1. Let A be a commutative Noetherian ring and let M be a f.g. A-module.
 (a) Show that p is an associated prime of M if and only if M_p has depth 0.
 (b) Let $p_i, i \in I$ be the set of associated primes of M. Show that the map
 $$M \to \bigoplus_{i \in I} M_{p_i}$$
is injective.
 (c) Let p be a prime and Y_p the corresponding closed subscheme of $X := \text{Spec}(A)$. Let $U_p \hookrightarrow X$ be the complement. Show that the map $M \to j_! j^*(M)$ is injective when localized at p if and only if p isn’t an associated prime of M.
 (d) Let $Y \subset X$ be an arbitrary closed subscheme and $U \hookrightarrow X$ its complement. Deduce that Y doesn’t contain primes p such that $\text{depth}(M_p) = 0$ if and only if the map $M \to j_! j^*(M)$ is an injection.
 (e) Deduce that if A is S_1, and X is reduced at the generic point of each of its irreducible components, then it’s reduced.

2. We retain the assumptions and notation from Problem 1.
 (a) Let p, Y_p, U_p be as in Problem 1(c). Show that the map $M \to j_! j^*(M)$ is an isomorphism when localized at p if and only if M_p has depth ≥ 2.
 (b) Assume that M satisfies S_2 and that it has support on multiple irreducible components of X, whose intersections are subschemes of codimension ≥ 2. Show that M is a direct sum of modules, each of which is supported on its own irreducible component.
(c) Assume now that A is integral, and let K denote its field of fractions. Show that M can be described as the A-submodule of $M \otimes_K A$ equal to the intersection of the localizations M_p, where p runs over the set of height 1 primes of A.

4. Let A be a Noetherian ring.

(a) Show that if A itself is $S_1 + S_2$ and is reduced at each generic point, then it is a disjoint union of integral schemes.

(b) Show that if A is R_1 and S_2, then it’s also S_1.

(c) Show that if A satisfies S_2 and R_1 and X is connected, then A is integrally closed.

(d) Show that the S_2-condition on a module M can be rephrased as follows: M doesn’t have submodules supported on subschemes which are not unions of irreducible components, and any extension

$$0 \to M \to M' \to T \to 0$$

with $\operatorname{codim}(\operatorname{supp}(T)) \geq 2$, splits.

(e) Let A be a domain. Show that the normality of A is equivalent to the following property: for any $A \hookrightarrow A'$ such that A' a domain and finite as an A-module and $K \to A' \otimes_A K$ is an isomorphism, we have $A = A'$. Argue that $S_2 + R_1 \Rightarrow "normal"$ from this point of view using (d).

5. Show that if A is an integrally closed Noetherian domain, then it satisfies S_2.

Suggested strategy: Argue by contradiction. Reduce the assertion to the situation when A is local, and we have an extension

$$0 \to A \to M' \to T \to 0$$

of A-modules, where M' is torsion-free and T is supported at the maximal ideal. Thus, we can think of M' as an A-submodule of $K := \operatorname{Frac}(A)$. Let $t \in T$ be an \mathfrak{m}-torsion element; let f be some its lift to an element of M'. Show that the action of f on A (perceived as an A-submodule of K) sends \mathfrak{m} to itself, or we'll obtain a contradiction to Krull’s Haupstellensatz.

6. Let A be a Noetherian ring of finite cohomological dimension. Show that for a f.g. A-module M, its projective dimension is the minimal integer i such that for $i' > i$ we have $\operatorname{Ext}^i_A(M, A) = 0$. (E.g., M is projective iff all the higher Ext's vanish.) Hint: if N is any A-module, use a left (!) resolution of N by projective A-modules to express $\operatorname{Ext}^i_A(M, N)$ via $\operatorname{Ext}^i_A(M, A)$.

7. Let A be a Noetherian ring of finite cohomological dimension.

(a) Show that any locally free coherent sheaf over A is S_k for any k.

(b) Reprove that $\operatorname{Ext}^i(N, A) = 0$ for a f.g. A-module N with $\operatorname{codim}(\operatorname{supp}(M)) > i$.

(c) Deduce that for a f.g. A-module, its projective dimension is \geq the codimension of its support.

8. Let A be a Noetherian ring, such that for every maximal idea \mathfrak{m} the localization $A_{\mathfrak{m}}$ is regular of dimension n. Let M be a f.g. A-module, which is S_n. Show that M is locally free.