• Start by printing your name in the above box.
• Try to answer each question on the same page as the question is asked. If needed, use the back or the next empty page for work.
• Do not detach pages from this exam packet or unstaple the packet.
• Please try to write neatly. Answers which are illegible for the grader can not be given credit.
• No notes, books, calculators, computers, or other electronic aids are allowed.
• Problems 1-3 do not require any justifications. For the rest of the problems you have to show your work. Even correct answers without derivation can not be given credit.
• You have 180 minutes time to complete your work.
<table>
<thead>
<tr>
<th>Problem 1) (20 points) No justifications are necessary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) T F</td>
</tr>
<tr>
<td>2) T F</td>
</tr>
<tr>
<td>3) T F</td>
</tr>
<tr>
<td>4) T F</td>
</tr>
<tr>
<td>5) T F</td>
</tr>
<tr>
<td>6) T F</td>
</tr>
<tr>
<td>7) T F</td>
</tr>
<tr>
<td>8) T F</td>
</tr>
<tr>
<td>9) T F</td>
</tr>
<tr>
<td>10) T F</td>
</tr>
<tr>
<td>11) T F</td>
</tr>
<tr>
<td>12) T F</td>
</tr>
<tr>
<td>13) T F</td>
</tr>
<tr>
<td>14) T F</td>
</tr>
<tr>
<td>15) T F</td>
</tr>
<tr>
<td>16) T F</td>
</tr>
<tr>
<td>17) T F</td>
</tr>
<tr>
<td>18) T F</td>
</tr>
<tr>
<td>19) T F</td>
</tr>
<tr>
<td>20) T F</td>
</tr>
</tbody>
</table>
Problem 2) (10 points) No justifications are necessary.

a) (4 points) Match the objects with the definitions.

1-4 enter vector field

\begin{align*}
\vec{F}(x, y, z) &= \langle x, y, z \rangle \\
\vec{F}(x, y, z) &= \langle -y, x, 0 \rangle \\
\vec{F}(x, y, z) &= \langle 0, z, 0 \rangle \\
\vec{F}(x, y, z) &= \langle -x, 0, -z \rangle
\end{align*}

b) (3 points) Match the surfaces with their names: (put O if no match)

1-4 enter surface

\begin{align*}
x^2 + y^2 + 3z &= 0 \\
x^2 + y^2 - 3z^2 &= 1 \\
x^2 + y^2 + 3z^2 &= 1 \\
x^3 + 3y^2 &= 1
\end{align*}

c) (3 points) Match the space curves

1-4 parametrized curve

\begin{align*}
\vec{r}(t) &= \langle t, t^2, t^3 \rangle \\
\vec{r}(t) &= \langle \cos(3t), \sin(3t), t \rangle \\
\vec{r}(t) &= \langle (2 + \cos(t)) \cos(3t), (2 + \cos(t)) \sin(t), \sin(3t) \rangle \\
\vec{r}(t) &= \langle t, t \cos(3t), t \sin(3t) \rangle
\end{align*}
Problem 3) (10 points) No justifications are necessary

a) (5 points) We watch "angry birds" attacking on curves with acceleration \(r''(t) \). (The pictures show the \(xz- \) planes and the birds start with a constant velocity \(⟨1, 0, 0⟩\).) Match the displayed curves \(r(t) \) with the formulas for accelerations.

\[
\begin{align*}
\vec{r}'(t) &= \langle 0, 0, \sin(t) \rangle \\
\vec{r}''(t) &= \langle 0, 0, -10 \rangle \\
\vec{r}''(t) &= \langle 0, 0, 10 \rangle \\
\vec{r}''(t) &= \langle 0, 0, -\sin(t) \rangle \\
\vec{r}''(t) &= \langle 0, 0, 0 \rangle
\end{align*}
\]

b) (5 points) Match the formulas: (put O if no match)

<table>
<thead>
<tr>
<th>label</th>
<th>formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(\vec{r}''(t))</td>
</tr>
<tr>
<td>B</td>
<td>(\int_0^1</td>
</tr>
<tr>
<td>C</td>
<td>(\vec{r}'(t)/</td>
</tr>
<tr>
<td>D</td>
<td>(T'(t)/</td>
</tr>
<tr>
<td>E</td>
<td>(</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>expression</th>
<th>enter A-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curvature</td>
<td></td>
</tr>
<tr>
<td>Unit tangent vector</td>
<td></td>
</tr>
<tr>
<td>Unit normal vector</td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td></td>
</tr>
<tr>
<td>Arc length</td>
<td></td>
</tr>
</tbody>
</table>
Problem 4) (10 points)

a) (5 points) Find a parametrization of the line \(L \) through the center of the two spheres \(x^2 + (y - 1)^2 + z^2 = 1 \), \((x - 5)^2 + y^2 + z^2 = 1\).

b) (5 points) Find the plane perpendicular to the line \(L \) for which the distances to the spheres are the same.

Problem 5) (10 points)

Johannes Kepler asked which cylinder or radius \(r \) and height \(2h \) inscribed in the unit sphere has maximal volume. To solve his problem, use the Lagrange method and maximize the volume

\[
f = 2\pi r^2 h
\]

under the constraint that \(r^2 + h^2 = 1 \).

Problem 6) (10 points)

a) (6 points) Find the surface area of the surface

\[
r(u, v) = (v^2 \cos(u), v^2 \sin(u), v^2), 0 \leq u \leq \pi, 0 \leq v \leq 1.
\]

b) (4 points) Find the arc length of the boundary curve \(\vec{r}(u, 1) \) where \(0 \leq u \leq \pi \).
Problem 7) (10 points)

Find the volume of the solid inside the cylinder

\[x^2 + y^2 \leq 2 \]

sandwiched between the graphs of \(f(x, y) = x - y \) and \(g(x, y) = x^2 + y^2 + 4 \).

Problem 8) (10 points)

Find the flux of the curl of the vector field

\[\vec{F}(x, y, z) = \langle x, y, z + \sin(\sin(y^2)) \rangle \]

through the torus

\[\vec{r}(s, t) = \langle (2 + \cos(s)) \cos(t), (2 + \cos(s)) \sin(t), \sin(s) \rangle \]

with \(0 \leq t \leq \pi \) and \(0 \leq s < 2\pi \).

Problem 9) (10 points)

Heron’s formula for the area \(A \) of a triangle of side length \(x, y, 1 \) satisfies \(16A^2 = f(x, y) \), where

\[f(x, y) = -1 + 2x^2 - x^4 + 2y^2 + 2x^2y^2 - y^4 \]

Classify all the critical points of \(f \). Is there a global maximum of \(f \) and so for the area?

Remark not to worry about: The formula follows directly from Heron’s formula \(s = (a + b + 1)/2; A = \sqrt{s(s-a)(s-b)(s-1)}. \)
Problem 10) (10 points)

The anti derivative of the \textbf{sinc} function
\[
\frac{\sin(x)}{x}
\]
is called the \textbf{sine integral} \(\text{Si}(x)\). It can not be expressed in terms of known functions. Still we can compute the following double integral
\[
\int_0^\pi \int_x^\pi \frac{\sin(y)}{y} \, dy \, dx.
\]

Problem 11) (10 points)

Find the line integral of the vector field
\[
\vec{F}(x, y, z) = \langle -x^{10}, \sin(y), z^3 \rangle
\]
along the curve \(\vec{r}(t) = \langle \sin(t) \cos(5t), \sin(t) \sin(5t), t \rangle\) where \(0 \leq t \leq 2\pi\).

Problem 12) (10 points)

Find the area of the region enclosed by the curve
\[
\vec{r}(t) = \langle \cos(t), \sin(t) + \cos(2t)/2 \rangle,
\]
where \(0 \leq t < 2\pi\).
Problem 13) (10 points)

Find the flux of the vector field

\[\vec{F}(x, y, z) = \langle \frac{x^3}{3}, \frac{y^3}{3}, \sin(xy^5) \rangle \]

through the boundary surface of the solid bound by the surface of revolution \(\vec{r}(t, z) = \langle (2 + \sin(z)) \cos(t), (2 + \sin(z)) \sin(t), z \rangle \) and the planes \(z = 0, z = 3 \). The surface is oriented so that the normal vector points outwards.