Homework 15: Data fitting

This homework is due on Wednesday, March 11, respectively on Thursday, March 12, 2016.

1 a) Find the least square solution x^* of the system $Ax = b$ with

$$A = \begin{bmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{bmatrix}, \text{ and } b = e_2.$$

b) What is the matrix P which projects on the image of A?

2 Find the function $y = f(x) = ax^2 + bx^3$, which best fits the data

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

3 A curve of the form

$$y^2 = x^3 + ax + b$$

is called an elliptic curve in Weierstrass form. Elliptic curves are important in cryptography. Use data fitting to find the best parameters (a, b) for an elliptic curve given the following points:

$$(x_1, y_1) = (1, 2)$$
$$(x_2, y_2) = (-1, 0)$$
$$(x_3, y_3) = (2, 1)$$
$$(x_4, y_4) = (0, 1)$$
A graphic from the Harvard Management Company Endowment Report of September 2014 is shown to the right. Assume we want to fit the growth using functions $1, x, x^2$ and assume the years are numbered starting with $1990 = 0, 1995 = 1, 2000 = 2, 2005 = 3, 2010 = 4, 2016 = 5$. What is the best parabola $a + bx + cx^2 = y$ which fits these data?

\begin{center}
\begin{tabular}{|c|c|}
\hline
quintenium & billions \\
\hline
0 & 5 \\
1 & 15 \\
2 & 19 \\
3 & 23 \\
4 & 27 \\
5 & 37 \\
\hline
\end{tabular}
\end{center}

For this fitting problem, the solution is not unique.

\begin{center}
\begin{tabular}{|c|c|}
\hline
x & y \\
\hline
0 & 1 \\
0 & 2 \\
0 & 3 \\
\hline
\end{tabular}
\end{center}

\begin{itemize}
\item[5] a) Draw the situation and find different regression lines which are optimal.
\item[5] b) Now write down the corresponding fitting problem for linear functions $f(x) = ax + c = y$ by finding the matrix A and the vector b. What is going on?
\end{itemize}

\section*{Data fitting}

Given a system $Ax = b$. Any solution of $(A^T A)x = A^T b$ is called a \textbf{least square solution} (these always exist). (Reason: solve $A^T (Ax - b) = 0$ for x, assuring that $Ax - b$ is perpendicular to $\text{im}(A)$.) The least square solution is unique if A has a trivial kernel. In that case $x = (A^T A)^{-1}A^T b$. The matrix $A(A^T A)^{-1}A^T$ is now the projection matrix onto $\text{im}(A)$. If the columns of A are orthonormal, this simplifies to $P = AA^T$.