MATH 221, PROBLEM SET 1, DUE: SEPT. 29.

Problems marked with (*) are more difficult, but still mandatory.

1*. Let M be an R-module. Show that the following conditions are equivalent:
(a) Any ascending sequence $M_1 \subset M_2 \subset \ldots$ of submodules such that $\bigcup_i M_i = M$, stabilizes.
(b) For any set of R-modules $N_i, i \in I$, for any map $M \to \bigoplus_{i \in I} N_i$ there exists a finite subset $I_0 \subset I$ such that the above map factors through
\[\bigoplus_{i \in I_0} N_i \subset \bigoplus_{i \in I} N_i, \]
i.e., the map
\[\bigoplus_{i \in I} \text{Hom}_R(M, N_i) \to \text{Hom}_R(M, \bigoplus_{i \in I} N_i) \]
is an isomorphism. Note that the above map always injective.

Hint: let $j \mapsto (M_j \subset M)$ be a chain of submodules of M, such that $\bigcup_j M_j = M$. Can you map M to $\bigoplus_j M/M_j$? When will such a map (if it exists) be a finite sum of maps to some particular M/M_j’s?

2. Let $\phi : A \to B$ be a homomorphism of rings with A left-Noetherian.
(a) Assume that ϕ is surjective. Show that B is left-Noetherian.
(b) Assume that ϕ makes B a f.g. left A-module. Show that B is left-Noetherian.

3. Let k be a field and let $R = k[x_1, x_2, \ldots]$ be the polynomial algebra on \mathbb{N}-many generators. By definition, it is isomorphic to $\lim_{\rightarrow n} k[x_1, \ldots, x_n]$. Consider the homomorphism of k-algebras $\phi : R \to k$ that sends all x_i to 0. Show that $\ker(\phi)$ is not finitely generated.

Hint: pass from $R = k[x_1, x_2, \ldots]$ to a quotient algebra by killing x_i^2 for all i.

4*. Let A be a ring, and consider the ring of formal power series $A[[x]]$. Modify the proof of Hilbert’s basis theorem to show that if A is Noetherian, then so is $A[[x]]$.

In the rest of the PS, all rings are commutative.

5. Let $A \to B \to C$ be homomorphisms of rings. Assume that B is finite over A and C if finite over B. Show that C is finite over A.

6. Let $A \to B$ be a homomorphism, with A Noetherian.
(a) Let $b \in B$ be integral over A. Show that for the corresponding homomorphism $\phi : A[x] \to B$, any element in $\text{Im}(\phi)$ is integral over A.
(b) Let $b_1, \ldots, b_n \in B$ be integral over A. Show that for the corresponding homomorphism $\phi_n : A[x_1, \ldots, x_n] \to B$, any element in $\text{Im}(\phi)$ is integral over A.
(c) Show that the set of elements in B that are integral over A forms a subring.

Date: September 26, 2008.
7. Let \(A \to B \) be a homomorphism. We say \(B \) is integral over \(A \) if every element \(b \in B \) is integral over \(A \).

Assume that \(A \) is Noetherian. Show that \(B \) is finite over \(A \) if and only if it is integral and finitely generated as an \(A \)-algebra.

8. Let \(A \to B \) be injective, with \(A \) Noetherian and \(B \) integral over \(A \). Assume that neither \(A \) nor \(B \) have zero divisors.
 (a) Show that \(A \) is a field then so is \(B \).
 (b) Deduce that a field \(k \) is algebraically closed (i.e., every polynomial has a root) if and only for every finite field extension \(k \subset k' \) (i.e., \(k' \) is f.d. as a \(k \)-vector space) we have \(k = k' \).
 (c) Show that if \(B \) is a field, then so is \(A \).

9. Let \(k \) be an arbitrary field (not necessarily algebraically closed). Recall that the Weak Nullstellensatz says that every field extension \(k \subset k' \), such that \(k' \) is f.d. as a \(k \)-algebra, is finite. Deduce from it the following statements:
 (a) Every maximal ideal in \(k[x_1, \ldots, x_n] \) is the kernel of a surjective \(k \)-algebra homomorphism \(\phi : k[x_1, \ldots, x_n] \to k' \), where \(k' \) is a finite field extension of \(k \). Show that for any two choices \((k'_1, \phi_1)\) and \((k'_2, \phi_2)\) there exists a unique \(k \)-algebra homomorphism \(\psi : k'_1 \to k'_2 \) such that \(\psi \circ \phi_1 = \phi_2 \).
 (b) For every maximal ideal in \(m \subset k[x_1, \ldots, x_n] \) there exists a field extension \(k' \) and a point \((c'_1, \ldots, c'_n)\in (k')^n\) such that \(m = m(c'_1, \ldots, c'_n) \cap k[x_1, \ldots, x_n] \subset k'[x_1, \ldots, x_n] \). Give an example, how for the same field extension \(k' \) two different choices of \((c'_1, \ldots, c'_n)\) give rise to the same ideal \(m \).