Lecture 4: Wilson’s theorem

Here are the connections $p = 13$ or $p = 29$ as well as the ones for the 2000'th prime.

The Sieve of Erasthostenes

Here is the filled in sieve

The Ulam spiral
b) Let \(p_k \) be the largest of the primes not greater than \(n! + 1 \). Then \(p_{k+1} \) is larger than \(n! + n \).

Remark: There are also infinitely many primes of the form \(p = 4n + 1 \). For those primes \(-1\) is a square modulo \(p \). Assume there are only finitely many. Any prime divisor \(p \) of \((p^2 \cdots p_k) + 1\) we know that \(-1\) is a square. It can be shown that this implies that \(p \) is of the form \(4n + 1 \).

Fermat’s little theorem

1) Fermat’s theorem is true for \(a = 0 \) and \(a = 1 \) because \(a^p - a = 0 \) both for \(a = 0 \) and \(a = 1 \).

2) The difference between \(a^{p+1} - a \) and \(a^p - a \) is \((a + 1)^p - a^p - 1 \).

3) We have

\[
(a + 1)^p - a^p - 1 = \left(\begin{array}{c}
p \\ 2 \end{array} \right) a^{p-2} + \ldots + \left(\begin{array}{c}
p \\ p-1 \end{array} \right) a
\]

so that \((a + 1)^p - a^p - 1\) is a sum of terms which include \(\left(\begin{array}{c}
p \\ m \end{array} \right) \). If each is divisible by \(p \), then \((a + 1)^p - a^p - 1\) is.

4)

\[
p \cdot (p - 1) \cdots (p - m + 1) \over m \cdot (m - 1) \cdots 1
\]

is divisible by \(p \) because the denominator terms can not cancel with the prime \(p \) because each term is smaller than \(p \).

Prime numbers

1. Primes of the form \(4n + 3 \).

a) \(4p_1p_2\ldots p_k - 1 \) is of the form \(4n + 3 \) because it leaves rest 3 when divided by 4.

b) \(4p_1p_2\ldots p_k - 1 \) can not be a prime because it is larger than any of the \(p_k \) because by a) it would be a prime of the form \(4n + 3 \).

c) \(4p_1p_2\ldots p_k - 1 \) can not have a factor of the form \(4n + 3 \) because this factor would have to be one of the \(p_k \).

2. Arbitrary large gaps of primes