Homework 10: Coordinates

This homework is due on Wednesday, February 24, respectively on Thursday, February 25, 2016.

1. What are the \mathcal{B}-coordinates of the vector \vec{v} in the basis \mathcal{B}.

 $$\vec{v} = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}, \quad \mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\}.$$

2. What is the matrix B for the transformation $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ in the basis $\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \}$.

3. Chose a suitable basis to solve the following two problems:
 a) Find the matrix A which belongs to a reflection at the plane $x + y + 2z = 0$.
 b) Find the matrix A which belongs to the reflection at the line spanned by $\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$.

4. Find the matrix A corresponding to the orthogonal projection onto the plane spanned by the vectors $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$.

5. The whole plane is covered with regular hexagons "Graphene", where the first basis vector is $v = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. a) Find w so that $\mathcal{B} = \{ v, w \}$ is the basis as seen in the picture.
b) What are the standard coordinates of the vector given in the \(B \) basis as \[
\begin{bmatrix}
2 \\
-1
\end{bmatrix}
\]?

c) Is the point with \(B \) coordinate \[
\begin{bmatrix}
17 \\
21
\end{bmatrix}
\] a vertex of a hexagon or the center of one?

Source: CNN

Coordinates

Given a basis \(B = \{\vec{v}_1, \ldots, \vec{v}_n\} \) of a linear space \(V \), every \(\vec{w} \) in \(V \) can be written as \(\vec{w} = c_1\vec{v}_1 + \cdots + c_n\vec{v}_n \), where \(c_i \) are the coordinates of \(\vec{v} \). The basis defines a matrix \(S = \begin{bmatrix}
| & | & | \\
\vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n
\end{bmatrix} \). Since \(S\vec{c} = \vec{w} \) we get \(\vec{c} = S^{-1}\vec{w} \).

If \(A \) is a matrix given in the standard basis \(e_1, \ldots, e_n \) and \(B \) is the matrix written in the basis \(B \), then \(B = S^{-1}AS \). We say \(B \) is similar to \(A \). Why do we want to change basis? Because it is convenient: for example if \(\vec{v}_1, \vec{v}_2 \) are non-parallel vectors in a plane and \(\vec{v}_3 \) is perpendicular to the plane then a projection onto the plane is the matrix \[
B = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]. The matrix in the standard basis is then \(A = SBS^{-1} \).