• Start by printing your name in the above box.

• Try to answer each question on the same page as the question is asked. If needed, use the back or the next empty page for work.

• Do not detach pages from this exam packet or unstaple the packet.

• Please try to write neatly. Answers which are illegible for the grader can not be given credit.

• No notes, books, calculators, computers, or other electronic aids are allowed.

• Problems 1-3 do not require any justifications. For the rest of the problems you have to show your work. Even correct answers without derivation can not be given credit.

• You have 180 minutes time to complete your work.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Total:</td>
<td>140</td>
</tr>
</tbody>
</table>
Problem 1) (20 points) No justifications are necessary

1) T F The dot product between $\langle 1, 1, 2 \rangle \cdot \langle 2, 3, 4 \rangle$ is 13.

2) T F The distance between a line $\vec{r}(t) = \vec{Q} + t\vec{v}$ with unit vector \vec{v} and a point P is given by $|\vec{PQ} \times \vec{v}|$.

3) T F The TNB frame consists of the vectors $\vec{r}_u, \vec{r}_v, \vec{r}_u \times \vec{r}_v$.

4) T F The surface $x^2 + y^2 - z^2 = -1$ is a one sheeted hyperboloid.

5) T F The equation $u_{tt} + uu_x = u_{xx}$ is called the Burgers equation.

6) T F The fundamental theorem of line integrals assures that the line integral of any vector field along a closed loop is zero.

7) T F If $\vec{r}(t)$ is a curve in space then $\nabla \vec{r}(t)$ is a vector perpendicular to the curve.

8) T F If $\nabla f(3, 1) = \langle 0, 0 \rangle$ and $f_{xx}(3, 1) > 0$, then $(3, 1)$ is a local minimum of f.

9) T F Given two points P, Q in space and two lines L, M where L goes through P and M goes through Q. The distance between P, Q is larger or equal than the distance between the two lines.

10) T F The equation $u_t - u_x = u_{xx}$ is called the heat equation.

11) T F The flux of the curl of \vec{F} through the surface S is positive, where S is the surface $x^2 + y^2 + z^2 = 1$ oriented outwards.

12) T F The dot product between two parallel vectors is always zero.

13) T F $\vec{r}(u, v) = \langle u, u, 0 \rangle$ parametrizes a surface S which is a cylinder.

14) T F The length of the gradient $|\nabla f|$ is always minimal at critical points.

15) T F The triple integral $\int \int \int_E \text{div}(\vec{F}(x, y, z)) \ dx dy dz$ over a sphere E is always zero since the flux of \vec{F} through the boundary surface is zero.

16) T F Assume $\vec{r}(t)$ is a path of length 1 parametrized on $[a, b]$, then $\int_a^b |\vec{r}'(t)| \ dt = 1$.

17) T F If $\vec{r}'(t) = \langle 2t, 1 - 2t \rangle$ and $\vec{r}(0) = \langle 2, 3 \rangle$, then $\vec{r}(t) = \langle 2 + t^2, 3 + t - t^2 \rangle$.

18) T F For any two unit vectors \vec{v}, \vec{w} we have $|\vec{v} \times \vec{w}|^2 + (\vec{v} \cdot \vec{w})^2 = 1$.

19) T F The directional derivative $D_v(f)$ is always perpendicular to the vector \vec{v} and to the surface $f = c$.

20) T F $\langle 1, 0, 0 \rangle \cdot (\langle 1, 1, 0 \rangle \times \langle 0, 0, 1 \rangle) = 1/6$.

2
Problem 2) (10 points) No justifications are necessary.

Match the following objects.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Enter 1-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho \leq (1 + \sin(\phi + \theta))$</td>
<td></td>
</tr>
<tr>
<td>$x^2 + y^2 + z^2 + \sin(x^2y^2z^2) = 1.$</td>
<td></td>
</tr>
<tr>
<td>$r = t + (2\pi - t) + \cos(5\theta), \ z = 0.$</td>
<td></td>
</tr>
<tr>
<td>$\vec{F}(x, y) = \langle x, y^2 \rangle$</td>
<td></td>
</tr>
<tr>
<td>$(x - 5)^2 + (y - 3)^2 + (z + 1)^2 = 1$</td>
<td></td>
</tr>
<tr>
<td>$x^2 + y^2 = 3$</td>
<td></td>
</tr>
<tr>
<td>$\vec{r}(t) = \langle \cos(t), \sin(3t), \sin(2t) \rangle$</td>
<td></td>
</tr>
<tr>
<td>$\vec{r}(u, v) = \langle (3 + \sin(u) \cos(v)) \cos(u), (3 + \sin(u) \cos(v)) \sin(u), (1 + \sin(u)) \sin(v) \rangle$</td>
<td></td>
</tr>
<tr>
<td>$\vec{F}(x, y, z) = \langle x, y^2, z^3 \rangle$</td>
<td></td>
</tr>
</tbody>
</table>

Problem 3) (10 points) No justifications are necessary

a) (3 points) Matching solids.
b) (3 points) Matching polar regions

\[
\begin{array}{|c|c|}
\hline
\text{Formula} & \text{Enter E,F,G,H} \\
\hline
r = \theta & \hline \\
| \sin(3\theta) | & \hline \\
\sin(\theta)^6 & \hline \\
1 + \cos(3\theta) & \hline \\
\hline
\end{array}
\]

E F G H

\[r = \theta\]
\[| \sin(3\theta) |\]
\[\sin(\theta)^6\]
\[1 + \cos(3\theta)\]

\[f(x, y) = 5y - 1\]
\[f(x, y) = x^4 - y^4\]
\[f(x, y) = 3x^2 + y^2\]
\[f(x, y) = y^2 - x^3\]

\[f_{tt} = f_{xx}\]

The equation \(f_{tt} = f_{xx}\) is called:

\[
\begin{array}{|c|}
\hline
\text{Heat equation} & \hline \\
\text{Wave equation} & \hline \\
\text{Transport equation} & \hline \\
\text{Burgers equation} & \hline \\
\hline
\end{array}
\]
Problem 4) (10 points)

a) (3 points) Find a formula for the distance of a point \((x, y, z)\) to the \(xy\)-plane.

b) (3 points) Find a formula for the distance of a point \((x, y, z)\) to the \(z\)-axes.

c) (4 points) Find the surface consisting of all points \((x, y, z)\) for which the distance to the \(z\)-axes is the same than the distance to the \(xy\) plane.

Problem 5) (10 points)

a) (5 points) Estimate \(2.001^3 \cdot 0.9999^4 \cdot 0.999^2\) using linearization.

b) (5 points) Find the tangent plane to the surface \(x^3 y^4 z^2 = 8\) at the point \((2, 1, 1)\).

Problem 6) (10 points)

A **chicken coop** is made of two cubes of length \(x\) and \(y\). The volume of the house is \(f(x, y) = x^3 + y^3\). The surface area is \(g(x, y) = 5x^2 + 3y^2\). Using Lagrange, find the coop of maximal volume if the constraint is \(g = 38\).

Problem 7) (10 points)
The roof of the tower of the Harvard Lovell house has height

\[f(x, y) = 1 - (x^2 + y^2)^7. \]

Find the volume under the roof above the disc \(x^2 + y^2 \leq 1 \) in the \(xy \)-plane.

Problem 8) (10 points)

What is the flux of the curl of the field \(\vec{F}(x, y, z) = \langle 0, z^2 + x^4, x \rangle \) through the shell

\[\langle s(2 + \cos(t)) \cos(s), s(2 + \cos(t)) \sin(s), 6s + s \sin(t) \rangle, \]

where \(0 \leq t \leq 2\pi \) and \(0 \leq s \leq 6\pi \). The shell has the boundary curve

\[\vec{r}(t) = \langle 6\pi(2 + \cos(t)), 0, 36\pi + 6\pi \sin(t) \rangle. \]

Problem 9) (10 points)

At which point does the function

\[u(x, y) = \frac{2x^3}{3} + 2y^3 - \frac{x^6}{30} - \frac{y^5}{20} \]

have the property that

\[f(x, y) = u_{xx}(x, y) + u_{yy}(x, y) \]

is extremal. Find and classify all the critical points of \(f(x, y) \).

Remark you can ignore: this problem appears in physics. If the function \(u \) is the electric potential, then \(f \) is the charge density. You find the place where the charge density is maximal.

Problem 10) (10 points)
The following integral gives the volume of a piece of **Swiss cheese**

\[
\int_0^3 \int_0^{\sqrt{y/3}} \int_{e^{-x^3}}^1 \, dz \, dx \, dy
\]

Find it.

Problem 11 (10 points)

While Mars rover “**Curiosity**” was landing on Mars, a force

\[
\vec{F}(x, y, z) = (\sin(x), y, -30z)
\]

acted on the rover while it was ‘descending on the path

\[
\vec{r}(t) = (1, 2t, 10 - t^2)
\]

Find the line integral

\[
\int_0^2 \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) \, dt
\]

Problem 12 (10 points)

Find the area of the **propeller** shaped region enclosed by the figure 8 curve

\[
\vec{r}(t) = (t - t^3, 2t^3 - 2t^5)
\]

parametrized by \(-1 \leq t \leq 1\). To find the total area compute the area of the region \(R\) enclosed by the right loop \(0 \leq t \leq 1\) and multiply by 2.

Problem 13 (10 points)
Find the flux of the vector field
\[\vec{F}(x, y, z) = (-y^7, -x^8, -z + x^5) \]
through the surface given in spherical coordinates as
\[\rho \leq (\sin(\phi) \cos(\phi) \cos^2(\theta))^{1/3} \]
with \(0 \leq \theta \leq 2\pi, 0 \leq \phi \leq \pi/2\). The surface is oriented outwards.