Lecture 5: solving nonlinear equations

1. Objective

From quadratic equations to higher order equations.

The quadratic equation

The solution of the quadratic equation $x^2 + bx + c = 0$ is one of the major achievements of early algebra. It relies on the method of completion of the square and is due to the Persian mathematician Al Khwarizmi.

The completion of the square is the idea to add $b^2/4$ on both sides of the equation and move the constant to the right. Like this $x^2 + bx + b^2/4$ becomes a square $(x + b/2)^2$. Geometrically, one has added a square to a region to get a square. From $(x + b/2)^2 = -c + b^2/4$ we can solve x and get the famous formula for the solution of the quadratic equation

$$x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}.$$

Since one can take both the positive and the negative square root, there are two solutions.

The quadratic equation

1) Write down the solution formula for the equation $ax^2 + bx + c = 0$.

2) If x_1, x_2 are the two solutions to $x^2 + bx + c = 0$, then the sum of the two solutions is $x_1 + x_2 = -b$.

3) If x_1, x_2 are the two solutions of $x^2 + bx + c$, then the product of the solutions is $x_1x_2 = c$.

4) How come that $x^2 + bx + c = (x - x_1)(x - x_2)$, where x_1, x_2 are the solutions of $x^2 + bx + c = 0$?

5) What are the solutions to $x^4 - 4x^2 + 3 = 0$?

6) Find the solutions to $x^6 - 4x^4 + 3x^2 = 0$.
Lecture 5: Symmetry groups

1. Objective

We look at all the rotational symmetries of a square and realize it as a group. Then, we do the same for all rotational and reflection symmetries of a rectangle.

The rotation symmetries of a square

Given a square in the plane centered at the origin. We can rotate the square by 90, 180 or 270 degrees and get the same shape. Given two such rotations, we can perform one after the other and get another rotation. All the rotations leaving the square invariant form a group: one can "add" these operations and get a new operation.

We can write the multiplication table in a more compact way by writing 1 for the turn 90 degrees, 2 for the turn 180 degrees and 3 for the turn 270 degrees:

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

If we look at all rotations and reflections which leave the square invariant, there are 8 group elements. Beside the four rotations, we have 2 reflections at the diagonals and 2 reflections at the main axes.

1) What do you obtain if you reflect at the \(x \)-axes, then reflect at the diagonal \(x=y \)?

2) What do you obtain if you reflect first at the diagonal \(x=y \) and then reflect at the \(x \)-axes?

3) We have seen above that the rotations which leave the square invariant, form a group which satisfies \(xy = yx \). It is commutative. Does the group of rotations and reflections form a symmetry group which is commutative?

The symmetries of a rectangle

Assume now we have a rectangle which is not a square. We look at all possible symmetries of this object. They include the identity, the reflection at the axes as well as the reflection at the center (which is a turn 180 degrees).

4) What do you obtain if you compose a reflection at the \(x \)-axes with the reflection at the \(y \)-axes?

5) Is the symmetry group of a rectangle commutative?

The rotational symmetry group as well as the full rotation-reflection symmetry group can be introduced for any geometrical object. Like triangles, cubes, octahedrons or polyhedra for tilings in the plane. Understanding the symmetries of an object produces a link between algebra and geometry.
Lecture 5: Puzzles

1. Objective

We want to understand why some puzzles are groups.

The 15 puzzle

The 15 puzzle was invented by Noyes Palmer Chapman in 1874. Chapman was a postmaster from Canastota in New York. From there the puzzle moved over to Syracuse, Watchhill, Hartford and was first seriously sold in Boston. Sam Loyd offered a 1000 dollar prize for the solution of the case, when two pieces are switched. Since the number of transpositions plus the distance of the empty space to the 15’th position is always an even number, it can not be solved if it is odd initially.

1) Argue that the puzzle has less or equal than 16! group elements.

The pyramorphix

The pyramorphix is a puzzle based on the tetrahedron. The corners can be turned freely so that only the permutation of the 4 corners can occur. The player can turn two arbitrary elements of the four.

2) Show that the pyramorphix puzzle has less or equal than 24 group elements.

3) Show that the Rubik’s cube is quite a large puzzle.

3) Show that the Rubik puzzle is a group with less or equal than $8! \cdot 12! \cdot 3^5 \cdot 2^{12}$ group elements.

4) We will restrict ourselves to a small subgroup of this cube which has only 36 elements. Show that it has less than 6! elements.

The Skewb and Pyraminx

Also these puzzles has not too many group elements. Still, there in in the order of millions. But they can be solved much faster than the Rubik’s cube.

4) Give estimates for the number of group elements of the Pyraminx.