In this lecture, I look first at some open problems in number theory then work on two nice theorems in prime numbers, Fermat’s theorem and Wilson’s theorem. Fermat’s theorem tells that $a^p - p$ is divisible by p if p is prime and Wilson’s theorem tells that $(p - 1)! + 1$ is divisible by p if and only if p is prime.

Open problems in mathematics are the fuel for doing mathematics. Fortunately, open problems never will stop to appear, they are the heads of a hydra. After solving one, 5 new ones appear.

Well, here are 5 extremely famous problems.

Twin prime conjecture

There are infinitely many prime twins $p, p + 2$.

The largest known twin primes $p, p + 2$ are given by $p = 2003663613 \cdot 2^{195000} - 1$, a number with almost 60'000 digits. It has been found in 2007. There are analogue problems for cousin primes $p, p + 4$ or sexy primes $p, p + 6$ or Sophie Germaine primes, where $p, 2p + 1$ are prime.

Goldbach conjecture

Every even integer $n > 2$ is a sum of two primes.

The Goldbach conjecture has been numerically verified until $1.6 \cdot 10^{18}$. Mathematically it is known that every sufficiently large odd number is the sum of 3 primes. One believes this "weak Goldbach conjecture" for 3 primes is true for every odd integer larger than 7.

Odd perfect numbers

Probably the oldest problems in mathematics is the question

There is an odd perfect number.

A perfect number is equal to the sum of all its proper positive divisors. Like $6 = 1 + 2 + 3$. The search for perfect numbers is related to the search of large prime numbers. The largest prime number known today is $p = 2^{43112609} - 1$. It is called a Mersenne prime. Every even perfect number is of the form $2^{n-1}(2^n - 1)$ where $2^n - 1$ is prime.

Diophantine equations

Many problems about Diophantine equations are unsettled, equations with integer solutions. Here is an example:

Solve $x^5 + y^5 + z^5 = w^5$ for $x, y, z, w \in \mathbb{N}$.

Also $x^5 + y^5 = u^5 + v^5$ has no nontrivial solutions yet. Probabilistic considerations suggest that there are no solutions. The analogue equation $x^4 + y^4 + z^4 = w^4$ had been settled by Noam Elkies in 1988 who found $2682440^4 + 15365639^4 + 18796760^4 = 20615673^4$.

Andrica conjecture

The prime gap estimate $\sqrt{p_{n+1}} - \sqrt{p_n} < 1$ holds.

There are other prime gap estimate conjectures like Polignac’s conjecture claiming that there are infinitely many prime gaps for every even number n. It is stronger than the twin prime conjecture.

Legendre’s conjecture claims that there exists a prime between any two perfect squares.