Formal Groups (Lecture 11)

April 27, 2010

We begin by recalling our discussion of the Adams-Novikov spectral sequence:

Claim 1. Let X be any spectrum. Then $\text{MU}_*(X)$ is a module over the commutative ring $L = \pi_* \text{MU}$, and can therefore be understood as a quasi-coherent sheaf on the affine scheme $\text{Spec} \ L$ which parametrizes formal group laws (here L denotes the Lazard ring). This quasi-coherent sheaf admits an action of the affine group scheme $G = \text{Spec} \mathbb{Z}[b_1, b_2, \ldots]$ which assigns to each commutative ring R the group $\{g \in R[[t]] : g(t) = t + b_1 t^2 + b_2 t^3 + \cdots\}$, compatible with the action of G on $\text{Spec} \ L$ by the construction

$$(g \in G(R), f(x, y) \in \text{FGL}(R) \subseteq R[[x, y]]) \mapsto gf(g^{-1}(x), g^{-1}(y)) \in \text{FGL}(R) \subseteq R[[x, y]].$$

There is a spectral sequence $\{E^{p,q}_r, d_r\}$, called the Adams-Novikov spectral sequence, with the following properties. If X is connective, then $\{E^{p,q}_r, d_r\}$ converges to a finite filtration of $\pi_{p-q} X$. Moreover, the groups $E^{p,q}_2$ are given by the cohomology groups $H^p(G; \text{MU}_* X)$.

Equivalently, we can think of $E^{p,q}_2$ as the cohomology of the stack $\mathcal{M}^*_{\text{FG}} = \text{Spec} \ L/G$ with coefficients in the sheaf \mathcal{F}_X determined by $\text{MU}_*(X)$ with its G-action.

To be more precise, we should observe that the ring L and the ring $\mathbb{Z}[b_1, \ldots]$ are all equipped a canonical grading. In geometric terms, this grading corresponds to an action of the multiplicative group \mathbb{G}_m. This group acts on L by the formula

$$(\lambda \in R^\times, f(x, y) \in \text{FGL}(R)) \mapsto \lambda f(\lambda^{-1} x, \lambda^{-1} y).$$

In fact, we can identify both \mathbb{G}_m and G with subgroups of a larger group G^+, with $G^+(R) = \{g \in R[[x]] : g(t) = b_0 t + b_1 t^2 + \cdots, b_0 \in R^\times\}$. This group can be identified with a semidirect product of the subgroup \mathbb{G}_m (consisting of those power series with $b_i = 0$ for $i > 0$) and G (consisting of those power series with $b_0 = 1$), and this semidirect product acts on $\text{Spec} \ L$ by substitution.

For any spectrum X, $\text{MU}_*(X)$ is a graded L-module, and the action of G on $\text{MU}_*(X)$ is compatible with the grading. In the language of algebraic geometry, this means that $\text{MU}_{\text{even}}(X) = \bigoplus_n \text{MU}_{2n}(X)$ can be regarded as a representation of the group G^+ compatible with the action of G^+ on $\text{Spec} \ L$. In the language of stacks, this means that $\text{MU}_{\text{even}}(X)$ can be regarded as a quasi-coherent sheaf on the quotient stack $\text{Spec} \ L/G^+$.

Definition 2. The quotient stack $\text{Spec} \ L/G^+$ is called the moduli stack of formal groups and will be denoted by \mathcal{M}_{FG}.

To understand \mathcal{M}_{FG}, it will be useful to have a more conceptual way of thinking about formal group laws. Let R be a commutative ring and let $f(x, y) \in R[[x, y]]$ be a formal group law over R. We let Alg_R denote the category of commutative R-algebras. We can associate to f a functor $\mathfrak{G}_f : \text{Alg}_R \to \text{Ab}$ from R to the category of abelian groups; namely, we let $\mathfrak{G}_f(A) = \{a \in A : (\exists n) a^n = 0\} \subseteq A$, with the group structure given by $(a, b) \mapsto f(a, b)$. Note that this expression makes sense: though f has infinitely many terms, if a and b are nilpotent then only finitely many terms are nonzero. We will call \mathfrak{G}_f the formal group associated to f.
Remark 3. The condition that \(f \in R[[x, y]] \) define a formal group law is equivalent to the requirement that the above formula defines a group structure on \(\mathcal{G}_f(A) \) for every \(R \)-algebra \(A \).

Suppose that we are given two formal group laws \(f, f' \in R[[x, y]] \) and an isomorphism \(\alpha : \mathcal{G}_f \simeq \mathcal{G}_f' \) of the corresponding formal groups. In particular, for every \(R \)-algebra \(A \), \(\alpha \) determines a bijection \(\alpha_A \) from the set \(\{ a \in A : a \text{ is nilpotent} \} \) with itself. To understand this bijection, let us treat the universal case where \(A \) contains an element \(a \) such that \(a^{n+1} = 0 \). This is the truncated polynomial ring \(A = R[t]/t^{n+1} \). In this case, \(\alpha \) carries \(t \) to another nilpotent element, necessarily of the form \(b_0 t + b_1 t^2 + \ldots + b_{n-1} t^n \). Since \(\alpha \) is functorial, it follows that for any commutative \(R \)-algebra \(A \) containing an element \(a \) with \(a^n = 0 \), we have \(\alpha_A(a) = b_0 a + b_1 a^2 + \ldots + b_{n-1} a^n \). In particular, if \(A = R[t]/t^n \), we deduce that \(\alpha_A(t) = b_0 t + b_1 t^2 + \ldots + b_{n-2} t^{n-1} \).

In other words, the coefficients \(b_i \) which appear are independent of \(n \). We conclude that there exists a power series \(g(t) = b_0 t + b_1 t^2 + \ldots \) such that \(\alpha_A(a) = g(a) \) for every commutative ring \(a \). Since \(\alpha \) is a bijection for any \(A \), we conclude that \(g \) is an invertible power series. Since \(\alpha_A \) is a group homomorphism, we deduce that \(g \) satisfies the formula \(f'(g(x), g(y)) = g f(x, y) \): that is, the formal group laws \(f \) and \(f' \) differ by the change-of-variable \(g \).

Definition 4. Let \(R \) be a commutative ring. An coordinatizable formal group over \(R \) is a functor \(\mathcal{G} : \text{Alg}_R \to \text{Ab} \) which has the form \(\mathcal{G}_f \), for some formal group law \(f \in R[[x, y]] \).

We regard the coordinatizable formal group laws (and isomorphisms between them) as a subcategory of the category \(\text{Fun}(\text{Alg}_R, \text{Ab}) \) of functors from \(\text{Alg}_R \) to abelian groups. We have just seen that this subcategory admits a less invariant description: it is equivalent to a category whose objects are formal group laws \(f \in R[[x, y]] \), and whose morphisms are maps \(g \) such that \(f'(g(x), g(y)) = g f(x, y) \).

The coordinatizable formal group laws over \(R \) do not satisfy descent in \(R \). Consequently, it is convenient to make the following more general definition:

Definition 5. Let \(R \) be a commutative ring. A formal group law over \(R \) is a functor \(\mathcal{G} : \text{Alg}_R \to \text{Ab} \) satisfying the following conditions:

1. The functor \(\mathcal{G} \) is a sheaf with respect to the Zariski topology. In other words, if \(A \) is a commutative \(R \)-algebra with a pair of elements \(x \) and \(y \) such that \(x + y = 1 \), then \(\mathcal{G}(A) \) can be described as the subgroup of \(\mathcal{G}(A[\frac{1}{xy}]) \times \mathcal{G}(A[\frac{1}{x}]) \) consisting of pairs which have the same image in \(\mathcal{G}(A[\frac{1}{xy}]) \).

2. The functor \(\mathcal{G} \) is a coordinatizable formal group law locally with respect to the Zariski topology. That is, we can choose elements \(r_1, r_2, \ldots, r_n \in R \) such that \(r_1 + \cdots + r_n = 1 \), such that each of the composite functors

\[
\text{Alg}_{R[\frac{1}{r_1}]} \to \text{Alg}_R \to \text{Ab}
\]

has the form \(\mathcal{G}_f \) for some formal group law \(f \in R[\frac{1}{r_1}][[x, y]] \).

By definition, the moduli stack of the formal groups \(\mathcal{M}_FG \) is the functor which assigns to each commutative ring \(R \) the category of formal group laws over \(R \) (the morphisms in this category are given by isomorphisms).

There is a canonical map of stacks \(\mathcal{M}_FG = \text{Spec } L/G \to \text{Spec } L/G^+ = \mathcal{M}_FG^+ \). To understand this map (and the failure of general formal groups to be coordinatizable) it is useful to introduce a definition.

Definition 6. Let \(\mathcal{G} \) be a formal group over \(R \). The Lie algebra of \(\mathcal{G} \) is the abelian group \(g = \ker(\mathcal{G}(R[t]/(t^2)) \to \mathcal{G}(R)) \).

Note that if \(\mathcal{G} = \mathcal{G}_f \) for some formal group law \(f \), we get a group isomorphism \(g \simeq tR[t]/(t^2) \simeq R \) (since \(f(x, y) = x + y \) to order 2). In fact, \(g \) is not just an abelian group: for each \(\lambda \in R \), the equation \(t \mapsto \lambda t \) determines a map from \(R[t]/(t^2) \) to itself, which induces a group homomorphism \(g \to g \). When \(\mathcal{G} \) is coordinatizable, this is the usual action of \(R \) on itself by multiplication. It follows by descent that the above formula always determines an action of \(R \) on \(g \). Since \(g \simeq R \) locally for the Zariski topology, we deduce that \(g \) is an invertible \(R \)-module: that is, it determines a line bundle on the affine scheme \(\text{Spec } R \).
Proposition 7.

(1) A formal group \mathcal{G} over R is coordinatizable if and only if its Lie algebra \mathfrak{g} is isomorphic to R.

(2) The quotient stack $\mathcal{M}^\mathfrak{g}_{FG}$ parametrizes pairs (\mathcal{G}, α), where \mathcal{G} is a formal group and $\alpha: \mathfrak{g} \simeq R$ is a trivialization of its Lie algebra.

Proof. We have already established that $\mathfrak{g} \simeq R$ when \mathcal{G} is coordinatizable. Conversely, fix an isomorphism $\mathfrak{g} \simeq R$. After localizing Spec R, the group \mathcal{G} becomes coordinatizable: that is, we can write $\mathcal{G} \simeq \mathcal{G}_f$ for some $f \in R[[x,y]]$. Modifying f by the action of \mathbb{G}_m, we may assume that this isomorphism is compatible with our trivialization of \mathfrak{g}. The trouble is that these isomorphisms might not glue. The obstruction to gluing them determines a cocycle representing a class in $H^1_{\text{Zar}}(\text{Spec } R, G)$. We claim that this group vanishes. This is because the group G is an iterated extension of copies of the additive group $(A \in \text{Alg}_R) \mapsto (A, +)$, which has no cohomology on affine schemes.

Assertion (2) is just a translation of the following observation: if $f, f' \in R[[x,y]]$ are formal group laws, then an isomorphism of formal groups $\mathcal{G}_f \simeq \mathcal{G}_{f'}$ respects the trivializations of the Lie algebras of \mathfrak{g}_f and $\mathfrak{g}_{f'}$ if and only if it is given by a power series of the form $g(t) = t + b_1 t^2 + \cdots$ (a power series of the form $g(t) = b_0 t + \cdots$ acts on the Lie algebras by multiplication by the scalar b_0).

We can think of the assignment $(R, \mathcal{G}) \mapsto \mathfrak{g}^{-1}$ as defining a line bundle ω on the moduli stack $\mathcal{M}^\mathfrak{g}_{FG}$. In fact, $\mathcal{M}^\mathfrak{g}_{FG}$ is just the total space of ω with the zero section removed (equivalently, the moduli stack of trivializations of ω).

We can now be a little bit more precise about the E_2-term of the Adams-Novikov spectral sequence. Translating our gradings into algebraic geometry, we get the following result:

Claim 8. For any spectrum X, the bordism groups $\text{MU}_{\text{even}}(X)$ form a module over the Lazard ring $L \simeq \pi_* \text{MU}$ which carries a compatible action of the group scheme G^+, and therefore determines a sheaf $\mathcal{F}^{\text{even}}$ on $\mathcal{M}_{FG} = \text{Spec } L/G^+$. The E_2-term of the Adams-Novikov spectral sequence satisfies

$$E_{2a,b}^2 = H^b(\mathcal{M}_{FG}; \mathcal{F}^{\text{even}} \otimes \omega^a).$$

Similarly, the odd homotopy groups $\text{MU}_{\text{odd}}(X)$ determine a sheaf \mathcal{F}^{odd} on \mathcal{M}_{FG} satisfying

$$E_{2a+1,b}^2 = H^b(\mathcal{M}_{FG}; \mathcal{F}^{\text{odd}} \otimes \omega^a).$$

In order to exploit Claim 8, we will need to understand the structure of the moduli stack \mathcal{M}_{FG}. This will be our goal in the next lecture.