Homework 14: Orthogonal transformations

This homework is due on Monday, March 7, respectively on Tuesday, March 8, 2016.

1. Determine from each of the following matrices whether they are orthogonal:
 a) \[
 \begin{bmatrix}
 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 \\
 \end{bmatrix}
 \]
 /2, b) \[
 \begin{bmatrix}
 1 & 1 & 1 & 1 \\
 1 & -1 & 1 & -1 \\
 1 & 1 & -1 & -1 \\
 1 & -1 & -1 & 1 \\
 \end{bmatrix}
 \]
 /2, c) \[
 \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & -1 & 0 & 0 \\
 0 & 0 & -1 & 0 \\
 0 & 0 & 0 & 1 \\
 \end{bmatrix}
 \]
 d) \[
 \begin{bmatrix}
 0 & 0 & 1 & 0 \\
 0 & -1 & 0 & 0 \\
 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 \end{bmatrix}
 \]
 e) \[
 \begin{bmatrix}
 \cos(1) & \sin(1) & 0 & 0 \\
 -\sin(1) & \cos(1) & 0 & 0 \\
 0 & 0 & \cos(2) & \sin(2) \\
 0 & 0 & \sin(2) & -\cos(2) \\
 \end{bmatrix}
 .
 \]

2. If \(A, B \) are orthogonal, then
 a) Is \(A + B \) is orthogonal? b) is \(3A \) is orthogonal? c) Is \(A^T \) is orthogonal? d) \(B^{-1} \) is orthogonal? e) Is \(B^{-1}AB \) orthogonal?

3. a) Matrices of the form \[
 \begin{bmatrix}
 a & b \\
 -b & a \\
 \end{bmatrix}
 \]
 can be multiplied and the result is of the same form. These rotation dilation matrices are also called “complex numbers”! Which of these matrices plays the role of \(i = \sqrt{-1} \), that is, which of them has the property that \(A^2 = -1 \) (where \(-1 \) means \(-I_2\))?
 b) Figure out the formula for the multiplication \((a + ib)(c + id)\) of complex numbers by looking at the product \[
 \begin{bmatrix}
 a & b \\
 -b & a \\
 \end{bmatrix}
 \begin{bmatrix}
 c & d \\
 -d & c \\
 \end{bmatrix}
 .
 \]
 c) If you draw complex numbers \(a + ib, \ and \ c + id \) as vectors, what is the multiplication geometrically?

4. Mathematicians for a long time looked for higher dimensional analogues of the complex numbers. Matrices of the form \(A(p, q, r, s) = \)

\[
\begin{bmatrix}
p & -q & -r & -s \\
q & p & s & -r \\
r & -s & p & q \\
s & r & -q & p \\
\end{bmatrix}
\]
are called quaternions. They were invented by Hamilton.

a) Find a basis for the set of all the matrices above.

b) Check that every unit sphere \(p^2 + q^2 + r^2 + s^2 \) in the four dimensional space of quaternions corresponds to an orthogonal matrix.

5 a) Explain why the identity matrix is the only \(n \times n \) matrix that is orthogonal, upper triangular and has positive entries on the diagonal.
b) Show that the \(QR \) factorization of an invertible \(n \times n \) matrix \(A \) is unique. That is, if \(A = Q_1R_1 \) and \(A = Q_2R_2 \) are two factorizations, argue why \(Q_1 = Q_2 \) and \(R_1 = R_2 \).

Orthogonal transformations

The transpose \(A_{ij}^T = A_{ji} \) satisfies \((AB)^T = B^T A^T \) and \((A^T)^T = A \). The rank of the transpose is the same as the rank of \(A \). An \(n \times n \) matrix \(A \) is orthogonal if \(A^T A = 1 = 1_n \). The linear transformation of an orthogonal matrix is called an **orthogonal transformation**. It preserves length and angle. The column vectors of an orthogonal matrix forms an orthonormal basis. The product of two orthogonal matrices is orthogonal. The inverse \(A^{-1} \) is orthogonal and given by \(A^T \). Examples of orthogonal transformations are rotations or reflections or the identity matrix.