NOTES ON CRYSTALS AND ALGEBRAIC \mathcal{D}-MODULES

Let X be a smooth manifold, and let V be a vector bundle on X equipped with a flat connection

$$\nabla : V \to V \otimes \Omega_X.$$

Then the flat sections of V determine a local system L on X. For every point $x \in X$, the fiber of the local system L_x can be identified with the fiber V_x. Given a path $p : [0,1]$ from $x = p(0)$ to $y = p(1)$, there is a map $p_! : L_x \to L_y$ given by parallel transport along p, using the connection ∇; moreover the map $p_!$ depends only on the homotopy class of the path p. This construction is entirely reversible: the local system L determines the vector bundle V and its connection up to canonical isomorphism. In other words, the category of vector bundles with flat connection on X is equivalent to the category of local systems of vector spaces on X.

Now suppose that X is a smooth algebraic variety over a field k of characteristic zero (fixed through the remainder of this lecture). There is a purely algebraic notion of a vector bundle with flat connection on X: that is, an algebraic vector bundle V on X equipped with a map of sheaves

$$\nabla : V \to V \otimes \Omega_X$$

which satisfies the Leibniz rule. If k is the field of complex numbers, then the set of k-valued points $X(k)$ is endowed with the structure of a smooth (complex) manifold, so that V determines a local system on $X(k)$ as above. However, the relationship between vector bundles with connection to local systems is essentially transcendental. There is no algebraic notion of a path from a point $x \in X$ to another point $y \in X$, and hence no algebraic theory of parallel transport along paths.

Let us return for the moment to a case of a general manifold X. Every point $x \in X$ has a neighborhood U which is homeomorphic to a Euclidean space \mathbb{R}^n. Consequently, for every point y which is sufficiently close to x (so that $y \in U$), we can choose a path from x to y which is contained in U: moreover, this path is uniquely determined up to homotopy. Consequently, parallel transport along some connection from x to y does not depend on a choice of path, provided that path lies in U. We can summarize this informally as follows: if x and y are nearby points of X and V is a vector bundle with connection on X, then we get a canonical isomorphism $V_x \simeq V_y$.

If X is an algebraic variety, then it typically does not have a basis consisting of “contractible” Zariski-open subsets (for example, if X is a smooth curve of genus > 0, then it has no simply-connected open subsets at all). However, Grothendieck’s theory of schemes provides a good substitute: namely, the notion of infinitesimally close points.

Definition 0.1. Let X be a scheme over k, let R be a k-algebra. We let $X(R) = \text{Hom}(\text{Spec } R, X)$ be the set of R-valued points of X. Let I denote the nilradical of R: that is, the ideal in R consisting of nilpotent elements. We say that two R-valued points $x, y \in X(R)$ are *infinitesimally close* if x and y have the same image under the map $X(R) \to X(R/I)$.

Remark 0.2. Note that if $x, y : \text{Spec } R \to X$ are infinitesimally close points, then they induce the same map of topological spaces from $\text{Spec } R$ into X: the only difference is what happens with sheaves of functions. This is one sense in which x and y really can be regarded as “close”.

1
Using this notion of “infinitesimally close” points, we can formulate what it means for a sheaf \(\mathcal{F} \) on a scheme \(X \) to have a good theory of “parallel transport along short distances”:

Definition 0.3. [Grothendieck] Let \(X \) be a smooth scheme over \(k \). A *crystal of quasi-coherent sheaves on \(X \) consists of the following data:

1. A quasi-coherent sheaf \(\mathcal{F} \) on \(X \). For every \(R \)-valued point \(x : \text{Spec} \, R \to X \), the pullback \(x^*(\mathcal{F}) \) can be regarded as a quasi-coherent sheaf on \(\text{Spec} \, R \); that is, as an \(R \)-module.

 We will denote this \(R \)-module by \(\mathcal{F}_x \).

2. For every pair of infinitesimally close points \(x, y \in X(R) \), an isomorphism of \(R \)-modules \(\eta_{x,y} : \mathcal{F}(x) \to \mathcal{F}(y) \). These isomorphisms are required to be functorial in the following sense: let \(R \to R' \) be any map of commutative rings, so that \(x \) and \(y \) have images \(x', y' \in X(R') \). Then

 \[
 \eta_{x',y'} : \mathcal{F}(x') \simeq \mathcal{F}(x) \otimes_R R' \to \mathcal{F}(y) \otimes_R R' \simeq \mathcal{F}(y')
 \]

 is obtained from \(\eta_{x,y} \) by tensoring with \(R' \).

3. Let \(x, y, z \in X(R) \). If \(x \) is infinitesimally close to \(y \) and \(y \) is infinitesimally close to \(z \), then \(x \) is infinitesimally close to \(z \); we require that \(\eta_{x,z} \simeq \eta_{y,z} \circ \eta_{x,y} \). In particular (taking \(x = y = z \)), we see that \(\eta_{x,x} \) is the identity on \(\mathcal{F}(x) \), and (taking \(x = z \)) that \(\eta_{x,y} \) is inverse to \(\eta_{y,x} \).

There is another way to formulate Definition 0.3. Let \(X \) be an arbitrary functor from commutative rings to sets, not necessarily a functor which is representable by a scheme. A *quasi-coherent sheaf* \(\mathcal{F} \) on \(X \) consists of a specification, for every \(R \)-point \(x \in X(R) \), of an \(R \)-module \(\mathcal{F}(x) \), which is compatible with base change in the following sense:

- (a) If \(R \to R' \) is a map of commutative rings and \(x' \in X(R') \) is the image of \(x \), we are given an isomorphism \(\alpha_{x,x'} : \mathcal{F}(x') \simeq \mathcal{F}(x) \otimes_R R' \).

- (b) Given a pair of maps \(R \to R' \to R'' \) and a point \(x \in X(R) \) having images \(x' \in X(R') \) and \(x'' \in X(R'') \), the map \(\alpha_{x,x''} \) is given by the composition

\[
\mathcal{F}(x) \otimes_R R'' \to (\mathcal{F}(x) \otimes_R R') \otimes_R R'' \xrightarrow{\alpha_{x,x'}} \mathcal{F}(x') \otimes_R R'' \xrightarrow{\alpha_{x',x''}} \mathcal{F}(x'').
\]

If \(X \) is a scheme, then this definition recovers the usual notion of a quasi-coherent sheaf on \(X \). We define \(X^{\text{dR}} \), the deRham stack of \(X \), to be the functor given by the formula \(X^{\text{dR}}(R) = X(R/I) \), where \(I \) is the nilradical of \(R \). If \(X \) is a smooth scheme, then the map \(X(R) \to X(R/I) \) is surjective, so that \(X^{\text{dR}}(R) \) can be described as the quotient of \(X(R) \) by the relation of “infinitesimal closeness”. Unwinding the definitions, we see that a crystal of quasi-coherent sheaves on \(X \) is essentially the same thing as a quasi-coherent sheaf on \(X^{\text{dR}} \).

The main point of introducing these definitions is the following result:

Theorem 0.4. Let \(X \) be a smooth scheme over \(k \). Then the category of crystals of quasi-coherent sheaves on \(X \) is equivalent to the category of quasi-coherent \(\mathcal{D}_X \)-modules.

The equivalence of Theorem 0.4 is compatible with the forgetful functor to quasi-coherent sheaves. In other words, we are asserting that if \(\mathcal{F} \) is a quasi-coherent sheaf on \(X \), then equipping \(\mathcal{F} \) with a flat connection \(\nabla : \mathcal{F} \to \mathcal{F} \otimes \mathcal{D}_X \) is equivalent to endowing \(\mathcal{F} \) with the structure of a crystal. This can be regarded as an algebro-geometric version of the equivalence of categories mentioned at the beginning of this lecture.

We now sketch the proof of Theorem 0.4. Fix a quasi-coherent sheaf \(\mathcal{F} \) on \(X \). We would like to understand, in more concrete terms, how to endow \(\mathcal{F} \) with the structure (2) described
in Definition 0.3. To this end, we note that a pair of \(R \)-points \(x, y \in X(R) \) can be regarded as an \(R \)-point of the product \(X \times X \). The points \(x \) and \(y \) are infinitesimally close if and only if the map \(\text{Spec} \ R/I \to \text{Spec} \ R \to X \times X \) factors through the diagonal. This is equivalent to the requirement that the map \(\text{Spec} \ R \to X \times X \) factor set-theoretically through the diagonal. In other words, it is equivalent to the requirement that \((x, y) : \text{Spec} \ R \to X \times X \) factors through \((X \times X) \vee\), where \((X \times X) \vee\) denotes the formal completion of \(X \times X \) along the diagonal.

More concretely, let \(\mathcal{J} \) denote the ideal sheaf of the diagonal closed immersion \(X \to X \times X \).

For each \(n \geq 0 \), we let \(\mathcal{J}^{n+1} \) denote the \((n+1)\)st power of the ideal sheaf \(\mathcal{J} \), and \(X^{(n)} \subseteq X \times X \) the corresponding closed subscheme. Then \((X \times X) \vee \) is defined to be the Ind-scheme \(\text{lim} X^{(n)} \).

At the level of points, this means that \((X \times X) \vee(R) \simeq \text{lim} X^{(n)}(R)\). This is because given an \(R \)-point \((x, y) : \text{Spec} \ R \to X \times X \), the points \(x, y \in X(R) \) are infinitesimally close if and only if the ideal generated by \((x, y)^* \mathcal{J} \) is contained in the nilradical of \(R \), which is equivalent to the requirement that \((x, y)^* \mathcal{J}^n \) has trivial image in \(R \) for \(n \gg 0 \).

Consequently, to supply the data described in (2), we need to give an isomorphism \(\pi_1^* \mathcal{F} \simeq \pi_2^* \mathcal{F} \), where \(\pi_1, \pi_2 : (X \times X) \vee \to X \) denote the two projections. Let \(\pi_i^{(n)} \) denote the restriction of \(\pi_i \) to \(X^{(n)} \); we need to give a compatible family of maps \(\pi_1^{(n)} \circ \mathcal{F} \to \pi_2^{(n)} \circ \mathcal{F} \) of quasi-coherent sheaves on \(X^{(n)} \). This is equivalent to giving a map of sheaves

\[
\mathcal{F} \to (\pi_1^{(n)})^* (\pi_2^{(n)})^* \mathcal{F}
\]

on \(X \). To understand this data, we need to understand the functor \((\pi_1^{(n)})_*(\pi_2^{(n)})^* \) from the category of quasi-coherent sheaves on \(X \) to itself.

Note that the underlying topological space of \(X^{(n)} \) coincides with the underlying topological space of \(X \). We may therefore view the structure sheaf \(\mathcal{O}_{X^{(n)}} \) as a sheaf on \(X \); the projection maps \(\pi_1^{(n)} \) and \(\pi_2^{(n)} \) endow \(\mathcal{O}_{X^{(n)}} \) with two (different!) \(\mathcal{O}_X \)-module structures. The functor \((\pi_1^{(n)})_*(\pi_2^{(n)})^* \) is given by the relative tensor product

\[
\mathcal{F} \mapsto \mathcal{O}_{X^{(n)}} \otimes_{\mathcal{O}_X} \mathcal{F}.
\]

Let \(\mathcal{D}_X^{\leq n} \) denote the sheaf of algebraic differential operators on \(X \) of order \(\leq n \). There is a canonical pairing

\[
\langle \cdot, \cdot \rangle : \mathcal{D}_X^{\leq n} \otimes_{\mathcal{O}_X} \mathcal{O}_{X^{(n)}},
\]

which can be described as follows. Think of sections of \(\mathcal{O}_X \) as functions \(f(x) \), and sections of \(\mathcal{O}_{X^{(n)}} \) as functions \(g(x, y) \) of two variables, defined modulo the \((n+1)\)th power of \(\mathcal{J} \). Given a differential operator \(D \) on \(X \), we can regard \(g(x, y) \) as a function of \(x \) (keeping \(y \) constant) to obtain a new function \(Dg \) of two variables. We now define \(\langle D, g \rangle(x) = \langle Dg \rangle(x, y) \). It follows that \(\langle D, g \rangle \) has order \(\leq n \), and then \(D \) carries \(\mathcal{J}^{n+1} \) into \(\mathcal{J} \), so that the resulting function on \(X \) is independent of the choice of \(y \).

The pairing defined above is actually perfect: it identifies \(\mathcal{O}_{X^{(n)}} \) with the \(\mathcal{O}_X \)-linear dual of \(\mathcal{D}_X^{\leq n} \). We will check this in the special case where \(X \) is the affine line; the general case follows by the same reasoning, with more complicated notation. We can identify \(\mathcal{O}_X \) with the polynomial ring \(k[x] \) and \(\mathcal{O}_{X^{(n)}} \) with the algebra \(k[x, y]/(x - y)^{n+1} \).

As a module over \(k[x] \), it is free on a basis \(\{ (x, y)^k \}_{0 \leq k \leq n} \). On the other hand, we can identify \(\mathcal{D}_X^{\leq n} \) with the free \(\mathcal{O}_X \)-module generated by symbols \(\{ (x, y)^k \}_{0 \leq k \leq n} \). A simple calculation shows that these bases are dual to one another under the pairing \(\langle \cdot, \cdot \rangle \).

It follows that giving a map \(\mathcal{F} \to \mathcal{O}_{X^{(n)}} \otimes_{\mathcal{O}_X} \mathcal{F} \) is equivalent to giving a map \(\mathcal{D}_X^{\leq n} \otimes_{\mathcal{O}_X} \mathcal{F} \to \mathcal{F} \). Giving a compatible family of such maps for each \(n \) is equivalent to giving a map \(\alpha : \mathcal{D}_X \otimes_{\mathcal{O}_X} \mathcal{F} \to \mathcal{F} \). Any such map determines parallel transport morphisms \(\eta_{x,y} : \mathcal{F}(x) \to \mathcal{F}(y) \) for an arbitrary pair of infinitesimally close points \(x, y \in X(R) \).
To complete the analysis, we should spell out the meaning of condition (3) in Definition 0.3: under what conditions do we have \(\eta_{x,z} \cong \eta_{y,z} \circ \eta_{x,y} \)? The translation amounts to the commutativity of the diagram

\[
\begin{array}{ccc}
\mathcal{D}_X \otimes_{\mathcal{O}_X} \mathcal{D}_X & \xrightarrow{\eta} & \mathcal{D}_X \otimes_{\mathcal{O}_X} \mathcal{D}_X \\
\downarrow{\beta} & & \downarrow{\alpha} \\
\mathcal{D}_X \otimes_{\mathcal{O}_X} \mathcal{F} & \xrightarrow{\alpha} & \mathcal{F},
\end{array}
\]

where \(\beta \) is induced by the multiplication on \(\mathcal{D}_X \). Similarly, the condition that \(\eta_{x,x} = \text{id} \) is equivalent to the requirement that the unit \(1 \in \mathcal{D}_X \) act by the identity on \(\mathcal{F} \) (together with transitivity, this guarantees that \(\eta_{x,y} \) is inverse to \(\eta_{y,x} \), so that each \(\eta_{x,y} \) is invertible). This proves Theorem 0.4: endowing \(\mathcal{F} \) with the structure of a crystal is equivalent to endowing \(\mathcal{F} \) with the structure of a \(\mathcal{D}_X \)-module, compatible with the existing \(\mathcal{O}_X \)-module structure on \(\mathcal{F} \).

Theorem 0.4 provides us with two different ways to look at the same kind of structure. Each has its advantages:

(a) The definition of a crystal of quasi-coherent sheaves was somewhat abstract. The theory of \(\mathcal{D}_X \)-modules provides a much more concrete approach to the same objects, and enables us to make use of a battery of tools (such as noncommutative algebra) in their study.

(b) Definition 0.3 provides a very conceptual way of thinking about \(\mathcal{D}_X \)-modules. Given a quasi-coherent sheaf \(\mathcal{F} \) which is described in some functorial way, it might be difficult to explicitly identify a connection \(\nabla \) or a \(\mathcal{D}_X \) action on \(\mathcal{F} \). However, Definition 0.3 is easy to apply if we understand \(\mathcal{F} \) as a functor.

(c) The theory of crystals has quite a bit of flexibility. For example, differential operators are badly behaved if the variety \(X \) is not smooth. However, we can still contemplate quasi-coherent sheaves on the deRham stack \(X^{dr} \). This turns out to behave badly in general, but it behaves well if we work with complexes of sheaves rather than sheaves (it recovers the usual derived category of quasi-coherent \(\mathcal{D} \)-modules on \(X \), which can be obtained more concretely by embedding \(X \) in some smooth variety).

Another advantage of Definition 0.3 is that it adapts easily to nonlinear settings. For example, we have the following:

Definition 0.5. Let \(S \) be a smooth scheme over \(k \). A **crystal of schemes on \(S \)** consists of the following data:

1. An \(S \)-scheme \(X \to S \). For every \(R \)-valued point \(x : \text{Spec} \, R \to S \), we will denote the pullback \(X \times_S \text{Spec} \, R \) by \(x^* X \).
2. For every pair of infinitesimally close points \(x, y \in S(R) \), an isomorphism of \(R \)-schemes \(\eta_{x,y} : x^* X \cong y^* X \). (As in Definition 0.3, we require that these isomorphisms be compatible with base change in \(R \)).
3. Let \(x, y, z \in S(R) \). If \(x \) is infinitesimally close to \(y \) and \(y \) is infinitesimally close to \(z \), then \(x \) is infinitesimally close to \(z \); we require that \(\eta_{x,z} \cong \eta_{y,z} \circ \eta_{x,y} \).

Let us now make the connection between Definition 0.5 and the theory of \(\mathcal{D} \)-schemes described earlier in the seminar. Let \(\pi : X \to S \) be a crystal of schemes over \(S \), and assume that \(\pi \) is affine. Then \(\pi_* \mathcal{O}_X \) is a crystal of quasi-coherent sheaves on \(S \), which we can identify with a quasi-coherent \(\mathcal{D}_S \)-module \(A \). However, it has more structure: namely, there is a multiplication \(\pi_* \mathcal{O}_X \otimes_{\mathcal{O}_S} \pi_* \mathcal{O}_X \to \pi_* \mathcal{O}_X \). This multiplication is a map of crystals, and translates (under the equivalence of categories of Theorem 0.4) to a map of \(\mathcal{D}_S \)-modules \(A \otimes_{\mathcal{O}_S} A \to A \). This map endows \(A \) with the structure of a quasi-coherent \(\mathcal{D}_S \)-algebra. As in Theorem 0.4, no information
is lost in the passage from \(\pi : X \to S \) to \(A \): we can recover \(X \) as the relative spectrum of \(A \), and the \(D_S \)-module structure of \(A \) exhibits \(X \) as a crystal of schemes on \(S \). We can summarize our discussion as follows:

Theorem 0.6. Let \(S \) be a smooth scheme over \(k \). Then the category of commutative quasi-coherent \(D_S \)-algebras is equivalent to the category of crystals of schemes \(\pi : X \to S \) such that \(\pi \) is affine.

Remark 0.7. Theorem 0.6 provides a concrete understanding of crystals of schemes in the affine case. However, it can be used to understand crystals of schemes in general. Assume for simplicity that the base \(S \) is separated, and suppose that \(\pi : X \to S \) is a crystal of schemes over \(S \). Let \(U \subseteq X \) be an affine open subset. We claim that \(U \to S \) is also a crystal of schemes. To prove this, we need to give a canonical isomorphism \(x^*U \simeq y^*U \) for every pair of infinitesimally close morphisms \(x, y : \text{Spec} \ R \to S \). Note that \(x^*U \) and \(y^*U \) can be identified with open subsets of the \(R \)-schemes \(x^*X \) and \(y^*X \), which are identified by virtue of our assumption that \(X \to S \) is a crystal of schemes. We claim that this identification restricts to an isomorphism \(x^*U \simeq y^*U \). This is a purely topological question. We may therefore replace \(R \) by the quotient \(R/I \), where \(I \) is the nilradical of \(R \). After this maneuver, we have \(x = y \) and the result is obvious.

Since \(S \) is separated, for every affine open subset \(U \subseteq X \) the map \(\pi|U \) is an affine map from \(U \) to \(S \), so that \((\pi|U)_* \mathcal{O}_U \) is a sheaf of quasi-coherent \(\mathcal{O}_S \)-algebras which we will denote by \(A_U \). The above reasoning shows that, if \(X \) is a crystal of schemes over \(S \), then each \(A_U \) has the structure of \(D_S \)-algebra; moreover, this structure depends functorially on \(U \).

Conversely, suppose we are given a compatible family of \(D_S \)-algebra structures on \(A_U \), for all open affines \(U \subseteq X \). Then each affine \(U \subseteq X \) has the structure of a crystal of schemes over \(S \). We claim that \(X \) then inherits the structure of a crystal of schemes over \(S \). To prove this, we need to exhibit an isomorphism \(\eta_{x,y} : x^*X \to y^*X \) for every pair of infinitesimally close points \(x, y \in S(R) \). The underlying map of topological spaces of \(\eta_{x,y} \) is clear (since dividing out by the nilradical of \(R \) does not change these topological spaces). The problem of promoting this map of topological spaces to a map of schemes is then local: it therefore suffices to give such a map over an open covering of \(x^*X \), and such a covering is given by \(\{x^*U\} \) where \(U \) ranges over the affine open sets in \(X \).

As in the case of quasi-coherent sheaves, we can phrase the definition of crystal in terms of deRham stacks. More precisely, let \(S \) be any functor from the category of commutative \(k \)-algebras to sets. We define an \(S \)-scheme to be another functor \(X \) from commutative \(k \)-algebras to sets, equipped with a map \(\pi : X \to S \), which is relatively representable in the following sense: for any \(R \)-point \(s \in S(R) \), the fiber product \(X \times_S \{s\} \) (another functor from commutative \(k \)-algebras to sets) is representable by an \(R \)-scheme. If \(S \) is itself representable by a \(k \)-scheme, this recovers the usual notion of a scheme \(X \) with a map to \(S \). If \(S \) is a smooth \(k \)-scheme, then an \(S^{dr} \)-scheme is the same thing as a crystal of schemes over \(S \).

Let \(\pi : S' \to S \) be a map of functors. If \(X \) is an \(S \)-scheme, then the fiber product \(S' \times_S X \) is an \(S' \)-scheme, which we will denote by \(\pi^*S \). The construction \(\pi^* \) has a right adjoint \(\pi_* \), at least at the level of functors. Namely, let \(X' \to S' \) be a morphism in the category of functors from commutative \(k \)-algebras to sets. We define \(\pi_*X' \) to be the set of pairs \((s, \phi) \), where \(s \in S(R) \) and \(\phi \) belongs to the inverse limit \(\lim_{s' \in S'(R')} X'_s(R') \), taken over all pairs \((R', s') \) where \(R' \) is a commutative \(R \)-algebra and \(s' \in S'(R') \) lifts the image of \(s \) in \(S(R) \). The functor \(\pi_*X' \) is called the Wei restriction of \(X' \) along \(\pi \). In general, it need not be an \(S \)-scheme, even if we assume that \(X' \) is an \(S' \)-scheme.

Example 0.8. Let \(S \) be a separated smooth \(k \)-scheme, and let \(\pi : X \to S \) be an arbitrary map of schemes. For each \(n \geq 0 \), let \(S^{(n)} \) denote the \(n \)th order neighborhood of the diagonal
we have a bijection $\text{Hom}_{S}(Y, J^{(n)}(X)) \simeq \text{Hom}_{S}(Y \times_{S} S^{(n)}, X)$. A point of $J^{(n)}(X)$ consists of a point $x \in X$ together with an order n jet of a section of π passing through x.

We have forgetful maps $J^{(n+1)}(X) \to J^{(n)}(X)$ for $n \geq 0$. These maps are affine, so that the inverse limit $J(X) = \varprojlim J^{(n)}(X)$ is well-defined. We call $J(X)$ the jet-scheme of the projection π. By construction, for every R-valued point $x \in S(R)$, the pullback $x^{*}J(X)$ can be identified with the scheme which parametrizes sections of π over a formal neighborhood of x in $S \times \text{Spec } R$. If $x, y \in S(R)$ are infinitesimally close, then their formal neighborhoods coincide in $S \times \text{Spec } R$, so we get a canonical isomorphism of R-schemes $x^{*}J(X) \simeq y^{*}J(Y)$. These isomorphisms exhibit $J(X)$ as a crystal of schemes over S.

One can give another more abstract argument that $J(X)$ should have the structure of a crystal of schemes over S. Namely, we claim that $J(X)$ is given by the Weil restriction of X along the quotient map $\pi : S \to S^{\text{dr}}$. More precisely, $J(X)$ is the underlying S-scheme of this Weil restriction: that is, it is given by $\pi^{*}\pi_{*}X$. To prove this, we observe that there is a pullback diagram

$$
\begin{array}{ccc}
(S \times S)^{\vee} & \xrightarrow{\pi_{1}} & S \\
\downarrow \pi_{2} & & \downarrow \pi \\
S & \xrightarrow{\pi} & S^{\text{dr}}.
\end{array}
$$

There is a natural transformation of functors

$$(\pi^{*}\pi_{*}X) \simeq (\pi_{2})_{*}(\pi_{1}^{*}X),$$

which can be shown to be an isomorphism in this case. Note that $(S \times S)^{\vee} \simeq \varprojlim S^{(n)}$, so that $(\pi_{2})_{*}(\pi_{1}^{*}X)$ is the inverse limit of the Weil restrictions of the fiber products $X \times_{S} S^{(n)}$. By construction, this inverse limit is given by $J(X) = \varprojlim J^{(n)}(X)$.

The argument sketched above has an additional virtue: it establishes a universal property enjoyed by the construction $X \mapsto J(X)$. Namely, we have proven the following:

Proposition 0.9. Let S be a smooth separated k-scheme. Then the construction $X \mapsto J(X)$ is right adjoint to the forgetful functor from crystals of S-schemes to S-schemes. In other words, for any crystal of S-schemes Y, composition with the projection map $J(X) \to X$ induces a bijection between the set $\text{Hom}_{S^{\text{dr}}}(Y, J(X))$ of maps of crystals to the set $\text{Hom}_{S}(Y, X)$ of maps of S-schemes.

We now introduce a more specific example which is relevant to our study in this seminar:

Example 0.10. Let X be an algebraic curve over k and G a reductive algebraic group, and let $\pi : \text{Gr}^{1} \to X$ denote the Beilinson-Drinfeld Grassmannian. More precisely, an R-valued point of Gr^{1} is given by a triple (x, P, η), where $x \in X(R)$ is a point of X, P is a G-bundle on $X \times \text{Spec } R$, and η is a section of P over the open set $(X \times \text{Spec } R) - x(\text{Spec } R)$. Then π exhibits Gr^{1} as a crystal (of Ind-schemes) over X. To see this, it suffices to observe that if $x, y \in X(R)$ are infinitesimally close, then the open sets $(X \times \text{Spec } R) - x(\text{Spec } R)$ and $(X \times \text{Spec } R) - y(\text{Spec } R)$ coincide.

Example 0.11. Let X be an algebraic curve. Given an R-point $x \in X(R)$, let $O_{X,x}^{\text{DR}}$ denote the ring of functions on the formal scheme given by completing $X \times \text{Spec } R$ along x. Then
the ordinary scheme $\Spec \mathcal{O}_{X,x}^\vee$ contains $\Spec R$ as a divisor; we will denote the difference $\Spec \mathcal{O}_{X,x}^\vee - \Spec R$ by D_x°, and refer to it as the punctured formal disk around x. (If R is a field, or more generally a local ring, then D_x° is noncanonically isomorphic to the spectrum of a Laurent power series ring $R((t))$.)

Let Y be a scheme. We define a relative loop space LY as follows: an R-valued point of LY is given by a pair (x, ϕ), where $x \in X(R)$ and $\phi : D_x^\circ \to Y$ is a map of schemes. If Y is affine, then LY is an Ind-scheme, and we have an obvious projection $LY \to X$. This map exhibits LY as a crystal of Ind-schemes over X. To see this, it suffices to observe that if $x, y \in X(R)$ are infinitesimally close, then the formal completions of $X \times \Spec R$ along x and y coincide. We therefore have an isomorphism of rings $\mathcal{O}_{X,x}^\vee \simeq \mathcal{O}_{X,y}^\vee$ and hence an isomorphism of affine schemes $\Spec \mathcal{O}_{X,x}^\vee \simeq \Spec \mathcal{O}_{X,y}^\vee$, which restricts to an isomorphism between the open subschemes $D_x^\circ \simeq D_y^\circ$.

In the special case where Y is a reductive algebraic group G, the map $LG \to X$ has fibers over a rational point $x \in X(k)$ given by $G(k_x)$, k_x is denotes the field of Laurent series corresponding to $x \in X$. In this case, LG is a group stack over X, and has a natural action $LG \times_X \Gr^1 \to \Gr^1$. It is not difficult to see that this action is horizontal: that is, the preceding map is a map of crystals.