X, Z'; \mathbb{Z}[G]) \to H_n(Z, Z'; \mathbb{Z}[G]) \to H_n(X, Z; \mathbb{Z}[G]) \to 0$$

which gives the relation

$$[H_n(X, Z; \mathbb{Z}[G])] + [H_{n+1}(X, Z'; \mathbb{Z}[G])] = [H_n(Z, Z'; \mathbb{Z}[G])] = 0 \in \widetilde{K}_0(\mathbb{Z}[G]).$$

By virtue of Proposition 15, the finiteness obstruction $w(X)$ is zero if and only if X has the homotopy type of a finite CW complex.

We conclude this lecture by tying up a few loose ends. We start with a converse to Lemma 6.

Proposition 22. Let X be a CW complex satisfying conditions (a) through (d) of Lemma 6. Then X is finitely dominated.

Proof Sketch. Write X as a union of finite subcomplexes X_α. It will suffice to show that the identity map $id : X \to X$ is homotopic to a map which factors through some X_α. We can replace each of the inclusions $X_\alpha \to X$ by a fibration $p_\alpha : E_\alpha \to X$; we wish to show that one of these inclusions has a section.

For each integer m, let $\tau_{\leq m}E_\alpha$ denote the mth stage in the relative Postnikov tower of E_α over X (so that we have a fibration $p_{\alpha,m} : \tau_{\leq m}E_\alpha \to X$ whose fibers have no homotopy groups above m). Suppose we are given a section s_m of some $p_{\alpha,m}$. Note that if $m \geq 1$, then the fiber product

$$(\tau_{\leq m+1}E_\alpha) \times_{E_\alpha} X$$

is a fibration over whose fibers have the form $K(A_{x,\alpha}, m+1)$, where $x \mapsto A_{x,\alpha}$ is a local system of abelian groups on X. Consequently, the obstruction to lifting s_m to a section of $p_{\alpha,m+1}$ is measured by a cohomology
class \(\eta(s_m) \in H^{m+2}(X; A_\alpha) \). If \(m + 2 \) is larger than the homotopy dimension of \(X \) (which is finite by assumption), then \(\eta(s_m) \) automatically vanishes, so any section of \(p_{\alpha,m} \) can be lifted to a section of \(p_\alpha \).

We will complete the proof by showing that for every integer \(m \), there exists an index \(\alpha \) such that \(p_{\alpha,m} \) admits a section. The proof proceeds by induction on \(m \). Suppose first that \(m \geq 1 \) and that we are given a section \(s_m \) as above. We claim that it is possible to choose \(\beta \geq \alpha \) such that the image of \(\eta(s_m) \) vanishes in \(H^{m+2}(X; A_\beta) \). In fact, we claim that the direct limit \(\lim_{\beta \geq \alpha} H^{m+2}(X; A_\beta) \) vanishes. Since \(X \) satisfies condition (c) of Lemma 6, it will suffice to show that the direct limit \(\lim_{\beta \geq \alpha} A_\beta \) vanishes as a local system of abelian groups on \(X \). This follows immediately from the fact that \(X \) is a homotopy colimit of the diagram \(\{ E_\alpha \} \).

It remains to treat small values of \(m \). Let us begin with the case \(m = 0 \), so that each \(\tau_{\leq m} E_\alpha \) can be regarded as a covering space of \(X \). Let \(S_\alpha \) denote the fiber over the base point \(x \in X \), so that each \(S_\alpha \) is a set with an action of the group \(G \). To choose a section of \(\tau_{\leq m} E_\alpha \), we must show that \(S_\alpha \) contains an element which is fixed by \(G \). Because \(G \) is finitely generated, passage to \(G \)-invariants commutes with filtered direct limits. It will therefore suffice to show that the direct limit \(\lim S_\alpha \) contains an element which is fixed by \(G \). This is clear, since \(\lim S_\alpha \) consists of a single point (it is \(\pi_0 \) of the homotopy fiber of the identity map \(X \to X \)).

We conclude by treating the case \(m = 1 \). Let us assume that there exists an index \(\alpha \) and that we have chosen a section of the map \(\tau_{\leq 1} E_\alpha \to X \). For each \(\beta \geq \alpha \), let \(E_\beta \) denote the fiber product \(\tau_{\leq 1} E_\beta \times_{\tau_{\leq 0} E_\beta} X \). The projection map \(q_\beta : E_\beta \to X \) is a fibration whose fibers have the form \(K(\Pi; 1) \). Let \(G_\beta \) denote the fundamental group of \(E_\beta \), so that we have \(\lim G_\beta \simeq G \). Since \(G \) is finitely presented, it follows that the natural map \(G_\beta \to G \) admits a section for \(\beta \) sufficiently large. We are therefore reduced to finding a section of the induced map \(E_\beta \times_{BG_\beta} BG \to X \). This is a fibration whose fibers are of the form \(K(\Pi; 1) \), where \(\Pi \) is abelian, and is therefore classified by an element of \(H^2(X; L_\beta) \) for some local system of abelian groups \(L_\beta \) on \(X \). As before, we have \(\lim G_\beta = 0 \) so (by virtue of condition (c)) the direct limit \(\lim H^2(X; L_\beta) \) vanishes, and therefore the fibration is trivial for \(\beta \) sufficiently large.

\[\square \]

Remark 23. Let \(G \) be a finitely presented group. Then every class \(\eta \in \tilde{K}_0(Z[G]) \) arises as the Wall finiteness obstruction of some finitely dominated space \(X \) with \(\pi_1 X = G \). To see this, we first choose a connected finite 2-dimensional CW complex \(X_0 \) with \(\pi_1 X_0 = G \). Let \(\eta = [P] \) where \(P \) is a finitely generated projective \(Z[G] \)-module, so that \(P \) appears as a direct summand of some free \(Z[G] \)-module \(Z[G]^r \). Then \(P \) is the image of an idempotent map \(e : Z[G]^r \to Z[G]^r \). Choose an even integer \(n \geq 2 \) and let \(Y \) be the CW complex obtained from \(X_0 \) by adding \(r n \)-cells with trivial attaching maps. Using the relative Hurewicz theorem we deduce that the relative homotopy group \(\pi_n(Y, X_0) \) is isomorphic to the free module \(Z[G]^r \). We can therefore choose a map \(\pi : Y \to Y \) which is the identity on \(X_0 \) and which induces the idempotent endomorphism \(e \) of \(H_n(Y, X_0; Z[G]) \simeq Z[G]^r \). Using the fact that \(\pi \) is an idempotent in the homotopy category, one can show that the homotopy colimit \(X \) of the diagram

\[
\cdots \xrightarrow{\pi} Y \xrightarrow{\pi} Y \xrightarrow{\pi} \cdots
\]

satisfies the conditions of Lemma 6 and is therefore a finitely dominated space of homotopy dimension \(\leq n \); a simple calculation shows that the composite map \(X_0 \hookrightarrow Y \to X \) is \((n-1)\)-connected and that the relative homology \(H_n(X, X_0; Z[G]) \) is isomorphic to \(P \).